
An Approach to Task-based Parallel Programming for
Undergraduate Students

Eduard Ayguadéa,b,∗, Daniel Jiménez-Gonzáleza,b

aComputer Architecture Department, Universitat Politècnica de Catalunya (UPC)
bComputer Sciences Department, Barcelona Supercomputing Center (BSC-CNS)

Abstract

This paper presents the description of a compulsory parallel programming course

in the bachelor degree in Informatics Engineering at the Barcelona School of In-

formatics, Universitat Politècnica de Catalunya UPC–BarcelonaTech. The main

focus of the course is on the shared-memory programming paradigm, which fa-

cilitates the presentation of fundamental aspects and notions of parallel com-

puting. Unlike the “traditional” loop-based approach, which is the focus of par-

allel programming courses in other universities, this course presents the parallel

programming concepts using a task-based approach. Tasking allows students

to explore a broader set of parallel decomposition strategies, including linear,

iterative and recursive strategies, and their implementation using the current

version of OpenMP (OpenMP 4.5), which offers mechanisms (pragmas and in-

trinsic functions) to easily map these strategies into parallel programs. Simple

models to understand the benefits of a task decomposition and the trade-offs

introduced by different kinds of overheads are included in the course, together

with the use of tools that allow an easy exploration of different task decompo-

sition strategies and their potential parallelism (Tareador) and instrumentation

and analysis of task parallel executions on real machines (Extrae and Paraver).

Keywords: Task decomposition strategies and programming, OpenMP

tasking model, Performance models and tools

∗Corresponding author
Email address: eduard@ac.upc.edu (Eduard Ayguadé)

Preprint submitted to Elsevier February 11, 2018

1. Introduction1

For decades, single-core processors were steadily improving in performance2

thanks to advances in integration technologies (bringing more transistors and3

ever-increasing clock speeds) and micro-architectural innovations (providing high-4

er potential instruction-level parallelism, or ILP). The target’s ILP could be5

satisfactorily exploited by the compiler, and sequential programming was the6

dominant paradigm. Programming courses for undergraduate students were7

based on this sequential paradigm, without the need for programmers to learn8

to consider parallelism. Concurrency was mainly presented in operating system9

(OS) courses as a way to express the concurrent execution of multiple activi-10

ties, such as processes and/or threads, inside the OS. Parallel computing was a11

subject mainly considered in courses at the most advanced levels of computer12

science and engineering curricula.13

This sequential paradigm was challenged by the move towards multicore14

architectures, caused by the power wall (due to ever-increasing clock frequencies)15

and increasing difficulties in exploiting the available ILP. Today, from mobile to16

desktops to laptops to servers, multicore processors and multiprocessor systems17

are commonplace. In order to utilise the increasing number of available cores,18

it is necessary to parallelise existing sequential applications. Unfortunately,19

neither hardware nor current compilers can automatically detect and exploit20

the levels of parallelism required to feed current parallel architectures.21

Due to the increasing demand in the IT sector for parallel programming ex-22

pertise, efforts have been made to introduce parallel programming to undergrad-23

uate students. In most cases the design of these parallel programming courses24

stayed rooted in “traditional” regular loop-level parallelisation strategies, not25

allowing parallelism to be exploited in more irregular applications, such as those26

traversing dynamically-allocated data structures (lists, trees, etc.) and making27

use of other control structures, such as recursion. In addition, it has been proven,28

both by the research community and through the evolution of parallel program-29

ming standards, that this “traditional” approach is not sufficient to pave the30

2

path towards exploiting the potential scalability of future processor generations31

and architectures. To provide an alternative to the loop-based approach, some32

programming models and standards (such as OpenMP) evolved to include the33

tasking model. The task-based approach offers a means to express irregular34

parallelism, in a top down manner, that scales to large numbers of processors.35

In this paper we present the proposed syllabus and framework for teaching36

parallel programming to “fresh” students in Parallelism, a third-year compul-37

sory subject in the Bachelor Degree in Informatics Engineering at the Barcelona38

School of Informatics (FIB) of the Universitat Politècnica de Catalunya (UPC–39

BarcelonaTech). This subject has been our first opportunity to teach parallelism40

at the undergraduate level. The tasking model in OpenMP [1] (currently version41

4.5 for C/C++) was chosen as the vertebral axis in the design of this course,42

providing support for tasks (including task dependences) in addition to tradi-43

tional loop-level parallelism, which is considered to be a particular case of the44

generic tasking model. The course also includes models and tools to understand45

the potential of task decomposition strategies (Tareador [2]) as well as to un-46

derstand their actual behaviour when expressed in OpenMP and executed on47

a real parallel architecture (Extrae, a dynamic tracing package, and Paraver, a48

trace visualisation and analysis tool [3]). The complete framework motivates49

the learning process, improves the understanding of the proposed task decom-50

positions and significantly reduces the time to develop parallel implementations51

of the original sequential codes.52

The paper is organised as follows: Section 2 presents the context for the53

subject presented in this paper. Then, Sections 3, 4, 5 and 6 describe the main54

units in the subject, in terms of concepts and methodology. Finally, Section 755

concludes the paper by analysing how the proposed subject covers the main56

topics identified in the NSF/IEEE-TCPP Curriculum Initiative on Parallel and57

Distributed Computing - Core Topics for Undergraduates, and how the grad-58

ual evolution from a traditional loop-based course has improved the students’59

results.60

3

2. Course description and context61

The bachelor degree in Informatics Engineering at the Barcelona School62

of Informatics of the Universitat Politècnica de Catalunya is designed to be63

completed in seven terms (two terms per academic year) plus one term for a64

final project. The four initial terms cover subjects that are mandatory for all65

students, while the three final terms comprise mandatory and elective courses66

within one specialisation (computer engineering, networks, computer sciences67

and software engineering).68

Parallelism (PAR) is the first subject in the above-mentioned degree that69

teaches parallelism, and it is the one described in detail in this paper. It is70

a compulsory subject, in the fifth term, that covers parallel programming and71

parallel computer architecture fundamentals—basic tools to take advantage of72

the multi-core architectures that constitute today’s computers. The subject73

follows a series of subjects on computer organisation and architecture, operating74

systems, programming and data structures, all of which are focussed on uni-75

processor architectures and sequential programming.76

2.1. Learning objectives and student learning outcomes77

The three main learning objectives of PAR are the following: (1) to design,78

implement and analyse parallel programs for shared-memory parallel architec-79

tures; (2) to write simple models to evaluate different parallelisation strategies80

and understand the trade-off between parallelism and the overheads of paral-81

lelism; and (3) to gain an understanding of the architectural support for parallel82

programming models (data sharing and synchronisation).83

The expected student learning outcomes for PAR are summarised in Fig-84

ure 1; these learning outcomes are related to the different theory/laboratory85

sessions shown in Table 1 and described in the next subsection.86

2.2. Complementary courses87

Two elective subjects in the specialisation of Computer Engineering fol-88

low PAR. First, Parallel Architectures and Programming (PAP) extends the89

4

Figure 1: Student’s Learning Outcomes (LO) for PAR.

concepts and methodologies introduced in PAR, by focussing on the low-level90

aspects of implementing a programming model such as OpenMP, making use91

of low-level threading (Pthreads); the subject also covers cluster architectures92

and how to program them using MPI. Second, Graphical Units and Accelerators93

(TGA) explores the use of accelerators, with an emphasis on GPUs, to exploit94

data-level parallelism.95

PAR, PAP and TGA are complemented by a compulsory course in the Com-96

puter Engineering specialisation, Multiprocessor Architectures, in which the ar-97

chitecture of (mainly shared-memory) multiprocessor architectures is covered in98

detail. Another elective subject in the same specialisation, Architecture-aware99

Programming (PCA), mainly covers programming techniques for reducing the100

execution time of sequential applications, including through SIMD vectorisation101

and FPGA acceleration.102

5

Theory/problem solving Laboratory Learning

Week Topic Session (2h) Topic Session (2h) Outcomes (LO)

1 Fundamentals Motivation. Serial, multiprogrammed, Environment Compilation and LO1,4

concurrent and parallel execution execution of programs

2 Abstract program representation (TDG). Tools: Tareador LO1

Simple performance models and overheads.

3 Amdahl’s law. Strong vs. weak scalability Tools: Paraver and Extrae LO2,5,6

4 Wrap-up and exercises OpenMP Parallel and work–sharing LO1,2

5 Task Linear, iterative and recursive. Task granularities. tutorial Tasking execution model LO3

6 decomposition Task ordering vs. data sharing constraints Model analysis Evaluation of overheads LO3,6

7 Wrap-up and exercises Embarrassingly Design LO1,3

8 More advanced exercises covering decomposition strategies Parallel Implementation LO1-6

and task ordering / data sharing constraints and analysis

9 1st Midterm Evaluation

10 Architecture support How data is shared among processors? Divide and Design LO1,3,7,8

11 for shared memory How are processors able to synchronise? conquer Implementation LO3

12 programming Wrap-up and exercises Analysis LO1,3,7,8

13 Data Strategies to improve data locality: think about Geometric Design LO1,3

decomposition data. Owner-computes rule decomposition

14 Why sharing data? Distributed memory and MPI Implementation LO8

15 Wrap-up and exercises Analysis LO1,3,7,8

2nd Midterm Evaluation

Table 1: Weekly course outline and student learning outcomes.

6

2.3. Course outline103

Each term effectively lasts for 15 weeks. In PAR there are four contact hours104

per week: two hours devoted to theory and problems (with a maximum of 60105

students per class) and two hours for laboratory sessions (with a maximum of 15106

students per class). Students are expected to invest about six additional hours107

per week to complete homework and for personal study (over these 15 weeks).108

Thus, the total effort devoted to the subject is six ECTS credits.1109

Table 1 shows the main contents of PAR and their weekly distribution in110

theory/problem and laboratory sessions. After an introductory unit motivating111

the course and presenting the differences between sequential, multiprogrammed,112

concurrent and parallel execution, PAR continues with four units that cover the113

objectives of the course: fundamentals of parallelism (described in Section 3),114

task decomposition strategies (described in Section 4), introduction to parallel115

computer architectures (described in Section 5) and data decomposition strate-116

gies (described in Section 6).117

Theory/problem contact classes follow the flipped classroom methodology:118

before class students complete one or more interactive learning modules that119

include videos explaining the main concepts, and during the class students ap-120

ply the key concepts and extend them to more complex concepts. Finally, after121

class, students check their understanding and extend their learning to more122

complex tasks. In addition, there are several wrap-up sessions to help the learn-123

ing process, and there are two midterm exams. As shown in Table 1, several124

laboratory sessions are coordinated with the theory and problem contact classes.125

The structure of the course and some of its main concepts are based on126

two books: Patterns for Parallel Programming [4] and Introduction to Parallel127

Computing [5]. The latest OpenMP specification [1] is also used as reference128

1The European Credit Transfer System (ECTS) is a unit of appraisal of the academic ac-

tivity of the student. It takes into account student attendance at lectures and time of personal

study, exercises, labs and assignments, together with the time needed to do examinations. One

ECTS credit is equivalent to 25–30 hours of student work.

7

material. Finally, Computer Architecture: a Quantitative Approach [6] is rec-129

ommended as complementary material.130

3. The fundamentals131

After introducing the differences between serial, multiprogrammed, con-132

current and parallel execution, the subject starts by presenting an abstract133

representation for task-based parallelisation strategies: the task dependence134

graph (TDG), which allows an analysis of the parallelism of a particular de-135

composition into tasks. The TDG is a directed acyclic graph in which each136

node represents a task, which is an arbitrary sequential computation, and each137

directed edge represents a data dependence relationship between the predeces-138

sor and successor tasks. The weight of a node represents the amount of work to139

be done in the task. For illustration purposes, the left part of Figure 2 shows a140

simple TDG.141

10

10

2

2

5

10

5

3

Task A

Task B

Task C

Task E

Task D

Task F

Task G

Task H

T1 = T{ABCDEFGH} = 47

Three possible paths in the graph, with costs
• T{ABCEH} = 29
• T{ABDFH} = 40 (critical path)
• T{ABDGH} = 33

T∞ = 40

Parallelism = T1 / T ∞ =47/40 = 1.175.

Figure 2: Left: Task Dependence Graph (TDG) example, with nodes annotated with task

execution cost (in blue nodes that compose the critical path in the TDG). Right: computation

of T1, T∞ and Parallelism metrics for the TDG on the left.

With this abstraction of the task decomposition and a simplified machine142

abstraction that assumes identical processors, each processor executing one task143

at a time, the student is presented with the parallelism metric, defined as the144

quotient between T1, the time to execute all the nodes in the TDG on a single145

processor and T∞, the time to execute the critical path in the TDG with infinite146

processors and resources:147

8

• T1 =
∑nodes

i=1 (work nodei)148

• T∞ =
∑

i∈criticalpath(work nodei)149

• Parallelism = T1/T∞150

The right part of Figure 2 shows the computation of these metrics: (a) T1,151

defined above, (b) T{list}, the execution time of each path list from the top152

node to the bottom node, (c) T∞, which equals the execution time of the largest153

path T{ABDFH}, and (d) the parallelism metric. The parallelism metric of 1.175154

indicates that a parallel execution of this task decomposition can execute up to155

1.175 times faster than sequential if sufficient (e.g. infinite) resources are made156

available.157

In order to perform the aforementioned TDG analysis, the student is pre-158

sented with the question of how to define the scope of a task, how to figure out159

the dependences among tasks, and the granularity concept (size of each node160

in the TDG). This is done using simple codes. For example, Figure 3 shows a161

simple Jacobi relaxation computation code in C (top) and different task gran-162

ularities to be considered (bottom). In this case, any task definition leads to163

a fully independent set of tasks, since there are no data dependencies among164

computations in different iterations of the innermost loop. By analysing T∞ and165

the Parallelism metrics, the student can understand the concept of granular-166

ity and extract a first (premature) conclusion that could lead to an interesting167

discussion: finer-grain tasks are able to attain more parallelism.168

The previous conclusion favouring fine-grain tasks (at the top) is dramati-169

cally changed once overheads are brought into consideration. The students are170

introduced to the three main sources of overhead: task creation, task synchro-171

nisation and data sharing.172

3.1. Task granularity vs. task creation overhead173

At this point, it is appropriate to introduce the effect of the task creation174

overhead, resulting in a trade-off between the granularity of the tasks and the175

parallelism that can be obtained when those overheads are considered. For176

9

void compute(int n, double *u, double *utmp) {
int i, j;
double tmp;

for (i = 1; i < n-1; i++)
for (j = 1; j < n-1; j++) {

tmp = u[n*(i+1) + j] + u[n*(i-1) + j] + // elements u[i+1][j] and u[i-1][j]
u[n*i + (j+1)] + u[n*i + (j-1)] - // elements u[i][j+1] and u[i][j-1]
4 * u[n*i + j]; // element u[i][j]

utmp[n*i + j] = tmp/4; // element utmp[i][j]
}

}

Task	is	… (granularity) T1 T∞ Parallelism Task creation ovh

All	iterations	of	i and	j	loops n2 ·	tbody n2 ·	tbody 1 tcreate
Each	iteration	of	i loop n2 ·	tbody n ·	tbody n n	·	tcreate
Each	iteration	of	j	loop n2 ·	tbody tbody n2 n2 ·	tcreate
r	consecutive	iterations	of	I	loop n2 ·	tbody n ·	r	·	tbody n	÷ r (n	÷ r)	·	tcreate
c	consecutive	iterations	of	j	loop n2 ·	tbody c	·	tbody n2 ÷ c (n2 ÷ c)	·	tcreate
A	block	of	r	x	c	iterations of	i and	j,	respectively n2 ·	tbody r	· c	· tbody n2 ÷ (r	· c) (n2 ÷ (r	· c))	·	tcreate

Figure 3: Jacobi relaxation example (top) and different task granularities to be explored

(bottom). The number of iterations of the loops on i and j is approximated by n in order to

make the analysis simple and simplify the expressions for the different metrics.

example in the Jacobi relaxation example we could consider the effect of the task177

creation overhead (last column in Figure 3), assuming that one of the infinitely-178

many processors is devoted to linearly creating all the tasks and creating each179

task requires the same overhead of tcreate. Adding this overhead to the initial180

value of T∞ already shows that making the tasks smaller will decrease the181

per-task execution time and increase the total overhead: the execution time182

decreases with r and c while the overall overhead increases.183

3.2. Task ordering constraints and synchronisation overhead184

The simple Jacobi relaxation example is evolved in order to introduce data185

dependences between tasks. Figure 4 shows the main loop body for a simplified186

Gauss–Seidel relaxation (top) and the TDG (bottom left) when a block task187

decomposition strategy is applied (r times c consecutive iterations of the i and188

j loops, respectively, per task). The concept of true (Read-After-Write, or189

RAW) and false (Write-After-Read, or WAR, and Write-After-Write, or WAW)190

data dependences is introduced. For different reasons, these true and false191

10

data dependences will imply task synchronisation and, as will be seen later,192

they incur data sharing actions. The TDG in that figure shows in green one193

of the possible critical paths and the expression for the corresponding value194

of T∞, in which two components are included: the computation time, which195

depends only on the number of tasks in the critical path, and the synchronisation196

overhead introduced by the arrows between consecutive tasks in the critical path,197

each taking an overhead of tsynch. In this case, to simplify the analysis, the198

task creation overhead is not considered. Again, the student is presented with199

the trade-off between these two components when exploring different possible200

granularities for the task. Plotting this expression as a function of c and r201

certainly helps to understand the trade-off.202

void compute(int n, double *u, double *utmp) {
int i, j;
double tmp;

for (i = 1; i < n-1; i++)
for (j = 1; j < n-1; j++) {
tmp = u[n*(i+1) + j] + u[n*(i-1) + j] + // elements u[i+1][j] and u[i-1][j]

u[n*i + (j+1)] + u[n*i + (j-1)] - // elements u[i][j+1] and u[i][j-1]
4 * u[n*i + j]; // element u[i][j]

u[n*i + j] = tmp/4; // element u[i][j]
}

}

n
÷

r t
as

ks

n ÷ c tasks

ttask = (r · c) · tbody

T∞ = (n ÷ c + n ÷ r – 1) · ttask + (n ÷ c + n ÷ r – 2) · tsynch

computation synchronization ovh.

Figure 4: Gauss–Seidel relaxation example and resulting TDG when each task is a block of

r× c consecutive iterations of the i and j loops, respectively. Green nodes compose one of the

possible critical paths in the TDG. Computation of T∞ taking into account synchronisation

overheads, tsynch.

3.3. Mapping tasks to processors203

Once these ideas are clear, students are presented with the need to map the204

tasks in the TDG to a particular number of processors P in the machine. With205

11

this mapping, the students can compute Tp, the execution time of the tasks of206

the program when using P processors, and the speed-up metric, defined as the207

quotient Sp = T1/Tp. The speed-up metric, Sp, gives the relative reduction in208

the execution time when using P processors, with respect to sequential. The209

efficiency metric, Eff p, given by Eff p = Sp/P , measures the fraction of time for210

which the processors are usefully employed. In addition, the notions of strong211

scaling and weak scaling are introduced in a natural way during the analysis of212

the dependence of Sp on the number of processors, P .213

For the previous example in Figure 4, if we assume strong scaling and214

p = n/r, then Tp would have the same value as T∞, assuming the same synchro-215

nisation overhead. This can be derived from the timeline shown in Figure 5. In216

fact, only those dependences that are not internalised in the same processor (i.e.217

that are between tasks mapped to different processors) need to be considered218

in the computation of Tp.219

Tp =	(n ÷ c + p – 1) · ttask + (n ÷ c + p – 2) · tsynch

being	p	= n ÷ r and ttask =	(n	÷ p) · c · tbody

S: synchronization, with overhead of tsynch

P0

P1

P2

P3

S S S S S S

S S S S S S

S S S S S S

time

Figure 5: Timeline for the execution of tasks in the Gauss–Seidel relaxation example, assuming

that p = n/r processors are used.

3.4. Data sharing overhead220

Next, the students are presented with the last source of overhead that we221

consider: data sharing overheads. The initial simplified machine abstraction222

used to compute the basic metrics is now leveraged in order to consider that223

each processor has its own memory and processors are interconnected through224

an interconnection network. Processors access local data (in their own memory)225

12

using regular load/store instructions, with zero overhead. Processors can also226

access remote data (computed by other processors and stored in their memories)227

using remote access instructions in the form of messages. To model the overhead228

caused by these remote accesses we consider an overhead of the form Taccess =229

ts+m×tw, where ts is the start-up time spent in preparing the remote access and230

tw is the time spent in transferring each element from the remote location, which231

is multiplied by the number of elements to access, m. Additional assumptions232

are made to simplify the model, such as that a processor Pi can only execute233

one remote memory access at a time and only serve one remote memory access234

from another processor Pj at a time, but both can happen simultaneously. Later235

in the course, students will see that these messages could be cache lines in a236

shared-memory architecture or messages in a distributed-memory architecture237

with message passing.238

The easy-to-understand owner-computes rule can be stated at this point to239

map data to processors. For example, for the code in Figure 4 one could say240

that each processor will store in its local memory all those r × c elements of241

matrix u that are computed by the tasks assigned to it. This would result in242

the assignment of data to processors shown in the left part of Figure 6. But243

in order to execute each assigned task, the processor will have to access the244

upper, lower, left and right boundary elements, which are computed by other245

tasks (shown with different colours for one of the tasks in the same figure).246

Some of these elements are local to processor Pi (left and right boundaries247

in yellow and green colours, respectively) but some others are stored in the248

memory of neighbour processors Pi−1 and Pi+1 (upper and lower boundaries in249

blue and orange colours, respectively). It is important to differentiate between250

true and false data dependencies. True dependences force a task to wait for the251

availability of data, which is what happens for the elements coloured in blue252

(remote access happens once the producing task finishes). False dependencies253

mean that the task has to access the data before the task that owns it starts254

computation (elements coloured orange) because it overwrites the data due to255

reuse.256

13

Tp =	(n ÷ c + p – 1) · ttask + 1 · (ts + n · tw) + (n ÷ c + p – 2) · (ts + c · tw)

computation data sharing
ovh (lower)

data sharing ovh (upper)

Data	sharing:
orange:	lower	boundary
blue:	upper	boundary

time

P0

P1

P2

P3n
÷

r b
lo

ck
s

n ÷ c blocks

P0

P1

P2

P3

Figure 6: Data mapping (left) and execution timeline (right), including data sharing over-

heads, for the mapping of tasks to processors for the Gauss–Seidel relaxation example.

Temporal diagrams, such as the one shown in the right part of Figure 6,257

are very useful at this point to understand where remote accesses should be258

performed (guaranteeing that when a task is ready to be executed all data that is259

needed is available), with the possibility of reducing the number of messages due260

to the effect of ts, which is usually much larger than tw). For example, remote261

accesses involved in the false data dependence could be done as soon as possible,262

at once for all tasks mapped to the same processor, before the parallel execution263

starts, as shown in the timeline and considered in the expression of Tp. Again,264

an analysis of the trade-off introduced by the reduction of the execution time265

when using more processors and the data sharing overheads allows students to266

extract interesting conclusions, having the possibilities of plotting the expression267

for Tp that is obtained and discussing how it changes with the parameters ts268

and tw, or even applying differentiation to see that there exists an optimum task269

granularity. Note that, for reasons of simplicity, at this point the task creation270

and synchronisation overheads are not explicitly considered in this analysis.271

This unit finishes with the formulation of Amdahl’s law, allowing students272

to understand the need for the program to have the highest possible parallel273

fraction to parallelise. The effect of the overheads previously addressed in the274

expression of Amdahl’s law is also considered.275

14

3.5. Methodology and support tools276

This part of the course takes about three theory sessions (two hours each)277

and three laboratory sessions (also two hours each) in which the students access278

a shared-memory architecture (small cluster with nodes of 16 cores). For this279

part of the course we also offer video material and online quizzes that cover the280

fundamental concepts. This material is used by some professors to implement a281

flipped–classroom methodology and offered by other professors simply as study282

material for the students to consolidate the ideas presented in class. Finally a283

collection of exercises is made available, some of which are solved in class in284

order to assess the understanding of these fundamental concepts and metrics.285

In the laboratory sessions, students take simple parallel examples written in286

OpenMP, learning how to compile and execute them. At this point they do not287

need to fully understand how the parallelism is expressed in OpenMP, but they288

are able to easily capture the idea of the pragma-based parallel programming289

approach. How to measure execution time is introduced, allowing students290

to plot scalability as a function of the number of processors, observing how291

easily the behaviour deviates from the ideal case. Students are presented with292

Tareador (described in detail in [2]), a tool specifically developed to explore293

the potential of different task decomposition strategies, visualise the TDG and294

simulate its parallel execution.295

Students are also presented with two tools, Extrae and Paraver, which in-296

strument and visualise the actual parallel execution and visualise some of the297

overheads explained in class. One session is devoted to measuring those over-298

heads, observing that these overheads are non-negligible in comparison to the299

time needed for the processor to execute an arithmetic instruction.300

4. Task Decomposition Strategies301

Once the fundamentals have been understood, students are faced with the302

need to express the tasks that appear in the TDG of a sequential program,303

which we call its task decomposition. In the proposed design, we present the304

15

various task decomposition strategies for shared-memory architectures using the305

OpenMP programming model, in particular, the OpenMP tasking model.306

The unit starts by presenting three strategies for task decomposition: lin-307

ear, iterative and recursive. In linear decompositions, a task is simply a code308

block or procedure invocation. In iterative decompositions, tasks are originated309

from the body of iterative constructs, such as countable or uncountable loops.310

Finally, in recursive decompositions, tasks are originated from recursive pro-311

cedure invocations, for example in divide-and-conquer and branch-and-bound312

problems.313

Three constructs from the OpenMP specification are introduced at this314

point: parallel single, task and taskloop. The parallel single construct315

simply creates a team of threads and its data context to execute tasks. In fact,316

parallel single is the direct concatenation of two constructs in OpenMP:317

parallel, which creates the team of threads, and single, which assigns to one318

of these threads the execution of an implicit task that contains the body of319

the parallel region in which explicit tasks will be created using the two other320

constructs. The single construct could be avoided, resulting in all threads321

executing an instance of the implicit task that corresponds to the body of the322

parallel region, replicating its execution as many times as the number of323

threads that were created. In order to effectively perform work in parallel, the324

programmer will have to use intrinsic functions (to know which thread is execut-325

ing the task instance) to manually decompose the work. This way of expressing326

decompositions will be covered in a different unit, as a way to express the tasks327

bearing in mind an explicit data decomposition strategy.328

The task construct is presented to students as the key component for speci-329

fying an explicit child task, whose execution will be (possibly) delegated to one330

of the threads that are part of the team of threads. Task constructs can be331

nested, allowing a rich set of possibilities to express parallelisation strategies.332

The task pool is the main concept in the OpenMP tasking model, in which ex-333

plicit tasks are created for asynchronous deferred dynamic execution. For this334

reason, it is important to understand how the child task’s data environment is335

16

defined, partially regarding variables whose value is captured when the task is336

created (firstprivate clause), variables that are shared with the parent task337

(shared clause) and per-task private copies of variables (private clause).338

The taskloop construct is presented to handle the specification of explicit339

tasks in loops, which is in fact one of the most important sources of paral-340

lelism. The taskloop construct includes two clauses to manage task granular-341

ity: grainsize (used to define the number of consecutive loop iterations that342

constitute each task generated from the loop) and num tasks (used to define343

the number of tasks to be generated).344

4.1. Linear and iterative task decompositions345

Figure 7 shows the simple vector addition example that is used in this unit346

to illustrate the different linear and iterative task decomposition strategies and347

how to express them using OpenMP constructs and clauses.348

Tasking also allows the expression of iterative decompositions when the num-349

ber of iterations is unknown (uncountable), such as in problems traversing dy-350

namic data structures such as lists and trees. The list traversal in Figure 8 is one351

of the simplest examples, showing the importance of capturing the whole scope352

(basically the list element pointed by p) that needed by the task processing each353

list element when executed in a deferred way (possibly) by another thread.354

The dynamic nature of the tasking execution model does not assume any355

static mapping of chunks of iterations (i.e. tasks) to threads, which may have356

an important effect on data locality. These static mappings are considered later357

in the course when covering data decomposition strategies, making use of the358

so-called work-sharing constructs in OpenMP. We propose to present them once359

students have been presented with the architectural support for data sharing360

and the overheads that memory coherence may introduce when data locality is361

not taken into account.362

4.2. Recursive task decomposition363

Once iterative decomposition strategies are well-understood, students are364

faced with the necessity of expressing parallelism in recursive problems, and in365

17

void main() {
....
#pragma omp parallel
#pragma omp single
vector_add(a, b, c, N);
...

}

void vector_add(int *A, int *B, int *C, int n) {
#pragma omp task private(i) shared(A, B, C)
for (int i=0; i< n/2; i++)

C[i] = A[i] + B[i];
#pragma omp task private(i) shared(A, B, C)
for (int i=n/2; i< n; i++)

C[i] = A[i] + B[i];
}

void vector_add(int *A, int *B, int *C, int n) {
for (int i=0; i< n; i++)

#pragma omp task firstprivate(i) shared(A, B, C)
C[i] = A[i] + B[i];

}

void vector_add(int *A, int *B, int *C, int n) {
#pragma omp taskloop shared(A, B, C) grainsize(BS)
for (int i=0; i< n; i++)

C[i] = A[i] + B[i];
}

(a) Team of threads creation for task execution

(b) Linear task decomposition, task granularity of n/2 iterations

(c) Iterative task decomposition with task, task granularity of 1 iteration

(d) Iterative task decomposition with taskloop, task granularity of BS iterations

Figure 7: Different alternatives in OpenMP to express iterative task decompositions in a

vector addition example.

int main() {
struct node *p;
p = init_list(n);
#pragma omp parallel
#pragma omp single
while (p != NULL) {

#pragma omp task firstprivate(p)
process_work(p);
p = p->next;
}

}

Figure 8: Using OpenMP to express an iterative task decomposition with unknown loop limits.

18

particular the two basic questions: “what should be a task?” and “how can I366

control task granularities?” The first question is simply addressed by analysing a367

recursive implementation of the vector addition example previously commented,368

which is shown in Figure 9. Two possible decomposition strategies are presented:369

1) the leaf strategy, in which a task corresponds to the code that is executed once370

the recursion finishes (in the example, this is each invocation of vector add);371

and 2) the tree strategy, in which a task corresponds to each invocation of the372

recursive function (rec vector add in the example). Figure 10 shows the leaf373

and tree parallel implementations of the code in Figure 9. Figure 11 shows the374

tasks that would be generated in both cases. The main difference between the375

two approaches is that in the leaf approach tasks are sequentially generated by376

the thread that entered the single region; however, in the tree approach tasks377

also become task generators, so that the tasks that execute the work in the base378

case are created in parallel.379

4.3. Controlling task granularities380

Once students have analysed the tasks generated in both cases, they are faced381

with the second question, which is related to the control of task granularity.382

With the simple observation that the task granularity depends on the depth of383

recursion to reach the base case, students can propose different alternatives to384

control the number of tasks generated and/or the granularity, which we call cut-385

off control mechanisms. We usually discuss three different alternatives: stopping386

task generation (a) after a certain number of recursive calls (static control),387

(b) when the size of the vector is too small (static control), or (c) when the388

number of tasks generated or pending to be executed is too large (dynamic389

control). For example, the code in Figure 12 shows how depth-based cut-off390

control could be implemented with the leaf strategy, either using conditional391

statements (top) or using the final and mergeable clauses available on the392

OpenMP task construct (bottom). It is important to differentiate the base393

case from the cut-off mechanism since they have different functionalities.394

Other cases in which recursive task decomposition could be applied include395

19

#define N 1024
#define BASE_SIZE 64
void vector_add(int *A, int *B, int *C, int n) {

for (int i=0; i< n; i++) C[i] = A[i] + B[i];
}

void rec_vector_add(int *A, int *B, int *C, int n) {
if (n>BASE_SIZE) {

int n2 = n / 2;
rec_vector_add(A, B, C, n2);
rec_vector_add(A+n2, B+n2, C+n2, n-n2);

} else
vector_add(A, B, C, n);

}

void main() {
rec_vector_add(a, b, c, N);

}
(a) Sequential code

1024

512

256

128

64

(b) Divide-and-conquer division of the vectors A, B and C originated after recursive

invocations to function rec vector add.

Figure 9: Sequential recursive version for the vector addition example in Figure 7 and the

resulting recursion tree.

branch-and-bound problems, for example the problem of placing n non-attacking396

queens on a chess board or the travelling salesman problem. These together with397

other examples based on divide-and-conquer are left to the student as problems398

to be resolved and discussed in class.399

4.4. Task ordering constraints400

Once the students know the basic mechanisms available in OpenMP to ex-401

press different kinds of task decomposition strategies, together with the mecha-402

nisms to control task granularity, they are faced with the necessity of expressing403

20

void main() {
#pragma omp parallel
#pragma omp single
rec_vector_add(a, b, c, N);

}

void rec_vector_add(int *A, int *B, int *C, int n) {
if (n>BASE_SIZE) {

int n2 = n / 2;
rec_vector_add(A, B, C, n2);
rec_vector_add(A+n2, B+n2, C+n2, n-n2);

} else
#pragma omp task
vector_add(A, B, C, n);

}

void rec_vector_add(int *A, int *B, int *C, int n) {
if (n>BASE_SIZE) {

int n2 = n / 2;
#pragma omp task
rec_vector_add(A, B, C, n2);
#pragma omp task
rec_vector_add(A+n2, B+n2, C+n2, n-n2);

} else
vector_add(A, B, C, n);

}

(a) Main program

(b) Leaf decomposition

(c) Tree decomposition

Figure 10: Leaf and tree recursive task decomposition strategies applied to the vector addition

example in Figure 9.

task ordering and data sharing constraints. Task ordering constraints enforce404

the execution of (groups of) tasks in a required order while data sharing con-405

straints force data accesses to fulfil certain properties (write-after-read, exclu-406

sive, commutative, etc.).407

Task ordering constraints can be due to control dependences (e.g. the cre-408

ation of a task depends on the outcome of one or more previous tasks) or data409

dependences (e.g. the execution of a task cannot start until one or more previ-410

ous tasks have computed some data). These constraints can be easily imposed411

by sequentially composing dependent tasks, by inserting (global) task barrier412

synchronisations, which avoid the creation of tasks until the tasks that introduce413

the control/data dependency finish, or by expressing task dependencies.414

The two different mechanisms available in OpenMP to express task barriers415

21

task task task tasktask task task tasktask task task tasktask task task task

1024

512

256

128

64

n

(a) Leaf decomposition

task

task

task

task

task

task

task

task

1024

512

256

128

64

n

(b) Tree decomposition

Figure 11: Tasks generated for the leaf and tree recursive task decomposition strategies in

Figure 10.

are presented to students: taskwait, which suspends the current task at a416

certain point waiting for all child tasks to finish, and taskgroup, which suspends417

the current task (at the end of the structured block it defines) waiting on the418

completion of all its child tasks and their descendent tasks. Figure 13 shows a419

simple example that is used in class to explain these constructs. In the top-left420

corner we have a simple TDG, showing task durations, and a trace of an ideal421

execution of these tasks. Task barriers enforce dependences by not generating422

tasks that depend on previously generated tasks. This causes extra delays, as423

shown in the top-center and top-right codes and execution timelines that make424

22

#define CUTOFF 3
void rec_vector_add(int *A, int *B, int *C, int n, int depth) {

if (n>MIN_SIZE) {
int n2 = n / 2;
if (depth < CUTOFF) {

#pragma omp task
rec_vector_add(A, B, C, n2, depth+1);
#pragma omp task
rec_vector_add(A+n2, B+n2, C+n2, n-n2, depth+1);

} else {
rec_vector_add(A, B, C, n2, depth+1);
rec_vector_add(A+n2, B+n2, C+n2, n-n2, depth+1);

}
} else vector_add(A, B, C, n);

}

#define CUTOFF 3
void rec_vector_add(int *A, int *B, int *C, int n, int depth) {

if (n>MIN_SIZE) {
int n2 = n / 2;
#pragma omp task final(depth >= CUTOFF) mergeable
rec_vector_add(A, B, C, n2, depth+1);
#pragma omp task final(depth >= CUTOFF) mergeable
rec_vector_add(A+n2, B+n2, C+n2, n-n2, depth+1);

} else vector_add(A, B, C, n);
}

(a) Using conditional statements to control task generation}

(b) Using task clauses to control task generation

Figure 12: Depth-based cut-off control for the tree recursive task decomposition strategy.

use of taskwait. The two solutions at the bottom-left and bottom-center make425

use of task nesting and combined use of taskgroup and taskwait constructs to426

achieve the expected behaviour, using task control mechanisms to express data427

dependencies, but requiring “global thinking” in an unnatural way.428

The bottom-right code and execution timeline in Figure 13 show the use429

of task dependences in OpenMP to express the TDG in a more natural “local430

thinking” way (having in mind only what a task requires in order to be exe-431

cuted and what it produces after being executed, independently of the task that432

produces or uses the data). Task dependences among sibling tasks (i.e. from433

the same parent task) are derived at runtime from the information provided434

through directionality clauses, expressing which of the data used by the task is435

read, written or both.436

Task dependences are derived from the items in the in, out and inout vari-437

able lists. These lists may include array sections. Figure 14 shows another438

example that could be used to get a better understanding of how these direc-439

23

foo1

foo2

foo3

foo4

foo5

5 5

5

12

4

foo1 foo2 foo3

foo4

foo5

#pragma omp task
foo1()
#pragma omp task
foo2()
#pragma omp taskwait
#pragma omp task
foo3()
#pragma omp task
foo4()
#pragma omp taskwait
#pragma omp task
foo5()

foo1

foo2

foo3

foo4

foo5taskwait

taskwait

#pragma omp task
foo1()
#pragma omp task
foo2()
#pragma omp task
foo3()
#pragma omp taskwait
#pragma omp task
foo4()
#pragma omp taskwait
#pragma omp task
foo5()

foo1

foo2

foo3

foo4

foo5

taskwait taskwait

#pragma omp task
{
#pragma omp task
foo1()
#pragma omp task
foo2()
#pragma omp taskwait
#pragma omp task
foo4()
#pragma omp taskwait
}

#pragma omp task
foo3()
#pragma omp taskwait
#pragma omp task
foo5()

foo1

foo2

foo3

foo4

foo5

taskwait taskwait

taskwait

ta
sk

#pragma omp task
foo3()
#pragma omp taskgroup

{
#pragma omp task
foo1()
#pragma omp task
foo2()
}

#pragma omp task
foo4()
#pragma omp taskwait
#pragma omp task
foo5()

foo2

foo1

foo3

foo4

foo5taskgroup
taskwait

#pragma omp task depend(out:a)
foo1()
#pragma omp task depend(out:b)
foo2()
#pragma omp task depend(out:c)
foo3()
#pragma omp task depend(in: a, b)

depend(out:d)
foo4()
#pragma omp task depend(in: c, d)
foo5()

foo1

foo2

foo3

foo4

foo5

Figure 13: Different alternatives to ensure the dependences in a simple TDG using mechanisms

available in OpenMP.

tionality clauses are used. The dependences cause a wavefront execution of the440

tasks, similar to that studied in the previous unit (Figures 4 and 5).441

4.5. Data sharing constraints442

Finally in this unit the student is presented with mechanisms that allow the443

concurrent execution of tasks if exclusive access to certain variables or parts of444

them can be guaranteed. This implies that the execution of tasks is commu-445

tative in terms of their execution order, eliminating task ordering constraints.446

Two basic mechanisms are presented: atomic accesses, which guarantee atom-447

24

#pragma omp parallel private(i, j)
#pragma omp single
{

for (i=1; i<n i++) {
for (j=1; j<n;j++) {

#pragma omp task // firstprivate(i, j) by default
depend(in : block[i-1][j], block[i][j-1])
depend(out: block[i][j])

foo(i,j);
}

}
}

Figure 14: Task dependences example, simplified Gauss–Seidel code.

icity for load/store instruction pairs, and mutual exclusion, which ensures that448

only one task at a time can execute the code within the critical section or access449

certain memory locations. The three specific mechanisms in OpenMP related to450

tasks are presented: atomic (which includes atomic updates, reads and writes),451

critical (with and without a name) and locks, including the intrinsic func-452

tions for acquiring and releasing locks. Understanding the differences among the453

three mechanisms is key, and examples are used to ensure that students achieve454

a good understanding. Code excerpts based on the use of lists, hash tables, etc.,455

are excellent examples to illustrate the differences among these mechanisms.456

4.6. Methodology457

This part of the course typically requires about four theory sessions (two458

hours each) and five laboratory sessions (also two hours each). During the five459

laboratory sessions, students receive two different assignments. Some examples460

for these assignments are:461

• Two-dimensional Mandelbrot Set computation. This is an embarrassingly462

parallel iterative task decomposition in which students can experiment463

with different task granularities, expressed using task and/or taskloop464

with different values for the grainsize. Tasks are totally independent465

unless the result is displayed on the screen while the set is computed, in466

which case mutual exclusion is required to plot on the screen.467

• Sieve of Eratosthenes. The program finds (and counts) all prime numbers468

25

up to a certain given lastNumber and it is well suited for an iterative task469

decomposition, using either task or taskloop to have a better control of470

granularity. In order to improve locality, the computation of the prime471

numbers is done in a range between from and to and then the program472

uses an outer loop that sieves blocks of a certain block size in order to473

cover the full range between 1 and lastNumber.474

• Multisort, using a divide-and-conquer recursive task decomposition strat-475

egy. The divide-and-conquer strategy recursively splits the vector to sort476

into four parts, which are sorted with four independent invocations of477

sort. Once these sort tasks end, two merge tasks follow, each one joining478

the results of two sort tasks. Their results are merged again with a final479

merge call. In this code task, task barriers (taskwait and taskgroup)480

and task dependences are the main ingredients to effectively parallelise481

the sequential code.482

• Sudoku, using branch-and-bound recursive task decomposition. The code483

is useful to show the need of data replication to enable exploratory par-484

allelisation strategies and the need to control task generation based on485

recursion depth or the number of tasks to avoid excessive overheads.486

For each assignment, students first use Tareador to explore possible task de-487

compositions, analyse the resulting dependences between tasks and identify the488

variables that cause dependencies. The students try to understand the reasons489

for the dependencies and decide how to enforce them in OpenMP. Given the490

potential parallelism of the explored task decompositions, students start coding491

different versions using OpenMP. As mentioned in the previous unit, Extrae492

and Paraver are used to visualise and analyse the behaviour and performance493

of their parallelisation strategies. An analysis of overheads and strong scalabil-494

ity concludes each assignment, which also offers some optional parts to further495

explore the possibilities of OpenMP and/or potential parallelisation strategies.496

For this part of the course we also offer video material that covers the basic497

task decomposition strategies and online quizzes to understand how and when498

26

tasks are created and executed. As in the previous unit, this material is used499

by some professors to implement a flipped–classroom methodology and by other500

professors it is simply offered as study material for the students to consolidate501

the ideas presented in class.502

As mentioned before, students have a collection of exercises available, some503

of which are solved in class. These exercises are an important component of the504

course methodology to assess the understanding of different task decomposition505

strategies and how to specify them in OpenMP via the available constructs for506

specifying tasks, guaranteeing task ordering and sharing data.507

5. Architecture support to shared-memory programming508

While students practise the concepts and strategies explained in the previ-509

ous unit in the laboratory sessions, they are exposed to the basics of parallel510

architectures, with a clear focus on understanding the support that different or-511

ganisations provide for two fundamental aspects covered in the previous units:512

how is data shared among processors? and how are processors able to synchro-513

nise? Figure 15 lists the three presented architectures.514

Memory
architecture

Address
space(s) Connection Model for data

sharing Names

(Centralized)
Shared-memory
architecture

Single shared
address space,
uniform access
time

Load/store
instructions from
processors.

Snoopy-based
coherence

• SMP (Symmetric Multi-
Processor) architecture

• UMA (Uniform Memory
Access) architecture

Distributed-
memory
architecture

Single shared
address space,
non-uniform
access time

Load/store
instructions from
processors.

Directory-based
coherence

• DSM (Distributed-Shared
Memory architecture

• NUMA (Non-Uniform
Memory Access)
architecture

Multiple
separate
address spaces

Explicit messages
through network
interface card

• Message-passing
multiprocessor

• Cluster Architecture
• Multicomputer

Processor Processor

Main memory

…

Processor Processor

Main
memory

…

Main
memory

Processor Processor

Main
memory

…

Main
memory

Figure 15: Classification of multiprocessor architectures.

27

5.1. How data is shared between processors?515

Starting from the initial cache hierarchy for single-processor architectures516

that they already know, the students try to evolve the system to accommodate517

more than one processor, with the objective of sharing the access to mem-518

ory. Private vs. shared cache hierarchies easily enter the discussion and the519

cache coherence problem is presented. The two usual solutions (write-update520

vs. write-invalidate coherence protocols) are described and their pros and cons521

are analysed. Snoopy-based coherence mechanisms are presented first, based522

on: 1) the fact that every cache that has a copy of a block from main memory523

keeps its sharing status (status distributed); and 2) the existence of a broadcast524

medium (e.g. a bus) that makes all transactions visible to all caches and defines525

an ordering. The unit then focusses on understanding the basic MSI and MESI526

write-invalidate snooping protocols, with their states and the state transitions527

triggered by CPU events and bus transactions. The students’ curiosity and in-528

terest easily reveal the need for more advanced protocols, such as MOESI and529

MESIF, in order to minimise the intervention of main memory.530

Students are questioned about the scalability of a mechanism based on a531

broadcast medium and are helped to evolve it to a distributed solution in which532

the sharing status of each block in memory is kept in just one location (the533

directory). The need to physically distribute main memory across different534

nodes while keeping cache coherence has a price: non-uniformity in terms of535

access time to memory (NUMA architectures). The structure of the directory is536

presented (the need for a sharers list in addition to the status bits) together with537

a simplified coherence protocol and the coherence commands that are exchanged538

between nodes (local generating the request, owner of the line in main memory539

and remote with clean/dirty copies).540

At this point it is important to go back to a parallel program in OpenMP541

(such as the well known Gauss–Seidel relaxation code) and analyse how the542

memory accesses performed by one of the tasks trigger different coherence ac-543

tions and cause changes in the state of memory/cache lines. Figure 16 shows544

the example that is used to motivate the discussion. The example assumes545

28

that 1) the blocks of the matrix are distributed in the main memories of three546

NUMA nodes (M0−2) by rows and 2) the tasks computing the blocks in each547

node are executed by the processor in that node (P0−2, respectively). Based548

on that, and the dependences that order the execution of tasks, the evolution549

of the lines shown in the figure is analysed based on the coherence commands550

issued from the processors in each NUMA node. Students are asked to think551

about what would happen if tasks were dynamically assigned to processors, as552

actually happens in the OpenMP tasking model, and use this as a motivation553

for the next unit in the subject (data decomposition strategies described in the554

next section).555

cache line

Access pattern:
u[i][j] = f(u[i-1][j], u[i+1][j], u[i][j-1], u[i][j+1])

Dependences:
task11 can only be computed when P0
finishes with task01 and the same processor (P1)
finishes with task10

Questions for student discussion:
Assuming uncached status for all lines at the
beginning of the execution …
1. Which will be the contents of the directory for

lines accessed by task01 , task10 , task12 and
task21 when task11 is ready for execution? In
which caches there exist copies of those lines?
(if cached)

2. And for the lines accessed by task11?
3. Repeat questions 1 and 2 above when P1 is

finishing the execution of task11.

P0, M0

P1, M1

P2, M2

task01

task10 task11

task21

task12

Figure 16: Example based on the Gauss-Seidel computation that is used to understand the

coherence traffic generated.

This is also a good point to see one of the problems that occur in cache-556

based parallel architectures: false sharing in contrast to true sharing, and ways557

to address it when defining shared data structures (e.g. use of padding).558

5.2. How are processors able to synchronise?559

Once students understand the key role of the memory system in provid-560

ing the shared-memory abstraction that OpenMP is based on, they are pre-561

sented with the need for low-level mechanisms to guarantee safety for accesses562

to shared-memory locations (e.g. mutual exclusion and atomicity) or to signal563

29

certain events (e.g. task barriers and dependences). After motivating the im-564

possibility of guaranteeing them at a higher level, the professor introduces the565

first mechanism based on atomic (indivisible) instructions to fetch and update566

memory on top of which other user-level synchronisation operations can be im-567

plemented: test&set (read the value at a location and replace it by the value568

one), atomic exchange (interchange of a value in a register with a value in mem-569

ory) and fetch&op (read the value at a location and replace it with the result of570

a simple arithmetic operation, usually add, increment, subtract or decrement).571

Students are also presented with the other mechanism currently available based572

on Load-linked Store-conditional instruction sequences (ll-sc), working through573

some examples to see how to conditionally re-execute them in order to simulate574

atomicity.575

The basic mechanisms are used to code simple high-level synchronisation576

patterns; after that the discussion goes back to memory coherence, analysing577

how these synchronisation mechanisms increase coherence traffic and the interest578

of using test-test&set or load-ll-sc whenever possible in order to avoid writing579

to memory and invalidating other copies of the synchronisation variable.580

This part finishes with an example in which, apparently, there is no need to581

use any of the synchronisation mechanisms presented before to synchronise the582

execution of tasks. The kind of example is shown on the left side of Figure 17. In583

this code two tasks synchronise their execution through a shared variable next;584

the second task always goes one iteration behind the first task, doing a busy–585

wait while loop to ensure this. This example introduces the discussion about586

memory consistency and the relaxed consistency model used in OpenMP. The587

same code on the right side of Figure 17 solves the problem by using #pragma588

omp flush to explicitly force consistency.589

5.3. Scaling through the distributed-memory paradigm590

Finally students are questioned about the need to actually share memory591

and presented with the third paradigm in Figure 15: multiple separate address592

spaces. However, the simplicity of the distributed-memory paradigm in terms593

30

int next = 0;
#pragma omp parallel
#pragma omp single
{

#pragma omp task
for (int end = 0; end == 0;) {

…
next++;
#pragma omp flush(next)
if (next==N) end=1;

}

#pragma omp task
{

int mynext = 0;
for (int end = 0; end == 0;) {

while (next <= mynext) {
#pragma omp flush(next)
; }

…
mynext++;
if (mynext==N) end=1;

}
}

}

Figure 17: Synchronisation through a shared variable and the use of flush to enforce consis-

tency.

of hardware comes at the cost of programmability. The key point to understand594

here is that since each processor has its own address space, a processor cannot595

access data resident in the memory of other processors and any interaction with596

them has to be done through the network interface card and interconnection597

network. With the knowledge that students have about computer networks the598

message passing paradigm flows very naturally. The basic primitives for data599

exchange are presented, both in the form of point-to-point communication (basic600

send and receive) and in the form of collectives (basic broadcast, scatter, gather601

and reduction).602

5.4. Methodology603

This part of the course takes about three theory sessions (two hours each),604

with no laboratory sessions. We offer to the students video material that covers605

cache coherence for both bus and directory-based shared-memory architectures606

and for distributed-memory architectures together with online quizzes to un-607

derstand the main concepts. As in the previous unit, this material is used by608

some professors to implement a flipped-classroom methodology and simply of-609

fered by other professors as study material for the students to consolidate the610

ideas presented in class. However, the video material used in this unit belong to611

the course High Performance Computer Architecture from Georgia Tech Uni-612

versity by Profs. Milos Prvulovic and Catherine Gamboa, which is available on613

Udacity.614

31

6. Data decomposition strategies615

Once students understand the NUMA aspect of shared-memory architec-616

tures and the lack of data sharing in distributed-memory architectures, they617

are presented with an alternative approach to task decomposition. The new618

approach is based on extracting parallelism from the multiplicity of data (e.g.619

elements in vectors, rows/columns/slices in matrices, elements in a list, subtrees620

in a tree, and so on).621

Data decomposition is first motivated by the excessive level of implicit data622

movement that may be introduced in NUMA architectures by a task decomposi-623

tion that is unaware of how data is accessed by tasks. The dynamic assignment624

of tasks to processors does not favour the data locality that would be required to625

minimise the negative effect of accessing remote data. This is motivated by the626

conclusions drawn from the analysis of the Gauss–Seidel example in Figure 16627

and by the new synthetic example shown in Figure 18, consisting of a sequence628

of loops in which the tasks originate from a taskloop construct that executes629

chunks of consecutive iterations. Observe also the use of the nowait clause to630

avoid the implicit barrier at the end of each for construct: data dependences631

between tasks are internalised within the execution of each implicit task.632

#define n 100
#pragma omp parallel
#pragma omp single
for (iter=0; i<num_iters; iter++) {

#pragma omp taskloop num_tasks(4)
for (int i=0; i<n; i++)

b[i] = foo1(a[i]);
#pragma omp taskwait
#pragma omp taskloop num_tasks(4)
for (int i=0; i<n; i++)

c[i] = foo2(b[i]);
#pragma omp taskwait
#pragma omp taskloop num_tasks(4)
for (int i=0; i<n; i++)

a[i] = foo3(c[i]);
#pragma omp taskwait

}

25..49 50..74 0..24 75..99

25..49 75..99 0..24 50..74

50..74 25..49 75..99 0..24

P0 P1 P2 P3

Vectors a, b and c are distributed across the memories
of the NUMA system, as follows

0..24 25..49 50..74 75..99

M0 M1 M2 M3

Possible assignment of iterations to processors (threads) in
the different loops

Figure 18: Example used to illustrate the implicit data movement when task decomposition

is applied. Tasks are dynamically executed by processors, as shown on the right for a possible

assignment of tasks to processors. This dynamic assignment imply penalties in the access

time to data accessed by the tasks.

32

It should be clear at this point that data locality could be easily improved if633

the programmer takes into account the data that is accessed by each task and634

controls the assignment of tasks to processors. The proposed parallel code in635

the upper part in Figure 19 makes use of the implicit tasks that are generated636

in parallel constructs in OpenMP: one implicit task per thread executing637

the parallel region. As can be seen in the example, each implicit task queries638

the identifier of the thread executing it (call to omp get thread num intrinsic639

function in OpenMP) and the number of threads that participate in the parallel640

region (call to omp get num threads intrinsic function in OpenMP). With this641

information each implicit task decides on a range of iterations to execute, which642

can be the same for all the loops in the sequence in order to improve data locality.643

In this example, in addition, the use of task barriers (taskwait in Figure 18)644

can be avoided because data dependences between tasks are internalised within645

the execution of each implicit task.646

6.1. Loop vs. task-based approaches647

This is a good point to explain the #pragma omp for directive in OpenMP,648

which clearly represents the “traditional” loop-based approach to teach paral-649

lelism in a large body of parallel programming courses. As shown in the lower650

part in Figure 19 the for work-sharing construct and schedule(static [,651

chunk]) clause in OpenMP allow the programmer to statically assign groups652

of consecutive iterations (each group of size chunk) to consecutive threads in653

a round-robin way; if chunk is omitted, then the compiler simply generates as654

many groups of consecutive iterations as threads in the parallel region.655

The doacross model introduced in the most recent OpenMP specification is656

also presented as the mechanism available to define ordering constraints between657

loop iterations. The ordered clause in the for work-sharing construct is used658

to indicate the doacross execution, and the depend clauses in the ordered con-659

struct are used to indicate the source and sink of the dependence relationships660

between iterations, as shown in the two examples in Figure 20.661

33

// Solution based on thread identifiers
#pragma omp parallel

{
whoamI = omp_get_thread_num();
howmany = omp_get_num_threads();
chunk = n / howmany;
lower = whoamI * chunk;
upper = (whoamI == (howmany-1) ?

n : lower+chunk);
for (iter=0; i<num_iters; iter++) {

for (int i=lower; i<upper; i++)
b[i] = foo1(a[i]);

for (int i=lower; i<upper; i++)
c[i] = foo2(b[i]);

for (int i=lower; i<upper; i++)
a[i] = foo3(c[i]);

}
}

// Solution based on for work-sharing
#pragma omp parallel
for (iter=0; i<num_iters; iter++) {

#pragma omp for schedule(static) nowait
for (int i=0; i<n; i++)

b[i] = foo1(a[i]);
#pragma omp for schedule(static) nowait
for (int i=0; i<n; i++)

c[i] = foo2(b[i]);
#pragma omp for schedule(static) nowait
for (int i=0; i<n; i++)

a[i] = foo3(c[i]);
}

0..24 25..49 50..74 75..99

0..24 25..49 50..74 75..99

0..24 25..49 50..74 75..99

P0 P1 P2 P3

Vectors a, b and c are distributed across the memories
of the NUMA system, as follows

0..24 25..49 50..74 75..99

M0 M1 M2 M3

Assignment of iterations to processors (threads) based
on their thread identifier

Figure 19: Continuation of the example in Figure 18 to illustrate the use of implicit tasks in

OpenMP (one implicit task per thread, each implicit task executing the body of the parallel

region) to control the assignment of iterations (in chunks) to processors. The code on the

top makes use of intrinsic functions in OpenMP to determine the identifier of the thread

executing the implicit task and the total number of threads. The code on the bottom makes

use of #pragma omp for to achieve the same assignment of iterations to threads.

6.2. Geometric and recursive data decompositions662

The idea behind data decomposition is 1) to identify the data used and/or663

produced in the computations, which can be output data, input data or both;664

2) logically partition this data across various tasks, with two possible strategies665

considered in this lesson (geometric decomposition and recursive decomposition)666

or consider the necessity of data replication; and 3) obtain a computational667

partitioning that corresponds to the data partitioning, following the owner-668

computes rule. For distributed-memory architectures, one more step will be669

required in order to add the necessary data allocation and movement actions.670

With output data decomposition, the programmer selects data structures671

that are produced by the tasks and decides how to partition them; input data672

34

#pragma omp for ordered(1)
for (i = 1; i < N; i++) {

A[i] = foo (i);
#pragma omp ordered depend(sink: i-1)
B[i] = goo(A[i], B[i-1]);
#pragma omp ordered depend(source)
C[i] = too(B[i]);
}

#pragma omp for ordered(2)
for (i = 1; i < N; i++) {

for (j = 1; j < M; j++) {
A[i][j] = foo(i, j);
#pragma omp ordered depend(source)
B[i][j] = alpha * A[i][j];
#pragma omp ordered depend(sink: i-1,j)

depend(sink: i,j-1)
C[i][j] = 0.2 * (A[i-1][j] + A[i][j-1]);

}
}

Figure 20: Example making use of the doacross loop execution mode in OpenMP.

structures may follow the same decomposition or require replication in order673

to avoid task interactions, or they may incur implicit data movement. With674

input data decomposition, the programmer selects data structures that are read675

by the tasks and decides how to partition them; output data may or may not676

follow the same decomposition, and require combining partial results in order677

to generate the output data structures. Input and output data decomposition678

could be combined. In both cases, the so-called Owner Computes Rule defines679

who is responsible for performing the computations. In the case of output data680

decomposition, the owner-computes rule implies that the output is computed681

by the task to which the output data is assigned; in the case of input data682

decomposition, the owner-computes rule implies that all computations that use683

the input data are performed by the task to which the input is assigned.684

Once the basic idea is captured, students are presented with different basic685

alternatives for logically decomposing the data structures, which are shown in686

Figure 21 for a two-dimensional matrix and Figure 22 for a recursive quad-tree687

data structure, representing for example the particles in an n-body problem.688

The code generation strategies that correspond to these different decompositions689

are discussed in class and/or left as exercises. Recursive data decomposition690

strategies are clearly more difficult to understand and implement, but they691

represent a good opportunity for students to think about possibilities.692

The granularity associated to the tasks generated out of a data decomposi-693

tion strategy is clearly defined by the owner-computes rule, which determines694

the amount of data assigned to each task. For example, the number of consec-695

utive rows in a geometric block decomposition or the size of the subtree in a696

35

P0P0

P1

P2

P3

P0

P0 P1

P2 P3

Figure 21: Simple geometric data decomposition strategies for a 2D matrix: per row in a

block, cyclic or block-cyclic way and per blocks.

recursive one. Different options are discussed to obtain a good load balancing.697

6.3. Task interactions in distributed-memory architectures698

For shared-memory architectures students already know the mechanisms699

that can be used to guarantee task ordering and data sharing constraints;700

the most appropriate ones for implicit tasks are reviewed: barrier, atomic,701

critical and lock primitives.702

The previous unit finished with an overview of distributed-memory archi-703

tectures and the mechanisms available to move and exchange data among pro-704

cessors that have disjoint address spaces, i.e. when a processor cannot directly705

access data stored in the memory of another processor. Now is the time to show706

students how these mechanisms could be used to ensure that the data needed to707

perform the computation is available, without entering into much detail since708

this is a topic to be studied in detail (using MPI) in the PAP subject later709

in the Computer Engineering specialisation. A simple matrix multiplication710

36

Particles

P0 P1 P2 P3

Quad tree

Figure 22: Recursive data decomposition strategy for a quad-tree representing the particles

in an n-body problem.

code is used to glue the ideas and see how the different communication mecha-711

nisms can be used to broadcast and reduce data, scatter and gather data, or to712

exchange data point-to-point.713

6.4. Methodology714

This part of the course takes about three theory sessions (two hours each)715

and three laboratory sessions (also two hours each). During these three labora-716

tory sessions, the students receive a single assignment to understand the benefits717

of using a data decomposition.718

One of the possible assignments for this unit is the computation of the well-719

known heat equation. Two different solvers are used: Jacobi and Gauss–Seidel,720

which students already know because they have been used in theory classes.721

The program solving the heat equation makes use of a two-dimensional data722

structure iteratively traversed using loop nests. Although Jacobi results in an723

embarrassingly parallel task decomposition, it is important to guarantee data724

locality for the matrices that are accessed. The Jacobi solver is invoked it-725

eratively in a sequential time-step loop, returning at each iteration a residual726

value that is used to determine convergence and the termination of the itera-727

tive loop. The iterative loop also finishes if convergence is not reached after a728

37

certain number of iterations. Ensuring that the processors always work with729

the same blocks of data is necessary to improve locality and reach a good scal-730

ability. For the Gauss–Seidel solver, the same idea applies, but in this case731

the task decomposition has dependences among tasks, as already commented.732

The use of dependences between tasks allows students to express these data733

dependence constraints albeit at the cost of worse data locality. The use of the734

doacross model for the OpenMP for work-sharing construct is recommended735

at this point as the way to enforce the dependences and ensure data locality.736

7. Final remarks737

This paper presented the design of a compulsory parallel programming course738

(Parallelism – PAR) for undergraduate students, using the tasking execution739

model as the backbone for presenting the main concepts and models. The task-740

ing model is identified as more appropriate for this introductory parallel process-741

ing course instead of the usual loop-based approach used by many courses that742

teach parallel processing and OpenMP programming. In this section we show743

how the proposed design covers the main topics contained in the Curriculum744

Initiative on Parallel and Distributed Computing - Core Topics for Undergrad-745

uates [7]. Table 7 shows the organisation of those main topics on Parallel and746

Distributed Computing throughout the four main units in PAR.747

Architecture topics are explained throughout the course and cover levels of748

parallelism on single cores, multicores and SMP architectures, memory coher-749

ence and writing-policy protocols, true/false sharing concepts, memory consis-750

tency, synchronisation support, and performance metrics. Floating point rep-751

resentation and precision issues are not studied in this course, since they have752

already been presented in previous basic computer organisation courses.753

Programming topics correspond to concepts and practices related to perfor-754

mance, correctness and semantics, and paradigms and notations. Regarding755

correctness and semantics, the main concurrency issues are presented in the in-756

troductory unit for the course, warning students about the potential problems757

38

that may appear in concurrent and parallel programs. Performance metrics,758

including speed-up, Amdahl’s law and efficiency, among others, are presented759

to students in the Fundamentals unit: performance issues due to task granular-760

ities, synchronisation overheads and load balance are well covered in the unit,761

but also kept in mind during the rest of the course. Once the students have as-762

similated the above concepts, the main paradigms and notations are presented.763

OpenMP, the standard shared-memory programming model, is used throughout764

the course, both in theory sessions as well as in laboratory assignments. MPI is765

briefly presented as the de facto standard for distributed-memory programming766

in the Data Decomposition unit. SIMD instructions for data level parallelism767

are not covered in depth in this course.768

Algorithm Topics such as parallel and distributed models and complexity769

are important concepts that are covered in this course. The directed task de-770

pendency graph (TDG) is presented to students as a mechanism to model the771

potential parallelism of a parallel strategy, based on the abstraction of infinite772

resources for computation and communication. Afterwards, divide-and-conquer,773

linear and iterative implementation strategies are analysed in the Task Decom-774

position unit, where students begin to enjoy parallel programming. Different775

explicit communications, as point-to-point and collective communications, are776

presented in the Data Decomposition unit using a simple example: an MPI777

implementation of matrix multiplication.778

Cross-cutting and Advanced Topics are covered along the whole course. In779

particular, we focus on data locality exploitation in some programming practices780

by measuring the impact of memory access, and by doing exercises focussed781

on concurrency issues and performance modelling to achieve correctness and782

efficiency.783

39

Table 7 also shows the main examples and practices used in the aforemen-784

tioned topics. Practices are developed in a cluster of shared-memory nodes785

with 16 cores (two sockets) per node, with the support of different parallel pro-786

gramming tools mentioned in the paper: Tareador for the exploration of task787

decomposition strategies, Extrae for the instrumentation of parallel programs788

and Paraver to visualise the behaviour of the parallel execution and understand789

performance bottlenecks and inefficiencies.790

Finally, although the scope of this paper is the description of a compulsory791

parallel programming course in the bachelor degree in Informatics Engineering,792

we include in this final section a brief analysis of the evolution of the subject793

for six academic years, considering: the percentage of students that pass the794

subject, their level of satisfaction and the average grade obtained by the stu-795

dents. We observed that the new methodology and course organisation have796

contributed to improving the percentage of students that pass the course, being797

currently over 80% with an average grade over 6.5 (out of 10). Results prior to798

using the proposed course organisation showed average grades around 5.5 and799

a percentage around 70% of students that pass the course, revealing a clear im-800

provement in the student learning process. We also consider these results to be801

very successful for a fifth-term mandatory course that includes all the bachelor802

students of the degree (more than 150 per semester). The satisfaction of the803

students expressed in the quality survey is superior to the rest of mandatory804

subjects in the same term, and in general the comments received from the stu-805

dents are very positive. The video lessons and quizzes made available through806

a moodle platform for flipped-classroom and/or self-study is also considered by807

the students to be a great addition to the classical written material (slides,808

problems and laboratory assignments).809

Acknowledgments810

This work has been supported by the grant SEV-2015-0493 of the Severo811

Ochoa Program, awarded by the Spanish Government, by the Spanish Ministry812

of Science and Innovation (contract TIN2015-65316-P) and by Generalitat de813

40

Catalunya (contracts 2014-MOOC-00057 and 2014-SGR-1051). We also thank814

the anonymous reviewers and editor for their comments during the review pro-815

cess, other professors that have been involved in the implementation of the816

PAR course and Paul Carpenter at BSC for his corrections and suggestions to817

improve the text.818

References819

[1] OpenMP application program interface: version 4.5. OpenMP Specification820

[online] (2015). http://www.openmp.org/.821

[2] E. Ayguadé, R. M. Badia, D. Jiménez, J. R. Herrero, J. Labarta, V. Subotic,822

G. Utrera, Tareador: A tool to unveil parallelization strategies at under-823

graduate level, in: Proceedings of the Workshop on Computer Architecture824

Education, WCAE ’15, 2015, pp. 1:1–1:8. doi:10.1145/2795122.2795123.825

[3] Barcelona Supercomputing Center. BSC Performance Tools [online].826

https://www.bsc.es/computer-sciences/performance-tools.827

[4] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming,828

1st Edition, Addison-Wesley Professional, 2004.829

[5] V. Kumar, Introduction to Parallel Computing, 2nd Edition, Addison-830

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.831

[6] J. L. Hennessy, D. A. Patterson, Computer Architecture, Fifth Edition: A832

Quantitative Approach, 5th Edition, Morgan Kaufmann Publishers Inc., San833

Francisco, CA, USA, 2011.834

[7] S. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja,835

K. Kant, A. La Salle, R. Le Blanc, A. Lumsdaine, D. Padua, M. Parashar,836

V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni, B. Shirazi, A. Sussman,837

C. Weems, J. Wu. Nsf/ieee-tcpp curriculum initiative on parallel and dis-838

tributed computing - core topics for undergraduates, version I [online] (2012).839

http://www.cs.gsu.edu/ tcpp/curriculum/.840

41

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1145/2795122.2795123
http://www.cs.gsu.edu/~tcpp/curriculum/
http://www.cs.gsu.edu/~tcpp/curriculum/
http://www.cs.gsu.edu/~tcpp/curriculum/

Unit

Parallel and Distributed Computing Topics

Codes

Architecture Topics Programming Topics Algorithm Topics

Crosscutting

and Advanced

Topics

Fundamentals Performance Metrics

Paradigms and Notations Parallel/Distributed

models and

computing

Locality,

Concurrency

and

Performance

Modeling

Jacobi and

Gauss-Seidel

Relaxation

Performance Metrics and Issues

Correctness and semantics

Task

Decomposition

Performance Metric

Usage

Paradigms and Notations

for Shared Memory,

Correctness and

Semantics

Algorithm

Paradigms

Mandelbrot Set,

Eratosthenes

Sieve,

Multisort,

Sudoku

Parallel

Architectures

Architecture Classes,

Memory Hierarchy,

Performance Metrics

Performance Issues

Exercises and

Overhead

Measurements

Data

Decomposition

Memory Hierarchy,

Performance Metric

Usage

Paradigms and Notations,

Distributed Memory,

Performance issues

Algorithm Problem

Jacobi and

Gauss-Seidel

Relaxation

Table 2: Coverage in PAR of the Core Topics in the Curriculum on Parallel and Distributed Computing.

42

	Introduction
	Course description and context
	Learning objectives and student learning outcomes
	Complementary courses
	Course outline

	The fundamentals
	Task granularity vs. task creation overhead
	Task ordering constraints and synchronisation overhead
	Mapping tasks to processors
	Data sharing overhead
	Methodology and support tools

	Task Decomposition Strategies
	Linear and iterative task decompositions
	Recursive task decomposition
	Controlling task granularities
	Task ordering constraints
	Data sharing constraints
	Methodology

	Architecture support to shared-memory programming
	How data is shared between processors?
	How are processors able to synchronise?
	Scaling through the distributed-memory paradigm
	Methodology

	Data decomposition strategies
	Loop vs. task-based approaches
	Geometric and recursive data decompositions
	Task interactions in distributed-memory architectures
	Methodology

	Final remarks

