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Abstract

According to the recent trend in data acquisition and processing technology, big data are increasingly available in the
form of unbounded streams of elementary data items to be processed in real-time. In this paper we study in detail the
paradigm of sliding windows, a well-known technique for approximated queries that update their results continuously as
new fresh data arrive from the stream. In this work we focus on the relationship between the various existing sliding
window semantics and the way the query processing is performed from the parallelism perspective. From this study two
alternative parallel models are identified, each covering semantics with very precise properties. Each model is described
in terms of its pros and cons, and parallel implementations in the FastFlow framework are analyzed by discussing the
layout of the concurrent data structures used for the efficient windows representation in each model.
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1. Introduction

Our world is becoming ever more hyper-connected as
the number of intelligent devices installed in our every-
day objects and environments is increasing at an exponen-
tial rate. An increasing number of applications require to
apply Data Science techniques (e.g., data mining and ma-
chine learning algorithms) to extract insights from massive
volumes of data that are often made available as transient
unbounded flows of elementary items like sensor readings,
stock tickers or timed events in general [1].

In recent years, Stream Processing Engines (briefly,
SPEs) like Apache Storm [2], IBM InfoSphere Streams [3]
and Spark Streaming [4] have become principal compo-
nents in many Big Data technology stacks. Their data-flow
programming style is considered a promising approach for
Internet of Things (IoT) scenarios [5, 6], which may im-
prove the programmability of applications with high socio-
economical impact like Smart Cities, Automotive and Cul-
tural Heritage applications [7, 8, 9].

The data-flow programming style allows high levels of
parallelism by designing applications as directed graphs of
computing kernels called operators, which consume data
items from input streams and produce output results onto
streams connected to other operators [10, 11]. Operators
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whose processing speed is not fast enough need to be in-
ternally parallelized to increase their throughput by pro-
viding timely responses to the users. Most of the existing
SPEs provide low-level solutions to parallelize bottleneck
operators. An approach is to replicate the operator and
to schedule input items (also called tuples) to the replicas
according to distribution policies that are safe in terms of
computation semantics [10] and whose definition may be
in charge of the application programmer.

To deal with the unbounded length of the stream, SPEs
provide techniques to repeatedly apply the processing on
the most recent tuples only. This is enabled by the so-
called sliding window processing approach [12], where a
window is a bounded set of the most recent tuples whose
content is dynamically determined according to various
semantics made available to the programmer (e.g., count-
based, time-based and hybrid models).

A certain effort has been made over the years in order to
categorize the sliding window semantics [13] and to derive
properties about their computation accuracy [14]. How-
ever, the relationship between the sliding window semantics
and suitable parallelism models is still not clear. The sim-
plest idea is to process in parallel windows whose content is
complete (i.e. all their tuples have been received). Never-
theless, different approaches can be devised based on which
entities in the parallel version are in charge of managing
the windows evolution and performing the processing on
the triggered windows. This paper aims at providing a
complete picture of the possible approaches for parallel
windowed operators, which are suitable to be provided in
the future as ready-to-use patterns with a user-friendly
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interface. The main contributions can be summarized as
follows:

• the sliding-window parallelism paradigm is proposed
as an alternative to the partitioned-stateful paral-
lelism paradigm commonly used in existing SPEs;
• the theoretical work in [13] proposed a categorization

of the sliding window semantics based on the informa-
tion (on past or future tuples) needed to map input
items onto sliding windows. We extend such work
by understanding how the windowing semantics af-
fects the parallelization. Two models are derived: the
Agnostic and the Active Worker Models. The two ap-
proaches are presented with their pros and cons;
• the implementation of the two models is described by

focusing on the layout of the data structures that we
need to represent the buffered tuples of the stream.
The Concurrent Chunk-based Window Buffer struc-
ture is presented and designed.

The models and implementations are developed in the
FastFlow streaming library [15] and the porting of such
ideas on widely utilized SPEs is our future aim.

The paper is organized as follows. The next section will
provide a brief background on Data Stream Processing by
presenting a categorization of the different sliding window
semantics. Sect. 3 proposes the two models whose imple-
mentation is presented in Sect. 4. Sect. 5 presents a set of
interesting preliminary results on multicores that provide
a first validation of our ideas. Finally, Sect. 6 describes
the related work and Sect. 7 states the conclusion of this
work and our future research directions.

2. Data Stream Processing

In this section we describe the main features of the Data
Stream Processing research topic (briefly DaSP). In par-
ticular, we focus on the characteristics of the programming
models provided by the most common SPEs with special
attention to the windowing abstractions, which are of great
importance for the goals of this paper.

Almost all the existing SPEs provide the programmer
with relatively high-level constructs to implicitly or ex-
plicitly build complex streaming topologies. A topology is
a directed graph of logic transformations called process-
ing elements or simply operators. Operators can be con-
nected arbitrarily though some SPEs constraint the form
of the admissible topologies (e.g., without cycles). Opera-
tors can be sources that generate data flows by interfacing
with external data producers like raw sensors or any data
provider, sinks that absorb the results by eventually con-
solidating them into databases, and operators representing
intermediate stages of the data transformation. Informa-
tion exchanged within the topology assumes the form of
unbounded flows of data items defined as follows:

Definition 1 (streams and tuples). A data stream S is
an unbounded sequence S = (t0, t1, . . . , ) of tuples all hav-

ing the same type T . A tuple t is a record of d > 0 at-
tributes < a1:type1, . . . , ad:typed, ts:timestamp > where
t.ai is the i-th attribute (e.g., a floating point number or an
integer) and t.ts, also represented as τ(t), is the timestamp
denoting the time at which the tuple has been produced.

While the identifiers of the tuples reflect the ordering at
which they are received at the destination side, the times-
tamps reflect the generation time at the producer side. In
general data streams are ordered, i.e. for each pair of tu-
ples ti, tj ∈ S, i < j ⇐⇒ τ(ti) < τ(tj). Instead, a stream
is out-of-order if it may be possible that τ(ti) < τ(tj)
with i > j and tuple ti is called a late arrival. Disor-
dered streams exist in the real practice and require proper
mechanisms to be processed correctly (e.g., punctuations,
reordering buffering [16, 17]). In the rest of this paper we
will focus on ordered streams only.

Each operator executes an infinite loop where input tu-
ples are received from its input queues, it goes over the
input by eventually using its internal state and produces
output tuples delivered to the operator’s output queues.
Most of the SPEs provide built-in operators for common
data processing functions (e.g., aggregate and joins) and
also allow the programmer to define customized operators
performing user-defined functions. When an operator has
multiple input queues (input arity greater than one) we
can distinguish between two possible activation semantics:

• non-deterministic, where the internal processing logic
of the operator consumes an input tuple as soon as it
is available in any of its input queues;
• data-flow, where the operator logic is executed when

at least one tuple is available in each input queue.
One input tuple per queue is consumed by a single
activation of the operator.

Furthermore, depending on the operator semantics, one
or more input tuples can be consumed before producing
an output result or alternatively more output tuples can
be produced per input. In the literature this property is
called input/output selectivity of operators [18]. Finally,
if the operator has multiple output queues (output arity
greater than one), each result tuple can be delivered to
exactly one output queue selected according to a certain
policy, or it can be replicated and each copy sent to each
queue (data-flow semantics).

The run-time system of SPEs is responsible for execut-
ing the topologies submitted by the users, and to deploy
them onto the underlying resources (e.g., cores of a mul-
ticore, nodes of a cluster) according to placement poli-
cies balancing throughput and resource consumption [19].
A topology remains in execution until the user explicitly
stops it or when source operators stop producing tuples.

2.1. Windowed Operators

Specific computing models have been developed to cope
with the problem of having possibly unbounded input
streams that feed the running topologies. In most cases the

2



informational value of input tuples is time-decaying [18],
and operators often require to maintain the recent history
of the streams and to perform the processing task on the
most recent data. The abstraction provided for doing this
is based on sliding windows [12].

Windowed operators apply their internal processing
logic on sliding windows of the input stream. A window
represents a subset of the tuples belonging to the input
stream that are logically grouped together. Typically, a
windowed operator produces a result tuple per window
where the processing logic is specific of the operator at
hand. Examples are windowed operators for computing
aggregates [13] (e.g., average, quantiles, standard devia-
tion) or preference queries like skyline and top-k [20].

Existing SPEs provide some standard windowing con-
cepts or provide the users with programming mechanisms
to define custom windowing semantics. As shown in [12],
the window semantics is characterized by:

• an eviction policy, which determines which tuples
must be evicted because they are too old and they
do not belong to the next window to compute;
• a triggering policy, which determines when a new win-

dow is ready to be computed.

Several models have been introduced in the literature
based on the mechanisms adopted for controlling the two
policies. The following code fragment describes the defini-
tion of a windowed operator in Apache Storm [2]:

TopologyBui lder bu i l d e r = new TopologyBui lder ( ) ;
bu i l d e r . setSpout ( "spout" , new MySpout ( ) ) ;
bu i l d e r . s e tBo l t ( "winbolt" , new MyWinBolt ( ) .

withWindow(new Count ( 100 ) , new Count ( 10 ) ) ) .
shu f f l eGroup ing ( "spout" ) ;

In the fragment the topology consists of two operators, a
source (called spout) and an operator (called bolt) that in-
stantiates the MyWinBolt class providing methods for slid-
ing window processing (it implements the IWindowedBolt
interface). In the syntax the windowed bolt adopts a
count-based mechanism for controlling both the eviction
and the triggering policy. In other words, the operator
computation is applied over the last 100 received tuples of
the stream, and the processing is repeated each time new
10 tuples received by evicting the 10 oldest tuples. These
two parameters are referred to as range and slide denoted
by W and S in general.

For the sake of comparison, the following code fragment
reports the instantiation of the same topology in Fast-
Flow [15], a C++11 template library for stream processing
on multicores:

MySource source ( ) ;
Win_Seq<tuple_t , output_t> winOperator ( tup l e In fo

, winFunction , 100 , 10 , CB) ;
ff_Pipe<tuple_t , output_t> pipe ( source ,

winOperator ) ;

Where the ff_Pipe object consists in a pipeline where the
first stage is the source and the second is the windowed

operator (instantiating the Win_Seq template) . The con-
structor takes some input parameters. The tupleInfo and
winFunction parameters are two functions needed for ex-
tracting the identifier from the tuple that can be a user-
defined data type and the function that goes over the win-
dow tuples to produce the result. The next two parameters
are the range and the slide of the windows and the last in-
dicates that we use count-based windows (CB).

Analogously, time-based windows can be defined by pro-
viding the range and the slide parameters in time units in-
stead of in terms of tuples. For example in Apache Storm
this can be achieved as follows:
bu i l d e r . s e tBo l t ( "winbolt" , new MyWinBolt ( ) .

withWindow(new Duration ( 10 , TimeUnit .SECONDS
) , new Duration ( 2 , TimeUnit .SECONDS) ) ) .
shu f f l eGroup ing ( "spout" ) ;

In this case the windowed bolt applies the computation on
the tuples received in the last 10 seconds by producing a
new result every 2 seconds. To move from a window to the
next one the oldest tuples received in the first 2 seconds
are evicted and the newest tuples received in the last 2
seconds are added to the window. In FastFlow a time-
based windowed operator can be instantiated by passing
the enumeration parameter "TB" to its constructor.

2.2. Windows Semantics
Different models of sliding windows are based on the

mechanisms that rule the eviction and the triggering poli-
cies. Count-based and time-based windows are only two of
the most common examples that belong to a more complex
taxonomy. To understand the different window semantics
we need to introduce a specific notation and terminology.

As originally described in [13], the window semantics
can be formally specified by describing how tuples are
mapped onto windows and vice-versa. We number the
windows processed by an operator using a progressive iden-
tifier starting from zero, i.e. Wi is the i-th window where
Wid = {0, 1, . . .} is the set of the window identifiers. We
introduce two concepts:

• window extent : it is a function E : Wid → P(S) that,
given the identifier of a window, returns the set of the
tuples in the stream that belong to that window;
• window mapping : it is a function M : S → P(Wid)

that assigns to each tuple t ∈ S the set of all the
identifiers of the windows that contain that tuple.

For count-based and time-based sliding windows with
range W and slide S the window extent function applied
on a window with identifier w ∈Wid is defined as follows:

E(w) = {ti|ti ∈ S, w · S ≤ i < W + w · S} (1)
E(w) = {t|t ∈ S, w · S ≤ τ(t) < W + w · S} (2)

The definition (1) is the extent function of count-based
windows while (2) is the one of time-based windows.

Other windowing models have been developed. An ex-
ample is represented by slide-by-tuple windows, which are
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a sort of hybrid configuration supported by some SPEs. In
this model the eviction policy is governed by a time-based
mechanism (W is expressed in time units) while the trig-
gered policy uses a count-based mechanism (S is specified
in number of tuples). This reflects in sliding windows that
trigger exactly every new S tuples received and each win-
dow spans from the triggering tuple tr to the oldest tuple
with timestamp greater than τ(tr)−W . Given a window
w ∈ Wid, the window is triggered by the arrival of tuple
tr ∈ S such that r = [(w+1) ·S]− 1. The extent function
is defined as follows:

E(w) = {t|t ∈ S, τ(tr)−W < τ(t) ≤ τ(tr)} (3)

The last example that we mention in this section con-
sists in the delta-based model provided by IBM InfoSphere
Streams [3]. In this model an attribute δ is chosen to be
the delta attribute used for windowing purposes. In gen-
eral, this attribute must be numeric and non-decreasing
as new tuples arrive at the operator. The parameter W
indicates the eviction threshold. When a tuple tr triggers a
new window, all the previously received tuples t ∈ S such
that t.δ < tr.δ−W must be evicted because the difference
between the delta value of the triggering tuple and the one
of t is greater than the eviction threshold. The triggering
policy determines when a tuple is considered a triggering
one and uses a parameter S as the triggering threshold.
Let tr be the last tuple that triggered the window process-
ing. A next tuple t is considered a new triggering tuple
if the difference between its delta value and the one of tr
exceeds the triggering threshold, i.e. t.δ − tr.δ > S.

To define the extent function of delta-based windows we
introduce the notation tir to indicate the i-th triggering
tuple. Given a tuple t we indicate with N (t) the set of
tuples with delta attribute greater than t.δ + S. Hence,
the i-th triggering tuple tir for any i > 0 is defined as the
tuple with the smallest identifier in the set N (ti−1

r ). The
extent function is defined as follows:

E(w) = {t|t ∈ S, twr .δ −W ≤ t.δ < twr .δ} (4)

where the first triggering tuple is by default equal to the
first tuple of the stream, i.e. t0r = t0.

So far we focused on the extent function that provides
a formal definition of the content of each window. The
mapping functionM represents the inverse of E and plays
a central role in the window semantics. The function maps
a tuple onto a subset of window identifiers, i.e. the ones
that contain that tuple in their extent. To formalize the
definition of the mapping function we need two types of
information related to either the past tuples or to future
tuples with respect to a given tuple t. This is sketched in
Fig. 1 where the following concepts are introduced:

• we define the backward context B : S → P(S) with
respect to tuple ti ∈ S the set of all the tuples
that arrived at the operator before ti (included), i.e.
B(ti) = {tj |tj ∈ S, j ≤ i};

• we define the forward context F : S → P(S) with
respect to tuple ti ∈ S the set of all the tuples that
will arrive after ti, i.e. F(ti) = {tj |tj ∈ S, j > i}.

arrival timetuple t

BACKWARD CONTEXT FORWARD CONTEXT

Figure 1: Representation of the backward and forward context
with respect to a given tuple t.

An interesting categorization proposed in [13] is based
on the type of context needed to build the mapping func-
tion. A windowing model is called Forward Context Free
(FCF) if the mapping function does not need to access the
forward context of tuples. This means that the window
mapping of a tuple t can be specified by accessing to the
information contained in the tuple attributes and, eventu-
ally, in the past tuples received before t. Instead, when the
mapping function needs to access the forward context of
tuples, the model is called Forward Context Aware (FCA).

The previous models can be classified in these two broad
classes that have an important impact on the paralleliza-
tion paradigms of windowed operators (see the next sec-
tion). For the sake of brevity we will focus in detail on
count-based and slide-by-tuple windows in order to exem-
plify the reasoning that we can apply to other models.

Definition 2 (mapping of count-based windows). The
mapping function of count-based windows with range and
slideW and S maps a tuple ti ∈ S onto window identifiers
in the integer interval [first .. last], where:

first =

0 if i < W⌈
(i−W + 1)

S

⌉
if i ≥W (5)

last =

0 if i < S⌊
i

S

⌋
if i ≥ S (6)

Proposition 1. The count-based windowing model is
Forward Context Free.

The proof of the previous proposition is straightforward.
According to Definition 2 the first and the last identifiers
are expressed as a function of W and S (range and slide)
that are fixed parameters of the window specification pro-
vided by the user. Furthermore, the function needs to
access the identifier of the tuple and no information of
future tuples is required. To be more precise, this win-
dowing model belongs to a sub-class of FCF windows that
are called Context Free, since only information related to
the attributes of the considered tuple t is needed.

The same reasoning can be applied to the time-based
windowing model which is also FCF.
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Definition 3 (mapping of slide-by-tuple windows). The
mapping function of slide-by-tuple windows with range W
(in time units) and slide S (in number of tuples) maps a
tuple ti ∈ S onto window identifiers in the integer interval
[first .. last]. We call a tuple ti a triggering tuple if (i+1)
mod S = 0. If ti is a triggering tuple, the first window
extent in which it is contained is the one triggered by the
arrival of this tuple, i.e. first = (i + 1)/S − 1. Consider
instead the case ti is not a triggering tuple. Let tj ∈ S the
first triggering tuple after ti, i.e. j is the smallest integer
greater than i such that (j + 1) mod S = 0. In this case
the first identifier can be computed as follows:

first =

{
(j + 1)/S − 1 if τ(ti) > τ(tj)−W
⊥ otherwise

(7)

We use the symbol ⊥ to refer to the case where the first
identifier does not exist, i.e. the tuple ti does not belong
to any window. Fig. 2 exemplifies two cases in order to
understand the problem. Tuple tr is the first triggering
tuple after tuples ti and tj with i < j. As we can see,
the first window extent that contains tj is the one of the
window triggered by tr while ti is not included in any
window, since when the next triggering tuple tr is received
ti is too old to be included in the triggered window.

arrival time

triggering
tuple

trti tj

triggering
tuple

window timespan

⌧(tr) � W

Figure 2: Example of slide-by-tuple windows with tuples in-
cluded in at least one window extent and tuples that do not
belong to any window extent.

A similar reasoning can be applied to find the identifier
of last. Let tk be the last triggering tuple that we will
receive after ti such that τ(ti) > τ(tk)−W . We have:

last =

{
(k + 1)/S − 1 if tk ∈ S
⊥ otherwise

(8)

If the tuple tk does not exist, this means that no future
tuple will trigger a window containing ti, and in that case
both first and last are ⊥.
Proposition 2. The slide-by-tuple windowing model is
Forward Context Aware.

Also for slide-by-tuple windows the proof is straightfor-
ward. To determine first and last we need to access to
the timestamp value of tuples tj and tk that belong to the
forward context of ti, i.e. tj , tk ∈ F(ti).

2.3. A Taxonomy of Windowing Models
It is interesting to classify the various windowing mod-

els adopted by the existing SPEs based on the context

properties discussed before. Without claiming to be ex-
haustive, Fig. 3 shows a classification of the most common
models in terms of their FCF and FCA properties. In the
FCF class we have the count-based model, which is com-
monly adopted for applications with highly variable incom-
ing rates (e.g., financial applications) that need a bounded
memory occupation for the query processing. The time-
based model is another example of FCF windows which are
often easier to understand for the final users, as they can
relate the windows evolution directly to time (this is use-
ful for business applications like in e-commerce and on-line
auction systems). The use of session windows [21] empha-
sizes the variability of the window extents that are defined
based on the frequency of input tuples. Session windows
are disjoint (not-overlapped) and their extents consist in
a set of consecutive input tuples whose time gap (between
two consecutive tuples) does not exceed a defined inactiv-
ity gap parameter. They are used when the input stream is
highly irregularly distributed over the time and are useful
to model the clients’ behavior like in network monitoring
applications [21].

Forward
Context Aware

Forward
Contex Free

Count Based Time Based

Landmark
Session

Delta Based

Slide-by-Tuple

Slide-by-Time

Figure 3: Categorization of common windowing models.

Hybrid models like slide-by-tuple windows and the dual
slide-by-time (i.e. windows that slide every S time units
each with a length of W tuples) are FCA models useful to
combine the properties of the "pure" models described be-
fore, e.g., the user can configure the sliding factor in time
units (i.e. by controlling the desired number of windows
triggered per second) while the window length is expressed
in terms of tuples, that is with a bounded memory occu-
pation and a fixed cardinality.

3. Parallel Paradigms for Windowed Operators

The common approach to parallelize operators is based
on data parallelism [10]. The idea is to replicate the op-
erator multiple times (according to a certain parallelism
degree) and to split the input stream by forwarding each
tuple to a selected replica. In this way the same compu-
tation is applied in parallel on different stream elements.

Data parallelism must be carefully applied in case of
stateful operators since the ordering of the tuples affects
the computation semantics. A widely used data-parallel
paradigm is called partitioned-stateful parallelism [18].
The precondition is that the input stream conveys tu-
ples belonging to multiple multiplexed logical sub-streams.
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Given a functionH that maps each tuple onto a sub-stream
identifier (called key), the assumption is that the process-
ing of tuples of different sub-streams can be performed
in parallel by different replicas, while tuples with the
same key must be processed serially by the same replica.
This paradigm can be expressed in most of the SPEs.
In Apache Storm an operator can have multiple replicas
and tuples can be forwarded using the fieldsGrouping
or partialKeyGrouping scheduling. In FastFlow the
paradigm can be expressed with the Key Partitioning pat-
tern [22] by providing the operator to be replicated and the
function H during the pattern construction.

This paradigm suffers from some limitations. First, load
balancing is negatively influenced in case of skewed key
distributions and the maximum parallelism is limited by
the number of existing keys. Furthermore, this paradigm
does not exploit the definition of sliding windows. We
observe that sliding windows represent a very special kind
of state corresponding to a "partial view" of the stream,
that is a segment of the input tuples logically grouped
together and that can be processed independently. This
can be exploited in a new data-parallel paradigm called
sliding-window parallelism, where the idea is to execute in
parallel different windows independently of whether they
belong to the same key or not. Therefore, parallelism is
not limited by the number of keys but the paradigm is also
effective in case of streams without keys, i.e. when all the
tuples belong to the same logical stream.

This new paradigm can be instantiated as a paral-
lel streaming program composed of several concurrent
entities. The custom distribution logic of inputs to
the replicas is executed by the Emitter entity. In
Apache Storm this can be implemented by extending the
CustomStreamGrouping interface while in FastFlow the
emitter can be explicitly programmed by rewriting proper
virtual methods of the ffnode class. Each replica is ex-
ecuted by a Worker entity which has all the processing
capabilities of the original operator. Finally, a Collector
is responsible for gathering the results of the computed
windows and to emit them in the output stream in in-
creasing order of the window identifier. We distinguish
two conceptual models that represent different implemen-
tation strategies of the paradigm. The distinction depends
on which concurrent entities are involved in the following
activities: data distribution, window triggering and tuples
eviction policies, and the processing of triggered windows.

In the agnostic worker model depicted in Fig. 4 the
workers are not aware of the sliding window semantics nor
of the fact that the operator function is applied to partially
overlapped segments of the input stream. The window-
ing logic is centralized in the emitter, which is responsible
for storing the most recent tuples in the so-called window
buffer and to determine when a new window is triggered.

The workers do the processing on different windows in
parallel, therefore they must be able to read the extents
of the windows to compute which are dispatched by the
emitter (with different implementation choices as we will

Emitter

Worker 0

Worker 1centralized
window buffer

1

345

6

2

evicted

window extent
1234

window extent
0123

Figure 4: Agnostic model: example with count-based sliding
windows with W = 4 and S = 1 tuples and two workers.

see in Sect. 4). So, the workers are anonymous and agnos-
tic of the window management, i.e. they are just in charge
of applying the computation on the received window ex-
tents. The distribution by the emitter can be performed
using load balancing policies to exploit at best the work-
ers processing capabilities such as by using an on-demand
distribution or any other load-aware strategy.

An alternative approach is based on the active worker
model depicted in Fig. 5, which is a fully distributed imple-
mentation of the paradigm since all the window manage-
ment activities are now entirely delegated to the workers.
They receive from the emitter single tuples and maintain
private window buffers where the received tuples are stored
and evicted according to the sliding window specification.

Worker 0

Worker 1

Emitter 1

345

6

2

private win. buffer 0

7

456 3

private win. buffer 2
1

7 8

tuple

tuple

Figure 5: Active model: example with count-based sliding win-
dows with W = 4 and S = 1 tuples and two workers.

In order to increase the query throughput, the workers
must apply the processing on different windows. The as-
signment is the round-robin one, i.e. window i ∈ Wid is
assigned to worker j = i mod N , with N the parallelism
degree. This has two consequences exemplified in Fig. 6:

• each worker receives only the tuples belonging to the
extents of the assigned windows. For example, in the
figure the worker with identifier one should not re-
ceive tuple t0 since this belongs only to the extent of
window win0 which is not assigned to that worker.
Instead, the same tuple must be scheduled to worker
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zero which is responsible for processing that window.
In general, the same tuple can be multicasted to a
subset of the workers. For instance, in the figure the
tuple t1 is transmitted to both the workers;
• to correctly process all the assigned windows the

workers use proper private sliding window parame-
ters. In the example the operator sliding window spec-
ification is W = 4 and S = 1 tuples. Instead, each
worker uses a private sliding parameter of Sw = 2.
In general this parameter is determined using the for-
mula Sw = min{W,S ·N}.

Window 3

2 3 4 5

4 5 6 7

3 4 5 6

1 2 3 4Worker 0

Worker 1

Worker 0

Worker 1

Window 0

Window 1

Window 2

Figure 6: Example of active worker model: count-based sliding
windows with W = 4 and S = 1 tuples and two workers.

3.1. Discussion
In this part we will discuss the pros and cons of the two

models. They are summarized in Tab. 1.
In the active worker model the emitter must be able

to forward tuples to the workers on-the-fly according to
their mapping on window extents. Upon receiving a tu-
ple t ∈ S, the emitter executes the following steps: 1) the
window mapping function is evaluated in order to deter-
mine all the window extents that contain t; 2) the tuple
is forwarded to all the workers w such that there exists
a window identifier j ∈ M(t) such that w = j mod N .
This means that the mapping function must be computed
by the emitter using the knowledge available at the time
tuple t is received. As discussed in Sect. 2.2, this is pos-
sible in FCF windowing models only. Instead, in FCA
models the identification of the window extents contain-
ing t depends on the properties of future tuples that will
be received after t, thus the emitter is not able to deter-
mine completely which are the window extents containing

t. The agnostic model does not suffer from this constraint
since the windowing logic is centralized and executed by
the emitter without needing the on-the-fly distribution of
tuples among the workers.

Another important aspect is the type of query sup-
ported. We distinguish between:

• non-incremental queries are queries whose processing
function takes as an input argument the whole win-
dow extent (set of tuples) and applies the processing
on the whole set to produce the window result;

• incremental queries are expressed by an online pro-
cessing algorithm that incrementally updates the win-
dow result as soon as a new tuple belonging to the
window extent is ready to compute.

The active worker model can be adopted for both the
query types. The active workers either buffer all the tuples
of their assigned window extents and start the processing
when an extent is complete (non-incremental case), or they
update incrementally the results of their assigned windows
as soon as a new tuple is scheduled by the emitter. Since
in this model each worker knows which windows are stat-
ically assigned to it (i.e. according to the private sliding
parameter Sw), optimizations are possible. As an exam-
ple, the active workers can independently adopt the pane-
based approach [23], which logically divides each window
in disjoint panes such that intermediate results of panes
in common to consecutive windows of that worker can be
reused to save computation time.

The agnostic model with FCF windows allows using
both non-incremental queries and incremental queries.
The first case is the one described in the previous sec-
tion: the emitter schedules to the workers whole window
extents to compute. In case of an incremental query the
model can be easily extended: the emitter is now in charge
of scheduling to the workers (on-demand) messages con-
taining the partial result of a window and the tuple used
to update such result. Instead, for the FCA windowing
semantics, the agnostic model is the unique solution and
the query processing must be expressed necessarily in a
non-incremental fashion. To summarize, Fig. 7 shows a
flowchart describing the selection between the two models

Active Model Agnostic Model
Pros 1. Suitable for incremental and non-incremental queries.

2. Window buffer implemented as a private data structure

per worker.

3. Optimizations exploiting computation sharing among con-

secutive windows are possible.

1. Suitable for both FCF and FCA windowing models.

2. Load balancing can be easily implemented with an on-

demand distribution.

3. Tuples are never replicated among workers, thus allowing

memory saving.

Cons 1. Suitable for FCF windowing models only.

2. Tuples are replicated in the private window buffers of the

workers.

3. Potential load imbalance in case of window extents with

different cardinalities (due to the static window assignment).

1. A concurrent implementation of the centralized window

buffer is needed.

2. Incremental queries are supported only if the underlying

windowing model is FCF.

3. No easy chance to exploit computation sharing among

consecutive windows.

Table 1: Pros and cons of the two implementation models of the sliding-window parallelism paradigm.

7



in different scenarios of windowing model and query type.

Input Query and 
Sliding Window 

specifications

Active or 
Agnostic Worker 

Models

YES NO

YES NO

Agnostic or 
Active Worker 

Models

Incremental
Query ?

FCF window
model?

No general 
solution available 

YES NO

Agnostic Worker 
Model

Incremental
Query ?

Figure 7: Worker models supporting different windowing se-
mantics and query types.

Other aspects of the parallelization are load balancing
and memory usage, which are both in favor of the agnos-
tic model. Windows are distributed to workers by balanc-
ing the workload also in case of extents with significantly
different cardinalities. Furthermore, efficient implementa-
tions of the agnostic worker model (as discussed in the
next section) should avoid copying the window extents to
the workers for non-incremental queries, but the emitter
distributes special meta-data that make the worker able to
access the right set of tuples. Although this avoids repli-
cation of tuples (as in the active model) it introduces a
higher implementation complexity since the internal win-
dowing structures are now accessed concurrently by the
emitter and the workers threads. Efficient solutions for
this problem will be presented in the next section.

4. Implementation on Multicores

In this section we describe the implementation of the
two alternative models of the sliding-window parallelism
paradigm. Before presenting the implementations, we first
provide a brief overview of the FastFlow environment for
efficient data streaming on multicores, which is the frame-
work that we used in this paper.

4.1. The FastFlow Framework

FastFlow is an open-source, structured parallel pro-
gramming framework supporting highly efficient stream
parallel computation on heterogeneous multi-core plat-
forms [15]. It is realized as a C++11 header-only template
library that allows the programmer to simplify the devel-
opment of parallel applications modeled as directed graphs
of processing nodes (operators). FastFlow provides a set
of ready-to-use, parametric algorithmic skeletons modeling
the most common parallelism exploitation patterns, which
may be freely nested to model arbitrarily complex graph
topologies. Its design is layered as shown in Fig. 8.

The lower layer, called Parallel Building Blocks, pro-
vides wrapper components, i.e. a control flow realized with

Multi-core architectures + GPU devices

Parallel Building Blocks
(Wrapper nodes, message routing policies, lock-free channels (1-to-1, 1-to-N, N-to-1)

Core Parallel Patterns
(Sequential nodes, pipeline, task-farm + feedback modifier)

Traditional HPC High Level 
Parallel Patterns

 
(ParallelFor, Map, Stencil, D&C, 
Master-Worker, Reduce, Pool, 

MacroDataFlow)

DaSP High Level Parallel 
Patterns (NEW)

 

(Patterns for sliding-window 
parallelism in the active/agnostic 

worker models and for partitioned-
stateful parallelism)

Parallel Applications and Domain-specific Parallel Frameworks

Figure 8: Layered FastFlow design: the blue box is the part of
the third layer that will made available in the next release.

POSIX threads; a set of communication channels real-
ized with lock-free single-producer/single-consumer FIFO
queues [24], and a set of policies for routing/gather-
ing messages exchanged between different nodes. Above
these mechanisms, the second layer (called Core Par-
allel Patterns) provides the FastFlow node abstraction
(ff_node), i.e. the basic unit of parallelism that encap-
sulates the user’s business logic code, and the most well-
known streaming parallel patterns such as the pipeline
(ff_pipe) to build tandem networks of operators and the
task-farm (ff_farm) to replicate the same node. At this
level, a pattern modifier called feedback can be used to
build cyclic streaming networks.

The third layer (called High-Level Parallel Patterns)
provides specialized patterns built on top of the two
lower layers. The patterns are: pipeline, farm, map,
map+reduce, stencil, master-worker, Divide&Conquer and
PoolEvolution. For the purpose of this paper, the patterns
for modeling sliding-window parallelism (both the agnostic
and the active models) have been implemented on top of
the Core Parallel Patterns level and they will be released
as patterns of the third level in the next FastFlow release
(the blue box in Fig. 8).

Each node is used to run a concurrent activity in a sin-
gle sequential component (by default it is mapped onto
one runtime thread), and it has associated two channels:
one used to receive input data (pointers to data) to be pro-
cessed and one to deliver the (pointers to the) results. The
key idea underneath the FastFlow model is that ease-of-
development and runtime efficiency can both be achieved
by raising the level of abstraction of the design phase.

From the programmer viewpoint, the FastFlow parallel
patterns can be used by instantiating proper objects from
the FastFlow classes and by implementing precise class
methods: the svc method that encapsulates the computa-
tion to be performed on each input datum to obtain the
output result; the svc_init and svc_end methods that are
executed once when the application is started and before
it is terminated. Only the svc method must be provided
by the programmer in order to instantiate a FastFlow pat-
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tern. In the Listing 1 we reported a snippet of a FastFlow
code implementing a three-staged pipeline:

Listing 1: A FastFlow three stage pipeline example.
struct stageA : ff_node_t<Type1 , Type2> {

int svc_in i t ( ) { . . . . ; return 0 ; }
OUT_t ∗ svc ( IN_t ∗ in ) { return FA( in ) ; }

} ;
struct stageB : ff_node_t<Type2 , Type3> {

OUT_t ∗ svc ( IN_t ∗ in ) { return FB( in ) ; }
} ;
struct stageC : ff_node_t<Type3 , Type4> {

OUT_t ∗ svc ( IN_t ∗ in ) { return FC( in ) ; }
void svc_end ( ) { . . . } ;

} ;
f f_Pipe<> pipe ( stageA , stageB , stageC ) ;
p ipe . run_and_wait_end ( ) ;

The task-farm pattern has been extensively utilized and
customized for implementing the active and the agnostic
worker model versions of the sliding-window parallelism
paradigm. This has been possible because pattern allows
the programmer to customize the behavior of the schedul-
ing node (emitter) and of the gathering node (collector)
while any node can be passed as an input parameter of
the pattern constructor and indicates the operator to be
replicated (the replicas are called workers).

4.2. Implementation of the Active Worker Model
As discussed in Sect. 3, the active worker model is valid

for FCF windowing models only, and consists in the pre-
assignment of consecutive windows to the workers accord-
ing to a round-robin policy. Tuples are scheduled and pos-
sibly multicasted to the workers by evaluating the window
mapping functionM on-the-fly at each new tuple arrival.
Each worker is in charge of managing a private window
buffer and executes its own insertion and eviction actions
based on the window range W and the private sliding Sw

parameter. Since the window buffer is private, no consis-
tency and correctness problem arises in its management
from the concurrency perspective because just one thread
will access such data structure (i.e. the one executing the
corresponding worker).

The emitter algorithm pseudo-code is reported in Alg. 1.
When the emitter receives the tuple t, it evaluates the
mapping function to determine which are the window ex-
tents containing the tuple t. Then, according to the round-
robin assignment, the emitter determines which workers
need to receive the tuple. Then, the emitter multicast the
input tuple to those workers. It is worth noting that in
the FastFlow runtime only a memory pointer to the tuple
structure is communicated to the destination workers.

As we can observe, the evaluation of the win-
dow mapping function is performed by calling the
IdentifyWindowIndexes routine at line 3. The fist and
the last indexes are computed as described in Sect. 2.2 for
count-based and time-based windows. The pseudo-code is
exemplified by passing the timestamp of the tuple to the
routine (in case of count-based windows we use the tuple
identifier). Again, the fist and the last indexes must be

Algorithm 1: Emitter algorithm in the Active Worker
Model
Input: an input tuple t
Result: tuple t is dispatched to all the workers needing it
1: procedure svc(t)
2: . Return the first, last identifiers of the windows containing t
3: (first, last) ← IdentifyWindowIndexes(τ(t), W , S)
4: . Determine the destination workers
5: Workers ← ToWorkers(t, first, last)
6: for each Workerk ∈Workers do
7: send t to Workerk

computed explicitly by the emitter and this must be per-
formed using the knowledge available at the time tuple t
is received (without information about the timestamps of
the future tuples), implying that a FCF model must be
used to adopt the active worker model.

The worker algorithm pseudo-code is shown in Alg. 2.
The worker receives the tuple t from the emitter, it copies
t in its private window buffer and, based on the window
specification, it determines whether the tuple is a trigger-
ing tuple, i.e. one or more window extents can be complete
and the query can process the window tuples.

Algorithm 2: Worker algorithm in the Active Worker
Model
Input: an input tuple t
Result: an output result for each triggered window (none if no win-

dow is triggered)
1: procedure svc(t)
2: . Insert the tuple in the private window buffer
3: insert(winBuf, t)
4: . Determine the window extents that are complete
5: winsTriggered ← checkWinsTriggered(winBuf, τ(t))
6: for each w ∈ winsTriggered do
7: result ← computeFunction(winBuf, w) . user function call
8: send result to Collector . produce the result
9: purgeExpiredTuples(winBuf, ...)

At line 3 the worker inserts the tuple into its private
window buffer called winBuf. The buffer is implemented
as a dynamic container (as the ones available in the C++
STL library or using customized containers). Then, the
worker determines whether some window extents are now
complete. For the time-based windowing model the tu-
ple timestamp is used to check this, see line 5. For each
triggered window the user function computeFunction is
called by passing the window buffer and the index of the
triggered window as input parameter. The index is used
by the run-time system to pass to the user a C++ iterator
to the tuples that belong to the extent of the window to
compute. Finally, the results are sent to the collector and
the window buffer is purged of the expired tuples (line 9).

The collector (pseudo-code reported in Alg. 3) collects
the results produced by the workers in a first-come-first-
served discipline. To produce the results in output in the
proper order (i.e. according to the window identifiers), the
collector maintains an ordered data structure (a priority
queue called resultsQueue) where it inserts the incoming
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results and extracts them in the output order.

Algorithm 3: Collector algorithm in both the models
Input: a result from one of the workers
Result: zero, one or more results are transmitted in output
1: procedure svc(result)
2: insert(resultsQueue, result)
3: r ← extractNextInOrder(resultsQueue)
4: while r 6= nil do
5: send r to the next stage
6: r ← extractNextInOrder(resultsQueue)

4.3. Implementation of the Agnostic Worker Model
We recall that in the agnostic worker model each worker

is anonymous and unaware of the window semantics. The
workers are responsible for applying the user’s function
to the received window data and for producing a result
for each window. The entire windowing management is
in charge of the emitter, which: i) stores the most recent
tuples; ii) determines when a new window is ready to be
computed, and iii) which tuples must be evicted.

When all the tuples belonging to a given window are
received by the emitter, it delegates the task of comput-
ing the user function on the window extent to an avail-
able worker. Copying the whole window extent in a pri-
vate worker buffer is too costly and infeasible for perfor-
mance reasons. Therefore, the emitter sends to the worker
a structure containing the meta-data for accessing the win-
dow content. To allow the access to the right tuples of the
window extent, all the input tuples received by the emitter
are stored in a concurrent data structure shared between
the emitter itself and the pool of workers.

The design of such data structure is critical for imple-
menting the correct semantics of the computation and for
minimizing the runtime overhead for reading and writing
the data. The objective is to design it in a way that con-
current read/write accesses do not hinder the performance
of the system. By leveraging the specific access pattern of
the window buffer and the information gathered at run-
time regarding which parts of the data structure is cur-
rently accessed, we are able to avoid costly synchronization
primitives to protect concurrent accesses.

From the emitter perspective, the data structure is log-
ically a queue: input tuples are added to the tail of the
queue, instead expired tuples are removed from the head
of the queue. On the worker side, the data structure has to
appear as a contiguous sequence of tuples where it reads all
the tuples corresponding to the assigned window extent.
The expiring of a tuple and its eviction from the queue
can in principle produce a read/write conflict between the
emitter and the workers. To clarify things, consider the
queue implemented as a dynamic container whose internal
representation can be occasionally reallocated for growth.
A concurrent access by a thread (emitter) that adds/re-
moves elements while other threads (workers) read some
portions of the queue is not thread-safe in general (e.g., in
case of standard C++ STL containers).

Such potential conflicts are efficiently avoided by our
CC-WBuf data structure (Concurrent Chunk-based Window
Buffer) internally maintained and modified by the emit-
ter and read by the workers. The first property that we
exploit is that the emitter can evict a tuple only if all the
windows whose extents contain that tuple have been al-
ready computed by the workers. This is implemented in
FastFlow by using the feedback modifier applied to a task-
farm pattern. Essentially, it allows workers to send back
messages to the emitter as shown in Fig. 9. As soon as
the workers complete the processing on a sliding window,
a message is sent to the emitter via the feedback chan-
nels in order to inform it of the window identifier that has
been computed. These feedback messages are used by the
emitter for two reasons:

1. to know which windows have been elaborated in order
to evict from the CC-WBuf those tuples that will not
belong to any future window;

2. to provide load balancing among workers by schedul-
ing triggered windows to ready workers, i.e. those
workers that have completed the computation on a
window and that have already sent the feedback.

The CC-WBuf structure is organized as a list of chunks as
shown in Fig. 9. In the general case, each chunk contains
a fixed number of tuples (this value denoted by Csize is a
configuration parameter of the system). Chunks are static
containers (e.g., arrays) allocated and released disjointly.
The emitter adds new tuples to the first (pointed by the
tail pointer) chunk until there is enough space. When
the tail chunk is filled out, the emitter allocates another
chunk moving the tail pointer to the new chunk. Each
sliding window shares a group of chunks with the previ-
ous and next windows. When a window is triggered, the
next window slides forward of a number of tuples accord-
ing to the sliding parameter S. When the window slides,
zero, one or more chunks slide forward as well, and so they
can be considered for removal as soon as proper feedback
messages are received from the workers.

Emitter

Worker

Worker

feedback

feedback

TAILHEAD

Chunk Info Chunk Info Chunk Info Chunk Info Chunk Info. . .. . .
window extent

.

.

.

begin end

window
descriptor

CC-WBuf

Figure 9: CC-WBuf data structure shared between the emitter
and the workers in the agnostic worker model.

The workers receive from the emitter a data structure
(window descriptor) containing the information for access-
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ing the window extent to elaborate. In particular, the
structure contains a window iterator that allows accessing
to all (and only) the tuples belonging to the window that
has to be computed. It is used by the user function to
scan the data structure by providing a logical view as a
contiguous sequence of tuples. The signature of the user
function becomes something very high level like:

r e su l t_t computeFunction (Win_Iterator begin ,
Win_Iterator end , s i ze_t w_id , . . . ) ;

Therefore, from the workers viewpoint the internal data
layout of the CC-WBuf structure is completely transparent
and they are unaware of the fact that the tuples belong-
ing to that assigned window might span several disjoint
chunks. The window descriptor also includes information
such as the window identifier, the starting timestamp (for
time-based windows) of the window and other information
used to check the state of the window.

The emitter algorithm pseudo-code is reported in Alg. 4
for time-based windows. It non-deterministically receives
two different types of input messages: a tuple (t) or a feed-
back message sent by one of the workers (fb) which notifies
the end of the elaboration of a window and provides infor-
mation for the expiring phase (described later).

At the arrival of a new tuple t (Case 1 in Alg. 1), the
emitter inserts t in the tail chunk or allocates a new chunk
(line 3). Then, according to the sliding window semantics,
it checks whether new windows are triggered at line 4. The
emitter maintains for each worker a flag stating whether it
is ready to process a window or not (initially all the work-
ers are ready). For each triggered window (none, one or
many) the emitter looks for a ready worker (line 6) and in
case it exists the window descriptor is created and sent to
it (the send call automatically unsets the ready flag of the
worker). Otherwise, the identifier of the triggered window
is stored in a data structure readyWindows at line 11.

In case the emitter receives a feedback message from a
worker (Case 2 in Alg. 1), it extracts from the message
the identifier of the sending worker (line 13) and tries to
pop the identifier of a previously triggered window that
has not been assigned to a worker yet (line 14). If such
window exists, a new window descriptor is created and
sent to that worker. Otherwise, the worker is set as ready
again at line 19.

Then, the emitter handles the expiring phase which
must be performed carefully since some chunks from the
head must be released when all the tuples contained are no
longer necessary for the workers computation. The specific
expiring logic depends on the sliding window semantics.
In the following we describe the case of time-based sliding
windows shown in Alg. 4.

We associate with each chunk additional information re-
lated to the smallest and the highest timestamps of the tu-
ples that it contains. Furthermore, each feedback message
conveys the starting timestamp of the computed window
(shortly called window timestamp). If that timestamp is
greater than the highest timestamp of the head chunk, the

Algorithm 4: Emitter algorithm in the Agnostic Worker
Model
Input: a tuple t or a feedback message fb from a worker
Result: window descriptors Wd are dispatched to ready workers
1: procedure svc(t or fb)
2: if t is a tuple then . Case 1
3: insert(ccwinBuf, t)
4: winsTriggered ← checkWinsTriggered(ccwinBuf, τ(t))
5: for each w ∈ winsTriggered do
6: Workeri ← getReadyWorker() . get a ready worker, if any
7: if Workeri 6= nil then
8: Wd ← prepareWindowMetadata(ccwinBuf, w)
9: send Wd to Workeri

10: else
11: add(readyWindows, w) . store that window w is ready
12: if t is a feedback then . Case 2
13: workerfb ← getWorker(fb)
14: w ← get(readyWindows) . select a ready window, if any
15: if w 6= nil then
16: Wd ← prepareWindowMetadata(ccwinBuf, w)
17: send Wd to workerfb
18: else
19: setReadyWorker(workerfb)
20: . Expiring phase
21: ts ← getWindowTimestamp(fb)
22: insert(winTsQueue, ts)
23: ts ← nextWinTs(winTsQueue)
24: while minWinTs == ts do
25: ts ← nextWinTs(winTsQueue)
26: minWinTs ← minWinTs+ S

27: purgeExpiredTuples(ccwinBuf, minWinTs)

chunk can be released and the same reasoning can be ap-
plied to the next chunk that becomes the new head and
so forth. This technique has a subtle pitfall. When there
are more workers running it may be possible that feed-
back messages could be received out-of-order with respect
to the window order. To avoid this problem, the emitter
stores and re-orders all the window timestamps received
from the workers in a priority queue (winTsQueue in the
pseudo-code) and maintains the the smallest timestamp
of the window that is currently under computation (in the
minWinTs variable). When the window timestamp of the
received feedback message is equal to minWinTs (line 24),
we can start the expiring operations: i) we first check
whether in winTsQueue there are some window timestamps
contiguous to the current value of minWinTs1 and if yes we
update minWinTs with the greater value we have found; ii)
on the base of the updated value of minWinTs computed
at the previous point, we remove all the chunks with high-
est timestamp smaller than minWinTs. When chunks are
evicted from the CC-WBuf (line 27), all the contained tuples
are deleted.

4.3.1. Optimized layout for time-based windows
The size Csize of the chunks is an important parameter

that can affect the performance of the parallelization. The
smaller the chunk size the higher the number of chunks

1A window timestamp ts precedes ts′ if ts + S = ts′ where S is
the slide parameter.
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used for storing each window extent. A small chunk size
may increase substantially the cost of iterating across all
the tuples. In contrast, the larger the chunk size the higher
the amount of memory used by the system since chunks are
evicted less frequently. The impact of the fragmentation
on the performance will be analyzed in Sect. 5.

Therefore, the choice of Csize is an important problem
whose optimal value may depend on run-time parameters
of which the user can be aware of (e.g., the average ar-
rival rate of the input stream). In this part we propose
an optimization of the CC-WBuf layout for time-based win-
dows which implicitly extracts the chunk-based organiza-
tion from the window specification.

Fig. 9 shows the case where chunks have a static fixed
size in terms of tuples while they span over a different
time range (depending on the arrival rate). Another ap-
proach consists in associating to each chunk a fixed tem-
poral length while the size in tuples may be different be-
tween chunks. The idea is to choose the time length of
each chunk as Clen = GCD(W,S). Fig. 10 shows an ex-
ample with windows of W = 6 seconds sliding every S = 2
seconds (chunks of 2 seconds). Each chunk is implemented
as a dynamic container that can be dynamically resized.

HEAD

window 0

0.00 1.99 2.00 3.99 4.00 5.99 6.00 7.99 8.00 9.99 10.0 11.9

TAIL

window 1

window 2

Written by the 
emitter but not 

used by the 
workers until 

complete.

Figure 10: Layout of the Concurrent Chunk-based Window
Buffer for time-based sliding windows.

This layout has an important implication that makes it
very effective and flexible. Each window extent will span
in exactly W/Clen chunks, i.e. a chunk cannot contain
both the last tuple of a window extent and the first one
of the next window. Consequently, read/write conflicts
on the same chunk cannot happen because the workers
only read chunks that are complete, i.e. the emitter never
modifies those chunks by adding new tuples. Instead, the
tail chunk modified by the emitter is never read by the
workers before it is complete (i.e. all the tuples in its time
range has been received). Consequently, standard dynamic
containers (like the ones in the C++ STL library) can be
employed to implement the chunk internals.

5. Experiments

In this part, we first describe the application use case
used for the tests, then we analyze how the active and
agnostic worker models behave in various conditions.

All tests have been executed on an Intel Xeon Server
equipped with two Intel E5-2695 Ivy Bridge CPUs run-
ning at 2.40GHz and featuring 24 cores (12 per socket).
Each hyper-threaded core has 32KB private L1, 256KB

private L2 and 30MB of L3 shared cache. The machine
has 64GB of DDR3 RAM, running Linux 3.14.49 x86_64.
The compiler used is gcc version 4.8.5. The code has
been compiled with the -O3 optimization flag.

5.1. Application Description

The use case is a financial trading application previously
described in [25]. It consists in a pipeline of three compo-
nents: 1) a source operator that generates the stream of
data by interfacing with some external data producers; 2)
a parallel algotrader operator that applies a user-defined
algorithm on sliding windows of the stream, and 3) a sink
operator that consolidates the received results in a DB.
The stream conveys financial quotes, i.e. buy and sell pro-
posals (bid and ask) represented by a record of attributes
such as the proposed price, volume and the stock symbol.
The query is provided with a non-incremental algorithm
that estimates the future price of stock symbols by com-
puting the Levenberg-Marquardt regression to produce a
fitting polynomial. For the regression we used the regres-
sion provided by the C++ library lmfit2.

5.2. Results with Time-based Windows

In this part we consider time-based windows, for which
we can adopt both the active and the agnostic worker
model. The aim is to compare the two implementations
by evaluating their capacity to sustain the input rate and
the time required to compute a single window (latency).

Fig. 11a shows the number of results produced per sec-
ond with an input rate of 200K tuples/s for the active and
the agnostic worker model by varying the number of work-
ers and considering two distinct configurations: i) W = 1
second and S = 50 milliseconds; ii) W = 1 second and
S = 10 milliseconds. As we can see from the figure, the
two models achieve almost the same output rate and both
of them are able to reach the ideal output rate with the
same number of resources, i.e. 17 and 14 workers for the
two configurations considered, respectively.

Fig. 11b shows the execution latency for computing one
window (called Tcalc) for the two models in the two con-
figurations described previously. We can see that the ag-
nostic worker model has a higher window latency (of 3.65%
on average). This is mainly due to the higher cost of ac-
cessing to the tuples in the shared CC-WBuf data structure
used in the agnostic implementation. In fact, in the tests
we used a fixed chunk size of 5, 000 tuples, therefore a win-
dow extent is stored in approximately 200 and 40 chunks
for the two window sizes respectively. Those chunks have
been allocated independently, so they can be released as
soon as they are no longer necessary for the computation.
Likely, they are not allocated contiguously in the memory
and so the time for iterating across all tuples of the window
is higher with respect to the active model.

2lmfit library: http://lmfit.github.io/lmfit-py/
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Figure 11: Active vs Agnostic worker model considering two different window lengths (W ) and slides (S). The input rate is 200K
tuples/s, the chunk size for the agnostic model is set to 5, 000 tuples.

It is worth noting that, despite the Tcalc is slightly
higher in the agnostic model, both the agnostic and the
active worker models have the same output rate. This can
be explained by the fact that the implementation of the
agnostic model obtains a better workload balancing among
workers (thus a better workers’ utilization) because it uses
an on-demand scheduling policy for the windows that is
implemented exploiting the feedback information coming
from the workers. Instead, the active worker model uses
a round-robin scheduling that has a lower overhead but is
not able to perfectly balance the workload of the workers.

Fig. 12 shows for the agnostic worker model the impact
of the chunk size on the output rate (left-hand side of
the plot) and on the Tcalc (right-hand side of the plot).
As we can see, small chunk sizes introduce higher over-
head (of 10% at most) both for the output rate and for
the Tcalc. On the contrary, small chunks allow releasing
memory more quickly thus reducing the memory footprint
required by the application. Since the smaller the chunk
size the higher the number of fragments used to store the
window extent in memory, the worker has to iterate on
more non-contiguous fragments increasing the computa-
tion time and eventually lowering the output rate. How-
ever, starting from a “large enough” value (approximately
from 5, 000 tuples in the plot), the difference on the per-
formance with different chunk sizes is very limited. For
this reason, we decided to use a fixed value for the chunk
size set to 5, 000 tuples.

As discussed in 4.3.1, for time-based windows it is possi-
ble to use a fixed temporal length for the chunk size instead
of a fixed number of tuples. Fig. 13 compares the perfor-
mance of the agnostic worker model when the chunk size
is statically fixed to 5, 000 tuples and when it is automat-
ically assigned by the runtime system to a value equal to
GCD(W,S) units of time (milliseconds in our case). For
the configuration considered, this means that the chunk
size for the automatic case is set to 10ms, so a single chunk
contains all the tuples received in a time range of 10 ms.
As shown, the output rate obtained by the two versions is
almost the same while Tcalc is slightly lower (2.8% on av-
erage) when the chunk size is set to 5, 000. In fact, for the
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Figure 12: Impact of the chunk size on the output rate (left)
and on the window latency (right) with 8 and 12 workers.
Input rate 200K tuples/s, W=1s and S=10ms.

window length and slide size considered, the fixed tempo-
ral length chunk size case (automatic in the figure) stores
in one chunk approximately 2, 000 tuples (because of the
considered input rate). So, the two values are very close
and the performance obtained is quite similar. This result
confirms that this optimization can be used for time-based
windows providing a good tradeoff between performance
and reduced implementation complexity.
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Finally, Fig. 14 shows which is the number of workers
required to reach the optimal output rate considering dif-
ferent input rates (left-hand side of the plot) and the corre-
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sponding Tcalc value (right-hand side of the same figure).
In the test we use time-based windows with W = 1 sec
and S = 25 ms and a static chunk size of 5, 000 tuples.
To sustain an input rate of 600K tuples/s the algotrader
operator has to use all available cores of the machine (i.e.
21 workers). The Tcalc value is about 600ms. Similar re-
sults have been obtained by the active worker model with
a lower value for Tcalc. Such results are not shown here
for space constraints, however for the 600K tuples/s the
active model has a Tcalc of about 500 ms using 21 worker
replicas.
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Figure 14: Number of workers required for sustaining the input
rate (left); window latency (right).

Summarizing, the active and agnostic worker models
have very similar performance metrics concerning the
number of resources used and the output rate. In gen-
eral, the agnostic worker model has a higher Tcalc value
due to the higher costs for accessing window’s tuples.

5.3. Results with Slide-by-tuple Windows

Slide-by-tuple windows are FCA, so we can only use the
agnostic worker model. Fig. 15 shows the impact of the
window length on the output rate when the slide is fixed
to 4, 000 tuples (approximately 20 ms with an input rate
of 200K tuples/s). As expected, the longer the window
length the more the workers needed to reach the optimal
output rate. In this test, we need five workers for a window
length of 1 sec and 14 workers in the case ofW=2 seconds.
For the case W=3 seconds, with 21 workers we are able to
reach only half of the optimal output rate.

Fig. 16 presents the results obtained with W fixed to 3
seconds and the slide size varies from 4, 000 to 6, 000. As
expected, with higher values of the slide fewer workers are
required to sustain the input rate. Interestingly, the user
can play with the values of W and S to obtain the desired
level of the output rate and Tcalc according to the number
of resources available on the machine at hand.

6. Related Work

SPEs have been developed in order to facilitate the
definition of complex topologies of operators that are
run transparently over a distributed system. While this
programming approach fosters inter-operator parallelism
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fixed to 4, 000 tuples. Input rate of 200K tuples/s, chunk size
of 5, 000 tuples.

 20

 30

 40

 50

4000 5000 6000

re
s
u

lt
s
/s

e
c

slide size (no. of tuples)

Required workers

 

(21) (21)

(16)

ideal

 80

 280

 500

4000 5000 6000

la
te

n
c
y
 p

e
r 

w
in

d
o

w
 (

m
s
)

slide size (no. of tuples)

Window processing latency

Figure 16: Impact of the slide on the output rate (left) and on
the window latency (right) with window length of 3 sec. The
input rate is 200K tuples/s, chunk size of 5, 000 tuples. The
numbers on top of the bars are the workers used.

within a single query through data pipelining [26], the run-
time system is responsible for scheduling the query execu-
tion in an efficient way by possibly sharing the computa-
tion of operators in common with other active queries [27].

Intra-operator parallelism is aimed at increasing the
throughput via operator replication and data partition-
ing [28]. Expressing such kind of parallelism for stateful
operators is not easy because it employs various forms of
dynamic partitioning and data placement that need spe-
cific algorithms and depends on the type of internal state
maintained by the operators [29]. Consequently, program-
ming such parallel operators is cumbersome in the exist-
ing SPEs because they still provide low-level interfaces for
this [30].

The most common technique to parallelize stateful op-
erators is to leverage the existence of a partitionable
state [18]. One reason for its success is that this ap-
proach decouples the scheduling logic from the type of
state information maintained by the replicas. In fact, it
can be used for any kind of state (e.g., sliding windows,
stream sketches or synopsis). However, performance prob-
lems manifest in real applications, like load imbalance and
state transfer overhead in case of elastic supports able to
dynamically change the number of replicas [31, 32, 33].
The first problem has been studied by relying of efficient
consistent hash functions [34] that allow good load balance
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and low migration cost under skewed workloads. The sec-
ond has led to the definition of seamless state migration
techniques [35, 36, 25].

The type of state information plays a crucial role to find
parallelization opportunities that deviate from the classic
partitioned-stateful paradigm. In [28, 37] a description of
the suitable techniques is provided by focusing on lock-
ing algorithms and scheduling strategies that preserve the
computation correctness for different kinds of stateful com-
putations. Although interesting such papers do not focus
on the nature of the state, but are based on generic descrip-
tions of what the computation semantics expects from the
output results. In this paper, instead of looking for general
optimizations, we focus on a very specific but common-
place type of state represented by sliding windows [12].

Various sliding window models have been proposed for
continuous queries [12] in order to accommodate different
user’s requirements. A very detailed study of the window
semantics in terms of information needed to build the win-
dow extents and their mapping has been proposed in [13].
However, this work does not discuss the implications of the
sliding window semantics on the parallelism paradigm but
focuses on the sequential execution model only. The clas-
sification of windowing models in the two broad FCF and
FCA classes helps in building the bridge between the type
of information needed to define the window extents and
their temporal properties. This has practical implications
on the implementation model of intra-operator parallelism
which have not been studied before. In fact, prior work like
in [22] focuses more on the type of query algorithm to ex-
ecute and its properties rather than on the sliding window
semantics. Recently, the work in [38] studied the problem
of batch-scheduling in windowed parallel operators, where
windows are assigned to replicas in batches (set of con-
secutive windows) to reduce the number of tuples to be
multicasted to the replicas. This approach represents an
interesting optimization of our active work model, how-
ever, it is limited to FCF windows for which the tuple
scheduling can be easily performed on-the-fly by inspect-
ing the timestamp fields of the tuples.

7. Conclusions and Future Work

In this paper we studied the implications of different
sliding window models on parallel patterns for data stream
query processing. The study demonstrated that there is
a strict relationship between the sliding window seman-
tics and the way in which the parallel processing can be
performed in terms of distribution policy and in terms of
which parts of the computation (i.e. window management
and processing) can be executed in parallel. Starting from
previous work on sliding window semantics, we proposed
two models for parallel windowed operators and we de-
veloped them on the FastFlow framework targeting mul-
ticores. The implementations provide a ready-to-use and
effective set of patterns for data streaming applications.

Our future goal is to study the applicability of a wide set
of optimizations, like the automatic selection of the best
chunk size according to the query setting (e.g., arrival rate,
window length and slide parameters) and to introduce the
support for the elastic scaling of the number of workers,
in order to achieve desired tradeoffs between performance
and resource/energy consumption.
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