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Abstract — With reference to a distributed system consisting of nodes connected by a
local area network, we consider the problems related to the distribution, verification, review
and revocation of access permissions. We propose the organization of a protection system
that takes advantage of a form of protected pointer, the handle, to reference clusters of
segments allocated in the same node. A handle is expressed in terms of a selector and a
password. The selector specifies the segments, the password specifies an access right, read
or write. Two primary passwords are associated with each cluster, corresponding to an
access permission for all the segments in that cluster. A handle weakening algorithm takes
advantage of a parametric one-way function to generate secondary passwords corresponding
to less segments. A small set of protection primitives makes it possible to allocate and
delete segments in active clusters, and to use handles to access remote segments both to
read and to write. The resulting protection environment is evaluated from a number of
viewpoints, which include handle forging, review and revocation, the memory costs for
handle storage, the execution times for handle validation and the network traffic generated
by the execution of the protection primitives. An indication of the flexibility of the handle
concept is given by applying handles to the solution of a variety of protection problems.

Keywords: access right; distributed system; parametric one-way function; protection;
revocation; segment.

1 INTRODUCTION

We refer to a distributed architecture consisting of nodes connected by a local area
network. The network topology is inessential. We hypothesize that, in each node, the
primary memory is partitioned into two regions, private and shared. The private memory
can only be accessed by software components being executed in that node. The shared
memory, which is reserved to interprocess communication, can also be accessed by software
components running in the other nodes, albeit in a strictly controlled fashion. We shall
not consider the mechanisms for the control of private memory accesses; instead, we shall
concentrate on shared memory protection, with special reference to the problems inherent
in the distribution, verification, review and revocation of access permissions. These are
major problems in the design of any protection system. Our solution complies with a
segmented view of the shared memory.

A segment is a contiguous memory area completely defined by a base and a length. The

— 1 —



base is the address of the first storage unit reserved for the segment, the length expresses
the segment size. Segments are the elementary unit of information transmission and
sharing between the nodes. Two operations are possible on a segment, to read the segment
contents and to replace these contents. Protection applies to local segments allocated in
the shared memory of same node as the software component attempting the access, as
well as to remote segments allocated in the shared memory of the other nodes.

In a classical protection paradigm, active entities, called subjects, generate access
attempts to protected, passive entities, called objects [18], [24], [35]. The system associates
a set of access rights with each object. A subject aimed at accessing a given object
to execute one of the operations defined for that object must possess an access right
permitting successful accomplishment of that operation; if this is not the case, the access
attempt generates a protection violation, and fails. A protection domain is a set of access
rights for correlated objects. A subject being executed in a given protection domain can
access the objects, taking advantage of the access rights included in that domain.

We shall hypothesize that a subject can be a scheduled computation (a process), or, in
an event driven environment, a software routine activated by a hardware interrupt [22].
Segments are the objects on which protection is exercised. Two access rights are defined
for segments, read and write. A subject that holds access right read for a given segment is
allowed copy the segment contents from the shared memory of the node where the segment
is allocated into the private memory of the node where that subject is running. Similarly,
a subject that holds access right write for a given segment can overwrite the segment
contents with quantities taken from its own private memory.

We consider segments grouped in clusters. A cluster is a collection of correlated
segments, all contained in the shared memory of the same network node. A subject that
holds access right read for a given cluster can access the segments of that cluster to read
their contents; this is similar to access right write for segment write accesses.

1.1 Capabilities

A major problem in the design of a protection system is how to represent the access rights
held by each subject. A classical solution is based on the concept of a capability [15].
This is a pair (G, AR), where G is an object identifier, and AR is a set of access rights.
A subject that holds capability (G, AR) can access object G to carry out the actions
permitted by the access rights in AR.

Several aspects of a practical implementation of the capability concept deserve in-depth
consideration for their impact on performance and usability. These include capability
segregation, weakening, review and revocation, and the memory requirements for capability
storage.
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1.1.1 Segregation

Subjects must be prevented from modifying capabilities, for instance, to add access rights
to an existing capability, or even to change the object identifier to forge a capability for
a different object. Several solutions to this capability segregation problem have been
proposed [5], [16], [32]. In a segmented memory system, special segments, which we
shall call capability segments, can be reserved for capability storage (in contrast, the data
segments contain ordinary information items) [6], [12]. A capability list is a collection of
capabilities for correlated objects; a capability segment contains a capability list. The
instruction set of the processor will be enlarged by the addition of special capability
instructions for capability processing. Capability segments can only be accessed by using
the capability instructions; if an ordinary data instruction is used, an exception of violated
protection is raised.

In an alternative approach, a 1-bit tag is associated with each memory cell, which
specifies whether this cell contains a capability or an ordinary information item [1], [11],
[31]. A cell tagged to contain a capability can only be accessed by using the capability
instructions. This approach requires memory banks specialized to contain the cell tags,
and is contrary to the requisite of hardware standardization [20].

1.1.2 Weakening

A subject that holds a capability for a given object can transfer a copy of that capability
to another subject. In this way, the recipient acquires the whole access privilege specified
by that capability. In fact, a capability copy is indistinguishable from the original, and
possession of the copy is equivalent to possession of the original. On the other hand,
it may well be the case that a subject wishes to transfer only part of the access rights
included in the original capability. In a classical capability environment, this means that
the instruction set of the processor should include a capability instruction to modify the
access right field in a strictly controlled fashion, excluding access right amplification. In a
common approach, the access right field features one bit for each access right; if asserted,
the given bit denotes the presence of the corresponding access right. The access right
weakening instruction will permit to clear (but not to set) these bits.

1.1.3 Review and revocation

A subject that receives an access privilege in the form of a capability is in the position to
transmit it further. It follows that capabilities tend to disperse throughout the system,
and it is hard to keep track of all existing copies of the original capability. In a distributed
system, this problem is exacerbated by the possibility that copies spread to different
nodes. A relevant problem is access right revocation: a subject that created a given object
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should be in the position to withdraw the access privileges distributed for this object
[2], [8], [9]. An essential property is that the effects of a revocation should propagate to
all the subjects that hold the access privilege being revoked (transitive revocation). In
a distributed system, this means that revocation should extend across node boundaries.
Other desirable properties are the abilities to limit revocation to a specific subset of the
access rights (partial revocation), to revoke different access privileges for the same memory
area independently of each other (independent revocation), and to restore the original
privileges through the same mechanism as for revocation (temporal revocation).

Several solutions to the access right revocation problem have been devised [18]. Ex-
amples are a propagation graph associated with each capability, which keeps track of all
successive transferrals of this capability between subjects [8]; temporary capabilities with
short lifetimes, which must be renewed periodically to avoid implicit revocation [14]; and a
centralized reference monitor associated with each object, which keeps track of the subjects
that hold access permission for this object [28]. These solutions tend to impair a basic
advantage of capability protection, i.e. simplicity in access right transmission between
subjects.

1.1.4 Memory requirements

A subject that is granted access privileges for a number of distinct objects has to hold a
capability for each of these objects. The resulting memory requirements tend to be high
in percentage. This is especially the case if the system should support a large number
of small-sized objects [7], [33], if we are aimed at exercising protection at a high level of
granularity. Consider, for instance, a capability list that grants access permissions to a
group of segments. We have to reserve a capability segment to contain the capability
list. This capability segment is a memory waste, and a significant complication in access
privilege management.

1.2 Password capabilities

Password capabilities are a remarkable improvement on the capability concept [2], [3], [10],
[17]. A password capability is a pair (G, P ), where G is an object identifier, and P is a
password. A set of passwords is associated with each protected object, and each password
corresponds to an access privilege expressed in terms of a set of access rights. If password
P matches one of the passwords associated with object G, the password capability grants
the access privilege corresponding to the matching password.

1.2.1 Segregation

If passwords are large and sparse, and a malevolent subject forges a password capability by
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using a password chosen at random, the probability that this password capability is valid
is virtually null [2]. It follows that password capabilities can be mixed in memory with
ordinary information items, and can be treated by using standard machine instructions.
Thus, password capabilities are an effective solution to the segregation problem.

1.2.2 Weakening

Access privilege weakening is arduous in password capability environments. Consider a
subject that holds a password capability defined in terms of a password granting a given
access privilege, and suppose that this subject wants to forge a new password capability
for an access privilege defined in terms of less access rights. To this aim, the subject will
have to ask for intervention of a password capability manager, associated with the object,
and responsible for password capability weakening. The manager receives a password
capability, and returns a new password capability defined in terms of the weaker password.
This is indeed possible only if one such password exists. This means that more passwords
should be stored in memory for each object, as part of the object internal representation.
In a distributed system, network traffic is generated by the necessity to communicate with
the password manager, if it is stored in a remote node.

1.2.3 Review and revocation

Of course, in a password capability environment, by replacing one of the passwords
associated with a given object we implement a form of transitive revocation that can be
reversed at little effort by restoring the original password. However, this solution does not
meet the requirement of partiality, as it cannot be limited to a subset of the access rights.

1.2.4 Memory requirements

The memory requirement problem is exacerbated in password capability environments by
the necessity to store the passwords for each given object within the internal representation
of that object. This will be especially the case if several combinations of access rights
should be supported to specify distinct access privileges; a separate password will be
necessary for each combination.

1.3 Handles

In this paper, we present a comprehensive solution to the problems, outlined above. We
propose the handle as an extension of the password capability concept. A handle includes
the name of a segment cluster, a password, and a segment selector that specifies a subset
of, or all, the segments in the cluster. When a new cluster is activated in a given node,
two passwords are generated in that node for the cluster. These passwords are called the
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read primary password and the write primary password, and correspond to access rights
read and write, respectively. Possession of a handle expressed in terms of the read primary
password (the read primary handle) makes it possible to access all the segments in the
cluster to read their contents; this is similar to the write primary handle for write accesses.

A subject that holds a handle for a given cluster can transmit a copy of this handle to
another subject. An action of this type grants the recipient permission to access all the
segments specified by the handle. The original subject can preventively weaken the handle
copy to reference less segments, thereby reducing the access privilege of the recipient.
The handle weakening algorithm is an application of parametric one-way functions. A
parametric one-way function is a function fc(x) where, given a value y and a parameter
c, it is computationally infeasible to find a value x such that y = fc(x) [30]. Thus, a
parametric one-way function is a family of one-way functions [13], one function for each
value of the parameter. We can take advantage of a good cryptosystem to reduce the
design and implementation efforts, e.g., if Ex is a symmetric cypher, we have fc(x) = Ex(c)
[25].

In our handle-based approach:

• Only two passwords, the primary passwords, are necessary for each cluster, indepen-
dently of the number of segments that form the cluster.

• A handle corresponds to a list of password capabilities, which grants access right
read or write for one or more segments in a segment cluster. Thus, a handle supports
a whole protection domain. With respect to the classical password capability model,
which associates passwords with single objects, significant advantages follow from the
points of view of memory requirements and simplicity in access right management.

• The handle weakening algorithm does not require access to the primary passwords;
it can even be executed remotely, in a different network node.

• A subject that created a given cluster is in the position to revoke the validity of
the handles that reference this cluster. Revocation extends to the whole distributed
system. The handle revocation mechanism, based on password replacement, is
transitive, partial and temporal. Furthermore, two or more segments can be defined
for the same memory area. In this case, we can revoke the access permissions by
deleting one of these segments. The resulting revocation is transitive, temporal and
independent.

The rest of this paper is organized as follows. Section 2 introduces our protection model,
with special reference to clusters and handles. Handle generation, weakening, revocation,
and reduction (to express handles in a compact form to save memory) are analysed in
special depth. Section 3 presents the process interface of the protection system. It consists
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of a set of primitives, the protection primitives, which make it possible to activate new
clusters, to allocate segments in existing clusters, and to use handles to access segments.
The actions involved in the execution of each protection primitive will be described with
special reference to access privilege checking, and the interactions between the network
nodes. Section 4 gives an indication of the flexibility of the handle concept. Handles are
used to solve a variety of protection problems, which correspond to different meanings
associated with the concept of a segment. Section 5 discusses the proposed protection
environment from a number of viewpoints that include handle forging and revocation, the
memory costs for handle storage, the execution times for handle validation, the network
traffic generated by the execution of the protection primitives, and the relation of our
work to previous work. Section 6 gives concluding remarks.

2 THE PROTECTION MODEL

As anticipated in part in Section 1, a cluster is a collection of up to n correlated segments
that are allocated in the shared memory of the same given node, where quantity n is
protection system specific. Each cluster is assigned a unique identifier C consisting of the
name N of the node where the cluster is allocated, and the local name L of the cluster in
that node, i.e. C = (N, L). The segments that form cluster C are numbered starting from
0, and are denoted by ci, i = 0, 1, . . . , n− 1.

A handle H is a triple (C, P, S), where C is a cluster name, P is a password, and S is
a segment selector, aimed at identifying one or more segments in C. If all the bits of S

are asserted, and P is a primary password of cluster C, then H is valid. In a situation
of this type, the handle is a primary handle, and it references all the segments in the
cluster. A process can take advantage of H to access each of these segments. Let RPC

and WPC denote the read primary password and the write primary password of cluster C.
If P = RPC , H is the read primary handle, which is denoted by RHC and can be used to
access the segments to read their contents. If P = WPC , H is the write primary handle,
which is denoted by WHC ; in this case, the permitted accesses are to write.

A handle for a given cluster can also be expressed in terms of a secondary password
granting access permission to a subset of the segments in that cluster. In detail, if one
or more bits of segment selector S are cleared, then the handle is valid if password P

is a secondary password derived from a either RPC or WPC by an iterative password
conversion procedure, which will be detailed shortly, and is based on the configuration of
S.

Specifically, in a given handle H = (C, P, S), segment selector S is partitioned into m

subfields, called subselectors, and denoted by si, i = 0, 1, . . . , m− 1, where quantity m is
protection system specific. Thus, S = (sm−1, sm−2, . . . , s0). The size of each subselector is n
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Figure 1: Two different configurations of segment selector S. In both cases, the cluster is supposed
to include up to eight segments. The segment selector is partitioned into four subselectors, s0 to
s3, and the size of each subselector is eight bits.

bits, one bit for each segment in the cluster (the least significant bit, bit 0, corresponds to the
first segment, c0). For each bit that is cleared in the generic subselector, the corresponding
segment is eliminated from the handle. This means that the handle references the segments
corresponding to the bits that are asserted in quantity s0 ∧ s1 ∧ . . . ∧ sm−1.

A subselector whose bits are all asserted is called flat. In a given selector, all flat
subselectors are always placed in the most significant positions, at the highest order numbers.
This means that if subselector si is flat, then subselector sj is flat, j = i+1, i+2, . . . , m−1.
Selector S is flat if all its subselectors are flat, i.e. S is all 1’s. As anticipated previously,
in a situation of this type the handle is valid if the password is a primary password, and
in this case the handle references all the segments in the cluster.

Figure 1 shows two different configurations of segment selector S. In these examples,
n = 8, that is, the cluster consists of up to 8 segments, and m = 4, that is, segment
selector S is partitioned into four subselectors. In the configuration of Figure 1a, bits 0
and 1 of subselector s0 are cleared. This means that segments c0 and c1 of the cluster
are excluded from the handle. Subselector s1 features a single bit cleared, bit 7. This
subselector excludes segment c7. The other subselectors are flat. We may conclude that
the handle including S references segments c2 to c6. In the configuration of Figure 1b,
subselector s0 features three bits cleared, bits 0, 1 and 7. The other subselectors are flat.
In this case, too, the handle references segments c2 to c6. However, as will be made clear
shortly, the two cases correspond to different passwords. In fact, in a given cluster we may
have different passwords for the same set of segments.

2.1 Password conversion

Of course, for large clusters, the high number of potential secondary passwords corresponds
to unacceptable storage requirements. We shall present a mechanism for password con-
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Figure 2: Conversion of a primary password into a secondary password, in a cluster of up to
eight segments, for a segment selector partitioned into four subselectors. The password in the
resulting handle derives from primary password RPC , or, if the handle is for write, from primary
password WPC , by iterated application of password conversion function f , taking the values of
the subselectors as parameters.

version that allows us to limit the memory requirements for password storage to the two
primary passwords. This mechanism takes advantage of a universally-known parametric
one-way function, the password conversion function. This function is used to convert a
primary password into the corresponding secondary password, according to the value of
the selector. It has the form fs(P ), where argument P is a password, and parameter s is a
subselector.

In detail, let H = (C, P, S) be a handle that references a subset of the segments in
cluster C, as is specified by selector S. The handle is valid if P is a secondary password
derived from a primary password associated with C by a conversion process using S. If H

is valid, a subject that possesses the handle is entitled to access the segments specified by
S. If P derives from primary password RPC , then the access right for these segments is
read; if the primary password is WPC , then the access right is write.

Conversion of a primary password into a secondary password is an iterative procedure
that uses password conversion function f and the subselectors s0, s1, . . . , sm−1 of S. We
have Pi+1 = fsi

(Pi), i = 0, 1, . . . , k − 1, where k is the index of the first flat subselector
sk, P0 denotes a primary password (RPC or WPC), and P = Pk. If no subselector is flat,
then k = m.

Figure 2 shows the evaluation of password P in handle H = (C, P, S) for a specific
configuration of the segment selector S. In this example, cluster C includes up to eight
segments (n = 8). Selector S is partitioned into four subselectors (m = 4), thus we have
S = (s3, s2, s1, s0). Bits 2 to 6 are set in all subselectors; it follows that H references
segments c2 to c6. In our iterative procedure for evaluation of password P , we have
P0 = RPC , or, if the handle is for write, P0 = WPC . Subselector s0 is 11111100 (252 in
decimal notation), thus we have P1 = f252(P0). Subselector s1 is 01111111, thus we have
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P2 = f127(P1). Subselectors s2 and s3 are flat; this terminates the procedure, and P = P2.
Let us now consider a subject that holds handle H = (C, P, S) referencing cluster C,

with password P and selector S. When the subject presents the handle to the protection
system to access a segment of C to read or to write, say segment ci, the access is validated
as follows:

1. Subselectors s0, s1, . . . , sm−1 of segment selector S are considered, and quantity
s0 ∧ s1 ∧ . . . ∧ sm−1 is evaluated. If the i-th bit of this quantity is asserted, then
handle H references segment ci.

2. If the access is to read, the iterative password conversion algorithm, outlined above,
is applied to primary password RPC . If the access is to write, the algorithm is
applied to primary password WPC . If the result is equal to P , then the handle is
valid.

The access is validated, and can be accomplished successfully, if the handle is valid and it
references segment ci, i.e. both steps above terminate successfully.

We may conclude that handle H = (C, P, S) grants an access privilege for cluster C.
If S is flat (i.e. it is all 1’s) and P = RPC , or (if S is not flat) P derives from primary
password RPC by conversion, then the handle grants access right read for the segments
identified by segment selector S. In a situation of this type, we say that the handle
references these segments in read mode. If the primary password is WPC , the mode is to
write.

Two or more handles are equivalent if they reference the same set of segments in the
same mode (to read or to write), but they specify these segments in terms of different
configurations of the segment selector. In a situation of this type, the passwords will be
different. In fact, we may have different passwords for the same access privilege.

2.2 Handle weakening

Weakening a handle that references two or more segments in a given clusters means to
transform it into a different handle that references a subset of these segments, in the same
access mode. For instance, let us consider a subject B1 that holds handle H1 = (C, P1, S1)
referencing the segments in cluster C that are identified by segment selector S1. The access
right granted by H1 on these segments is that corresponding to the primary password
generating P1. Suppose that subject B1 is aimed at transferring this access right for a
subset of these segments to another subject B2. In a situation of this type, B1 weakens
handle H1 into a new handle H2 = (C, P2, S2) for the same cluster C and a subset of the
segments, as identified by segment selector S2. To this aim:

1. Selector S1 is transformed into selector S2 by modifying the first (least significant)
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Figure 3: Weakening of handle H1 = (C, P1, S1) referencing a cluster C of up to eight segments.
The segment selector S1 is partitioned into four subselectors. The transformation is aimed at
excluding segments c2 and c3 from the resulting handle H2 = (C, P2, S2).

subselector of S1 that is flat, say the k-th subselector s1,k, to clear the bits corre-
sponding to the segments referenced by H1 that should not be referenced by H2.
The result is s2,k.

2. Password P1 is transformed into password P2 by applying password conversion
function f . We have P2 = fs2,k

(P1).

It should be noted that we can take advantage of handle weakening even within the
boundaries of a single subject, if this subject is formed by software components supporting
different functionalities. An example is a process consisting of several concurrent threads
that operate on different subsets of the segments in the same given cluster. In accordance
with the principle of least privilege [4], [23], [27], each of these threads should be granted
the smallest set of access rights that is necessary for that thread to carry out its job. This
means that the original handle will be weakened into different handles for the different
threads.

Figure 3 shows an example of a handle weakening. In this example, cluster C consists
of up to eight segments (n = 8), and the original selector S1 is partitioned into four
subselectors (m = 4). Bits 2 to 6 are set in all subselectors; it follows that handle
H1 = (C, P1, S1) references segments c2 to c6. We are aimed at weakening H1 to exclude
segments c2 and c3, so that the resulting handle H2 = (C, P2, S2) will reference segments
c4 to c6. The conversion of S1 into S2 clears bits 2 and 3 of the first flat subselector, s1,2,
to obtain the corresponding subselector, s2,2. Furthermore, the original password P1 is
transformed into the new password P2 by using password conversion function f . The
configuration of s2,2 is 11110011 (243 in decimal notation), thus we have P2 = f243(P1).

2.3 Handle reduction

Handle weakening may well be iterated. For instance, consider a subject that received
a handle, and is aimed at transmitting this handle in a weakened form. If the handle is
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Figure 4: Reduction of handle H1 = (C, P1, S1) into handle H2 = (C, P2, S2). All subselectors of
S2 are flat except the first subselector, s2,0. Password P2 derives from primary password RPC ,
or, if the original handle H1 is to write, from primary password WPC , by application of password
conversion function f .

the result of a previous weakening action, we are in the presence of two weakening steps.
The handle weakening algorithm implies a modification of the first subselector that is flat.
If no flat subselector is available, the handle weakening should be preceded by a handle
reduction. This is the action of transforming a handle into an equivalent handle in which
all subselectors are flat except the first subselector.

Let us denote the original handle by H1 = (C, P1, S1) and the reduced handle by
H2 = (C, P2, S2). The reduction procedure is as follows:

1. The new segment selector S2 is assembled by using the subselectors of the original
segment selector S1. We have s2,0 = s1,0∧s1,1∧ . . .∧s1,m−1. All the other subselectors
of S2 are flat.

2. The new password P2 is evaluated by using password conversion function f . As S2

has a single non-flat subselector, we have P2 = fs2,0(RPC) or, if the original handle
H1 is to write, P2 = fs2,0(WPC).

Figure 4 shows an example of a handle reduction. In this example, bits 1 and 5 are
asserted in all the subselectors of the original handle H1 = (C, P1, S1). It follows that the
configuration of first subselector s2,0 of the reduced handle H2 = (C, P2, S2) is 00100010
(34 in decimal notation). All the other subselectors are flat. The new password P2 of H2

is evaluated by application of password conversion function f , starting from the primary
password used in H1. We have P2 = f34(RPC), or, if H1 is to write, P2 = f34(WPC).

2.4 Handle revocation

Handle revocation is based on the replacement of a primary password. Let RPC and WPC
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be the primary passwords of cluster C. If we replace one of these password, say RPC , we
revoke primary handle RHC = (C, RPC , 11 . . . 1) defined in terms of this primary password,
and all the copies of RHC . Furthermore, we revoke all the handles that have been derived
from RHC by weakening, and their copies, independently of the present locations of these
handles in the distributed memory. In fact, after password replacement, validation of any
handle defined in terms of the old password is destined to fail.

Replacement of a primary password is a general revocation mechanism, which involves
all the handles for a given cluster in the same access mode. A different mechanism, for a
more limited revocation, takes advantage of the possibility to define two or more segments
that overlap in memory. For instance, let A denote an area in the shared memory of node
N , and suppose that two segments c1 and c2 have been defined in cluster C in terms of
this memory area. Let H1 = (C, P1, S1) be a handle for cluster C, whose selector indicates
segment c1, and similarly for handle H2 = (C, P2, S2) and segment c2. In a situation of this
type, by deleting c2 we revoke H2, whereas the validity of H1 remains intact. Subsequently,
it will be possible to access memory area A by using H1, but this is no longer true for H2.

3 THE PROTECTION SYSTEM

We shall now describe a conceptual scheme for the implementation of a distributed protec-
tion system based on clusters and handles. We make no hypothesis on the configuration
of the underlying hardware. Instead, our system is designed to be fully implemented
at software level, supported by a conventional processor architecture. In particular, no
modification of the processor instruction set is necessary, and no specialized hardware is
required for memory protection, a single exception being the support for the two traditional
processor modes, a privileged mode and a user mode with memory access limitations.

3.1 The protection tables

In each given node N , a password table PTN contains the primary passwords of all the
clusters hosted in that node. This table is stored in the memory area reserved for the
protection system. It features one entry for each cluster. The entry for cluster C contains
the two primary passwords RPC and WPC associated with this cluster.

Furthermore, a cluster table CTC is associated with cluster C in N . This table features
n entries, one entry for each potential segment in the cluster, reserved to contain the
segment base and length. Initially, when C is activated in N , all the entries of CTC are
cleared (the value of the length field is 0). When segment ci is allocated in C, the base
and length of the new segment are inserted into the i-th entry of CTC .
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Table 1: The protection primitives.

(RHC , WHC)← newCluster(RHC0)
In the current node, activates a new cluster C, and returns the primary handles RHC and WHC of
this cluster. RHC0 is the read primary handle of cluster C0 of the current node.
deleteCluster(WHC0 , L)
In the current node, deletes the cluster whose local name is L. WHC0 is the write primary handle of
cluster C0 of the current node.
newSegment(RHC , i, b, t)
In the current node, allocates segment ci of the cluster C referenced by read primary handle RHC .
Arguments b and t are the base and the length of the new segment.
deleteSegment(WHC , i)
In the current node, deletes segment ci of the cluster C referenced by write primary handle WHC .
readSegment(HC , i, addr)
Copies the contents of segment ci of the cluster C referenced by handle HC into an area starting at
address addr of the private memory of the current node. HC should permit read access to ci.
writeSegment(HC , i, addr)
Replaces the contents of segment ci of the cluster C referenced by handle HC with quantities taken
from an area starting at address addr of the private memory of the current node. HC should permit
write access to ci.
H2 ← weakenHandle(H1, msk)
Returns a handle H2 that references the subset specified by msk of the segments included in handle
H1, in the same access mode.
H2 ← reduceHandle(H1)
Returns a handle H2 derived from handle H1 by reduction.
PH2 ← newPassword(PH1)
Changes the primary password of the cluster C specified by primary handle PH1. Returns a primary
handle PH2 defined in terms of the new primary password, in the same access mode.

3.2 The protection primitives

The process interface of the protection system consists of a set of primitives, the protection
primitives. Table 1 summarises the effects of the execution of each primitive. For a few
primitives, execution is completely accomplished within the boundaries of the node where
the primitive is issued. Other primitives imply forms of cooperation between nodes, by
message exchanges. A message can be a control message or a data message. A control
message can be a request message specifying actions that must be accomplished in the
destination node, or a reply message that contains information concerning the result of the
execution of these actions. A data message includes the contents of a segment. A message
of this type is generated when a segment is accessed to read or to write.

Protection primitives are intended to be implemented in the form of system routines,
which are executed in the privileged mode. This is necessary, in particular, to access the
protection tables, which are stored in the memory area reserved for the protection system.

In the rest of this section, we shall present the actions caused by the execution of each
protection primitive, with special reference to access right checks, and to the messages
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that are exchanged across the network. To simplify the presentation, we shall not mention
the actions involved in handle validation, which have been illustrated in Section 2.1.
Furthermore, we shall omit details concerning interprocess communications and their
protocols, e.g. message encryption and message routing, as well as the usual security issues
affecting these communications, e.g. prevention of forms of replay attack [29].

We shall use the term current node to denote the node where the given protection
primitive has been issued. A local segment is a segment allocated in the shared memory
the current node, a remote segment is allocated in the shared memory of a different node
(a remote node).

3.2.1 Cluster activation and deletion

In each given node N , the cluster whose local name is 0, which we shall denote by C0, is a
fictitious cluster that is always active. Memory space is never reserved for the segments in
this cluster. A subject that holds the read primary handle RHC0 = (C0, RPC0 , 11 . . . 1) of
C0 is entitled to activate new clusters in N . If the subject holds the write primary handle
WHC0 = (C0, WPC0 , 11 . . . 1), it can delete clusters from N .

In detail, if executed in node N , the (RHC , WHC)← newCluster(RHC0) protection
primitive activates a new cluster C in N . This primitive returns the two primary handles
of the new cluster, the read primary handle RHC and the write primary handle WHC .
Execution of newCluster is as follows:

1. Validity of handle RHC0 is verified; it should be the read primary handle of cluster
C0 of node N . If this is not the case, an exception of violated protection is raised,
and execution of newCluster fails.

2. The local name L of the new cluster C = (N, L) is generated, and a new cluster
table is allocated for C, namely CTC , in the memory area reserved in node N for
the protection system. CTC features n entries, one entry for each potential segment
in C. In each entry, the length field is cleared, to indicate that the corresponding
segment has not been allocated.

3. The two primary passwords of cluster C, RPC and WPC , are generated, and are
inserted into password table PTN .

4. The two primary handles of cluster C, RHC = (C, RPC , 11 . . . 1) and WHC =
(C, WPC , 11 . . . 1), are constructed, and are returned to the caller.

In step 2, a simple strategy for generation of local cluster names is a sequential generation.
In each node, a cluster counter contains the local identifier of the next cluster to be
activated in that node. This counter is initialized to 1 when the protection system is
initialized. After activation of a new cluster, the value of the counter is incremented by 1.
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The deleteCluster(WHC0 , L) protection primitive allows a subject running in node N

to delete cluster C = (N, L). Execution deletes the cluster table CTC associated with C,
and eliminates the entry relevant to C from password table PTN . Execution terminates
successfully only if WHC0 is the write primary handle of cluster C0 of node N .

We wish to point out that the aims of primitives newCluster and deleteCluster are
restricted to cluster activation and deletion within the boundaries of the node where
these primitives are issued. In fact, a subject running in a given node cannot activate a
cluster in a remote node or delete an existing cluster from a remote node. newCluster

allocates no segment in the new cluster; segment allocation will be carried out by using
the newSegment primitive, which is introduced below. In contrast, by deleting the cluster
table, deleteCluster deletes all the segments in the cluster.

3.2.2 Segment allocation and deletion

Protection primitive newSegment(RHC , i, b, t) allocates a new segment in the current
node, in the cluster C referenced by read primary handle RHC . Argument i is the index
of the new segment ci in the cluster, arguments b and t are the segment base and length.
Execution is as follows:

1. Validity of handle RHC is verified; if it is not a read primary handle, an exception
of violated protection is raised, and execution of newSegment fails.

2. Quantities b and t are considered to verify that the new segment can be completely
contained within the boundaries of the shared memory of the current node. If this is
not the case, execution fails.

3. The i-th entry of segment table STC is accessed. If the length field of this entry is not
cleared, then segment ci has already been allocated, and execution fails. Otherwise,
quantities b and t are inserted into the base and length fields, respectively.

As anticipated in Section 2.4, the same storage unit can be part of two or more segments
at the same time, and in fact, newSegment does not prevent segments to overlap. After
execution of this primitive, it will be possible to access the new segment to read or to
write, by taking advantage of a handle referencing this segment in the corresponding access
mode, e.g. a primary handle referencing cluster C, or a handle generated from a primary
handle by weakening.

Protection primitive deleteSegment(WHC , i) deletes the i-th segment ci from the
cluster C of the current node that is referenced by handle WHC . Execution clears the
length field of the i-th entry of segment table STC . Execution terminates successfully only
if WHC is a write primary handle.

It should be noted that deleteSegment does not alter the contents of the memory area
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which was reserved for the deleted segment. This means that if we have two or more
overlapping segments, and we delete one of them, the contents of the other segments are
not affected.

Furthermore, newSegment cannot be used to change the base or the length of an
existing segment. An effect of this type can be obtained by using deleteSegment to delete
the segment, and then taking advantage of newSegment to create a new segment with
the desired characteristics. It follows that a modification of a segment in a given cluster
requires possession of both the read primary handle and the write primary handle of this
cluster.

Finally, the aims of newSegment and deleteSegment are restricted to segment alloca-
tion and deletion in the shared memory of the node where these primitives are issued. In
fact, as will be illustrated shortly, a subject running in a given node that holds adequate
access permissions can access the remote segments to read or to write only; it cannot create
a new remote segment or delete an existing remote segment. Thus, memory management
activities are confined within the node boundaries.

3.2.3 Accessing segments

A subject can access the contents of a segment, be it local or remote, only by presenting a
handle referencing this segment. We shall now introduce two protection primitives, namely
readSegment and writeSegment, which can be used to read the contents of a segment and
to replace these contents, respectively. The arguments of these primitives include a handle
referencing the segment involved in the access. The actions caused by the execution of
these primitives will be described with reference to remote segment accesses. The activities
entailed by an access to a local segment can be easily imagined, and will not be discussed.

Let HC = (C, P, S) be a handle referencing cluster C in the read mode, and sup-
pose that C is allocated in node M . If executed in node N , protection primitive
readSegment(HC , i, addr) copies the contents of the i-th segment ci of cluster C from
node M into an area starting at address addr of the private memory of node N . Execution
of this primitive is as follows:

1. Validity of handle HC is verified; it should permit read access to segment ci. If
this is not the case, an exception of violated protection is raised, and execution of
readSegment fails.

2. A request message is sent to node M . On receipt of this message, M accesses the
i-th entry of the cluster table CTC of cluster C. If the length field of this entry is
cleared, then segment ci is not allocated; a negative reply message is returned to
N , and readSegment fails. Otherwise, a data message d is assembled including the
contents of segment ci, and the specification of the length t of this segment. This
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data message is sent to N .

3. Node N copies the contents of segment ci from data message d into a local private
memory area of size t, which starts at address addr.

Let HC = (C, P, S) be a handle referencing cluster C of node M in the write mode. If
executed in node N , protection primitive writeSegment(HC , i, addr) copies the contents
of a memory area starting at address addr of the local private memory into the i-th
segment ci of cluster C. Execution is as follows:

1. Validity of handle HC is verified; it should permit write access to segment ci. If
this is not the case, an exception of violated protection is raised, and execution of
writeSegment fails.

2. A request message is sent to node M . On receipt of this message, M accesses the
i-th entry of the cluster table CTC of cluster C. If the length field of this entry is
cleared, then segment ci is not allocated; a negative reply message is returned to
N , and writeSegment fails. Otherwise, a reply message is assembled including the
specification of the length t of ci. This message is returned to N .

3. Node N assembles a data message d including the contents A of an area of size t

starting at address addr of the local private memory. This message is sent to M .

4. Node M copies quantity A from data message d into segment ci.

3.2.4 Handle management

We shall now introduce a set of protection primitives for handle management. A first
example is the H2 ← weakenHandle(H1, msk) primitive, which returns a handle H2 =
(C, P2, S2) derived from handle H1 = (C, P1, S1) by weakening. Argument msk, of size
n bits, specifies the extent of the weakening action; for each bit that is cleared in msk,
the corresponding segment is excluded from H2. The actions caused by execution of this
primitive correspond to the handle weakening algorithm of Section 2.2, in particular as
specified by step 1 for the transformation of selector S1 into selector S2, and by step 2 for
the transformation of password P1 into password P2.

Primitive H2 ← reduceHandle(H1) returns a handle H2 = (C, P2, S2) derived from
handle H1 = (C, P1, S1) by reduction (see Section 2.3). Suppose that cluster C is allocated
in node M . The reduction procedure uses a primary password of C. Consequently,
execution of this primitive in node N causes handle H1 to be sent from N to M , where
the primary passwords are stored. The actions corresponding to the reduction algorithm
of Section 2.3 will take place in node M , in particular as specified by step 1 for the
transformation of S1 into S2, and by step 2 for the transformation of P1 into P2.
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Finally, for handle revocation (see Section 2.4), let PH1 be a primary handle of cluster
C, i.e. PH1 = (C, RP, 11 . . . 1) or PH1 = (C, WP, 11 . . . 1). If C is allocated in node M ,
execution of protection primitive PH2 ← newPassword(PH1) accesses the entry reserved
for C in password table PTM to change the primary password specified by PH1, RP

or WP . Execution returns a primary handle PH2 defined in terms of the new primary
password. This means that replacement of a given primary password requires possession
of a handle expressed in terms of this primary password.

4 EXAMPLES OF APPLICATIONS

Handles can be used effectively to solve a variety of protection problems, which correspond
to different meanings associated with the concept of a segment. This section presents a
few examples of applications, concerning the implementation of communication ports with
priority, tree-shaped node hierarchies, and access control lists in handle-based environments.
These are by no means exhaustive, but give an indication of the flexibility of the handle
concept. A few considerations about segments containing handles to form segment
hierarchies are presented, too.

4.1 Communication ports

Let us consider a system featuring up to n communication ports connecting a set of clients
with a server. Each port is unidirectional; it permits data transmission from the server to
the clients, or, if the port is for write, in the opposite direction, from the clients to the
server. A priority is assigned to each port and each client, in the range from 0 (the highest
priority) to n− 1. Port priorities are unique; it is never the case that two ports exhibit
the same priority. A limitation on port usage is that a client at a given priority can access
only the ports at the same or a lower priority. This means that a client at priority i can
only access the ports at priorities i, i + 1, . . . , n− 1.

In our protection model, a system of this type can be implemented by reserving a
segment for each port. These segments are organized into a cluster contained in the server.
The server distributes a handle to each client. This handle is obtained by weakening the
read primary handle of the cluster, or, if the ports are for write, the write primary handle.
For instance, in the write case, a client at priority i will be granted a handle obtained by
weakening the write primary handle to specify segments i, i + 1, . . . , n− 1. To this aim,
the first subselector of this handle will have bits i, i + 1, . . . , n− 1 asserted, and the other
bits cleared. The password will be generated starting from the write primary handle by
the handle weakening procedure, illustrated in Section 2.2.

A client that holds a handle for given ports can distribute this handle to other clients,
thereby transmitting the right to use these ports. The handle can be weakened before
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distribution. A client that receives a weakened handle can use only those ports that have
not been eliminated by the handle weakening procedure.

4.2 Tree-shaped node hierarchies

Let us now refer to a distributed system for environmental observations. The system
consists of nodes connected to form a network whose physical topology is inessential. At
the logical level, the nodes are organized into a three-level hierarchy. The nodes at the
lower hierarchical level are in contact with the external environment. They are grouped
into applications according to functionality criteria. A node in a given application is
called a member of this application. For each application, a node at the intermediate
level, called the application server, is responsible for transforming the data collected by
the application members into a form suitable for transmission to the base station, at the
root of the hierarchy. The base station is aimed at the final presentation and delivery of
the observational results of the entire network.

In an organization of this type, the server of each given application maintains a segment
cluster, the application cluster, featuring a segment for each member of that application.
The application server distributes a handle to each application member. This handle
permits write accesses to the segment reserved for that member. The member takes
advantage of the writeSegment protection primitive to communicate with the application
server. In turn, the base station maintains a segment cluster with a segment for each
application. The base station distributes a handle to each application server. This handle
permits write accesses to the segment reserved for that application server. The application
server uses this handle to communicate with the base station.

Suppose that a member of a given application should be eliminated from that application.
It is necessary to revoke the access privilege that this member holds for the corresponding
segment in the application cluster, to prevent it from taking advantage of these privileges
any longer. To this aim, the application server simply issues the deleteSegment protection
primitive to delete the segment. Now suppose that a new node should be added to an
application. It is necessary to reserve a new segment for this node, in the cluster of that
application. To this aim, the application server uses the newSegment protection primitive
for a segment that has never been allocated. Thus, repeated actions of node deletion and
addition in the same given application may well lead to exhaustion of available segments
in the application cluster. In a situation of this type, a solution is to replace the primary
passwords of the cluster. Consequently, all the handles derived from the old passwords are
revoked, and all the free segments can be used again. A new distribution of handles to the
application members will take place, to replace the revoked handles with new handles.
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4.3 Handle segments

A handle segment is a segment reserved to contain a collection of handles (in contrast, a
data segment only contains ordinary information items). Of course, a handle in a handle
segment may well reference segment clusters contained in different nodes. In turn, these
clusters may include other handle segments. In this way, handle segments and data
segments form a hierarchical structure, which is distributed across the network. In this
structure, the terminal nodes are data segments, the intermediate nodes and the root
are handle segments. In Section 1.1.1, with reference to capability environments, we
introduced the similar concept of a capability segment. In a handle-based system, less
handle segments are necessary, as a single handle references an entire segment cluster.

It should be noted that a handle referencing a handle segment may indirectly grant
access permissions significantly stronger than the access right included in the handle
itself. Consider a subject that holds a handle granting access right read for a given handle
segment. This subject is in the position to read the handles in the handle segment, to
access the segments in the clusters referenced by these handles. On the other hand, access
right write for a given handle segment makes it only possible to access the handle segment
to modify its contents, by adding new handles, overwriting the existing handles, or deleting
them. Write does not permit any form of access to the clusters referenced by these handles.

4.4 Access control lists

In a well-known approach, the state of a protection system is expressed by associating an
access control list with each object [19], [24], [26]. The access control list ACLG associated
with object G consists of a set of entries having the form (D, AR), where D denotes a
protection domain, and AR specifies the access rights for G, which are contained in D.
In an access control list environment, it is straightforward to determine the access rights
associated with domain D for object G. To this aim, in ACLG, we shall inspect the entry
that corresponds to D.

In a handle-based system, we can implement an access control list at little effort,
as follows. We reserve a segment cluster CG for ACLG. In this cluster, we associate a
segment S with each given domain D. The contents of this segment specify the access
rights included in D for G. This segment consists of a single memory cell with one bit
for each access right; if asserted, the given bit denotes that D includes the corresponding
access right.

Let H be a handle for cluster CG. The selector of this handle specifies one or more
segments in CG. If H specifies a single segment, e.g. segment S corresponding to domain
D, then the subject that possesses H holds the access rights for G, which are specified
by S. If H specifies more than a single segment, then the subject holds the union of the
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access rights for G, which are specified by each of these segments.
Cluster CG is part of the internal representation of object G, and consequently, it is

contained in the network node storing G. A subject that holds handle H referencing
CG can issue the operations defined by the type of G. The arguments of each of these
operations include a handle for CG. The operation will use H to access CG to verify the
access rights.

5 DISCUSSION

5.1 Memory requirements for handle storage

Handles with different compositions may well reference the same set of segments. For
instance, let us consider handles H1 = (C, P1, S1) and H2 = (C, P2, S2), where S2 has been
obtained by inverting the positions of two given subselectors in S1. In a situation of this
type, the segments referenced by H1 are the same referenced by H2, as the logical and
of the subselectors of S1 produces the same result as for the subselectors of S2. However,
passwords P1 and P2 will be different, as follows from the iterative password conversion
algorithm of Section 2.1 applied to S1 and S2. As a further example, let us consider the
handle reduction process illustrated in Section 2.3. A reduced handle references the same
set of segments as the original handle, but the passwords are different.

We wish to remark that the memory requirements for password storage are not increased
by this apparent password proliferation. In fact, only two passwords must be kept in
memory for each cluster, the primary passwords. The validity of each given secondary
password will be assessed by using the password conversion algorithm. This is in sharp
contrast with password capability environments, where validation is based on comparisons
with pre-existing password sets.

In a capability system, a protection domain corresponds to a collection of capabilities,
one for each object in that domain, which are grouped to form a capability list supported
by a capability segment (see Section 1.1.1). In our system, a single handle is sufficient
to specify an access right, read or write, for an entire collection of segments within the
boundaries of the same cluster. This compact domain representation leads to significant
memory space savings, and also to simplicity in access right management. For instance,
consider a data structure consisting of two or more data segments. A single handle, instead
of a capability list, is required to reference these segments. The transmission of this handle
will be sufficient to transfer an access permission for the whole data structure, whereas,
in a capability environment, the copy of the whole capability list is necessary. A related
problem is connected with domain weakening, to eliminate the access rights for a subset of
the segments. In a capability system, an action of this type corresponds to the elimination
of capabilities in a capability list. In our handle-based environment, the same result is
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Table 2: Memory requirements for handle storage (in bytes).

Cluster size small standard large
(n = 4) (n = 8) (n = 16)

Cluster name 3 3 3
Password 16 16 16
Subselector 0.5 1 2
Selector (m = 4) - 4 8
Handle (m = 4) - 23 27
Selector (m = n− 1) 2 7 30
Handle (m = n− 1) 21 26 49

obtained by a handle weakening action, as is supported by the weakenHandle protection
primitive.

As seen in Section 2, the number m of the subselectors is defined at system level.
For a cluster consisting of n segments, if m = n − 1, then handle reduction is never
necessary, even in the case of a handle weakened to reference a single segment. In a
practical implementation, supporting as many as n− 1 subselectors tends to be a wastage
of memory resources. In fact, a handle is usually weakened before being transmitted to a
different subject, to reduce the extent of the access permissions of the recipient, but it is
rarely the case that a handle undergoes many transmission steps with weakening. This
suggests us to limit quantity m. Of course, if a handle should be weakened and no flat
subselector is available, we shall take advantage of the reduceHandle protection primitive
to reduce the handle.

In a practical implementation, we shall support clusters of different sizes, corresponding
to different values of n. For instance, we may have small clusters of up to four segments,
standard clusters of up to eight segments, and large clusters of up to 16 segments (Table
2). A cluster name of three bytes (two bytes for the node name and one byte for the local
cluster name) will be sufficient to support a high connectivity between nodes in a large
network. The password size derives from the overall protection requirements, e.g. 128 bits.
For small clusters, the selector fits into two bytes, and the resulting handle size is 21 bytes.
If m = 4, for standard clusters the selector size is four bytes, and the handle size is 23
bytes; for large clusters, the selector size is eight bytes, and the handle size is 27 bytes. In
contrast, if m = n− 1, for standard clusters we have a selector size of seven bytes and a
handle size of 26 bytes; for large clusters we have a selector size of 30 bytes, and a handle
size of 49 bytes.

Let us now compare these results with the analogous memory requirements in a
segment-oriented password capability environment. A password capability is a pair (G, P ),
where G is a segment identifier and P is a password. If the size of a segment identifier
is 4 bytes (two bites for the name of the node where the segment is allocated, and two
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bytes for the local name of the segment in that node), for 128-bit passwords the size
of a password capability referencing a single segment is 20 bytes. In contrast, in our
handle-based environment, if m = 4, the size of a large handle is 27 bytes (see Table 2),
and the handle can specify access permissions for up to 16 segments. This important result
has been obtained by encoding information concerning the segments actually addressed by
a given handle at the password level, taking advantage of the parametric one-way password
conversion function.

5.2 Execution times for handle validation

In the iterative algorithm for handle validation, introduced in Section 2.1, let Tf denote
the average time necessary for the execution of a single iteration, including the execution
time of password conversion function f , and let Tv denote the total handle validation time.
We have Tv = k · Tf , where k is the number of the subselectors that are not flat in the
handle to be validated. For a primary handle, we have k = 0, and the validation time
Tv,min is marginal. For a handle that has been reduced by using the reduction procedure
of Section 2.3, we have k = 1 and Tv = Tf . The maximum time cost corresponds to the
case of no flat subselector, and in this case Tv,max = m · Tf .

5.3 Network costs

As seen in Section 3.2, the actions caused by the execution of several protection primitives
are completely confined within the boundaries of the current node, where the given
primitive is issued, at no network cost. This is the case, for instance, for primitives
newCluster and deleteCluster, which make it possibile to activate and delete clusters locally
in the current node, and for primitives newSegment and deleteSegment, which allow us to
allocate and delete segments in clusters of the current node. In fact, the procedure for
validation of a given handle is entirely confined within the node of the cluster referenced
by that handle. Of course, network traffic is generated by the execution of primitives
readSegment and writeSegment, when they are used to access a remote segment.

Handle reduction requires a knowledge of the primary password corresponding to the
access mode (to read or to write) permitted by the given handle. It follows that a subject
that holds a handle cannot reduce this handle autonomously. Instead, intervention of
the protection system is required, as is supported by the reduceHandle primitive, and the
handle transformation will take place remotely, in the node storing the corresponding
primary password. On the other hand, execution of primitive weakenHandle is completely
confined in the node where this primitive is issued. No network traffic is produced. This
important result follows from our approach to handle weakening, based on utilization of
the password conversion function.
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5.4 Forging handles

Let us suppose that a malevolent subject B is aimed at forging a handle H = (C, P, S)
for cluster C. The configuration of selector S will be set in relation to the segments of C

that the handle should reference, e.g. S will be flat (all 1’s) if H should reference all the
segments. Subject B does not know the password (a primary password, in the case of a
flat S), and will use a password chosen at random. If passwords are large and sparse, the
probability of a casual match is virtually null.

Let us now suppose that subject B possesses a valid handle H1 = (C, P1, S1) that
references a few segments of cluster C, and is aimed at modifying this handle into handle
H2 = (C, P2, S2) that references more segments. Transforming S1 into S2 is an easy task.
For instance, B will replace the most significant non-flat subselector of S1 with a flat
subselector in S2. The next step is to transform P1 into P2. In fact, P2 precedes P1 in the
iterative password conversion procedure, introduced in Section 2.1, which starts from a
primary password to obtain the password corresponding to the selector. But password
conversion function f is one-way, and it is computationally unfeasible to invert it to
evaluate P2. In this case, too, a solution is to use a password chosen at random, but the
probability of success is vanishingly low.

5.5 Handle revocation

In Section 2.4, we introduced a handle revocation mechanism based on the replacement of
a primary password, and supported by the newPassword protection primitive. Despite
its simplicity, this mechanism is characterized the important properties introduced in
Section 1.1.3 [8]. Revocation is transitive, as the effects of a revocation propagate to all
the subjects that hold a handle derived from the password being replaced. In fact, by
changing a given primary password, we revoke the primary handle defined in terms of this
password, all its copies, all the handles derived from this primary handle by weakening,
and all their copies. Thus, revocation extends to the whole distributed system, across
the node boundaries. Revocation is partial, as it can be limited to a single access right,
read or write; and in fact, the replacement of a given primary password does not impair
the validity of the handles defined in terms of the other primary password. Revocation is
temporal, as it can be reversed by restoring the original primary password.

As seen in Section 2.4, a further revocation mechanism is based on two or more segments
defined in terms of the same memory area. By issuing the deleteSegment protection
primitive to delete one of these segments, we revoke all the handles referencing the memory
area in terms of this segment. In this case, too, revocation is transitive (it extends to
all the copies of these handles in the whole distributed system), and temporal (it can be
reversed by restoring the deleted segment). Furthermore, revocation is independent, that
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is, handles for the same memory area can be revoked independently of each other.

5.6 Relation to previous work

Capability protection is a multi-decade idea [15]. Several capability-based systems were
designed and actually implemented in the past, and solutions to the related protection
problems were conceived at both the hardware and the software levels. This section takes
a few recent systems into consideration, namely Walnut, Annex and CHERI. For each of
them, the protection environment will be briefly discussed. The aim of this presentation is a
comparison with our system; the accent is on the protection of the distributed information
at a high level of granularity.

5.6.1 Walnut

Walnut [2], [21] is a design and implementation effort aimed at demonstrating the feasibility
of using off-the-shelf microprocessors in a tightly-coupled multiprocessor based on password
capabilities. In the Walnut protection model, a volume name is associated with each
physical storage device. An object stored in a given volume is univocally identified by the
name of this volume and a serial number, local to the volume, and valid for the entire
object lifetime. A capability consists of an object identifier and a password. Passwords
are sparse and generated at random by a physically random number generator. Each
capability is associated with a fixed access privilege expressed in terms of a set of access
rights. No computable relation exists between the password and the access rights. Instead,
in each volume, a capability table contains the mapping from passwords to access rights
for all the objects stored in that volume.

When an object is created, a master capability is assigned to this object, with the
access rights specified by the creator. New capabilities, with reduced access rights, can
be derived from the master capability by a call to the kernel. Capability derivation is
recursive. The resulting interdependencies can be modeled as an inverted tree whose root
is the master capability, and the other nodes are the derived capabilities. If a capability is
destroyed, all its descendants are destroyed, too. When the master capability is destroyed,
the object becomes inaccessible, and is deleted.

In our protection model, with reference to distributed systems, we concentrate on
controlled communication, as is supported by the protection primitives. A single handle is
sufficient to reference an entire cluster of segments. This is important from the points of
view of handle manageability and the memory requirements for handle storage, especially
for small sized segments (an example of application to single-cell segments has been given
in Section 4.4). A subject holding a handle for a given cluster can weaken this handle
autonomously, to produce a new handle with less access permission. No intervention is
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required by the kernel, and no network traffic is generated to communicate with the node
storing the cluster.

5.6.2 Annex

In the Annex object capability system [9], [22], computer security is pursued by using
password capabilities and message passing primitives to control the interactions between
otherwise isolated components. Capabilities are combined with object-oriented program-
ming. Complex systems are decomposed into component objects, and capabilities are used
to address each of these objects to implement fine-grained security policies. Objects are
the fundamental, self-contained units of strong isolation, unable to access any information
item outside of their boundaries. However, an object may hold capabilities to communicate
with external objects by message passing. An object resides in its own address space,
where the object code and state are stored.

Annex is an event-driven distributed system. An event can be a hardware interrupt, or
a message from an object. Each object is idle until it receives a message. Object methods
operate according to the call-by-copy semantics. The only way to transmit a reference
between objects is by passing a capability. Method calls are asynchronous. An object that
issues a method call is not forced to wait for the result; instead, it can continue to operate
while the call is processed.

In Annex, a password capability for a given object consists of the identifier of the device
storing the object, the identifier of the object in that device, the identifer of a capability
in the set of capabilities for that object, and a password that prevents the forging of
valid capabilities. Each device contains a catalogue of all the capabilities that reference
the objects stored in that device. Capabilities can only reside within the boundaries
of the kernel. The kernel associates a capability list with each object. Objects do not
possess capabilities, to prevent capability alteration or forging; instead, outside the kernel,
capabilities can only be referenced by using handles. A handle is an index into a capability
list.

In contrast, in our system, we support a single object type, the segment. Segments
are grouped into clusters to the aim of referencing, which is obtained by using handles.
In Section 4, we have demonstrated the flexibility of the handle and cluster concepts in
the solution of a variety of protection problems. Handles can be weakened to include
less privileges. No indirection is necessary to reference a handle from outside the kernel.
Instead, as seen in Section 5.4, handles are protected from alteration and forging by the
one-way property of the password conversion function.
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5.6.3 CHERI

CHERI [31], [34] is a hybrid capability system aimed at extending the 64-bit MIPS IV
instruction set architecture. Emphasis is given to the architectural support for fine-grained
memory protection, in contrast with the coarse-grained protection at the application level
that characterizes traditional virtual memory systems. Safety is guaranteed by the fact that
every memory access occurs through a capability. Key features are a capability coprocessor
and a tagged memory. The coprocessor includes a set of capability registers aimed at
address translation, from capabilities to virtual addresses. To access a memory segment, a
capability for this segment must be preventively loaded into a capability register.

A capability consists of a base field and a length field that describe a memory segment,
and a permission field that describes the access rights. Possible access rights are load
and store capability, load and store data, and execute. The coprocessor interacts with
the MIPS pipeline by receiving instructions, exchanging operands and sending exceptions.
The load and store instructions address memory via the capability registers. The contents
of a capability register can be accessed to modify the permission field of the capability
contained in that register to reduce (but not to amplify) the access rights. The tagged
memory guarantees capability integrity. The tag of a memory cell, if asserted, indicates
that this cell contains a capability. A traditional store clears the tag.

In contrast, in our protection system, we do not rely on ad-hoc hardware for the
support of memory addressing and protection. Instead, handles are fully implemented at
software level. Handle integrity is guaranteed by passwords and the one-way property of
the password conversion function. With respect to tagged memory solutions, significant
advantages follow from the points of view of hardware compatibility with existing memory
systems and hardware standardization [20]. Furthermore, we avoid the complications
inherent in the necessity to propagate the tags across the cache hierarchy and to the
secondary memory. Fine-grained memory protection is supported to the limit of a segment
size of a single memory cell. The memory requirements for handle storage are mitigated
by the fact that a handle can reference a whole segment cluster.

6 CONCLUDING REMARKS

With reference to a distributed system consisting of nodes connected by a local area
network, we have considered the problems inherent in the distribution, verification, review
and revocation of access permissions. We have proposed the organization of a protection
system that takes advantage of a form of protected pointer, the handle. In our approach:

• A handle references one or more segments in the same given cluster in terms of a
selector and a password. The selector specifies the segments, the password specifies
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an access right, read or write. Segments are the basic unit of information protection
and sharing between the nodes.

• Two primary passwords are associated with each cluster, corresponding to an access
permission for all the segments in that cluster. A password conversion algorithm
takes advantage of a parametric one-way function to generate secondary passwords
corresponding to less segments.

• A small set of protection primitives makes it possible to allocate and delete segments
within active clusters, and to access remote segments to read and to write.

We have obtained the following results:

• A subject that holds a handle for a given cluster can weaken this handle to reference
less segments. The handle weakening algorithm can be iterated up to the limit of
a handle referencing a single segment. The number of weakening steps is limited,
to save memory space for handle storage. A handle reduction procedure makes it
possible to transform a handle into an equivalent handle permitting application of
more weakening steps.

• A single handle is sufficient to specify an access permission for an entire collection
of segments, within the boundaries of the same cluster. This is in sharp contrast
with capability environments, where a protection domain corresponds to a capability
list including a capability for each object in that domain. Our compact domain
representation leads to simplicity in access right management, and also to significant
memory space savings.

• When a segment is accessed to read its contents or to replace these contents, the
handle presented to certify possession of the corresponding access permission is
validated in the node storing the segment. No network traffic is generated by
this validation activity. Furthermore, when a handle is weakened to reference less
segments, the handle weakening procedure does not require access to the primary
passwords, and can be accomplished locally. We have obtained these important
results by taking advantage of a parametric one-way function for password conversion.

• If primary passwords are large and sparse, the probability that a malevolent subject
guesses a password to forge a valid handle is virtually null. Transformation of
a handle into a stronger handle referencing more segments is prevented by the
non-invertibility property of the password conversion function.

• Handle review and revocation takes advantage of the possibility to change a primary
password to revoke the corresponding primary handle, and all the handles derived
from this primary handle. We can also revoke access permissions for a given memory
area by deleting a segment defined in terms of this area.
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