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• We propose energy-efficiency strategies for task scheduling and hibernating VMs.
• We combine energy and time-based criteria in order to sleep idle resources.
• We take into account several security constraints in our model.
• The effectiveness of the proposed model has been confirmed by simulation experiments.

Keywords:
Cloud computing
Energy efficiency
Independent task scheduling
Genetic algorithms
VM hibernating
Cloud security

a b s t r a c t

Cloud computing (CC) systems are the most popular computational environments for providing elastic
and scalable services on a massive scale. The nature of such systems often results in energy-related
problems that have to be solved for sustainability, cost reduction, and environment protection.

In this paperwe defined and developed a set of performance and energy-aware strategies for resource
allocation, task scheduling, and for the hibernation of virtual machines. The idea behind this model is to
combine energy and performance-aware scheduling policies in order to hibernate those virtual machines
that operate in idle state. The efficiency achieved by applying the proposed models has been tested using
a realistic large-scale CC system simulator. Obtained results show that a balance between low energy
consumption and short makespan can be achieved.

Several security constraints may be considered in this model. Each security constraint is characterized
by: (a) Security Demands (SD) of tasks; and (b) Trust Levels (TL) provided by virtual machines. SD and TL
are computed during the scheduling process in order to provide proper security services.

Experimental results show that the proposed solution reduces up to 45% of the energy consumption
of the CC system. Such significant improvement was achieved by the combination of an energy-aware
scheduler with energy-efficiency policies focused on the hibernation of VMs.

1. Introduction

Virtualization of resources and Containerization Platforms, such 
as Docker, have improved the resource efficiency in Cloud Com-
puting (CC) environments. These strategies allow the execution of 
several heterogeneous services, such as MapReduce frameworks, 
web servers, databases, and multi-purpose virtual machines on 
the same physical resources. Although both performance and en-
ergy efficiency in CC environments depend mainly on hardware

features, proper scheduling policies may significantly shorten task
completion time, which can lead to the reduction of the energy
consumption in CC environments [29,33].

CC systems should ensure the appropriate security level for
every task deployed on the system [37], and must provide tools
for CC operators to develop security frameworks that suit their use
cases [38].

In this paper, we defined various energy-efficient optimiza-
tion strategies for multi-purpose central, monolithic schedulers in
CC systems. The energy efficiency is achieved through dedicated
policies that hibernate virtual machines that run in an idle state.
Moreover, we present a new model for the calculation of the
energy consumption of security operations. Based on this model,
CC operators are able to select one of the possible security levels.
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This information enables users to set longer or shorter keys for
cryptographic procedures. Such key-scaling related services are
available in Amazon Cloud, RackSpace, OpenStack, and Google
Clouds [1,3–5].

The presented model may be used in any High-Performance
Computing system that requires the assignation of tasks to com-
puting units. The computing units used in this work, thus, virtual
machines, are characterized by their computing capacity. This
model could be adapted to work with any type of computing unit
characterized by its computational power, such as those used in
edge computing networks, grid computing systems, systems based
on micro-containers, and small data centers.

The paper is organized as follows. In Section 2, we present the
state of the art in measurement of energy for virtualized environ-
ments and optimization of energy consumption in CC. In Section 3,
we present various approaches and methods: (a) a methodology
for estimation of power consumption of virtual machines in CC;
(b) a Batch Scheduling problem in CC with security criteria; (c)
computation of the total energy consumed by a given task in a
schedule; (d) a multi-objective scheduling problem with energy
consumption and security; and (e) energy-efficiency policies based
on hibernating virtualmachines are presented. In Section 4, the ex-
perimental environment and scenarios,where the twomore repre-
sentative energy-efficiency strategies have been implemented, are
described.Weevaluate ourmodels through extensive realistic sim-
ulation. Achieved results are presented and analyzed in Section 5.
Finally, the paper is summarized in Section 6.

2. Related work and progress beyond the state-of-the-art

Several strategies have been developed over last years for the
estimation of energy consumption of virtual machines in Cloud
Computing systems. The power requirements of physical servers
in a cluster can be measured by the means of established proce-
dures [35,46,47] focused onmeasuring the utilization ofmicropro-
cessors. The measurement process is more complex when virtual
machines are considered [16,53].

The VM energy consumption may be computed in terms of the
CPU, memory, and IO utilization, as proposed by Li, et al. in [54].

In [13], the virtualmachine energy consumptionwas computed
according to hardware performance results collected from various
components, mainly the CPU-related ones. Thememory utilization
is considered in the approach proposed by Krishnan in [53]. The
energy consumption of both network interface cards and hard
drives was also taken into account in the model presented by
Wassmann et al. in [68].

In addition, a linear model based on nine independent param-
eters was proposed by Bertran et al. in [12] in order to measure
virtual machines energy consumption. These parameters were,
among others, the first level cache activity and the number of
accesses to the first level cache per cycle.

On the other hand, a Gaussian Stochastic Mixture model was
proposed in [18] by Dhiman in opposition to the aforementioned
linear mathematical models with independent parameters. How-
ever, none of the proposed strategies are sufficient to deal with
realistic cloud virtual resource allocation and scheduling prob-
lems [59].

Various tools aiming to compute VM power consumption have
been proposed in an isolated way from cloud platforms. These
algorithms, such as FitGreen [20], Julemeter [44], and the algo-
rithm proposed by Murwantara [57], need special configurations
to access the hardware layer. Hence, they can only be deployed as
an external framework at the cloud provider or Infrastructure as a
Service level.

As the importance of CC rises, the energy efficiency of these in-
frastructures becomes more and more important. These facilities,

which consume as much energy as many factories, are responsible
for approximately 1.5% of global energy consumption [52].

The strategies developed for optimization of energy consump-
tion in CC may be classified into three major categories:

• Cooling strategies. The goal of these strategies is the re-
duction of the energy consumption of chillers, which rep-
resents an important part of the total energy used by a
data center. A dynamic thermal management system at the
data center level was proposed by Sharma et al. [65]. Rising
the data center operating temperature was proposed by El-
Sayed et al. [21], whereas Gao et al. extensively evaluated
the risks related to this approach [28]. On the other hand,
Zimmerman et al. proposed the reutilization of the wasted
heat in order to propose a hot water-cooled data center
prototype [70]. A multi-stage outdoor air-enabled cooling
system composed of a water-side economizer, an air-side
economizer, and mechanical cooling was proposed by Kim
et al. [50].

• Hardware-related strategies. Many hardware-based mod-
els have been proposed in order to achieve high energy-
conservation levels. Dynamic Voltage Frequency Scaling
(DVFS) model is one of the most popular approaches.
Miyoshi et al. evaluated benefits of using CPU DVFS [56],
while David et al. applied this technique to memory com-
ponents [17]. The replacement of mechanical components,
such as HDDs, with non-mechanical devices, such as SSDs,
was proposed by Andersen et al. [8]. Regarding the power
supply, a dynamic and non-uniform global power-allocation
model among nodes was proposed by Femal et al. [23].

• VM consolidation and migration. Several strategies have
been developed in order to schedule VMs and redistribute
them to reduce the energy consumption. Beloglazov et al.
[10] propose a resourcemanagement system focused on the
minimization of the energy consumption by the utilization
of VM allocation and migration policies. This work is ex-
tended by the proposal of several heuristics for dynamic
consolidation of VMs in [11].

While many of these strategies have been adopted by com-
panies, such as Google, Microsoft, and Amazon, there is another
area of research that has been barely implemented on CC systems:
the achievement of power-proportional systems by turning off
idle resources. The idea is that the energy consumption of CC
systems should be proportional to workload requirements, which
are hardly ever stable.

There are some reasons that prevent the shut-down of ma-
chines that run in an idle state, including: the fear of any change
that could break operational requirements [25], the complexity
and heterogeneity of all the subsystems involved, and the fast
development of new systems and paradigms that could break
the established standards and systems. However, keeping servers
underutilized or in an idle state is highly inefficient fromanenergy-
efficiency perspective.

Much effort has been made by the research community in
order to hibernate underutilized resources. A power-proportional
distributed file based on the partition of data centers according
to redundant data replicas was proposed by Amur et al. [7]. In
such systems, servers that store redundant replicas of data may be
switched off. On the other hand, Kaushik and al. proposed in [48]
a variant of Hadoop Distributed File System that partitions data
centers into zones according to the data usage, which enables
servers that store low-used data to be shut down.

Other approaches have been proposed for small mobile sys-
tems, such as Virtual Backbone Scheduling [69], and multi-flow
multicast transmission [66]. These strategies are well-known in



wireless networks and sensor networks [22] environments. How-
ever, the described approaches are not easily applicable to CC
systems, since the shut-down of CC servers is more complex and
expensive than in the aforementioned mobile systems.

The novelty of the research presented in this paper is the
combination of the following two different approaches for the
improvement of energy efficiency into one model: (a) an energy-
aware scheduler that assigns tasks to VMs according to security
demands; and (b) a set of energy-efficiency policies that hibernate
underutilized resources, based on the energy policies presented
in [26,27] for Grid Computing systems. These energy-efficiency
policies have been evolved in order to be applied to CC systems.

Major contributions of this paper include:

1. The proposal of a task service model combining a security-
aware task schedulerwith a set of energy-efficiency policies.

2. The implementation and testing of the proposed model by
using a realistic CC simulator.

3. The analysis of the impact of the proposed algorithms on the
task processing flow and the energy consumption of the CC
system.

Moreover, we developed a theoretical model for the schedule of
tasks according to the energy consumption of the security opera-
tions related to tasks.

3. Approaches for energy saving and security issues in CC envi-
ronments

3.1. VM power consumption

The construction of a model for the energy consumption of
virtual machines in CC systems is not straightforward. It depends
on several elements and processes, including the virtualization
process. However, the power consumption of various components,
such as microprocessors, memory, devices, hard drives, and net-
worksmay bemeasured by themeans of frameworks likeWatts UP
PRO Power, and APIs like Amazon Cloud CloudWatch metrics [2].

Moreover, models of energy consumption for virtual machines
may be defined as an extension of those applied to physical servers,
as long as the virtual machines features are taken into considera-
tion.

Let PStatic denote the power a server required to run all the tasks
that a VM needs to be ready for work. PVirtual denotes the dynamic
power used by VMs hosted by that machine. The overall server
power consumption may be described as follows [40]:

PPhys = PStatic +

∑
i=1,...,m

P(VMi) = PStatic + PVirtual, (1)

where P(VMi) denotes the energy consumed by the ith virtual
machine and m is the number of available VMs. This value is
estimated by themeans of several approaches. The non-observable
parameter P(VMi) is derived from the observable parameter PPhys.

These methods are mathematical models that consider the
power-related resources as independent parameters. Several sam-
ples of PPhys are typically collected to estimate the P(VMi) parame-
ter. This data can be collected by following a black-box approach,
i.e. by using a virtual machine hypervisor. On the other hand, a
proxy may be deployed in each VM if a white-box strategy is to
be used to collect this data [34].

In this work we follow the approach presented in [13]. This
means that the energy consumption of virtual machines is based
on VM states (working, idle, or hibernated).

Fig. 1. Single-path scheduling workflow, B - Batch type task, S - Service type task,
M - Virtual Machine.

3.2. Monolithic scheduling with a central scheduler

Conceptually, a monolithic scheduler is an omniscient unit
responsible for all scheduling decisions, for the allocation all re-
sources, and for maintaining the task deployment process. In this
model all workloads are governed by the same scheduler and
all tasks are processed by the same scheduling logic [64]. The
scheduling algorithm applies a set of heuristics according to tasks
requirements, then deploys the tasks on the chosen resources
and updates the system state, as illustrated in Fig. 1. Monolithic
schedulers usually implement complex scheduling algorithms in
order to fulfill various workload types. In this work we consider
two types of tasks:

• Batch tasks: This type of workload is composed of several
independent tasks that can be processed in parallel. Tasks
arrive at the system at the same time. Execution of a batch
is completedwhen all of the tasks are finished. After that the
whole batchmay be processed by another service, stored, or
send back to the end user. MapReduce jobs are an example
of batch tasks.

• Service tasks: This type of workload is composed of long-
running tasks. As opposed to the batch tasks, these tasks
have no determined end, but are submitted by an operator
(or an automated equivalent) and are killed when they are
no longer required. Web server instances or service in-
stances, such as BigTable [15], are good examples of service
tasks.

In addition to the classical scheduling-related challenges, like
minimizing the time a task waits in a queue, satisfying task
constraints, respecting priorities, fulfilling end-user SLAs, etc.,
the ever-growing use of the Cloud Computing paradigm and
large-scale web services add several new challenges, such as:
(a) scalability; (b) flexibility; (c) scheduling algorithms complex-
ity; and (d) environment fragmentation. These challenges have
been addressed by developing new distributed approaches and the
scheduling process, such as: (a) shared state scheduling frame-
works (e.g. Google Omega [64]); (b) two-level scheduling frame-
works (e.g. Mesos [36]); (c) distributed scheduling frameworks
(e.g. Sparrow [58]); and (d) hybrid scheduling frameworks (e.g.
Mercury [45]).
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Fig. 2. Multi-path scheduling workflow.

However, for most usual scenarios, such as those present in
low and mid-size CC infrastructures up to approximately 10,000
machines, monolithic scheduling frameworks, such as Google Borg
[14], are still the best and simplest option.

Two monolithic scheduling approaches are taken into consid-
eration in this paper:

• Single-path: This scheduling strategy uses a single schedul-
ing path for every task in the workload, as shown in Fig. 1.

• Multi-path: This scheduling strategy uses several schedul-
ing paths by taking advantage of internal parallelism and
multi-threading to solve head-of-line blocking and scala-
bility issues, among others. In this work, the multi-path
scheduling process represents a system composed of two
scheduler paths. The first scheduler path performs the
scheduling logic related to batch tasks, whereas the second
one is responsible for the scheduling logic related to ser-
vice tasks. In this approach, any given service task would
only need to wait in queue until all previous service tasks
are scheduled, since they are independently scheduled, as
shown in Fig. 2.

3.2.1. Batch task scheduling considering security demands
In this work, we consider the problem of Independent Batch

Scheduling in large Cloud Computing systems. Fig. 3 shows the
workflow of the simulated environment, which is composed of the
following processes: (a) generation and collection of tasks; (b) task
scheduling; (c) task execution; (d) results storage; (e) communi-
cation with end-users; and (f) management of the security issues
related to all the aforementioned processes.

However, a single batchmay contain tasks that require different
security levels: e.g. the process of an open-access free stock and
the process of clinical images of a hospital. The security demands
of tasks were introduced in order to meet these security-related
requirements [31,32,42]. The scheduler computes these security
demands by implementing a security demand vector that repre-
sents the security requirements of the tasks:

SD = [sd1, . . . , sdn], (2)

where sdj is specified by the jth task in the batch. On the other hand,
different computing units may offer different security services and

levels. Amazon Cloud offers high security standards, whereas a
private Cloud with an older version of software may offer a lower
security level. To reflect this situation, the following trust level
vector is introduced:

TL = [tl1, . . . , tlm]. (3)

It represents the security capacities of all VMs in the system. All
the parameters assume values in the range [0,1], where 0 means
the lowest security level for a task and the least trusted VM. A
particular task will be scheduled to a VM which offers a security
level greater or equal than that demanded by the task.

In order to achieve an effective and efficient scheduling process,
the previously developed Non-Deterministic Central Scheduler
based on a Genetic Algorithm [30,41,42] has been chosen as the
main scheduling policy for the monolithic scheduler. In addition
to the aforementioned makespan-focused Genetic Algorithm, a
new criterion that takes the energy consumption of every task
into account is considered in this paper. The developed scheduling
policy relies on an Expected Time to Compute (ETC) matrix [51],
adapted to virtualmachines (ETCV ). The ETCV matrix can be defined
as follows [39]:

ETCV = [ETCV [j][i]]j=1,...,n;i=1,...,m (4)

where

ETCV [j][i] = wlj/cci, (5)

where cci denotes the computational capacity of the ith virtual
machine and wlj is the workload of the jth task; n andm represent
the number of tasks and number of virtual machines, respectively.

Security demands involve additional security operations that
must be performed before or after task execution. The possible
security operations in the CC system are denoted by a padlock icon
in Fig. 3. Security issues may require additional computing time.
For this reason, we used an extended version of the ETCV matrix
— SBETC (Security Biased Expected Time to Compute) matrix. This
matrix takes the additional security bias (SB) parameter b into
consideration in order to represent the time spent for security
operations [42]:

b(sdj, wlj, tli, cci). (6)

All the biases give the matrix representation:

SB[j][i](SD, TL) = [b(sdj, wlj, tli, cci)], (7)

where SD and TL denote the security demand vector (see Eq. (2)),
and the trust level vector (see Eq. (3)) for the VMs in the system,
respectively.

The ETCV matrix can be evolved to the Security Biased Expected
Time to Compute (SBETC) matrix when the security biases are
considered:

SBETC[j][i](SD, TL) = wlj/cci + b(sdj, wlj, tli, cci) (8)

SBETC(SD, TL) = SB(SD, TL) + ETCV . (9)

The main goal of the scheduling and allocation processes is to
find an optimal solution for the specified criteria. Among all batch
workload scheduling process factors, the makespan is considered
the main objective. It can be described as follows:

Cmax = min
S∈Schedules

{
max
j∈Tasks

Cj

}
, (10)

where Cj is the jth task completion time. Tasks is the set of tasks in
the batch of task, while Schedules represents the set of all possible
schedules that may be generated for the tasks of that batch of task,
as illustrated in Fig. 4.



Fig. 3. Cloud computing system workflow, Security Ops — additional security operations and procedures.

Fig. 4. Makespan measuring workflow.

3.3. Genetic algorithm

The scheduling of tasks in cloud-computing data centers con-
stitutes an NP-complete problem [67], whose complexity depends
on the features considered [51], such as: (a) the number scheduling
of criteria to be optimized (one vs. multi-criteria); (b) nature of
the environment (static vs. dynamic); (c) nature of tasks (Batch
or Service); and (d) dependency between tasks (independent vs.
dependent).

In this work, we use a heuristic algorithm that takes into
account the aforementioned requirements in order to solve the
NP-complete problem. This scheduling algorithm is based on a
genetic algorithm with dedicated population representation
[30,39], which can be characterized as follows: (a) a single gene
represents one task, which is unique within the population;
(b) each chromosome is composed by a set of tasks (genes);
(c) each individual is composed of one chromosome and represents
a scheduling assignation for a single computing node; (d) the
population is composed ofm individuals and represents a schedule
for all n tasks; (e) the fitness function depends on the optimization

objectives presented in Section 3.5. All individuals take part in the
reproduction process. Individuals presenting the lowest value for
the fitness function (best adapted) are crossedwithworst-adapted
individuals (those that show the highest values for the fitness
function). Crossing involves exchanging genes between chromo-
somes. The population obtained in the evolution process defines
the suboptimal schedule.

3.4. Energy calculation

Two different power states are considered for each virtual ma-
chine in the CC: busy (100% core computational power is used for
task computing) and idle state. Let: t iidle denote the time the ithma-
chine spends in an idle state; t ibusy — the time the machine spends
in computing tasks-related operations; P i

idle — the required power
for a machine to run in idle state; and P i

busy — the power required
by a machine to perform actual computing operations. The power
required to perform security-related activities is assumed to be the
same as in busy mode.

The aforementioned parameters may vary in each schedule and
can be defined as follows [42]:

t ibusy = max
j∈Tasksi

Cj (11)

t iidle = Cmax − t ibusy (12)

t isec =

∑
j∈Tasksi

bij (13)

where Tasksi represents the tasks assigned to VMi and t isec denotes
the time devoted to processing only the security-related opera-
tions.

The total energy consumption can be denoted as follows:

Etotal =

m∑
i=1

∫ Cmax

0
PowVMi (t)dt =

m∑
i=1

(P i
idle ∗ t iidle + P i

busy ∗ (t ibusy + t isec)). (14)

The presented energetic model is designed for the assignation
of tasks to virtual machines. However, thismodel could be adapted



to work with other scheduling technologies, such as that based
on the assignation of tasks in the form of Linux micro-containers
to computing nodes. These micro-containers run only for the task
execution time. The energetic model could also be extended in
order to consider specific hardware configurations.

3.5. Energy-aware scheduling objectives

The determination of the solution thatminimizes themakespan
of a given schedule that assumes a constant computing powermay
be defined as follows:

argmin
s∈Schedules

∑
i=1,...,m
j=1,...,n

(
wlj
cci

+ bi)δi,j(s) (15)

where δi,j(s) equals one when the schedule s assigns the jth task to
the ith VM. Otherwise, δi,j(s) equals zero.

Moreover, the determination of the solution thatminimizes the
total energy consumption of a given schedule can be written as:

argmin
s∈Schedules

∑
i=1,...,m

(
n∑

j=1
δi,j(s)=1

P i
busy(

wlj
cci

+ bi) +

n∑
j=1,

δi,j(s)=0

P i
idlet

i
idle) (16)

with the following constraints (see Eqs. (2) and (3)):

sdj ≤ tli. (17)

Various energy-saving approaches may be tested by modifying
the trust level of any given machine thanks to the SBETC matrix.
Moreover, numerous complex and realistic scenarios may be sim-
ulated in order to check whether these strategies can be used in
real-life Cloud Computing systems.

In this work, we proposed the following four energy-aware and
time-aware scheduling policies based on Eqs. (15) and (16):

1. Makespan-centric scheduling.Whenever two given sched-
ules achieve the same (or close) makespan, the less energy-
consuming schedule is selected. This approach is desirable
when the makespan is the main scheduling objective and
the importance of the reduction of energy consumption is
low.

2. Energy-centric scheduling. Whenever two given schedules
present approximately the same energy consumption, the
schedule with the shorter makespan is selected. This ap-
proach is suitable when the energy efficiency is the main
objective and the execution time is not critical.

3. Makespan-centric scheduling until a given makespan
threshold. In this policy, the minimization of the makespan
is the main goal. Once a makespan threshold is achieved,
then the minimization of the energy consumption becomes
the main objective.

4. Energy-centric scheduling until a given energy-
consumption threshold. In this policy, the minimization of
the energy consumption is the main goal. Once a energy-
consumption threshold is achieved, then the minimization
of the makespan becomes the main objective.

3.6. Energy policies based on the hibernation of virtual machines

The volume of work that must be executed at any given time
by a CC system may significantly change, especially with peak
loads largely exceeding mean loads. The proper execution of this
ever-changing workload while achieving energy-proportionality
represents a major challenge. CC operators may choose between
the following strategies in order to face the challenge: (a) the over-
provision of the data-center to satisfy worst-case scenarios; and

(b) the adjustment of the available resources according to the
present and future workload demands.

The first of these two approaches represents themain trend im-
plemented in the vast majority of large Cloud Computing systems.
However, this strategy requires a high amount of energy to keep
servers in an idle state during long periods of time, while they wait
to serve worst-case peak loads.

Many software solutions implement the second strategy by
switching off either server components or whole servers to reduce
the energy consumption in low-utilization periods. However, this
approach could damage end-user experience and SLAs if these
workload peaks are not properly determined and served.

Various energy-efficiency policies based on the shut-down of
machines have been tested in grid computing scenarios, including:
(a) the shut-downof everymachinewhenever possible; and (b) the
shut-down ofmachines according to theworkload demands. These
policies have shown good energy-savings in [26,27]. In this work,
we adapted these energy-efficiency policies, which are designed
for grid computing environments, in order to be applied in CC
systems.

Our aim is the development of energy-efficiency policies that
rely on resource schedulers that could in CC systems of different
sizes, and that may serve various and heterogeneous workloads
rather than focusing on a specific scenario or infrastructure.

The power-off energy-efficiency policies are responsible for
deciding whether any given machine should be turned off or kept
in an idle state, and for performing the actual hibernation process
while keeping the environment state information up to date.

These power-off policies may be deterministic, such as the
Always power off policy, or probabilistic, which forecast future
workload demands based on historical data and then to perform
required actions according to this prediction. Power-off policies
may check various system, workload and machine parameters in
order to make decision about shutting any given machine down.

The following deterministic policies have been considered in
this paper:

1. Never power off: This power-off policy prevents any given
virtual machine to be hibernated. This is the current operat-
ing approach in many real Cloud Computing systems nowa-
days. Due to this, the power-off policy should be considered
and studied so the energy savings achieved by any other
power-off policy can be compared to the current power
consumption scenario.

2. Always power off: Opposite to the Never power off policy,
this policy always tries to hibernate any virtualmachine that
becomes idle.

The shut-down process is performed whenever any resource in
use (RAM, CPU) is released due to the execution of a task finished.
At thismoment, the systemmakes a decisionwhether themachine
those resources belongs to should be turned off or not. The system
prevents any virtual machine that is executing tasks from being
hibernated.

4. Evaluation of energy-aware scheduling vs. makespan
scheduling in cloud computing systems

We propose an environment that simulates a monolithic
scheduling framework to serve realistic and heterogeneous work-
loads in order to test the proposed strategies. The CC environment
has been simulated for seven days of operation time and various
combinations of the energy policies developed and described in
Section 3.6 have been evaluated.

In the following subsections a simulation tool, a test suite and a
designed environment are presented in detail.



Fig. 5. Machine power states.

4.1. Simulation tool

In this work we used the SCORE simulator presented in [24].
This simulator enables us to focus on the development of energy-
efficiency policies and on the performance of simulations of var-
ious scheduling frameworks and data-center environments. This
simulation tool has been modified in order to perform energy-
efficiency analysis by applying an energy-consumption model
which considers the following states for each CPU core in a ma-
chine: (a) On: 150 W (b) Idle: 70 W. The energy consumption is
linearly computed in terms of the utilization of each CPU core. In
addition to these CPU core power consumption states, the follow-
ingmachine power states have been assumed: (a)Hibernated: 10W
(b) Hibernating: 160 W * number of cores (c) Powering On: 160 W
* number of cores.

Regarding the shut-down process time parameters, the fol-
lowing values have been considered: (a) TOn→Hibernated: 10 s, and
(b) THibernated→On: 30 s. The power states and transitions are shown
in Fig. 5.

In order to develop and apply our energy-efficiency policies, a
new set of modules has been built on top of the current simulator.
Among these additions, the following can be found: (a) sorting,
(b) scheduling, and (c) power-off policies.

However, in order to preserve trust in the schedulers’ imple-
mentations, the behavior of the overall simulation process has not
been modified. Instead of modifying the current implementation,
hooks were placed in key parts of the simulation process to exe-
cute our developed policies and to register new key performance
indicators, which have been added in order to measure the impact
on data center energy consumption.

As a result of this approach, the developed energy-efficiency
policies have achieved a high level of isolation from the base
simulator implementation, thereby affecting the original simulator
design to a minimum extent.

4.2. Cloud computing center

A CC data center composed of 1000 heterogeneous virtual ma-
chines has beenmodeled. Eachmachine has the following features:

• Computing profile: Processor’s millions of instructions per
second (MIPS) have been simulated by generating randomly
a [1× - 4×] computing speed factor. Thus, a given VM may
be, as a maximum, four times faster than the slowest one:
cci ∈ [75000, 300000] MIPS.

• Energy profile: Processor’s power consumption hetero-
geneity has been simulated by generating randomly a [1× -
4×] energy consumption factor. Thus, a given machine M
may be (as a maximum) four times more energy-wasting
than the more efficient one. Hence, for a 4-core server, the
maximum power consumption may be described as: Ptotal ∈

[300, 1200] W.
• Security profile: Cryptographic services have been chosen

according to the FIPS standard [32], and ISO/IEC 19790
standard [33] for security requirements for cryptographic
modules, as described in [42]. These standards specify four
operating levels of general security requirements for cryp-
tographymodules, which have been simulated by randomly
generating a security factor in the range [1–4]. Therefore,
TL ∈ [0.25, 1].

• Computational resources: Every machine has 4 CPU cores
and 16 GB of RAM.

4.3. Workload

The patterns present in the realistic Google traces [61,62] were
followed to generate the synthetic workload used in the experi-
mentation. The interpretations by [6,19,55,60] have been studied
to model the synthetic workloads.

These workload tasks are composed of one ormore (sometimes
more than thousand) tasks. Every task is modeled to use a given
number of millions of instructions (MI).

Moreover, the two types of tasks described in Section 3.2 are
considered.

Each experiment executes the workload generated by repli-
cating the behavior of the workload present in typical Google
data centers. Therefore, although the workload generated in each
simulation run is unique, it follows the same model design. In this
workload, the vast majority of tasks are batch tasks, however, over
half of the available resources are reserved to service tasks.

Moreover, batch tasks are usually composed of a greater num-
ber of tasks than service tasks. However, these tasks require fewer
resources and run for a shorter time than service tasks. Hence, the
simulator generates a day/night patterned synthetic dataset com-
posed of tasks whose attributes follow an exponential distribution.

Taking into account the aforementioned environment and
workload scenario, the generated workload presents 22,208 batch
tasks and 2252 service tasks for each experiment that simulates 7
days of operation time, reaching 30.08% of average computational
power and 25.72% of memory in use. This data center utilization
rates follow industry trends presented in [9,63].

4.4. Key performance indicators

In order to measure the results of the application of energy-
efficiency policies that switchmachines on/off, the authors need to
measure key performance indicators of the data-center operation.
These indicators have been divided into two categories: (a) energy
savings; and (b) performance.

The following indicators were selected in order to describe the
energy savings and the behavior of the powering on/off operations:

• Energy consumption: The total energy consumed in each
experiment, Etotal (14).

• Energy savings: The total energy saved in each experiment.

The following indicators were selected as the most relevant
performance indicators:

• Queue time: Represents the time a task waits in the queue
until it is scheduled. This indicator is usually related to the
real computing experience, and therefore it is critical to
maintain this time as short as possible.



Fig. 6. Percentage of powered-on machines when the Always power off policy is
used for the single-path scheduler.

• Makespan: Cmax (see (10)).

In order to analyze and compare the energy savings and the
performance impact of deploying hibernating energy-efficiency
policies, the simplest and most aggressive energy policies have
been applied, i.e., the Never power off and the Always power off.
Theywill be applied to themost representative scheduling policies
proposed in Section 3.5. Among them:

• The Makespan-centric scheduling (policy 1) is applied to
batch tasks. The scheduling policy tries to load every ma-
chine up to 90%. The rest of the computational power is
used for service tasks (cf. [49]). The evolution of the fitness
function value in average of the genetic process applied to
batch tasks can be observed in Fig. 7b;

• The Energy-centric scheduling (policy 2) is applied to
batch tasks. The same scheduling policy described in the
Makespan-centric scheduling is used for service tasks. The
evolution of the fitness function value in average of the
genetic process applied to batch tasks may be observed in
Fig. 7a;

• The Random strategy for both batch and service tasks. This
strategy selects a random machine from the subset of ma-
chines that meet tasks requirements. This scheduling policy
is especially important because many of top-industry com-
panies implement a similar strategy, such as round robin-
like methods.

The scheduling algorithm workflows may be described as fol-
lows: The random scheduler assigns tasks to VMs randomly,
according to the Round Robin-like schema (i.e., the Random strat-
egy). The GMakespan (Genetic-based with makespan as the main
objective) scheduler assigns tasks according to the solution of the
optimization problem shown in (15), by the means of the genetic
algorithm described in the policy 1 in Section 3.5. The GEnergy
(Genetic-based with energy as a main objective) scheduler assigns
tasks according to the solution of optimization problem presented
in (16), by the means of the genetic algorithm described in the
policy 2 in Section 3.5. The Never power off policy lets VMs be in an
idle state when the execution of tasks is finished, while the Always
power off policy hibernates them.

5. Results and discussion

In this section, the simulation results obtained for the
Makespan-centric, Energy-centric and Random scheduling policies
are discussed through key performance indicators concerning:
(a) energy savings; and (b) performance impact.We choose to only

show the results obtained for the most representative schedul-
ing policies since the Makespan-centric scheduling until a given
makespan threshold and the Energy-centric scheduling until a given
energy-consumption threshold are mixed strategies that could blur
the main differences between the opposite Energy-centric and
Makespan-centric scheduling policies. The energy savings and per-
formance are analyzed and compared between the current/base
systemenergy policy (Never power off policy) and theAlways power
off energy-efficiency policy. Table 1 shows numeric results for the
single-path scheduler and Table 2 presents those for themulti-path
scheduler. In general, the more hibernations there are, the more
energy is saved, or from another point of view, the less idle the
resources, the less energy is wasted.

Moreover, it can be observed that the utilization of only the
genetic algorithm that focuses on the minimization of the energy
consumption results in a higher energy consumption than the ge-
netic algorithm that focuses on the minimization of the makespan
(56.17MWhvs. 55.96MWh, as shown in Table 1, scenarioNever off
policy, GEnergy Scheduler vs GMakespan Scheduler). On the other
hand, it can be noticed that high energy savings up to approx-
imately 45% may be achieved by applying the Always off policy
for the genetic algorithm that focuses on the minimization of the
makespan (30.45 MWh consumed with the Always off policy vs.
55.96MWh consumedwith theNever off policy for the GMakespan
Scheduler, as presented in Table 1). This behavior, that is similar for
the Monolithic multi-path scheduler presented in Table 2, means
that only a 20% of energy is wasted from the theoretical optimum
instead of 70% of the current approach.

Regarding the performance, the application of the Always power
off energy-efficiency policy has a negative impact of approxi-
mately 35% in terms of scheduling queue time. This behavior can
be observed in Table 1, where Batch tasks wait on average ap-
proximately 20 more seconds (+40%) in queue for the GMakespan
scheduler and 15 more seconds (+30%) for the GEnergy scheduler
in queue. Similarly, Batch tasks have a longer makespan (+60s.
and +120s. on average for the GMakespan and GEnergy schedulers
respectively, as presented in Table 2) when the combination of the
Always power off energy-efficiency policy and the genetic algo-
rithm is used. This makespan impact is especially negative when
the genetic algorithm that focuses on the minimization of energy
is used (+140s. for the Always off policy and GEnergy vs. Random
schedulers respectively, as shown in Table 2). On the other hand,
it is noticeable that Service tasks never suffer from this negative
makespan impact as shown in Tables 1 and 2.

It can be noticed that the scheduling policy is crucial not only
for the performance, but also for the whole hibernation process. As
shown in Table 1, the Random scheduling policy almost prevents
any hibernation. In this case the Always power off policy results
in a similar energy consumption (54.66 MWh) compared to that
achieved by theNever power off policy (56.19MWh). Table 2 shows
that theMulti-pathmonolithic scheduler presents the samebehav-
ior as the Single-path monolithic scheduler, except for the queue
times, which are notably lower (−85% between queue time results
shown in Table 1 and those presented in Table 2) due to the Multi-
path approach preventing the head-of-line blocking issue. Table 3
summarizes the impact of the Never power off policy in terms of
both queue times and energy consumption compared to leaving
machines in an idle state. Fig. 6 presents the percentage of VMs in
a hibernated mode for a seven-day time span. It can be observed
that the Always power off policy fits perfectly the clear day/night
pattern workload. Taking into consideration the aforementioned
results, we can state that the Makespan-centric scheduling policy
provides the best results for the goals under consideration, thus:
the minimization of the energy consumption through the applica-
tion of hibernation policies with aminor negative impact on the CC
system performance.



Table 1
Results for Monolithic Single-path scheduler.

Policy Scheduler Energy (MWh) E savings (MWh) Queue time (ms) Makespan (s)

Batch Service Batch Service

Never off Random 56.19 0.00 49.70 57.70 177.44 1,988.21
Always off Random 54.66 1.57 49.70 57.70 177.21 1,988.21
Never off GMakespan 55.96 0.00 49.70 57.70 235.71 1,988.21
Always off GMakespan 30.43 25.92 71.40 69.90 258.95 1,988.30
Never off GEnergy 56.17 0.00 49.70 57.70 287.48 1,988.21
Always off GEnergy 30.68 25.83 66.90 69.10 310.19 1,988.38

Table 2
Results for Monolithic Multi-path scheduler.

Policy Scheduler Energy (MWh) E savings (MWh) Queue time (ms) Makespan (s)

Batch Service Batch Service

Never off Random 56.21 0.00 06.90 06.50 178.56 1,920.60
Always off Random 55.00 1.13 06.90 06.50 178.56 1,920.60
Never off GMakespan 55.90 0.00 06.90 06.50 236.01 1,920.21
Always off GMakespan 30.08 26.12 10.30 07.20 258.46 1,920.66
Never off GEnergy 56.09 0.00 06.90 06.50 290.55 1,920.60
Always off GEnergy 30.65 25.76 11.00 06.90 313.41 1,920.67

Table 3
Always off policy results vs. current situation, represented by the Never power off policy.

Scheduler Strategy Savings Queue time diff Makespan diff

Batch Service Batch Service

Random Single-path 02.79% 0 0 −00.13% N/A
GMakespan Single-path 45.99% +43.67% +21.14% +45.94% N/A
GEnergy Single-path 45.71% +34.60% +19.76% +74.81% N/A
Random Multi-path 02.01% 0 0 0 N/A
GMakespan Multi-path 46.48% +49.27% +10.77% +44.75% N/A
GEnergy Multi-path 45.67% +59.42% +06.15% +75.52% N/A

(a) Task energy consumption. (b) Task makespan.

Fig. 7. Genetic process fitness evolution.

An important observation about the genetic process used for
finding the solution of the minimization problem (Eqs. (15) and
(16)) is that an early stopping strategy should be incorporated.
From Fig. 7b and 7a it can be seen that the genetic process should
be stopped after approximately 50 epochs in order to achieve the
best results.

6. Summary

In this paper amodel for reducing the energy consumption in CC
environments has been described. The presented approach enables
us to reduce the energy consumption of the CC system up to 45%.
The proposedmodel is composed of twoparts: (a) an energy-aware
independent batch scheduler; and (b) a set of energy-efficiency

policies for the hibernation of idle VMs.We proposed four schedul-
ing policies for the control of the energy consumption and the
makespan during the assignation of tasks to VMs.

The contributions of this work include:

1. The scheduler task assignation to VMs based on amakespan
optimization process. As a result, each batch of tasks is com-
puted in the shortest time, taking into account the current
state and the characteristics of the CC system.

2. The hibernation of virtual machines that remain in an idle
state, while the rest of VMs continue to execute the batch of
tasks. This guarantees the maximum positive impact on the
system performance since it does not negatively impact the
virtual machines under use.



The proposed scheduler takes the security demands of
each task and trust levels of VMs that are computing those
tasks into account. Additionally, the proposed model en-
ables us to compute the energy consumption of the whole
system, including the energy spent on performing security
operations.

The developed methods were tested using the realistic work-
load of Google traces for seven consecutive days on the simulated
environment equipped with 1000 virtual machines. The experi-
mental results show that the application of the proposed model,
especially that parameterized with a scheduling policy focused
on the minimization of the makespan, in addition to an energy-
efficiency policy based on the hibernation of every virtual ma-
chine whenever possible, could successfully reduce the energy
consumption of large-scale data centers which securely serve het-
erogeneous workloads without notably impacting on the cloud
computing system overall performance.

The next stage of our research is the optimization of security
operations. We intend to apply game theory solutions which have
been developed previously (see: [43]) for the optimization of the
Trust Levels of VMs and for the decision of the applied security
biases.
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