

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121783

Selfa-Oliver, V.; Sahuquillo Borrás, J.; Gómez Requena, ME.; Gómez Requena, C. (2018).
Efficient Selective Multicore Prefetching under Limited Memory Bandwidth. Journal of
Parallel and Distributed Computing. 120:32-43. https://doi.org/10.1016/j.jpdc.2018.05.002

https://doi.org/10.1016/j.jpdc.2018.05.002

Elsevier

Efficient Selective Multicore Prefetching
under Limited Memory Bandwidth

Vicent Selfa, Julio Sahuquillo, Marı́a E. Gómez, Crispı́n Gómez
Dept. of Computer Engineering, Universitat Politècnica de València, Spain

Abstract

Current multicore systems implement multiple hardware prefetchers to tolerate
long main memory latencies. However, memory bandwidth is a scarce shared
resource which becomes critical with the increasing core count. To deal with
this fact, recent works have focused on adaptive prefetchers, which control the
prefetcher aggressiveness to regulate the main memory bandwidth consumption.
Nevertheless, in limited bandwidth machines or under memory-hungry work-
loads, keeping active the prefetcher can damage the system performance and in-
crease energy consumption. This paper introduces selective prefetching, where
individual prefetchers are activated or deactivated to improve both main memory
energy and performance, and proposes ADP, a prefetcher that deactivates local
prefetchers in some cores when they present low performance and co-runners need
additional bandwidth. Based on heuristics, an individual prefetcher is reactivated
when performance enhancements are foreseen. Compared to a state-of-the-art
adaptive prefetcher, ADP provides both performance and energy enhancements in
limited memory bandwidth.

Keywords: Multicore prefetching, adaptive prefetching, deactivation policies,
global feedback

1. Introduction

Addressing memory latencies is a major design concern in modern multicores.
In this regard, hardware prefetching plays a key role in modern high-performance
processors. Because of this reason, modern microprocessors [1, 2, 3] implement

Email address: viselol@disca.upv.es (Vicent Selfa)

multiple prefetchers, which work along the different caches of the memory hier-
archy.

In current processors, prefetch requests from multiple cores (i.e. applications)
compete with regular memory requests for off-chip DRAM bandwidth. There-
fore, since prefetching is a speculative technique, it increases the total number of
accesses to main memory [4, 5, 6]. This fact can turn into significant perfor-
mance losses in some individual applications, which running in isolation benefit
from prefetching, in case of limited memory bandwidth. Unfortunately, this case
predominates in most current multicores due to two main reasons: i) contention
appear in the access to DRAM modules, ii) systems are configured with a limited
number of modules because of they are costly.

A straightforward solution to increase bandwidth availability would be to turn
off all the per-core individual prefetchers and removing speculative prefetches.
However, this is not an acceptable solution from a performance perspective, since
hardware prefetching can bring worth performance enhancements in some appli-
cations. A solution, recently proposed in recent approaches [7], is to control the
memory bandwidth by implementing throttling up/down mechanisms to control
the prefetcher aggressiveness. An individual prefetcher is only throttled down
when no performance benefits for that application are expected. However, due to
limited bandwidth, keeping active the prefetchers –as we will show in this paper–
if no benefits are expected, even with low aggressiveness, could damage the per-
formance of some applications due to inter-application interference.

To provide further insights on the mentioned behavior, this paper characterizes
the relation between main memory (prefetches and regular accesses) activity and
performance on SPEC CPU2006 while multiple applications are running together
in multicore execution. The study shows that most benchmarks use to exhibit
execution phases (e.g. memory intensive prefetch friendly) that can be highly
benefited by prefetching, and execution phases (e.g. memory intensive prefetch
unfriendly) that are negligibly benefited or even negatively affected. This study
suggests that, in multicore execution, properly handling the memory bandwidth of
those applications in memory intensive prefetch unfriendly phases with adaptive
prefetchers can help improve performance of applications in memory intensive
prefetch friendly phases.

In this paper we propose the Activation/Deactivation Prefetcher (ADP), which
in addition to throttle up/down the aggressiveness, activates and deactivates indi-
vidual per-application prefetchers considering both local and global (inter-application
interference) information. Deactivation policies turn off the prefetcher in specific
cores, thereby increasing the available bandwidth for those prefetchers that re-

2

quire it to improve their cores’ performance. Activation policies rely on activation
conditions that estimate when an individual prefetcher could improve the perfor-
mance. The key challenge of activation conditions is that they must be applied
to reactivate prefetches when the prefetcher engine is turned off and there is no
information about prefetcher activity (e.g. accuracy or coverage).

ADP has been compared with an aggressive prefetcher and the state-of-art Hi-
erarchical Prefetcher Aggressiveness Control (HPAC) [8]. Experimental results,
when running 4 applications concurrently, show that ADP increases performance
up to 33.8% (12.3% on average) compared to no prefetching. In contrast, HPAC
and aggressive prefetching only increase performance by 7.8% and 3.2% on aver-
age. Regarding energy, HPAC and the aggressive prefetcher increase main mem-
ory energy consumption by 12% and 20%, while ADP performance improvements
are reached with minimal main memory energy consumption increase (only by
3%) over no prefetching.

This work makes two main contributions:

• Our characterization study shows that benchmarks exhibit execution phases
that can be highly benefited by prefetching, and phases that can be adversely
affected. Based on this fact, we show that i) properly handling the memory
bandwidth with adaptive prefetchers can help improve performance over
aggressive prefetching, and ii) further performance and energy gains can be
achieved by selectively deactivating/activating individual prefetchers.

• The proposed ADP prefetcher improves both performance and energy con-
sumption with respect to the state-of-art Hierarchical Prefetcher Aggres-
siveness Control (HPAC) scheme [8] in both memory-intensive workloads
and in workloads combining memory and CPU intensive applications.

We would also like to remark that the proposed activation/deactivation policies
are orthogonal to the underlying prefetcher, so they can be applicable to stream-
based prefetchers, global-history-buffer delta correlation prefetchers, PC-based
stride prefetchers, and temporal prefetchers [9, 10]. Regarding prefetchers im-
plemented in commercial machines, the IBM POWER8 [1, 11] prefetches up to
three sequential instruction lines in single thread mode. Additionally, it has a
stream based data prefetcher that detects strides in load requests and optionally
store requests, issuing prefetches in all the three levels of the cache hierarchy. In
Intel processors [12], there are four prefetchers per core. It has two L1-data cache
prefetchers, namely an One Block Lookahead prefetcher (OBL), that fetches the

3

next cache line, and a prefetcher that detects strides in the load history by indexing
the loads with the program counter. It also has two L2 cache prefetchers, an L2
adjacent cache line prefetcher, and another one that fetches additional cache lines.

The remainder of this paper is organized as follows. Section 2 summarizes
the related work. Section 3 describes the baseline system. Section 4 presents
the characterization study. Section 5 introduces the proposal. Section 6 presents
the evaluation methodology. Section 7 evaluates the proposal. Finally, Section 8
presents some concluding remarks.

2. Related Work

This section describes previous work focusing on the prefetcher aggressive-
ness, the reduction in the number of memory requests, and other proposals ad-
dressing multicores.

In [13] the AC/DC adaptive method for prefetching data from main memory
to the L2 cache is proposed. Like the mechanism devised in this work, AC/DC
uses concentration zones (also called CZones) [14] that divide memory into fixed
size zones. The mechanism is enhanced to make use of delta correlations to find
access patterns. They propose an adaptive algorithm that dynamically adjusts the
prefetch degree in a range from 2 to 16. The mechanism provides the opportunity
to turn off the prefetcher but only in those cases where prefetching hurts the sys-
tem performance, and no policy is devised to turn on the prefetcher again. More
recently, PATer [5] has been proposed. It uses a prediction model based on ma-
chine learning with the aim of dynamically tuning the prefetch configuration in
the IBM POWER8 with more than 225 configurations. This prediction is based on
the value of performance monitoring counters. Opposite to our proposal, that one
is specific to POWER8 processor.

The FDP adaptive approach, presented in [7], dynamically selects among five
different levels of aggressiveness, ranging from very conservative to very aggres-
sive. The baseline prefetcher is a stream prefetcher like the one used in this work.
Similarly to our work, the prefetcher selects at the end of each sampling inter-
val the aggressiveness for the next interval. For this purpose, accuracy, lateness,
and pollution metrics are used to throttle up or down the aggressiveness level.
This mechanism was extended in another proposal, the Hierarchical Prefetcher
Aggressiveness Control (HPAC) [8]. HPAC is proposed for multicore processors,
where each core implements a FDP prefetcher, but local decisions to change the
aggressiveness can be overridden by the memory controller, which collects global

4

information about the memory requirements of each application. Unlike our work,
these proposals always keep enabled the prefetcher.

Other previous proposals use prefetch filtering techniques. A recent work [4]
proposes a weighted majority filter to predict the usefulness of the prefetch ad-
dresses. Other works, like [15, 16] estimate a priori if a given prefetch will be
useful or not, discarding it in the latter case. While their goal is the same as ours,
the metrics used are not. For example, our proposal considers the memory con-
tention for decision taking, and not just if a prefetch is useful for the core that
has issued it. Additionally, the way the goal is achieved is also different. Our ap-
proach throttles and disables the prefetcher, but filtering techniques dynamically
decide whether to issue or not a prefetch, based on prefetch history. However,
both techniques are orthogonal to each other, so using them together could further
reduce the amount of wasted bandwidth.

Regarding main memory bandwidth, [17] proposes FST, a throttling mecha-
nism that limits the number of memory requests that each application is allowed
to launch to the main memory. Unlike the previous schemes, both regular and
prefetch memory requests are taken into account. This mechanism works on
global information, such as the interference that an application causes to its co-
runners, or the memory bandwidth each application consumes.

A prefetcher that classifies prefetches according to their impact on perfor-
mance is proposed in [18]. This impact is estimated with a history table indexed
by the program counter that collects the stall cycles caused by each load. The
mechanism prioritizes the prefetches associated to loads that have caused more
ReOrder Buffer (ROB) stalls. That is, the prefetcher is mainly guided by core
performance instead of prefetcher performance.

In [19], Sandbox Prefetching, a mechanism to determine at runtime the appro-
priate prefetcher is proposed. Rather than actually fetching data into the cache
to evaluate the prefetcher accuracy, the tags for the blocks that the evaluated
prefetcher would fetch are stored in a Bloom Filter. On each memory access, the
Bloom Filter is checked to estimate the expected accuracy of the prefetcher. The
candidate prefetchers are evaluated one at a time, in a multiplexed fashion, with
the sandbox being reset in between evaluations. The main weakness of this mech-
anism, unlike ours, is that prefetch decisions are taken local to the cores without
considering global conditions. More recently, Best–offset Prefetching [20] has
been proposed as a Sandbox improvement by considering prefetch timeliness to
calculate the prefetch offset.

Prefetching performance can be also improved by enhancing the policies man-
aging memory requests at the shared resources, that is, the arbiter at the NoC or

5

the scheduling policy at the memory controller. Regarding the NoC, some inter-
esting approaches [21, 22] implement virtual channels and dynamically adjust the
priority between regular and prefetch requests coming from multiple cores. With
respect to memory controller policies, recent proposals [23, 24, 25] have also fo-
cused on multicores. These policies take into account the prefetcher performance
to dynamically select the priority of both regular and prefetch requests. NoC and
memory controller works are orthogonal to our proposal and can be applied to-
gether to achieve further performance improvements.

A preliminary version of this work, with a simpler prefetching mechanism,
is presented in [26]. Our current proposal achieves better performance, uses a
more detailed system model, includes a characterization study and provides more
experimental results.

3. Baseline System

The three main components of the modeled baseline system are the cores, the
network on chip and the memory controller.

Each tiled core consists of a processing unit, its private caches and the prefetch-
ing engine. The prefetcher engine used as baseline is the stride-based prefetcher
described in [14], which brings blocks from the main memory to the second level
cache (L2). The basic idea is to dynamically partition the physical address space
in different zones, referred to as CZones, and to detect strided references within
each of these zones [13, 14]. Two memory requests belong to the same partition
if they have the same tag (higher order) bits. The processor sets the size of the tag
by storing a mask in memory-mapped references. A history buffer [27] is used to
store the tags of the currently active partitions. Additionally, a stride field is added
to keep the prefetch stride. Strided references within each partition are dynami-
cally detected by using a finite state machine (FSM), which checks whether the
last three accesses are offsetted by a fixed stride. If so, a pattern has been detected
and the engine starts a new prefetch. Prefetches based on history buffers indexed
by CZones have the desirable property of not needing the program counter value
of the memory instruction to predict the following accesses, which is important
for L2 and lower level caches.

The prefetched data are kept in an auxiliary buffer, called stream buffer [28].
A stream buffer is a small memory close to the cache that only stores prefetched
data blocks waiting to be accessed by the core, that is, data blocks that have been
brought from main memory but have not yet been requested by the processor and
are still in a speculative state. Stream buffers are used to avoid cache pollution

6

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref

MIPU Phase

(a) zeusmp

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref

MIPF Phase

(b) cactusADM

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref

nMIPU Phase

(c) povray

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref

nMIPF Phase

(d) namd

Figure 1: Characterization study. Examples of benchmarks in the different categories. No
prefetching and aggressive prefetch are used.

because speculative data allocated in the cache can replace cache blocks that the
core could reference later. Each stream buffer tracks a different stream and con-
sists of a tag, a valid bit, and some data lines of that stream depending on the
prefetcher aggressiveness.

In addition, the NoC and the memory controller have been also modeled in
detail for the sake of accuracy. The reason is that as the core count increases, the
NoC is becoming a critical component affecting the overall system performance,
energy consumption, and reliability of emerging multicore systems [29, 30, 31].
The NoC connects all the on-chip components. In this work, a typical mesh topol-
ogy has been implemented, where each node consists of the tiled core and a router.
Congestion and contention are realistically modeled because they are key contrib-
utors of the network latency. After traversing the NoC, memory requests reach
the memory controller to access to the main memory. Both main memory orga-
nization and the memory controller are key contributors to the memory latency

7

perceived by the processor [32]. Therefore, the memory subsystem should be
accurately modeled to obtain representative performance and energy results.

4. Characterization Study

The aim of this section is to study the relation between memory activity,
prefetching, and performance (i.e. IPC) in order to provide insights in the design
of selective prefetchers. For this purpose, first, all the benchmarks are analyzed in
isolation with the aim of identifying those execution phases where prefetching can
bring benefits, paying special attention to phases with high memory activity since
in such cases, a selective prefetcher can potentially provide extra bandwidth for
the co-runners depending on the benefits provided by prefetching. After that, the
potential in terms of performance and main memory energy savings of a selective
prefetcher in multicore execution is presented.

4.1. Characterizing Benchmark Phases
To analyze individual behavior, all the benchmarks have been run in isola-

tion in a system with and without prefetching1 showing the obtained IPC and the
number of memory accesses.

Execution phases of the benchmarks have been classified in four main cat-
egories based on the combined behavior of two main metrics: i) the impact of
prefetching on performance (i.e. IPC), and ii) the memory activity of the applica-
tion. For illustrative purposes, Figure 1 shows examples of benchmarks showing
execution phases belonging to the four different categories. Each graph shows the
IPC evolution (left Y axis) across the execution time in 500K-instruction intervals
with prefetching and without prefetching. To analyze the relationship with the
memory behavior, the cumulative amount of memory accesses (right Y axis) is
also shown in the same plot using a logarithmic scale.

Below, the four categories are presented highlighting the main characteristics
of each of them:

• Memory Intensive, Prefetch Unfriendly (MIPU). This category refers to
memory intensive phases where prefetching does not improve the perfor-
mance over no prefetching. This kind of phase can be observed at the end
of the execution of zeusmp (see Figure 1a).

1Results with prefetching have been obtained with the prefetching mechanism described in
Section 3.

8

• Memory Intensive, Prefetch Friendly (MIPF). This category includes mem-
ory intensive phases where prefetching brings important performance ben-
efits. This kind of behavior dominates through the entire execution of some
benchmarks, like cactusADM, as shown in Figure 1b.

• non Memory Intensive, Prefetch Unfriendly (nMIPU). These phases refer
to those excerpts of the execution where the memory activity is rather low
and prefetching brings scarce or null benefits. Examples of phases in this
category can be observed in povray across all its execution (see Figure 1c)
and at the beginning of the execution of zeusmp.

• non Memory Intensive, Prefetch Friendly (nMIPF). This category refers to
non memory intensive phases in which prefetching can boost the perfor-
mance. This behavior can be observed in Figure 1d during the first part of
the execution of namd.

We define an execution phase as a fragment of the execution of an application
where IPC behavior is homogeneous or follows the same pattern. Therefore, we
assume that a new phase in the execution starts when the IPC changes its trend. So
they do not have a predetermined length but depend on the application behavior.
We found that these changes are usually related to variations in memory activity.

During prefetch unfriendly phases (categories MIPU and nMIPU), the prefetcher
could be turned off or throttled down with minimal impact on performance. This
claim can be observed at the end of the execution in Figure 1a, where a significant
amount (notice the log scale) of prefetches brings minor performance benefits.
Therefore, deactivating the prefetcher could result in important main memory en-
ergy savings, especially in MIPU phases where a high number of accesses can be
reduced.

In prefetch friendly phases (categories MIPF and nMIPF), the prefetcher should
be enabled to enhance the performance; however, its aggressiveness can be ad-
justed. This would reduce wasted energy and it is particularly useful in multicore
execution in order to leave more bandwidth to the co-runners. Especial atten-
tion should be paid to nMIPF phases since the potential energy savings might not
compensate the possible performance losses.

4.2. Analysis in Multicore Execution
As mentioned above, prefetching brings scarce or null benefits in MIPU ap-

plications/phases in spite of having high memory activity. This observation is
especially relevant to multicore execution, where individual prefetching requests

9

(a) Memory Accesses with the Baseline
Prefetcher

(b) Normalized IPC with respect to the Base-
line Prefetcher

(c) Memory Accesses with ADP

No
 P

re
f

Ba
se

 P
re

f
AD

P

No
 P

re
f

Ba
se

 P
re

f
AD

P

No
 P

re
f

Ba
se

 P
re

f
AD

P

No
 P

re
f

Ba
se

 P
re

f
AD

P

No
 P

re
f

Ba
se

 P
re

f
AD

P

bzip2 libquantum povray wrf AVG

0

100000

200000

300000

400000
M

ai
n

M
em

or
y

Ac
ce

ss
es Prefetches

On demand

(d) Aggregated Memory Accesses

Figure 2: Selective ADP prefetcher vs. baseline prefetcher.

compete among them for main memory resources. Therefore, if prefetching could
be selectively disabled in specific cores (and enabled when required), then, an ex-
tra amount of bandwidth would become available for the co-running applications
that really benefit from it. Moreover, important savings in main memory energy
could be achieved.

This claim can be observed in Figure 2, which compares the memory activ-
ity and performance of a selective prefetcher (ADP, the prefetcher presented in
Section 5) with respect to an aggressive prefetcher in multicore execution with
four applications. The IPC of ADP is normalized over the baseline aggressive
prefetcher. The value for each point is computed from the start of the execution;
therefore, the last value represents the overall performance enhancement. It can be

10

appreciated that the selective prefetcher reduces the number of memory accesses
(compare Figures 2a and 2c) by detecting phases in the individual benchmarks
where the prefetchers can be disabled without harming the performance. This
fact can be clearly observed across the execution of povray, a nMIPU appli-
cation (see Figure 1c), where prefetches are drastically reduced in the selective
approach.

Not only does the reduction in prefetchers not decrease the performance; ADP
actually increases it. There are two points in Figure 2b of the execution of the ap-
plications that are interesting to analyze. The first one, at the beginning of the
execution, is a significant increase in performance in comparison with the base-
line prefetcher. It appears because the selective prefetcher reduces the amount of
prefetches issued by libquantum and wrf. This reduction unclogs the mem-
ory access, which translates in IPC improvements across all the benchmarks. The
other point of interest occurs when approximately 3.5e7 instructions have been
executed. At this point, the main memory suffers an important congestion that
bottlenecks the system performance. Consequently, the reduction of prefetches
alleviates the congestion, reducing the perceived memory latency, which turns
into performance enhancements. This claim can be observed in the IPC rise of
bzip2 at the same point of the execution in Figure 2b. This application is the
most affected one since it is the most memory intensive at that point. Finally, the
minor performance loses exhibited by wrf (around 1%) are because the selective
prefetcher prioritizes unclogging the main memory access and reduces the aggres-
siveness of wrf’s local prefetcher. However, this slight reduction in the perfor-
mance of this application is clearly compensated by the increase in performance
that the co-runners experience. The reduction in main memory accesses can be
also appreciated in Figure 2d, which presents, for each approach (not prefetching,
baseline prefetcher and ADP), the total amount of main memory reads, classified
in two main groups: prefetch requests and on demand accesses. Two important
observations can be drawn: i) the baseline prefetcher significantly increases the
total amount of main memory accesses in some applications over not prefetching,
while ADP does not suffer this drawback; and ii) an important fraction of on de-
mand accesses are replaced by prefetches, which indicates that the prefetches are
useful and their timeliness is adequate, since the block is already in cache when
requested, and thus, the main memory access is not performed.

In summary, this analysis has shown that selective prefetching can provide a
good tradeoff between main memory accesses reduction (and therefore, energy
savings) and performance. Moreover, a good design could enhance both of them.
The key challenge that designers must face is to decide when individual prefetch-

11

Prefetch
disabled
 (0)

 Medium
aggressiveness
 (2)

 Maximum
aggressiveness
 (4)

(↑ROB +↑MISSES) ·↓BWNO ↓BWNO ·↓COV

↑BWNO ·↓ACC ·↓COV

 ↑BWNO ·
↓ACC ·↓COV

 ↑BWNO ·
(↑ACC + ↑COV)

Otherwise Otherwise Otherwise

Figure 3: ADP aggressiveness states and transition rules.

ers should be either activated or deactivated.

5. ADP prefetcher

The proposed ADP approach, apart from throttling up or down core prefetch-
ers, also selectively activates and deactivates individual core prefetchers consid-
ering both local and global information. This information is used by the devised
mechanism to better distribute the available memory bandwidth among the com-
peting cores, leading to a more effective prefetching scheme.

This section introduces the FSM that governs the behavior of the selective
prefetcher and discusses the throttling/deactivation and activation policies.

5.1. Finite State Machine of ADP Prefetcher
Existing prefetchers generally use two metrics, accuracy (ACC) and cover-

age (COV), to quantify the prefetcher performance. Based on these performance
metrics, the aggressiveness is throttled accordingly. A recent metric that is be-
ing considered in multicore execution is the memory bandwidth needed by others
(BWNO). It is computed as follows. First, we define the Bandwidth Consumed
by Core i (BWCi) on a given cycle as the number of DRAM banks servicing
requests from core i. Therefore, for a system using DDR3 memory modules and
only one main memory rank, this value is between 0 and 8. Additionally, we de-
fine the Bandwidth Needed by Core i as the number of banks that are busy serving
a request from a core different than i, and that have requests pending from core i.
Based on these, the Bandwidth Needed by Others (BWNO) from the perspective
of core i is computed as the sum of the bandwidth needed by the cores other than i.
While BWNO values are computed every cycle, they are averaged for 50K-cycle
intervals.

12

This work uses the three mentioned metrics not only to throttle down the
prefetcher aggressiveness but also to completely deactivate the mechanism when
it is estimated that the prefetcher is not properly working due to not obtaining
benefits. In addition, an extra set of performance metrics has been explored to
reactivate the prefetcher. The final design uses two metrics to activate prefetcher
(see Section 5.3): the percentage of time the Reorder Buffer (ROB) is stalled due
to a long latency memory access (referred to as ROB condition) and the increase
in the number of L2 misses (MISSES).

Notice that simple hardware is required to implement the ADP prefetcher and
much of it is based on performance counters already available in current proces-
sors [33]. Both the per process number of cache misses and stall cycles can be
gathered on most current commercial processors with the available performance
counters. ACC can be calculated as the ratio of two hardware counters that keep
track of the number of useful prefetches and the total number of prefetches in each
core. This can be done by adding a single bit to each cache entry to indicate that
the block has been prefetched [34, 35]. The first counter is updated when there is
a hit in a prefetched block and the second one is increased each time a prefetch
is issued. COV is computed as the ratio between the counter keeping track of
the number of cache misses and the performance counter tracking the number of
useful prefetches. With respect to BWNO, it requires three simple counters in the
memory controller which are updated every cycle as explained in [8].

Figure 3 depicts the FSM (Finite State Machine) of the ADP prefetcher. The
number between brackets within each node represents a prefetcher aggressiveness
level and the arcs represent transitions between states. Transitions are labeled
with the condition driving the corresponding state change. Upward and down-
ward arrows in the labels mean high or low values (e.g. high or low accuracy),
respectively, compared to a threshold (see Section 7).

The devised policies adjust the prefetcher depending on the values of the men-
tioned performance metrics, which are gathered during fixed-length intervals of
50K processor cycles. At the end of each interval, the hardware logic deter-
mines the machine state for the following interval. Below, we detail the deac-
tivation/throttling and activation policies for the devised selective prefetcher.

5.2. Deactivation/throttling policy
This policy is applied at the end of all the intervals when the prefetcher is

activated to decide if a state change is required for the next interval. During the
interval the metrics used by this policy have been tracked and at the end of the
interval they are evaluated to make the decision on a state change. Three main

13

Algorithm 1 Deactivation/throttling algorithm.
1: if co-runners need more bandwidth (BWNO) then
2: if low accuracy and low coverage then
3: disable prefetch; (2→ 0 ‖ 4→ 0)
4: else
5: reduce local aggressiveness; (2→ 2 ‖ 4→ 2)

6: else
7: if low coverage then
8: increase local aggressiveness; (2→ 4 ‖ 4→ 4)

Algorithm 2 Activation algorithm.
1: if sudden rise in misses (MISSES) or high ROB stalls due to memory instruc-

tions (ROB) then
2: if co-runners do not need more bandwidth (BWNO) then activate

prefetcher; (0→ 2)

changes can be selected: throttle up the aggressiveness, throttle down the aggres-
siveness, or turn off the prefetcher. Algorithm 1 depicts the conditions that must
be satisfied to carry out such actions. On the right side of each action, the associ-
ated transitions in the FSM (Figure 3) are presented.

When some co-runners need more bandwidth, the option to reduce or even
deactivate the local prefetcher is checked. In case the local prefetcher is per-
forming poorly (low accuracy and coverage), then the prefetcher is completely
disabled. Otherwise, the aggressiveness is set to its midlevel (remember that ADP
aggressiveness levels have been set to 0 –disabled–, 2, and 4) to increase memory
bandwidth availability for the co-runners. On the other hand, if BWNO is not a
constraint and the local prefetcher is not saving enough cache misses, then the
mechanism speculatively increases the aggressiveness (aggressiveness level is set
to 4, the maximum value) to improve its performance. Upon misspeculation, the
algorithm will return to the previous aggressiveness in the subsequent interval.

5.3. Activation policy
This policy is applied at the end of each interval in the cores when the prefetcher

is disabled to decide whether it should be reactivated for the next interval. When
a local prefetcher is disabled, all the prefetcher related structures like stride and
pattern detection are disabled, thus no information about the prefetcher activity is
available to make the decision.

14

(a) Performance of mcf in execution with
namd, omnetpp and soplex

(b) Performance of cactusADM in execution
with gcc, hmmer and libquantum

Figure 4: Normalized IPC of ADP over the baseline prefetcher using different activation condi-
tions.

The proposed activation policy estimates if noticeable performance losses have
appeared with respect to the last interval the prefetcher was enabled, and based on
this estimate it determines if the prefetcher should be reactivated the next inter-
val. We compare against the last time the prefetcher was enabled since execution
phases tend to exhibit the same behavior for a relatively long time as studied in
Section 4.1. The challenge is which performance metrics should be used for this
purpose. We need metrics that can provide hints about if enabling the prefetcher
could improve performance.

Algorithm 2 summarizes the devised activation mechanism, that relies on two
conditions (ROB stalls and cache MISSES). If any of both metrics suffers a sudden
rise, that is any of the two conditions (ROB or MISSES) is fulfilled, then the local
prefetcher is activated provided that the co-runners do not need more bandwidth.
The reason for this restriction is that reactivating the prefetcher when bandwidth
is scarce could rise the congestion and damage the global performance.

Activation Conditions Analysis
The goal of the activation conditions is to decide when the prefetcher should be
activated in order to keep the benefits of aggressive prefetching on performance.
That is, the IPC of prefetch friendly benchmarks should not significantly suffer
with respect to using an aggressive prefetcher. In other words, main memory
bandwidth savings should not be achieved at the cost of performance.

Among the studied metrics we explored the IPC, the percentage of ROB stalls,

15

and MISSES in the LLC. With respect to IPC and MISSES, we evaluated the
difference (in percentage) between the value in the current and the last interval
the prefetcher was enabled. Experimental results proved that IPC and the per-
centage of time ROB is stalled are inversely correlated since when the ROB is
blocked the core cannot follow decoding instructions, and consequently, the IPC
drops. In addition, the ROB is mainly blocked because of long latency memory
instructions, therefore a ROB based metric can be used to provide insights about
when the prefetcher can improve performance. On the other hand, a primary goal
of prefetching is saving cache misses. Therefore, a sudden rise in misses since
the last time the prefetcher was enabled could be used as a hint to reactivate the
prefetcher.

The final design activates the prefetcher when ROB stalls or MISSES condi-
tions are fulfilled. Of course, using only one of them would be more restrictive
and would provide additional bandwidth savings but at the cost of performance.
Experimental results show that the use of any of both conditions alone yields
to significant performance losses in some applications of the studied workloads.
This can be appreciated in Figure 4. Each graph shows the IPC of an individ-
ual benchmark in multicore execution –normalized over the IPC obtained by an
aggressive prefetcher– for the proposed ADP approach using both activation con-
ditions jointly (ROB + MISSES) and individually. As observed, at the end of the
execution, using the ROB condition alone drops the performance by 6% in mcf
(Figure 4a) and using only the MISSES condition penalizes performance around
7% in cactusADM (Figure 4b).

6. Evaluation Methodology

The proposal has been evaluated with the Multi2sim [36] simulation frame-
work. Multi2sim performs detailed simulation of out-of-order execution cores.
We have widely extended this simulator to model the prefetchers and the NoC
of the proposed system. To obtain accurate DRAM performance and energy re-
sults, we linked the DRAMSim2 [37] simulator to Multi2sim. Table 1 shows the
configuration parameters of the core, the interconnection network, and the main
memory. Main memory parameters have been set according to a recent commer-
cial MICRON DDR3 memory device [38].

Experiments have been performed with multiprogram mixes composed of ap-
plications from the SPEC2006 benchmark suite. Each application runs until it
commits 300M instructions after fastforwarding 500M instructions. To avoid per-
formance differences caused by early finalization of the execution of some bench-

16

marks, all the applications are kept running until the slowest benchmark com-
mits the targeted number of instructions. This implies that some benchmarks will
execute more instructions than the targeted number. For comparison purposes,
performance is measured in these benchmarks for the first 300M committed in-
structions.

Table 1: System configuration.

Processing core
Cores 4 cores at 3GHz
Issuing policy Out of order
Issue/Commit width 4 instructions/cycle
ROB size 256 entries
Load/Store queue 64/48 entries

Cache hierarchy
L1 Icache (private) 32KB, 8ways, 64B-line, 2cc
L1 Dcache (private) 32KB, 8ways, 64B-line, 2cc
L2 (private) 512KB, 16ways, 64B-line, 11cc, 16 MSHR

Prefetching logic
Stream prefetcher 32 16-entry streams in L2
Aggressiveness 4 blocks

Interconnection network
Topology Mesh
Routing X-Y
Input/ouput buffer size 128B
Link bandwidth 64B/cycle

Main memory & memory controller
DRAM bus freq. 1066MHz
DRAM device DDR3 (2133 Mtransfers/cycle)
Latency tRP , tRCD, tCL 13.09ns each
DRAM banks 8
Page size 8KB
Burst length (BL) 8
Scheduling policy FCFS

17

6.1. Mix Design
The characterization study presented in Section 4, classified application phases

in four different categories. However, although benchmarks tend to exhibit phases
in different categories, in most benchmarks a given category clearly dominates
over the others. Thus, we can take advantage of this to classify applications ac-
cording to the category that dominates across its execution time. Following this
approach, the applications in SPEC2006 benchmark suite have been classified de-
pending upon the predominant phase in the part of the application that is executed
in the experiments (300M instructions after skipping the first 500M instructions).
After this classification, a set of mixes has been designed to study the effects of
prefetching on performance and energy in two main scenarios: under normal con-
ditions and in extreme conditions stressing the main memory.

Table 2: Mix composition. Numbers 1, 2, 3 and 4 between brackets correspond to categories
MIPU, MIPF, nMIPU, and nMIPF, respectively, defined in Section 4.

Mix type Mix Benchmarks (categories)
Combined m0 tonto (4) h264ref (3) hmmer (2) omnetpp (1)

m1 bwaves (2) gamess (3) GemsFDTD (3) sjeng (3)
m2 astar (1) bzip2 (1) gcc (2) GemsFDTD (3)
m3 gamess (3) GemsFDTD (3) leslie3d (2) wrf (2)

Memory m4 xalancbmk (1) gcc (2) gobmk (2) dealII (1)
intensive m5 leslie3d (2) dealII (1) soplex (2) gromacs (2)

m6 mcf (2) soplex (2) perlbench (2) xalancbmk (1)
m7 dealII (1) soplex (2) xalancbmk (1) gobmk (2)

To evaluate the first scenario, mixes were designed with benchmarks randomly
chosen from the identified categories. To evaluate the second scenario, the de-
signed mixes only include memory intensive applications from MIPU and MIPF
categories. We refer to the first type of mixes as combined and to the second type
as memory-intensive. Table 2 shows the composition of the mixes. Mixes from
m0 to m3 are combined and mixes from m4 to m7 are memory-intensive.

6.2. Performance Indexes
To evaluate multicore performance, for each mix, we use the harmonic mean

of IPC and the Harmonic Mean of Individual Speedup, which in addition to quan-
tify performance also provide a notion of fairness [39].

Harmonic Mean of Individual Speedup is calculated according to Equation 1.

WShm =
n∑n

i=1
1

ISi

(1)

18

Where ISi represents the Individual Speedup of application i that is obtained
according to Equation 2, where n refers to the number of benchmarks in the mix.

ISi =
IPCi,multi

IPCi,alone

∀i ∈ {1, n} (2)

Individual Speedup estimates how much the performance of an individual
benchmark is affected by its co-runners, by comparing the IPC of the applica-
tion running in the CMP with co-runners and running alone. Experimental re-
sults consider IPCi,alone as the IPC of application i in isolated execution with the
prefetcher enabled.

Table 3: Thresholds used in ADP.

Thresholds
Low Accuracy Low Coverage Rise in misses High % ROB stall High BWNO
< 40% < 30% > 15% > 60% > 2.75 banks

7. Experimental Evaluation

To evaluate the proposed prefetcher, ADP is compared to the same system
without prefetching and two other prefetchers: HPAC [8] and an aggressive prefetcher.
HPAC is an adaptive prefetcher that implements throttling up and down policies
to control the aggressiveness. The aggressive prefetcher is always working at
the maximum aggressiveness level (4 blocks). The adaptive prefetchers (HPAC
and ADP) use 2-block and 4-block as middle and high aggressiveness levels, re-
spectively. The lowest aggressiveness is set to 1-block for HPAC2, while ADP
completely deactivates the prefetcher3. The ADP threshold values used in the ex-
periments for Algorithm 1 and Algorithm 2 are shown in Table 3. Parameters
were empirically determined using a limited number of simulation runs and opti-
mized to reduce the number of memory accesses. Therefore, further performance
improvements could be achieved but at the cost of increasing the number of main
memory accesses.

2HPAC does not deactivate prefetchers.
3Notice that this allows reducing even more memory accesses for those applications that do

not take advantage of prefetching while providing more bandwidth for the others.

19

7.1. Performance Analysis
Before studying the performance on multicore execution, we explore the po-

tential of the compared prefetching approaches in the system in absence of inter-
ference due to memory requests from other applications.

Figure 5 shows the IPC when each application runs alone in the multicore.
Labels No pref and Pref refer to no prefetching and the aggressive prefetcher,
respectively, while HPAC and ADP are the adaptive prefetchers. A sample of
memory intensive and non memory intensive benchmarks has been taken for il-
lustrative purposes. As observed, aggressive prefetching (Pref) brings impor-
tant performance benefits in most of the applications. Performance improves
on average by 16% over no prefetching and up to 34% in the wrf benchmark.
Notice that the adaptive prefetchers improve the performance of the aggressive
prefetcher in memory intensive applications like bwaves. This means that ag-
gressive prefetching suffers from limited memory bandwidth even in standalone
execution in some benchmarks, a problem that exacerbates when multiple appli-
cations are run alongside in the multicore. Therefore, adaptive prefetchers are
required in multicores to sustain the performance.

After considering the standalone execution of benchmarks, now we analyze
the multicore execution performance of the designed mixes for the different prefetch-
ers. Figure 6 shows the IPC (harmonic mean) of each mix for the studied ap-
proaches. The HM0–3, HM4–7 and HM columns represent the average values for
combined (m0 to m3), memory intensive (m4 to m7), and all the mixes, respec-

Figure 5: Performance of prefetchers running benchmarks in isolation.

20

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80
No pref Pref HPAC ADP

H
a
rm

o
n
ic

M
e
a
n

o
f

IP
C

m0 m1 m2 m3 m4 m5 m6 m7 HM0-3 HM4-7 HM

Figure 6: Harmonic Mean of IPC.

tively. As can be observed, the aggressive prefetcher improves the performance
compared to no prefetching for combined mixes, but decreases the performance
in most of the memory intensive mixes. This performance drop is due to time-
liness. That is, the prefetched data come too late from main memory because
of the longer latencies experienced in memory intensive mixes, so data are not
ready in cache when they are needed [40]. In addition, the extra memory accesses
due prefetching delay other requests, penalizing the performance. On the other
hand, the adaptive approaches, which stress less the memory hierarchy, perform
significantly better than the aggressive prefetcher in both combined and memory
intensive mixes.

Compared to HPAC, the proposed approach achieves, on average, better per-
formance regardless of the type of mix. ADP increases IPC by 12.3% with respect
to no prefetching considering both types of mixes while HPAC only improves per-
formance by 7.4%. An important observation is that in memory intensive mixes,
ADP is the only approach whose performance is on par or even higher than no
prefetching. However, in mixes m0 and m1 HPAC is the best performing approach
by a slim margin. The reason is that in these cases ADP is too conservative, keep-
ing the prefetcher disabled for too much time. Despite that, it performs better than
the baseline prefetcher, and the difference with HPAC is smaller than 1%.

Performance gains of the proposal are also analyzed taking into account In-
dividual Speedup (harmonic mean). Figure 7 shows the results normalized to
no prefetching. In combined mixes, all the prefetchers improve the performance
achieved by the non-prefetching approach. In contrast, in memory intensive mixes,

21

m0 m1 m2 m3 m4 m5 m6 m7 HM0-3 HM4-7 HM0-7
0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

Pref HPAC ADP
H
a
rm

o
n
ic
S
p
e
e
d
u
p

Figure 7: Harmonic Mean of Individual Speedup normalized w.r.t. no prefetching.

0%

10%

20%

30%

40%

50%

60%

70%

80%
Pref HPAC ADP

In
cr

e
a
se

in
re

q
u
e
st

s

m0 m1 m2 m3 m4 m5 m6 m7 avg0-3 avg4-7 avg 0-7

Figure 8: Memory requests increase of the studied prefetchers over no prefetching.

differences among prefetching schemes become wider. ADP improves the per-
formance of no prefetching by 5% while HPAC only improves it by 1%. These
results show that ADP, even with scarce memory bandwidth, makes the prefetcher
capable of achieving important performance gains.

An interesting observation is that ADP presents a consistent behavior between
memory intensive and combined mixes, while HPAC performs worse for intensive
ones than for combined mixes.

22

7.2. Prefetch Activity Reduction Analysis
This section shows how ADP saves memory traffic by reducing the amount of

prefetches with respect to HPAC and aggressive prefetching.
Figure 8 shows the increase in the number of memory requests of the stud-

ied prefetchers compared to no prefetching. Keeping always the maximum ag-
gressiveness generates more prefetches so more memory bandwidth is consumed,
which can strangle the performance in memory intensive mixes. The aggressive
prefetcher increases the amount of memory requests, on average, over no prefetch-
ing by 50%. In contrast, HPAC and ADP reduce this amount by around one third
(requests increase by 34%) and two thirds (requests increase by 19%), respec-
tively.

In short, we conclude that ADP improves performance by significantly reduc-
ing the amount of useless prefetches, saving energy and bandwidth.

7.3. Main Memory Energy Analysis
This section compares the main memory energy consumption of the studied

schemes. Figure 9 presents the energy results of the DDR3 module provided by
the linked DRAMSim2 simulator. This simulator provides accurate performance
and energy results since it models memory devices at a very low level. Unlike
IPC and memory requests, which are gathered when a benchmark commits 300M
instructions (see Section 6), energy consumption at the main memory is gathered
at the end of the execution of the mix for simplification purposes. Therefore, en-
ergy provided by DRAMSim2 also considers those memory accesses issued after
a benchmark executes 300M instructions (where IPC and memory requests met-
rics are collected) until the slowest benchmark of the mix finishes its execution.
This is the reason why bar differences in Figure 9 are not so wide as in Figure 8.
Thus, the presented energy results are conservative.

Energy results are broken down in four components depending on the memory
activity that consumes the energy: i) activation and precharge, ii) background en-
ergy, iii) data bursts, and iv) refresh. The first component accounts for the energy
consumed activating rows for reads and writes, plus the energy consumed due to
precharging the bitlines. The second component refers to the energy consumed
in background to keep memory devices powered on. Burst energy is consumed
when data are transferred by the memory bus in write and read operations. Finally,
refresh energy is required to avoid capacitors loose the stored value.

The studied prefetchers differ in the number of memory accesses they per-
form, so this section focuses on energy consumed by DRAM memory modules.
Nevertheless, the important reduction in the number of prefetches is also expected

23

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

N
o

Pr
e

f
Pr

e
f

H
PA

C
A

D
P

0

100

200

300

400

500

600

Refresh Burst Background

Act + Pre
E

ne
rg

y
co

ns
um

pt
io

n
(m

J)

m0 m1 m2 m3 m4 m5 m6 m7 avg0-3 avg4-7 avg0-7

Figure 9: Energy consumption of the prefetching mechanisms.

to save dynamic energy in Last Level Cache structures (where prefetches are trig-
gered) and in the NoC.

As expected, the prefetching schemes consume more activation and precharge
energy as well as burst energy than no prefetching since more memory requests
are served as observed in Figure 8. On the other hand, employing prefetching
helps reduce both background and refresh energy, especially in combined mixes
because these mixes significantly reduce their execution time.

The aggressive prefetcher increases total energy consumed by the DDR3 mod-
ule on average by 20% over no prefetching. This expense in energy may be un-
acceptable, especially taking into account that aggressive prefetching can damage
the performance in memory intensive mixes. An interesting observation is that
ADP achieves the performance gains presented in Section 7.1 with a minimal im-
pact (a 3% increase) on the total memory energy, which is a much lower impact
than the one obtained with adaptive HPAC prefetcher (a 12% increase).

7.4. Benefits of Deactivating the Prefetcher
To quantify which part of the benefits come from completely deactivating the

prefetcher, we increased the minimum aggressiveness of ADP from 0 –disabled–
to 1, keeping unchanged the remaining state machine (see Figure 3). The only
difference is that this approach transits to a minimum aggressiveness level instead
of turning off the prefetcher.

Figure 10 shows how the number of prefetches increases (in percentage) when
the minimum aggressiveness is set to 1 instead of completely turning off the

24

m0 m1 m2 m3 m4 m5 m6 m7 avg0-3 avg4-7 avg0-7
0%

10%

20%

30%

40%

50%

60%

In
cr
e
a
se

in
re
q
u
e
st
s

m0 m1 m2 m3 m4 m5 m6 m7 avg0-3 avg4-7 avg0-7
0%

10%

20%

30%

40%

50%

60%

In
cr
e
a
se

in
#

o
f
p
re
fe
tc
h
re
q
u
e
st
s

Figure 10: Effect of changing the minimum aggressiveness from 0 (completely disabled) to 1 in
the number of prefetch requests for ADP.

prefetcher. As observed, keeping activated the prefetcher even with minimum
aggressiveness increases the number of prefetches on average by 36% in com-
bined mixes and by 7% in memory intensive mixes. Moreover, this reduction is
achieved with minor performance differences (less than 1% on average). If the to-
tal number of memory requests (prefetches and on demand accesses) are taken into
account, the overall amount of requests increases by 6% and by 2% for combined
mixes and memory intensive mixes, respectively when the prefetcher is not deacti-
vated. These results show i) the important impact of deactivating the prefetcher in
the reduction of memory accesses and ii) that the devised activation/deactivation
policies work properly, since performance remains almost the same.

7.5. Analysis with a different prefetching mechanism
While the results presented in the previous section have all been obtained using

an specific prefetching mechanism, both ADP and HPAC, and in general other
techniques that smartly adapt the prefetching aggressiveness are orthogonal to
the underlying prefetcher. To show this, in this section we present some results
obtained with a different prefetcher, inspired in one of the used by current Intel
processors [12], that detects patterns in load streams, classifying them using the
Program Counter.

As figures 11 and 12 show, similar results are achieved when a different un-
derlying prefetcher is used. Although the IPC increases due selective prefetching,
shown in Figure 11, are not as high as with the prefetcher evaluated in the previous

25

Figure 11: Cumulative IPC for the studied mixes.

Figure 12: Relative increase in memory accesses, compared with no prefetching.

sections, they are still important. This is because the thresholds used to transition
to the different states of the activation/deactivation mechanism need further refine-
ment, out of the scope of this work. Regarding the reduction in memory requests
issued, the results are similar to the ones already discussed. Note that in both
cases ADP still performs better than HPAC.

8. Conclusions

In this work we have characterized the behavior of prefetching in multicores.
This study has shown that some applications exhibit execution phases where local
prefetching could be disabled in order to allow higher bandwidth available to their
co-runners, with minimal impact on the local performance. This way would allow

26

to improve their co-runners’ performance and achieve energy savings, especially
in main memory modules.

This paper has presented the ADP selective prefetcher that dynamically deac-
tivates or activates individual core prefetchers. A core prefetcher is deactivated
when the co-runners need more bandwidth, provided that the local prefetcher
presents low accuracy and coverage regardless of the actual prefetcher aggres-
siveness. ADP smartly activates the prefetcher based on activation conditions that
estimate if prefetches will improve the system performance, but only if the co-
runners do not need more memory bandwidth.

ADP increases performance on average by 12.3% over no prefetching con-
sidering both memory intensive and combined mixes, while HPAC improves this
metric by 7.4%. Compared to no prefetching, the aggressive prefetcher and HPAC
increase the amount of memory requests by 50% and 34%, respectively, while
ADP reduces this amount as much as 19%. This reduction, jointly with speed-
ing up the execution time, results in important main memory energy savings. On
average, energy consumption increases by 2% and 20% in HPAC and the aggres-
sive prefetcher, respectively, over no prefetching. In contrast, in ADP, energy just
increases by 3%. Additionally, we have evaluated ADP with a different underly-
ing prefetcher, and the results looked promising, proving the orthogonality of the
approach.

Finally, we can conclude that selective prefetching may be a valuable approach
for future multicores bringing the best of two worlds: performance improvements
with respect to state-of-the-art prefetchers under limited available memory band-
width or memory-hungry applications, with minimal increase of energy consump-
tion over no prefetching.

[1] B. Sinharoy, J. A. V. Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra,
D. Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira,
D. Levitan, S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma,
M. Kroener, M. Kaltenbach, T. Karkhanis, K. M. Fernsler, Ibm power8 pro-
cessor core microarchitecture, IBM J. of Res. and Dev. 59 (1) (2015) 2:1–
2:21.

[2] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, Y. C. Liu, Knights landing: Second-generation intel
xeon phi product, IEEE Micro 36 (2) (2016) 34–46.

[3] J. Owen, M. Steinman, Northbridge architecture of amd’s griffin micropro-
cessor family, IEEE Micro 28 (2) (2008) 10–18. doi:10.1109/MM.2008.29.

27

[4] S. B. B. Panda, Expert prefetch prediction: An expert predicting the useful-
ness of hardware prefetchers, IEEE Computer Architecture Letters 15 (1).

[5] M. Li, G. Chen, Q. Wang, Y. Lin, P. Hofstee, P. Stenstrom, D. Zhou, Pater:
A hardware prefetching automatic tuner on ibm power8 processor, IEEE
Computer Architecture Letters 15 (1).

[6] A. Flores, J. L. Aragón, M. E. Acacio, Energy-efficient hardware prefetch-
ing for cmps using heterogeneous interconnects, in: 2010 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing, 2010,
pp. 147–154. doi:10.1109/PDP.2010.12.

[7] S. Srinath, O. Mutlu, H. Kim, Y. Patt, Feedback directed prefetching: Im-
proving the performance and bandwidth-efficiency of hardware prefetchers,
in: HPCA., 2007, pp. 63–74. doi:10.1109/HPCA.2007.346185.

[8] E. Ebrahimi, O. Mutlu, C. J. Lee, Y. N. Patt, Coordinated control of mul-
tiple prefetchers in multi-core systems, in: MICRO, 2009, pp. 316–326.
doi:10.1145/1669112.1669154.

[9] A. Jain, C. Lin, Linearizing irregular memory accesses for im-
proved correlated prefetching, in: MICRO, 2013, pp. 247–259.
doi:10.1145/2540708.2540730.

[10] C. Kaynak, B. Grot, B. Falsafi, SHIFT: Shared History Instruction
Fetch for Lean-core Server Processors, in: MICRO, 2013, pp. 272–283.
doi:10.1145/2540708.2540732.

[11] P. Bergner, Performance Optimization and Tuning Techniques for IBM
Power Systems Processors Including IBM POWER8, IBM redbooks, 2015.
URL https://books.google.es/books?id=bdP jgEACAAJ

[12] V. V. (Intel), Disclosure of H/W prefetcher control on some Intel processors,
https://software.intel.com/en-us/articles/disclosure-
of-hw-prefetcher-control-on-some-intel-processors.

[13] K. Nesbit, A. Dhodapkar, J. Smith, Ac/dc: an adaptive data cache prefetcher,
in: PACT, 2004, pp. 135–145. doi:10.1109/PACT.2004.1342548.

[14] S. Palacharla, R. E. Kessler, Evaluating stream buffers as a secondary cache
replacement, in: ISCA, 1994, pp. 24–33. doi:10.1145/191995.192014.

28

[15] X. Zhuang, H. h. S. Lee, Reducing cache pollution via dynamic data
prefetch filtering, IEEE Transactions on Computers 56 (1) (2007) 18–31.
doi:10.1109/TC.2007.250620.

[16] X. Dang, X. Wang, D. Tong, Z. Xie, L. Li, K. Wang, An adaptive filtering
mechanism for energy efficient data prefetching, in: 2013 18th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2013, pp. 332–
337. doi:10.1109/ASPDAC.2013.6509617.

[17] E. Ebrahimi, C. Joo, L. Onur, M. Yale, N. Patt, Fairness via source throt-
tling: A configurable and high-performance fairness substrate for multi-core
memory systems, in: ASPLOS, 2010, pp. 335–346.

[18] R. Manikantan, R. Govindarajan, Performance oriented prefetching en-
hancements using commit stalls, J. Instruction-Level Parallelism 13.

[19] S. Pugsley, Z. Chishti, C. Wilkerson, T. Chuang, R. Scott, A. Jaleel, S.-L.
Lu, K. Chow, R. Balasubramonian, Sandbox prefetching: Safe, run-time
evaluation of aggressive prefetchers, in: HPCA, 2014.

[20] P. Michaud, Best-offset hardware prefetching, in: 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA
2016, Barcelona, Spain, March 12-16, 2016, 2016, pp. 469–480.
doi:10.1109/HPCA.2016.7446087.
URL http://dx.doi.org/10.1109/HPCA.2016.7446087

[21] N. Chidambaram Nachiappan, A. K. Mishra, M. Kademir, A. Siva-
subramaniam, O. Mutlu, C. R. Das, Application-aware prefetch pri-
oritization in on-chip networks, in: PACT, 2012, pp. 441–442.
doi:10.1145/2370816.2370886.

[22] J. Lee, M. Shin, H. Kim, J. Kim, J. Huh, Exploiting mutual awareness be-
tween prefetchers and on-chip networks in multi-cores, in: PACT, 2011, pp.
177–178. doi:10.1109/PACT.2011.27.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, Y. N. Patt, Prefetch-aware shared re-
source management for multi-core systems, in: ISCA, 2011, pp. 141–152.
doi:10.1145/2000064.2000081.

29

[24] F. Liu, Y. Solihin, Studying the impact of hardware prefetching and band-
width partitioning in chip-multiprocessors, in: ICMMCS, 2011, pp. 37–48.
doi:10.1145/1993744.1993749.

[25] F. Liu, X. Jiang, Y. Solihin, Understanding how off-chip memory bandwidth
partitioning in chip multiprocessors affects system performance, in: HPCA,
2010, pp. 1–12. doi:10.1109/HPCA.2010.5416655.

[26] V. Selfa, J. Sahuquillo, M. E. Gómez, C. Gómez, A Simple Activa-
tion/Deactivation Prefetching Scheme for Chip Multiprocessors, in: PDP,
2016, pp. 143–150.

[27] K. J. Nesbit, J. E. Smith, Data cache prefetching using a global history buffer,
in: HPCA, 2004, pp. 96–. doi:10.1109/HPCA.2004.10030.

[28] N. Jouppi, Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers, in: ISCA, 1990, pp.
364–373. doi:10.1109/ISCA.1990.134547.

[29] A. Sharifi, E. Kultursay, M. T. Kandemir, C. R. Das, Addressing end-to-
end memory access latency in NoC-based multicores, in: MICRO, 2012, pp.
294–304.

[30] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, C. R. Das, Exploring
fault-tolerant network-on-chip architectures, in: DSN, 2006, pp. 93–104.

[31] Y. Hoskote, S. R. Vangal, A. Singh, N. Borkar, S. Borkar, A 5-ghz mesh
interconnect for a teraflops processor, IEEE Micro 27 (5) (2007) 51–61.

[32] B. Jacob, D. Wang, Principles and practices of interconnection networks,
Morgan Kaufmann, 2007.

[33] P. Irelan, S. Kuo, Performance monitoring unit sharing guide - white paper.

[34] A. J. Smith, Cache memories, ACM Comput. Surv. 14 (3) (1982) 473–530.
doi:10.1145/356887.356892.
URL http://doi.acm.org/10.1145/356887.356892

[35] J. D. Gindele, Buffer block prefetching method, IBM Technical Disclosure
Bulletin, 20(2):696-697, 1977.

30

[36] R. Ubal, J. Sahuquillo, S. Petit, P. Lopez, Multi2sim: A simulation frame-
work to evaluate multicore-multithreaded processors, in: SBAC-PAD, 2007,
pp. 62–68. doi:10.1109/SBAC-PAD.2007.17.

[37] P. Rosenfeld, E. Cooper-Balis, B. Jacob, Dramsim2: A cycle accurate mem-
ory system simulator, IEEE Comput. Archit. Lett. 10 (1) (2011) 16–19.
doi:10.1109/L-CA.2011.4.

[38] Micron, Data sheet: 4Gb DDR3 SDRAM MT41J512M8-64Meg x 8 x 8
banks.

[39] A. Snavely, D. M. Tullsen, Symbiotic Jobscheduling for a Simul-
taneous Multithreading Processor, in: ASPLOS, 2000, pp. 234–244.
doi:10.1145/356989.357011.

[40] W. A. Wong, J.-L. Baer, The Impact of Timeliness for Hardware-based
Prefetching from Main Memory, Technical Report.

31

