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Abstract
This paper studies two approaches to formalize helping in wait-free implementations of shared
objects. The first approach is based on operation valency, and it allows us to make the important
distinction between trivial and nontrivial helping. We show that a wait-free implementation of
a queue from common2 objects (e.g., Test&Set) requires nontrivial helping. In contrast, there
is a wait-free implementation of a stack from Common2 objects with only trivial helping. This
separation might shed light on the difficulty of implementing a queue from Common2 objects.

The other approach formalizes the helping mechanism employed by Herlihy’s universal wait-
free construction and is based on having an operation by one process restrict the possible linear-
izations of operations by other processes. We show that objects possessing such universal helping
can be used to solve consensus.
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1 Introduction

A key component in the design of concurrent applications are shared objects providing higher-
level semantics for communication among processes. For example, a shared queue to which
processes can concurrently enqueue and dequeue, allows them to share tasks, and similarly
a shared stack. Shared objects are implemented from more basic primitives supported
by the multiprocessing architecture, e.g., reads, writes, Test&Set, or Compare&Swap. An
implementation is wait-free if an operation on the shared object is guaranteed to terminate
after a finite number of steps; the implementation is nonblocking if it only ensures that
some operation (perhaps by another process) completes in this situation. Clearly, a wait-free
implementation is nonblocking but not necessarily vice versa.

Many implementations of shared objects, especially the wait-free ones, include one process
helping another process to make progress. The helping mechanism is often some code that
is added to a nonblocking implementation. Typically, the code uses only reads and writes,
in addition to the primitives used in the nonblocking implementation (e.g., Test&Set). The
aim of this extra code is that processes that complete an operation “help” the blocked
processes to terminate, so that the resulting implementation is wait-free. An interesting
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example is a shared queue, for which there is a simple nonblocking implementation using
only reads, writes and Test&Set [14]. Such a helping mechanism would provide a wait-free
queue implementation using those primitives, showing that the queue belongs to Common2,
the family of shared objects that are wait-free implementable from primitives with consensus
number 2 for any number of processes [1, 2]. The Common2 family contains Test&Set, Swap,
stacks and other objects.

The question whether queues belong to Common2 has been open for many years and has
received a considerable amount of attention [2, 4, 5, 6, 8, 14]. It essentially asks if there is an
n-process linearizable wait-free implementation of a queue from Test&Set, for every n ≥ 3.

This paper investigates ways to formalize helping, with the purpose of being able to sep-
arate objects for which there are wait-free implementations from those with only nonblocking
implementations. We are especially interested in implementations using primitives with finite
consensus number [12], like Test&Set, which allows us to solve consensus exactly for two
processes. Primitives with an infinite consensus number, like Compare&Swap, are universal
and provide generic wait-free implementation for any shared object [12]; clearly, with such
primitives nonblocking and wait-freedom cannot be separated.

We first introduce a notion of helping that is based on one process determining the return
value of an operation by another process; it relies on the notion of operation valency [11],
i.e., the possible values an operation might return. Roughly speaking, an implementation
has helping if in some situation, a process makes an undecided operation of another process
become decided on some value. In the context of specific objects, like queues and stacks,
which have a distinguished “empty” value (denoted ⊥), we say that helping is nontrivial if
one process makes another become decided on a non-⊥ value. Helping is nontrivial since
the helping process needs to “grab” the value it gives to the helped process. Therefore, the
helping process has to communicate with the other processes to ensure that this value is not
taken by someone else.

Our first main result is a separation between stacks and queues implemented from
Test&Set. It shows that any wait-free queue must have nontrivial helping while this is not
true for stacks, as we show that the wait-free stack of Afek et al. [1] (which established that
stacks belong to Common2) does not have nontrivial helping.

The paper also studies an alternative way to formalize helping, which is based on
restricting the possible linearizations of an operation by the progress of another process.
This kind of helping, which we call universal, formalizes the helping mechanism employed
in Herlihy’s universal construction. Intuitively, an implementation has universal helping if
for every execution α, for every long enough extension of it, all pending operations in α

(which might be still pending in the extension) are linearized. We show that universal helping
for queues and stacks is strong enough to solve consensus, namely, any wait-free n-process
implementation of a queue or stack with universal helping can solve n-process consensus.

These results provide insights on why finding a wait-free implementation for queues from
Test&Set has been a longstanding open question: any such implementation must have some
helping mechanism; however, this mechanism cannot be too strong, otherwise the resulting
implementation would be able to solve consensus for n processes, n ≥ 3, which is impossible
to do with Test&Set since it has consensus number 2.

Finally, the paper compares the two formalizations proposed here to the formalization
of helping recently introduced in [3]. It also shows that universal helping has implications
on strong linearizability [9] for queues and stacks: there is no n-process wait-free strong
linearizable implementation of queues or stacks from primitives with consensus number
smaller than n.
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2 Model of Computation

We consider a system with n asynchronous processes, p1, . . . , pn. Processes communicate
with each other by applying primitives to shared base objects; the primitives can be read and
write, or more powerful primitives like Test&Set or Compare&Swap. Any process may crash
at any time in an execution, namely, it stops taking steps from that point on. A process that
does not crash is correct.

A (high-level) concurrent object, or data type, is defined by a state machine consisting of a
set of states, a set of operations, and a set of transitions between states. Such a specification
is known as sequential. In the rest of the paper we will concentrate on stacks and queues.
A shared stack provides two operations push(·) and pop(). A push(x) operation puts x at
the top of the stack, and a pop() removes and returns the value at the top, if there is one,
otherwise it returns ⊥. A shared queue provides operations enq(·) and deq(). An enq(x)
operation puts x at the tail of the queue, and a deq() removes and returns the value at the
head of the queue, if there is one, otherwise it returns ⊥.

An implementation of an object O is a distributed algorithm A consisting of local state
machines A1, . . . , An. Local machine Ai specifies which primitives pi executes in order to
return a response when it invokes an operation of O. An implementation is wait-free if
every process completes each of its invocations in a finite number of its steps. Formally, if a
process executes infinitely many steps in an execution, it completes all its invocations. An
implementation is nonblocking if whenever processes take steps, at least one of the operations
terminates. Namely, in every infinite execution, infinitely many invocations are completed.
Thus, a wait-free implementation is nonblocking but not necessarily vice versa.

A configuration C of the system is a collection containing the states of all base objects
and processes. A configuration is initial if base objects and processes are in initial states.
Given a configuration C, for any process p, p(C) denotes the configuration after p takes its
next step. A process p is idle in a configuration C if p is in a state in which all its operations
are completed.

An execution of the system is modelled by a history, which is a possibly infinite sequence
of invocations and responses of high-level operations and primitives. For a set of processes S,
an S-execution is an execution in which only processes in S take steps. If S = {p}, we say
that the execution is p-solo. An operation op in a history is complete if both its invocation
inv(op) and response res(op) appear in the history. An operation is pending if only its
invocation appears in the history.

A history H induces a natural partial order <H on the operations of H: op <H op′ if and
only if res(op) precedes inv(op′). Two operations are concurrent if they are incomparable. A
sequential history alternates matching invocations and responses and starts with an invocation
event. Hence, if H is sequential, <H induces a total order.

Linearizability [13] is the standard notion used to identify a correct implementation.
Roughly speaking, an implementation is linearizable if each operation appears to take effect
atomically at some time between the invocation and response of an operation.

Let A be an implementation of an object O. A history H of A is linearizable if H can be
extended by adding response events for some pending invocations such that the sequence H ′

containing only the invocation and responses of O agrees with the specification of O, namely,
there is an initial state of O and a sequence of invocations and responses that produces H ′.
We say that A is linearizable if each of its histories is linearizable.

In the consensus problem, each process proposes a value and is required to decide on a
value such that the following properties are satisfied in every execution:
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Termination. Every correct process decides.
Agreement. Processes decide on the same value.
Validity. Processes decide proposed values.

Consensus is universal [12] in the sense that from reads and writes and objects solving
consensus among n processes, it is possible to obtain a wait-free implementation for n
processes of any concurrent object with a sequential specification. The consensus number
of a primitive [12] is the maximum number n such that it is possible to solve consensus on
n processes from reads, writes and the primitive. For example, the consensus number of
Test&Set is 2. Hence, Test&Set allows us to implement any concurrent object in a system
with 2 processes.

3 Separating Stacks and Queues with Nontrivial (Valency-Based)
Helping

In this section, we present a notion of helping that differentiates between queues and
stacks: any queue implementation must exhibit this kind of helping, but there is a stack
implementation that does not (essentially, that of [1]). This sheds some light on the difficulty
of finding a wait-free implementation of a queue from Common2.

Let A be a wait-free linearizable implementation of a data type T , such as a stack or
queue. The input for an invocation of an operation of T is from some domain V and the
output of a response is from the domain V ∪ {⊥}, where ⊥ /∈ V denotes the empty or initial
state of T .

Let C be a reachable configuration of A and let opType(·) be an operation by a process p.
We say that opType(·) is v-univalent in C (or just univalent when v is irrelevant) if in every
configuration C ′ that is reachable from C in which opType(·) is complete, its output value is
v; otherwise, opType(·) is multivalent in C. We say that opType(·) is critical on v in C (or
just critical in C) if it is multivalent in C but v-univalent in p(C).

I Definition 1 (Nontrivial and trivial (valency-based) helping). Process q helps process p 6= q

in configuration C if there is a multivalent opType(·) ∈ C by p that is v-univalent in q(C).
We say that q nontrivially helps p if v 6= ⊥; otherwise, it trivially helps p.
An implementation of a type T has nontrivial (trivial) helping if it has a reachable configura-
tion C such that some process q nontrivially (trivially) helps process p in C.

Directly from the previous definition we get the following claim.

I Claim 2. If C is a reachable configuration of an algorithm without nontrivial helping, and
an operation op by p is multivalent in C, then op is not v-valent in q(C), for any value v 6= ⊥
and process q 6= p.

The proof of the next theorem captures the challenging “tail chasing" phenomenon one
faces when trying to implement a queue from objects in Common2. Observe that in the case
of a queue implementation, only dequeues can be nontrivially helped since enqueues always
return true, and are therefore trivially univalent.

I Theorem 3. Any two-process wait-free linearizable queue implementation from read/write
and Test&Set operations has nontrivial helping.

Proof. Assume, by way of contradiction, there is such an implementationA without nontrivial
helping. Let p and q be two distinct processes, and let Cinit be the initial configuration of A.
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For any k ≥ 1, we construct an execution αk of p and q, starting with Cinit and ending in
configuration Ck. In αk, p executes a single deqp() operation, and the following properties
hold:
1. q is idle in Ck,
2. p has at least k steps in αk,
3. in every linearization of αk, all enqueues appear in the same order and enqueue distinct

values,
4. there is no linearization of αk in which deqp() outputs ⊥, and
5. deqp() is multivalent in Ck (in particular, it is pending).

We proceed by induction. For the base case, k = 1, let α1 be the execution that starts at
Cinit and in which p completes alone enq(1) and then starts deqp() until it is critical on 1.
This execution exists because A is wait-free. Clearly, there is no linearization of α1 in which
deqp() outputs ⊥. The other properties also hold.

Suppose that we have constructed αk, k ≥ 1; we show how to obtain αk+1. Let β1 be the
q-solo extension of αk in which q completes enq(z), where z is a value that is not enqueued
in αk, and then starts a deqq() operation. Let β2 be an extension of αk β

1 in which p and q
take steps until both their dequeue operations are critical. The extension β2 exists because,
first, A is wait-free and, second, by Claim 2, a step of p does not make deqq() univalent, and
a step of q does not make deqp() univalent.

Let C be the configuration at the end of αk β
1 β2; note that deqp() is critical on some

value yp in C and that deqq() is critical on some value yq in C.
Note that neither yp nor yq is ⊥ since the queue has at least two values in C. This holds

since the induction hypothesis is that there is no linearization of αk in which deqp() outputs
a non-⊥ value, and in the extension β1 β2, q first completes an enqueue and then starts a
dequeue.

By a similar argument, there is no linearization of αk β
1 β2 in which either deqp() or

deqq() outputs ⊥.
The following claim is where the specification of a queue comes into play. (This claim

does not hold for a stack, for example.)

I Claim 4. yp = yq.

Proof. Suppose, by way of contradiction, that yp 6= yq. By the induction hypothesis, in
every linearization of αk, the order of enqueues is the same. The same holds for αk β

1 β2

because q is idle in αk, by induction hypothesis, and then its enqueue in β1 happens after all
enqueues in αk. Suppose, without loss of generality, that enq(yq) precedes enq(yp) in every
linearization of αk β

1 β2. Consider the p-solo extension in which p completes deqp(), ending
with configuration D.

Since deqp() is critical on yp in C, it outputs yp in D. We claim that deqq() outputs yq

in every extension from D. Otherwise, another dequeue outputs yp in some extension from
D. Since this dequeue starts after deqp() completes, it must be linearized after deqp(). This
contradicts the linearizability of A, since in every linearization of αk β

1 β2, enq(yq) precedes
enq(yp). Therefore, deqq() is yq-univalent in D. This contradicting Claim 2, since a step of p
makes deqq() univalent on a non-⊥ value. J

Note that there is no extension of C in which deqp() and deqq() output the same value
because the enqueues in αk have distinct values and in β1, q enqueues z, a value that is not
enqueued in αk.
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p

q

Cinit deqp() is
multivalent

deqp() and deqq()
are critial on 1

deqp() is
multivalent

enq(1)

enq(2)

deqp() : ?

deqq() : 1

Figure 1 Getting α2 from α1.

Assume that p is poised to access Rp in C (i.e. the next step of p is on Rp) and that q
is poised to access Rq in C. If Rp 6= Rq, then in the p-solo extension of q(p(C)) in which p
completes deqp(), its output is y = yp = yq. But in p(q(C)), the local state of p and the state
of the shared memory is the same as in q(p(C)). Hence, in the p-solo extension of p(q(C)), p
completes deqp() with output y, as well. This contradicts the fact that deqq() is critical on y
in C. Thus, Rp = Rq = R.

A similar argument, by case analysis, shows that p and q must apply Test&Set primitives
to R in C, and that the value of R is 0 in C. These facts are used in the proof of the next
claim.

I Claim 5. deqp() is not critical in q(C).

Proof. Let y = yp = yq be the value that deqp() and deqq() are critical on in C. Suppose,
by way of contradiction, that deqp() is critical on y′ in q(C). We have that y′ 6= y.

Let γ be an extension of αk β
1 β2 q in which deqp() outputs. Write γ = λ1 p λ2, where

λ1 is p-free (λ1 might be empty). Since p and q are about to perform Test&Set primitives
on R in C, the state of the shared memory and the local state of p are the same at the
end of αk β

1 β2 q λ1 p and αk β
1 β2 q p λ1, because in both executions q is the first process

accessing R (using Test&Set) and then when p accesses R (using Test&Set also), it gets false,
no matter when it accesses R. Then, p is in the same local state in αk β

1 β2 q λ1 p λ2 and
in αk β

1 β2 q p λ1 λ2. We have that deqp() is critical in q(C), which implies that the output
of it in αk β

1 β2 q p λ1 λ2 is y′, and thus the output of deqp() in αk β
1 β2 q λ1 p λ2 is y′ too,

since, as already said, the local state of p is the same in both executions. This implies that
deqp() is univalent in q(C), contrary to our assumption that it is critical in q(C). J

Let αk+1 = αk β
1 β2 q p β3, where β3 is the q-solo extension in which q completes its

deqq() (β3 exists because A is wait-free). See Figure 1. We argue that αk+1 has the desired
properties.
1. q is idle in αk+1 because in β3 it completes deqq() and does not start a new operation.
2. p has at least k + 1 steps of deqp() in αk+1, since p has at least k steps of deqp() in αk,

by the induction hypothesis, and at least one step in β1 β2 q p β3.
3. By the induction hypothesis, in every linearization of αk, the enqueue operations follow

the same order. The enqueue of q in β1 happens after all enqueues in αk. Then, in every
linearization of αk+1, the enqueues follow the same order. The enqueues in αk+1 enqueue
distinct values because that is true for αk, by the induction hypothesis, and the enqueue
of q in β1 enqueues a value that is not in αk.

4. As argued above, there is no linearization of αk β
1 β2 in which either deqp() or deqq()

output ⊥. In β3, q just completes deqq(). Then, there is no linearization of αk+1 in which
deqp() outputs ⊥.
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Shared Variables:
range : Fetch&Add register initialized to 1
items : array [1, . . . , ] of read/write registers
T : array [1, . . . , ] of Test&Set registers

Operation Push(x):
(01) i = Fetch&Add(range, 1)
(02) items[i]← x

return true
end Push

Operation Pop():
(03) t = Fetch&Add(range, 0)

for i← t downto 1 do
(04) x← items[i]
(05) if x 6= ⊥ then
(06) if Test&Set(T [i]) then return x

end if
end for

(07) return ⊥
end Pop

Figure 2 The stack implementation of Afek et al. [1].

5. Since deqp() is not critical in q(C), it is multivalent at the end of αk β
1 β2 q p. Since β3

is q-solo, Claim 2 implies that deqp() is multivalent at the end of αk+1.

This yields an execution of A in which p executes an infinite number of steps but its
deqp() operation does not complete, contradicting the wait-freedom of A. J

As we just saw, any wait-free implementation of a queue from Test&Set must have
nontrivial helping. This is not the case for stack implementations, as we show next.

I Theorem 6. There is an n-process wait-free linearizable stack implementation from
read/write and m-process Test&Set primitives, 2 ≤ m ≤ n, without nontrivial helping.

Proof. First, we show that an n-process wait-free linearizable Test&Set operation can be
implemented from 2-process Test&Set without nontrivial helping. [2] present an n-process
wait-free linearizable implementation of a Test&Set operation from 2-process one-shot swap
primitives. Let us call this algorithm A. It is easy to check that A does not have nontrivial
helping. It is also easy to implement one-shot 2-process swap from 2-process Test&Set without
helping (the processes just use Test&Set to decide who swaps first), and hence, from A we
can get an n-process wait-free linearizable implementation of a Test&Set operation from
2-process Test&Set without nontrivial helping. Let us call the resulting algorithm B.

Now, consider Afek et al.’s stack implementation [1] (Figure 2). We argue that the
implementation does not have nontrivial helping: just note that there is no configuration C
in which process q makes another process p v-univalent, v 6= ⊥, because the only way a pop
operation becomes univalent on a non-⊥ value is by winning the Test&Set in line 6; thus,
it is impossible that a multivalent pop operation by p in C becomes univalent on a non-⊥
value in q(C), with q 6= p.

Afek et al. proved that one can get an n-process wait-free linearizable Fetch&Add from
2-process wait-free linearizable Test&Set primitives [2]. Let C be this implementation.

Now, we replace each Test&Set primitive in Afek et al.’s implementation in Figure 2
with an instance of B, and each Fetch&Add with an instance of C. Let A be the resulting
implementation. Clearly, A is an n-process wait-free linearizable implementation of a stack.
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inv(op) α γ β

∞

The order of op is fixed

Figure 3 Universal helping: every pending operation is eventually linearized.

Moreover, it has no helping because, as mentioned already, B has no helping (in the sense
described above) and Afek et al.’s stack implementation has no helping as well. Note that it
does not matter if C has helping or not (trivial or nontrivial) because, as already pointed
out, the only way a pop operation can become univalent is by winning the Test&Set in line 6,
hence the C cannot change this. J

From Theorems 3 and 6, we get that nontrivial helping is a distinguishing factor between
stacks and queues: while a stack can be implemented without nontrivial helping from
read/write and Test&Set, any implementation of a queue from the same primitives necessitates
nontrivial helping. Although the stack implementation of Theorem 6 is without nontrivial
helping, it does have trivial helping. An example is when a process p reads the counter
range in line 3 when there is only a single non-⊥ value in T [1, . . . , t] (where t is the value
that p reads), and then a process q 6= p reads range after p and takes the only non-⊥ value
in T [1, . . . , t] (namely, q overtakes p). When q wins in line 6, it makes p’s pop operation
⊥-univalent because p will scan the range T [1, . . . , t] without seeing any non-⊥ value, and
will therefore return ⊥ in line 7.

4 Universal (Linearization-Based) Helping

In this section we propose another formalization of helping, in which a process ensures that
operations by other processes are eventually linearized. This definition captures helping
mechanisms such as the one used in Herlihy’s universal wait-free construction [12]. We
evaluate the power of this helping mechanism via consensus and compare it with the valency-
based helping notion studied in Section 3.

Throughout this section, we assume, without loss of generality, that the first step of
every operation is to publish its signature (i.e., the operation type and its parameters) to the
shared-memory so that it may be helped by other processes. An operation is pending if it
has published its signature but did not yet terminate.

I Definition 7 (Universal (linearization-based) Helping). Consider an n-process wait-free
linearizable implementation of a data type T . The implementation has universal helping
if every infinite extension αβ of a finite history α has a finite prefix γ with a linearization
lin(γ), which satisfies the following conditions:

lin(γ) contains every pending high-level operation of α (see Figure 3), in addition to all
high-level operations that complete in γ.
Every extension γλ of γ has a linearization lin′(γλ) such that lin′(γ) is a prefix of it.

If the above conditions are satisfied for every γ such that some process completes f(n) or
more high-level operations in the extension γ − α, for some function f : N→ N, then we say
the implementation has f -universal helping.
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Operation propose(vi):
(01) V als[i]← vi

(02) Simulate to completion f(n) + 1 enq(i) operations
(03) S ← Snapshot of the shared-memory variables used by B
(04) d← Locally simulate a deq() operation on B, starting from S
(05) decide V als[d]
endoperation

Figure 4 Solving consensus using B.

Universal helping requires that the progress of some processes eventually ensures that
all pending invocations are linearized and all processes make progress. f -universal helping
bounds from above the number of high-level operations a process needs to perform in order
to ensure the progress of other processes.

I Theorem 8. Let B be an n-process nonblocking linearizable implementation of a queue
or stack. If B has f-universal helping, then n-process consensus can be solved using B and
read/write registers.

Proof. First assume that B implements a queue. Figure 4 shows the pseudocode of an
algorithm that solves consensus using B and read/write registers. Each process pi first
writes its proposal to V als[i] (initialized to ⊥) in Line 01 and then performs f(n) + 1 enq(i)
operations in Line 02.

To solve consensus, pi computes a snapshot that reads the state of the queue from the
shared memory to a local variable S (Line 03) and then invokes a single deq() operation
using state S in Line 04 (we say that pi locally simulates the deq() operation). Finally, pi

decides (in Line 05) on the value proposed by the process whose identifier it dequeues in
Line 04. The snapshot in Line 03 is taken as follows. In all executions of B in which each
process executes at most f(n) + 1 enqueue operations, processes access a finite set of base
objects in the shared memory. Let R be the set with all base objects in all those executions.
Then, processes use any read/write wait-free snapshot algorithm to take a snapshot of R.
We now prove that the algorithm is correct.

Termination. Every correct process decides as each process invokes a finite number of
operations of B, which is nonblocking.

Validity. The view stored to S in Line 03 represents a state of B in which the queue is
non-empty, since at least a single enq() operation completed and no deq() operations were
invoked. Moreover, if pi gets d from its local simulation, pd participated in the execution.
It follows that every correct process pi decides on a proposed value.

Agreement. We prove that all correct processes dequeue the same value in Line 04, from
which agreement follows easily. Let E be an execution of the algorithm of Figure 3. Let
pi, pj be two distinct correct processes. Let αi (resp. αj) be the shortest prefix of E in
which the first enqueue operation performed by pi (resp. pj) in Line 02 completes. Let γi

(resp. γj) denote the shortest extension of αi in which pi (resp. pj) completes the last
enqueue operation in Line 02.
WLOG, assume that γi is a prefix of γj , that is, pi is the first to complete Line 02. In
γi, pi completed f(n) enq() operations after completing its first enqueue operation on
B. Consequently, Definition 7 guarantees that its first enq(i) operation, as well as any
operations that preceded it and pending operations that were concurrent with it, are
linearized in lin(γi) and their order is fixed. Since no dequeue operations are applied to
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(the shared copy of) B, lin(γi) consists of enqueue operations only. Let enq(k) be the
first operation in lin(γi).
Let βi (resp. βj) denote the shortest prefix of E in which pi (resp. pj) completes
Line 04. Since γi is a prefix of both βi and βj , it follows from Definition 7 that there
are linearizations lin′(βi) and lin′(βj) in which enq(k) is the first operation. It follows in
turn that the dequeue operations of both pi and pj in Line 04 return k, hence they both
decide on vals[k] in Line 05.

A similar argument gives the same result for stacks. The difference is that in the local
simulation, a process simulates pop operations until it gets an empty response, and then
decides on the proposed value of the process whose identifier was popped last (hence, pushed
first). J

Herlihy’s universal construction [12] has f -universal helping. Thus, Theorem 8 implies
that, for stacks and queues, Herlihy’s construction uses the full power of n-consensus in the
sense that the resulting implementations can actually be used to solve n-consensus.

The next lemma will be used to show that for queues and stacks, universal helping implies
nontrivial helping.

I Lemma 9. Let T be a data type with two operations put(x) and get() such that, for
distinct processes p and q, there is an infinite sequential execution S of T containing only
put operations by q with a prefix S′ such that:
P1: For every prefix S′ · S′′ of S, in every sequential extension S′ · S′′ · 〈p.get() : return y〉,

y 6= ⊥ holds, where ⊥ is the initial state of T .
P2: In every pair of sequential extensions S′ · 〈p.get() : return y1〉 · 〈q.get() : return z1〉 and

S′ · 〈q.get() : return z2〉 · 〈p.get() : return y2〉, y1 6= y2 holds.
Then, any wait-free linearizable implementation of T with universal helping also has nontrivial
helping.

Proof. Consider sequential executions S and S′ of T as the lemma assumes. Let A be a
wait-free linearizable implementation of T with universal helping. Let α be an execution of
A in which q completes alone all operations in S′, in that order. We claim that a getp() by p
is multivalent in the configuration at the end of α (note that at the end of α, getp() has not
even started): by property P2, the output of getp() in the extension of α in which getp() is
completed alone and then a getq() by q is completed alone, is different from the output in
which the operations are completed in the opposite order.

Now, let α′ be an extension of α in which p executes alone a getp() until the operation is
critical. Let β be an infinite extension of α′ in which q runs alone and executes the operations
in S−S′, in that order. Since A has universal helping, there is a finite prefix γ of β such that
there is a linearization lin(γ) containing getp(). Moreover, for every extension λ of γ, there is
a linearization lin′(λ) such that lin(γ) = lin′(γ). Intuitively, this means that the linearization
order of getp() in γ is fixed, hence it is univalent at the end of γ. We formally prove this.

Let v be the return value of getp() in lin(γ). We claim that getp() is v-univalent in the
configuration at the end of γ. Let λ be any extension of γ in which getp() is completed. Let
u be the output value of getp() in λ. Since getp() is completed in λ, any linearization of λ
contains getp(). As noted above, there is a linearization lin′(λ) of λ such that lin(γ) = lin′(γ),
which implies that u = v. We conclude that getp() is v-univalent at the end of γ. We now
show that v 6= ⊥. Observe that lin(γ) must have the form S′ · S′′ · 〈getp() : return v〉 · S′′′,
for some sequences S′′ and S′′′ of put operations by q. Note that S′ · S′′ · S′′′ is a prefix of
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S, since q executes its operations in the order they appear in S. Thus, by property P1, it
follows that v 6= ⊥.

Finally, since getp() is multivalent at the end of α′ and it is univalent on a non-⊥ value
at the end of γ, there must be a prefix of γ that ends in a configuration C in which getp()
is multivalent but it is univalent in q(C) on a non-⊥ value. Therefore, A has nontrivial
helping. J

I Corollary 10. A wait-free linearizable implementation of a queue or stack with universal
helping has nontrivial helping.

Proof. For the case of the stack, S is the infinite execution in which some process q performs
a sequence of push operations with distinct values and S′ is any non-empty prefix of S. The
case of the queue is defined similarly. J

Figure 5 presents a stack implementation that has nontrivial helping but not universal
helping, as established by Lemma 14 in the appendix. It augments the wait-free stack of
Afek et al. [1] with a helping mechanism, added by lines 01–05 in push and lines 08–14 in pop.
Each process pi 6= pn that wants to push value x, first checks if pn’s current pop operation
is pending (lines 02–03), and if so, tries to help pn by directly giving x to its current pop
operation. If pi succeeds in updating H[j] in line 05, then it does not access the items array.
In that case, pn is not able to update H[j] in line 11, implying that it must take the value
in h_items that pi left for it (lines 12–14). If pn manages to update H[j] in line 11, then
no process succeeded in helping it and it proceeds as in Afek et al.’s stack (lines 15–23).
Similarly, processes whose Push operation fails to help pn proceed as in Afek et al.’s stack
(lines 06–07).

In Appendix A, we prove that the algorithm in Figure 5 is a wait-free linearizable
implementation of a stack that has nontrivial helping but not universal helping. Together
with Lemma 9, this implies that, for stacks, universal helping is strictly stronger than
nontrivial helping.

5 Related Notions

This section compares valency-based helping and universal helping to the definition of helping
in [3] and the notion of strong linearizability [9].

5.1 Relation to the help definition of [3]
Helping is formalized in [3] as follows. A linearizable implementation of a concurrent object
has helping, which we call here linearization-based helping, if there is an execution α with
distinct operations op1 and op2 by p and q, such that
1. there are linearizations lin(α) and lin′(α) such that op1 precedes op2 in lin(α) and op2

precedes op1 in lin′(α), and
2. in every linearization of α · r, for some r 6= p (possibly r = q), op1 precedes op2.

In a sense, valency-based helping and linearization-based helping are incomparable. On
the one hand, valency-based helping allows us to distinguish stacks and queues, as queues need
nontrivial (valency-based) helping and stacks do not (Theorems 3 and 6), while both stacks
and queues necessarily have linearization-based helping [3]. On the other hand, valency-based
helping cannot capture helping among enqueues, as they always return true. Nevertheless,
enqueues are taken into account, since the dequeues in an execution reveal how the helping
mechanism determines the order of enqueues.
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Shared Variables:
range : Fetch&Add register initialized to 1
current : read/write register initialized to 1
items : array [1, . . . , ] of read/write registers
h_items : 2-dimensional array [1, . . . , n− 1, 1, . . . , ] of read/write registers
pend : array [1, . . . , ] of boolean read/write registers initialized to false
T : array [1, . . . , ] of Test&Set objects
H : array [1, . . . , ] of Compare&Swap objects initialized to ⊥

Operation Push(x):
(01) if ID 6= n then
(02) j ← current
(03) if pend[j] then
(04) h_items[ID][j]← x
(05) if Compare&Swap(H[j],⊥, ID) then return true

end if
end if

(06) i = Fetch&Add(range, 1)
(07) items[i]← x

return true
end Push

Operation Pop():
(08) if ID = n then
(09) j ← current
(10) pend[j]← true
(11) if ¬Compare&Swap(H[j],⊥, ID) then
(12) current← j + 1
(13) k ← get(H[j])
(14) return h_items[k][j]

end if
end if

(15) t = Fetch&Add(range, 0)
(16) for i← t downto 1 do
(17) x← items[i]
(18) if x 6= ⊥ then
(19) if Test&Set(T [i]) then
(20) if ID = n then current← j + 1
(21) return x

end if
end if

end for
(22) if ID = n then current← j + 1
(23) return ⊥
end Pop

Figure 5 A stack implementation without universal helping.

A proof similar to the proof of Lemma 9 shows that universal helping implies linearization-
based helping. Consider any implementation (wait-free or nonblocking) of a data type with
universal helping. Consider an infinite execution β that starts in an initial configuration,
where a process p starts some operation op1 and stops before the operation is completed,
and afterwards a distinct process q completes infinitely many operations (the type does not
matter). Since the implementation has universal helping, eventually, the order of op1 in any
linearization is fixed. More precisely, there is a prefix γ of β such that, for every linearization
of every extension of γ, the order of op1 is the same. This implies that, at some point, a step
of q made op1 precede an operation op2 of q, in every linearization. Thus, the implementation
has linearization-based helping.

The other direction is not necessarily true, since one can modify Herlihy’s universal
construction to get a nonblocking implementation of any data type from Compare&Swap in
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which each process is helped just once. The resulting implementation has linearization-based
helping but not universal helping because universal helping requires that every pending
operation is eventually linearized, which does not happen once every process in the execution
has been helped, since from this point on some operations may be blocked forever.

I Theorem 11. For every data type T , every nonblocking or wait-free implementation of T
with universal helping has linearization-based helping, while the opposite is not necessarily
true.

5.2 Relation to strong linearizability [9]
Roughly speaking, an implementation of a data type is strongly linearizable [3] if once
an operation is linearized, its linearization order cannot be changed in the future. More
specifically, there is a function L mapping each execution to a linearization, and the function
is prefix-closed: for every two executions α and β, if α is a prefix of β, then L(α) is a prefix
of L(β).

In a sense, universal helping can be thought of as a sort of eventual strong linearizability.
For every execution α, as it is extended, there is eventually an extension α′ with a linearization
lin(αα′) such that for every execution β, if αα′ is a prefix of β, then there is a linearization
lin′(β) with lin(αα′) = lin′(αα′). We stress that universal helping provides the property that
pending operations are linearized eventually, which is not guaranteed by strong linearizability.

The simulation in the proof of Theorem 8 solves consensus because from some point on,
all processes agree on a first operation and this agreement cannot be changed as a result of
future steps. The following theorem can be proven using a simulation similar to the one in
the proof of Theorem 8, with the difference being that each process only needs to complete
a single enqueue because the linearization order of that operation does not change in the
future.

I Theorem 12. Let B be an n-process strongly-linearizable nonblocking implementation of a
queue (stack). Then, n-process consensus can be solved from B.

The previous theorem shows that, for some data types, strong linearizability for n processes
can only be obtained through consensus number n, thus strong linearizability is costly, even
if we are looking for nonblocking implementations. However, for stacks, linearizability can
be obtained from consensus number 2 as there are wait-free stack implementations from
Test&Set [1].

I Corollary 13. There is no n-process strongly-linearizable nonblocking implementation of a
queue (stack) from primitives with consensus number less than n.

All previous impossibility results on strongly-linearizable implementations that we are
aware of consider only implemenations from consensus-number 1 base objects [7, 10].

6 Discussion

We have considered two ways to formalize helping in implementations of shared objects,
one that is based on operation valency and another that is based on possible linearizations.
We used these notions to study the kind of helping needed in wait-free implementations of
queues and stacks, from Test&Set and stronger primitives. In this work we used an ad-hoc
definition of nontrivial helping for queues and stacks, but this notion can be generalized by
defining two disjoint sets of outputs values, trivial and nontrivial, and defining trivial and
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nontrivial helping accordingly. These notions might facilitate further study of the relations
between nonblocking and wait-free implementations.
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Proof. We first prove that the implementation is linearizable (clearly, it is wait-free). Let α
be an execution of the algorithm. Intuitively, we show that there is an execution γ of Afek et
al.’s stack implementation (see Figure 2) such that the operations in γ respect the real-time
order of the operations in α and the outputs are the same. Thus, α is linearizable since γ is
linearizable.

In any execution of the algorithm, a pushi(x) operation of pi matches the j-th popn()
operation of pn, if pi successfully updates H[j] during the execution. We call such a pair of
operations a matching.

Let k be the number of matchings in α. By induction on k, we show that α is linearizable.
If k = 0, then α is linearizable because it corresponds to some execution of Afek et al.’s
implementation. Suppose that the claim holds for k − 1. Below we show that it holds for k.

Let pushi(x) by pi and popn() by pn be the k’th matching in α. Note that pushi(x) and
popn() are concurrent in α. Moreover, the Compare&Swap in line 05 of pushi(x) precedes the
Compare&Swap in line 11 of popj() (if pn ever executes it).

We now construct an execution α′ that is easier to reason about than α. Let β be the
longest prefix of α that does not have the Compare&Swap in line 05 of pushi(x). Thus, in the
configuration at the end of β, pi is about to perform the Compare&Swap in line 05, and pn is
about to perform the Compare&Swap in line 11.

Let βi and βn respectively denote the subsequences of α− β containing only the steps of
pushi(x) and popn(). Let λ be the subsequence of α− β obtained by removing the steps of
βi and βn.

Then, α′ is the execution β βi βn λ. Intuitively, in α′, the steps of pushi(x) and popn()
are placed together.

It can be seen that there is no process that can distinguish between α and α′: since
neither pi nor pn change items or range in pushi(x) and popn(), the position in the execution
when they take the steps in βi and βn does not affect other operations. Moreover, α′ respects
the real-time order in α: if an operation op1 precedes op2 in α, op1 also precedes op2 in α′.
Although there may be concurrent operations in α that are not concurrent in α′, this is not
a problem for linearizability.1 Therefore, if α′ is linearizable, then α is linearizable too. We
now show that it is.

Consider the following execution γ that starts with β and then:
1. pn executes the Compare&Swap in line 11 (hence sets H[j]).
2. pi executes three consecutive steps, which correspond to lines 05, 06 and 07 (because it

cannot set H[j]).
3. If popj() (by pn) is completed in α′, pn completes it in γ (thus it outputs x).
4. If pushi(x) is completed in α′, pi completes it in γ.
5. λ is appended at the end.

Thus, in γ, pn is about to take its output from items, pi places x in items (at the top of
the stack) and pn takes it from there. The steps of λ, following pushi(x) and popj(), proceed
as in α and the only difference is that the Fetch&Add in lines 06 and 15 outputs in γ an
integer larger than in α, since pi adds 1 to range in γ in operation pushi(x).

Also observe that γ respects the real-time order in α′. By induction hypothesis, γ is
linearizable, since it has k − 1 matchings. Let lin(γ) be a linearization of γ. From the

1 For example, in α′, pushi(x) precedes any operation starting in λ, however, in α those operations might
be concurrent.

OPODIS 2015



31:16 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

properties of γ just described, it follows that lin(γ) is actually a linearization of α′ as well,
hence a linearization of α. Therefore, the implementation is linearizable.

We now show that the algorithm has nontrivial helping. Starting at the initial configura-
tion, let α be the execution in which pn completes alone a push(1) operation and then starts
a pop() operation and stops just before executing the Compare&Swap in line 11. Then, p1
starts a push(2) operation and stops just before executing the Compare&Swap in line 05.

Let C be the configuration at the end of α. We claim that the pop() is multivalent in C.
Indeed, let x ≥ 3. In the extension of α in which first p2 completes a push(x) alone and then
pn completes its pop(), the output of the pop() is x. Also, note that pop() is 2-univalent in
p1(C) because there is no extension of p1(C) in which pn updates H[1] in Line 11, so if it
ever returns a value, this must be the value in h_items[1][1] (which is 2).

Finally, we prove that the implementation has no universal helping. Starting at the initial
configuration, let α be the execution in which p1 starts pop() and stops before executing
the Fetch&Add in line 15. Let β the the infinite extension of α in which p2 completes alone
(infinitely many) push operations with distinct values. If the algorithm would have had
universal helping, then there would have been a finite prefix γ of β such that there was a
linearization lin(γ) containing pop(), and for every extension λ of γ, there would have been a
linearization lin′(λ) such that lin(γ) = lin′(γ).

Let γ be such a prefix of β and let λ be the extension of γ in which p2 completes any
pending operation in γ and a push(x), where x is greater than any value in γ. Let λ′ be
the extension of λ in which p1 completes its pop() operation. Observe that p1’s operation
outputs x in λ′. Moreover, there is no linearization lin′(λ′) of λ′ with lin(γ) = lin′(γ) because
push(x) does not appear in γ. Thus, the implementation has no universal helping. J
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