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Abstract—The virtualization and softwarization of modern
computer networks introduces interesting new opportunities for
a more flexible placement of network functions and middleboxes
(firewalls, proxies, traffic optimizers, virtual switches, etc.). This
paper studies approximation algorithms for the incremental
deployment of a minimum number of middleboxes at optimal
locations, such that capacity constraints at the middleboxes and
length constraints on the communication routes are respected.
Our main contribution is a new, purely combinatorial and
rigorous proof for the submodularity of the function maximizing
the number of communication requests that can be served by
a given set of middleboxes. Our proof allows us to devise a
deterministic approximation algorithm which uses an augment-
ing path approach to compute the submodular function. This
algorithm does not require any changes to the locations of
existing middleboxes or the preemption of previously served
communication pairs when additional middleboxes are deployed,
previously accepted communication pairs just can be handed
over to another middlebox. It is hence particularly attractive for
incremental deployments. We prove that the achieved polynomial-
time approximation bound is optimal, unless P = NP . This paper
also initiates the study of a weighted problem variant, in which
entire groups of nodes need to communicate via a middlebox (e.g.,
a multiplexer or a shared object), possibly at different rates. We
present an LP relaxation and randomized rounding algorithm for
this problem, leveraging an interesting connection to scheduling.

I. INTRODUCTION

Middleboxes are ubiquitous in modern computer networks
and provide a wide spectrum of in-network functions related to
security, performance, and policy compliance. It has recently
been reported that the number of middleboxes in enterprise
networks can be of the same order of magnitude as the number
of routers [38].

While in-network functions were traditionally implemented
in specialized hardware appliances and middleboxes, computer
networks in general and middleboxes in particular become
more and more software-defined and virtualized [18]: network
functions can be implemented in software and deployed fast
and flexibly on the virtualized network nodes, e.g., running
in a virtual machine on a commodity x86 server. Modern
computer networks also offer new flexibilities in terms of
how traffic can be routed through middleboxes and virtualized
data plane appliances (often called Virtual Network Functions,
short VNFs) [36]. In particular, the advent of Software-Defined
Network (SDN) technology allows network operators to steer
traffic through middleboxes (or chains of middleboxes) using
arbitrary routes, i.e., along routes which are not necessarily
shortest paths, or not even loop-free [3], [34], [13], [33].

In fact, OpenFlow, the standard SDN protocol today, not
only introduces a more flexible routing, but itself allows to
implement basic middlebox functionality, on the switches [14]:
an OpenFlow switch can match, and perform actions upon, not
only layer-2, but also layer-3 and layer-4 header fields.

However, not much is known today about how to exploit
these flexibilities algorithmically. A particularly interesting
problem regards the question of where to deploy a minimum
number of middleboxes such that basic routing and capacity
constraints are fulfilled. Intuitively, the smaller the number of
deployed network functions, the longer the routes via these
functions, and a good tradeoff between deployment costs and
additional latency must be found. Moreover, ideally, middle-
boxes should be incrementally deployable: when additional
middleboxes are deployed, existing placements do not have to
be changed. This is desirable especially in deployment scenar-
ios with budget constraints, where an existing deployment has
to be extended by new middleboxes.

A. Our Contributions
We initiate the study of the natural problem of (incremen-

tally) placing a minimum number of middleboxes or network
functions.

Our main technical result is a deterministic and greedy
(polynomial-time) O(log (min{κ, n}))-approximation algo-
rithm for the (incremental) middlebox placement problem in
n-node networks where capacities are bounded by κ. The
algorithm is attractive for incremental deployments: it does not
require any changes to the locations of existing middleboxes
or the preemption of previously served communication pairs
when additional middleboxes are deployed.

At the heart of our algorithm lies a new and purely
combinatorial proof of the submodularity of the function
maximizing the number of pairs that can be served by a given
set of middleboxes. The submodularity proof directly implies
a deterministic approximation algorithm for the minimum
middlebox deployment problem. We show that the derived
approximation bound is asympotically optimal in the class of
all polynomial-time algorithms, unless P = NP.

This paper also initiates the discussion of two generaliza-
tions of the network function placement problem: (1) a model
where not only node pairs but entire node groups need to be
routed via certain network functions (e.g., a multiplexer or
a shared object in a distributed cloud), and (2) a weighted
model where nodes have arbitrary resource requirements. By
leveraging a connection to scheduling, we show that these
problems can also be approximated efficiently.
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We believe that our model and approach has ramifications
beyond middlebox deployment. For instance, our model also
captures fundamental problems arising in the context of in-
cremental SDN deployment (solving an open problem in [9],
[29]) or distributed cloud computing where resources need to
be allocated for large user groups.

We also initiate the study of a weighted problem variant,
where entire groups of nodes need to communicate via a
shared network function (e.g., a multiplexer of a multi-media
conference application or a shared object), possibly at different
rates. We present an LP relaxation and randomized rounding
algorithm for this problem, establishing an interesting connec-
tion to scheduling.

B. Novelty and Related Work

In this paper we are interested in algorithms which pro-
vide formal approximation guarantees. In contrast to classic
covering problems [8], [15], [40]: (1) we are interested in the
distance between communicating pairs, via the covering nodes,
and not to the covering nodes; (2) we aim to support incre-
mental deployments: middlebox locations selected earlier in
time as well as the supported communication pairs should not
have to be changed when deploying additional middleboxes;
(3) we consider a capacitated setting where the number of
items which can be assigned to a node is bounded by κ.

To the best of our knowledge, so far, only heuristics or
informal studies without complete or combinatorial proofs of
the approximability [2], [25], [30], [38] as well as algorithms
with an exponential runtime in the worst-case [20], [25], of
the (incremental and non-incremental) middlebox deployment
problem have been presented in the literature. Our work also
differs from function chain embedding problems [12], [27],
[11] which often revolve around other objectives such as
maximum request admission or minimum link load.

Nevertheless, we in this paper show that we can build upon
hardness results on uncapacitated covering problems [28] as
well as Wolsey’s study of vertex and set covering problems
with hard capacities [40]. An elegant alternative proof to
Wolsey’s dual fitting approach, based on combinatorial argu-
ments, is due to Chuzhoy and Naor [7]. In [7] the authors
also show that using LP-relaxation approaches is generally
difficult, as the integrality gap of a natural linear program for
the weighted and capacitated vertex and set covering problems
is unbounded.
Bibliographic Note. A preliminary version of this paper
appeared in CCR [26].

C. Putting Things into Perspective

Our problem is a natural one and, as mentioned, features
some interesting connections to and has implications for
classic (capacitated) problems. To make things more clear and
put things into perspective, in the following, we will elaborate
more on this relationship.

The generalized dominating set problem [4] asks for a set
of dominating nodes of minimal cardinality, such that the
distance from any network node to a dominator is at most
`. In the capacitated version of the problem, the number of

t1 

s1 

s2 

t2 

s3 

t3 

m 

Fig. 1: Example: A minimum cardinality dominating set (three
nodes, in light grey) is a bad approximation for the middlebox
deployment problem (one node in center, in darker grey).

network nodes which can be dominated by a node is limited.
Similarly, capacitated facility location problems [1], [5] ask for
locations to deploy facilities, subject to capacity constraints,
such that the number of facilities as well as the distance to the
facilities are jointly optimized. In contrast to these problems
where the distance to a dominator or facility from a given node
is measured, in our middlebox deployment problem, we are
interested in the distance (resp. stretch) between node pairs,
via the middlebox. At first sight, one may intuitively expect
that optimal solutions to dominating set or facility location
problems are also good approximations for the middlebox
deployment problem. However, this is not the case, as we
illustrate in the following. Consider an optimal solution to the
distance `/2 dominating set problem: since the distance to any
dominator is at most `/2, the locations of the dominators are
also feasible locations for the middleboxes: the route between
two nodes via the dominator is at most `/2 + `/2 = `.
However, the number of dominators in this solution can be
much larger than the number of required middleboxes.

Consider the example in Figure 1: in a star network where
communicating node pairs are located at the leaves, at depth 1
and `−1, and where node capacities are sufficiently high such
that they do not constitute a bottleneck, a single middlebox m
in the center is sufficient. However, the stricter requirement
that dominating nodes must be at distance at most `/2, results
in a dominating set of cardinality Ω(n/`), i.e., Ω(n) for
constant `.

While our discussion revolved around constraints on the
length `, similar arguments and bounds also apply to the
stretch, the main focus of this paper: the ratio of the length of
the path through a middlebox, and the length of the shortest
path between the communicating pair. To see this, simply
modify the example in Figure 1 by adding a direct edge
between each communicating pair si and ti. Let c = `.
Then the length of the shortest path between each pair is
one. The dominating nodes must be at distance at most c/2
from the communicating nodes. Consequently, the cardinality
of the dominating set is Ω(n/c), i.e., Ω(n) for constant c;
deploying one single middlebox m at the center and routing
the communication between each pair through m results in
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Fig. 2: Example: The communication between node pairs
(si, ti), for i ∈ {1, 2, 3, 4}, as well as between the group of
nodes {g1, g2, g3} needs to be routed via a network function
resp. middlebox M . Due to capacity constraints and con-
straints on the route length, M is instantiated at four locations
{m1,m2,m3,m4} in this example.

paths of stretch c.

D. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces our model and discusses different use cases.
In Section III we present our approximation algorithm together
with its analysis. Section IV extends our study to weighted
and group models. After reporting on our simulation results
in Section V, we conclude our contribution in Section VI.

II. MODEL AND USE CASES

A. Formal Model

We model the computer network as a graph connecting
a set V of n = |V | nodes. The input to our problem is a
set of communicating node pairs P : the route of each node
pair (s, t) ∈ P needs to traverse an instance of a middlebox
resp. network function (e.g., a firewall). Node pairs do not have
to be disjoint: nodes can participate in many communications
simultaneously.

For the sake of generality, we assume that middleboxes can
only be installed on a subset of nodes U ⊆ V . We will refer
to the set of middleboxes locations (and equivalently, the set
of middleboxes instances) by M , and we are interested in
deploying a minimal number of middleboxes at legal locations
M ⊆ U such that:

1) Each pair p = (s, t) ∈ P is assigned to an instance
m ∈M , denoted by m = µ(p).

2) For each pair p = (s, t) ∈ P , there is a route from s
via m = µ(p) to t of length at most ρ · d(s, t), i.e.,
d(s,m) + d(m, t) ≤ ρ · d(s, t), where d(u, v) denotes
the length of the shortest path between nodes u, v ∈
V in the network G, and where ρ ≥ 1 is called the
stretch. For example, a stretch ρ = 1.2 implies that the
distance (and the latency accordingly) when routing via
a middlebox is at most 20% more than the distance (and
the latency accordingly) when connecting directly. Our

approach supports many alternative constraints, e.g., on
the maximal route length.

3) Capacities are respected: at most κ node pairs can be
served by any middlebox instance.

Our objective is to minimize the number of required mid-
dlebox instances, subject to the above constraints.

In this paper, we will also initiate the study of a weighted
model, where different communication pairs have different
demands, as well as a group model, where network functions
need to serve entire groups of communication partners. See
Figure 2 for an example.

B. Use Cases

Let us give three concrete examples motivating our formal
model.
Middlebox Deployment. Our model is mainly motivated by
the middlebox placement flexibilities introduced in network
function virtualized and software-defined networks. Deploy-
ing additional middleboxes, network processors or so-called
“universal nodes” can be costly, and a good tradeoff should
be found between deployment cost and routing efficiency. For
example, today, network policies can often be defined in terms
of adjacency matrices or big switch abstractions, specifying
which traffic is allowed between an ingress port s and an
outgress network port t. In order to enforce such a policy,
traffic from s to t needs to traverse a middlebox instance
inspecting and classifying the flows. The location of every
middlebox can be optimized, but is subject to the constraint
that the route from s to t via the middlebox should not be
much longer than the shortest path from s to t.
Deploying Hybrid Software-Defined Networks. There is a
wide consensus that the transition of existing networks to
SDN will not be instantaneous, and that SDN technology
will be deployed incrementally, for cost reasons and to gain
confidence. The incremental OpenFlow switch deployment
problem can be solved using waypointing (routing flows via
OpenFlow switches); our paper solves the algorithmic problem
in the Panopticon [25] system.
Distributed Cloud Computing. The first two use cases
discussed above come with per-pair requirements: each com-
municating pair must traverse at least one function. However,
there are also scenarios where entire groups Gi of nodes need
to share a waypoint: for example, a multiplexer of a group
communication (a multi-media conference) or a shared object
in a distributed system, e.g., a shared and collaborative editor:
An example could be a distributed cloud application: imagine
a set of users Gi who would like to use a collaborative editor
application à la Google Docs. The application should be hosted
on a server which is located close to the users, i.e., minimizing
the latency between user pairs.

III. APPROXIMATION ALGORITHM

A. Overview

This section presents a deterministic and polynomial-time
O(log(min{n, κ}))-approximation algorithm for the middle-
box deployment problem. Our algorithm is based on an
efficient computation of a certain submodular set function: it
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defines the maximum number of pairs which can be covered
by a given set of middleboxes. In a nutshell, the submodular
function is computed efficiently using an augmenting path
method on a certain bipartite graph, which also determines the
corresponding assignment of communication pairs to the mid-
dleboxes. The augmenting path algorithm is based on a simple,
linear-time breadth-first graph traversal. The augmenting path
method is attractive and may be of independent interest:
similarly to the flow-based approaches in the literature [6], it
does not require changes to previously deployed middleboxes,
but removes the disadvantage of [6] that the set of served
communication pairs changes over time: an attractive property
for incremental deployments.

Our solution with augmenting paths results (theoretically
and practically) in significantly faster computations of the
submodular function value as well as of the corresponding
assignment compared to the flow based approach. In fact,
computing all augmenting paths takes O(|E|min{

√
|V |, κ})

by using the Hopcroft-Karp algorithm [21] performing at
most O(min{

√
|V |, κ}) breadth-first search and depth-first

search traversals of the graph. Computing a maximum flow
takes O(|V ||E|2) time by the Edmonds-Karp algorithm [10],
O(|V |3) time by the push-relabel algorithm of Goldberg
and Tarjan [19], and O(|V ||E|) time by the algorithm of
Orlin [31] (see [19] for an overview on efficient maximum
flow algorithms).

Concretely, we can start with an empty set of middlebox
locations M = ∅, and in each step, we add a middlebox at
location m to M , which maximizes the number of totally
covered (by middleboxes at locations M ∪ {m}) commu-
nicating pairs, without violating capacity and route stretch
constraints. The algorithm terminates, when all pairs were
successfully assigned to middlebox instances in M . More
precisely, for any set of middlebox instances M ⊆ U , we
define φ(M) to be the maximum number of communication
pairs that can be assigned to M , given the capacity constraints
at the nodes and the route stretch constraints. We show that
φ is non-decreasing and submodular, and φ(M) – and the
corresponding assignment of pairs to middlebox instances in
M – can be computed in polynomial time. This allows us to
use Wolsey’s Theorem [40] to prove an approximation factor
of 1+O(log φmax), where φmax = maxm∈U φ({m}). Since in
our case, φmax = min{κ, |P |} and |P | ≤ n2, this implies that
Algorithm 1 computes an O(log(min{κ, n}))-approximation
for the minimum number of middlebox instances that can
cover all pairs P (i.e., all pairs can be assigned to the deployed
middleboxes).

B. Maximum Assignment

In order to compute function φ(M), for any M ⊆ U ,
we construct a bipartite graph B(M) = (M ∪ P,E), where
P is the set of communicating pairs. We will simply refer
to the middlebox instances m ∈ M and pairs p ∈ P in
the bipartite graph as the nodes. The edge set E connects
middlebox instances m ∈ M to those communicating pairs
p ∈ P which can be routed via m without exceeding the
stretch constraint, i.e. E = {(m, p) : m ∈ M,p = (s, t) ∈

Fig. 3: Bipartite graph with possible middlebox locations U
(empty: white, deployed: grey) on the left side and pairs P
on the right side of the bipartite graph. The capacity of the
middleboxes κ = 2. Middleboxes are deployed greedily, one-
by-one, without requiring relocation of previously mapped
middleboxes. Assignment edges are indicated in bold. The
deployment of the first middlebox left creates two assigment
edges incident to the middlebox. The deployment of the second
middlebox middle involves two new assigment edges incident
to the second middlebox. Lastly, the botttom middlebox is
used to serve the bottom pair, which was previously served
by the middle middlebox.

P, d(s,m) + d(m, t) ≤ ρ · d(s, t)}, where d(u, v) denotes
the length of shortest path between nodes u and v in the
network. For each p, the set of such middlebox nodes can
be computed in a pre-processing step by performing an all-
pair shortest paths algorithm to calculate d(u, v) for each u, v
in the network, and for each p = (s, t) ∈ P , selecting the
nodes m ∈M with d(s,m) + d(m, t) ≤ ρ · d(s, t).

A partial assignment A(M) ⊆ B(M) of pairs p ∈ P to
middlebox instances in M is a subgraph of B(M), in which
each p ∈ P is connected to at most one middlebox m ∈M by
an edge, i.e., degA(M)(p) ≤ 1 where deg denotes the degree.
A pair p ∈ P with degA(M)(p) = 1 is called an assigned pair
and with degA(M)(p) = 0 an unassigned pair of a free pair.
A partial assignment A(M) without free pairs is called an
assignment. The size |A(M)| of a (partial) assignment A(M)
is defined as the number of edges in A(M).

Our goal is to compute a partial assignment A(M) of
pairs p ∈ P to middlebox instances in M maximizing
the number of assigned pairs. Accordingly, we distinguish
between assignment edges EA and non-assignment edges EA,
where EA∪EA = E is a partition of the edge set E of B(M).

Our algorithm ensures that at any moment of time, the
partial assignments are feasible, i.e., the assignment fulfills
the following capacity constraints. The current load of a
middlebox m in M , denoted by λ(m), is the number of
communicating pairs served by m according to the current
partial assignment A(M). Moreover, we define the free ca-
pacity κ∗(m) of m to be κ∗(m) = κ − λ(m). A (partial)
assignment A(M) is feasible if and only if it does not violate
capacities, i.e., λ(v) ≤ κ, for all v in any middlebox in M .

In order to compute the integer function φ(M), which
is essentially the cardinality of a maximum feasible partial
assignment A∗(M), we make use of augmenting paths. Let
A(M) be a feasible partial assignment. An augmenting path
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Fig. 4: Illustration of augmenting path computation. Bipartite
graph with possible middlebox locations U (empty: white,
deployed: grey) on the left side and pairs P on the right side
of the bipartite graph. The capacity of the middleboxes κ = 2.
Assignment edges are indicated in bold. Left: The assignment
before deploying the third middlebox. Middle: Augmenting
path starting at the new middlebox. Right: The resulting new
assignment.

π = (v1, v2, . . . , vj) relative to A(M) in B(M) starts at a
middlebox m ∈ M with free capacity, ends at a free pair
p ∈ P , and alternates between assignment edges and non-
assignment edges, i.e.,

1) v1 ∈ M with κ∗(v1) > 0 and vj ∈ P with
degA(M)(vj) = 0,

2) (vi, vi+1) ∈ B(M) \A(M), for any odd i,
3) (vi, vi+1) ∈ A(M), for any even i.
An augmenting path relative to A(M) is a witness for a

better partial assignment: The symmetric difference A′(M) =
(A(M) \ π) ∪ (π \A(M)) is also a (partial) assignment with
size |A′(M)| = |A(M)| + 1. Due to the properties of the
augmenting path, by this reassignment, one additional pair will
be covered by the same set of middlebox instances, without
violating node capacities: in A(M), the first node had free
capacity and the last node represents a free pair. Furthermore,
the degree at each internal node of π remains unchanged, since
one incident assignment edge gets unassigned and one incident
unassigned edge gets assigned. Therefore, the load of the
internal nodes in π remains unchanged. Conversely, suppose
that a partial assignment A(M) is not a maximum partial
assignment. Let A∗(M) be a maximum partial assignment.
Consider the bipartite graph X = (A(M)∪A∗(M))\(A(M)∩
A∗(M)).

Figure 3 illustrates the greedy placement strategy and Fig-
ure 4 shows the augmenting path computation.

Note that an augmenting path must always exist for subop-
timal covers. To see this, consider the following reduction to
matching: replace each middlebox node with κ many clones
of capacity 1, and assign each pair p ∈ P to the clones in the
canonical way. Feasible assignments constitute a matching in
this graph, with node degrees one. Given any suboptimal cover,
we find a witness for a augmenting path as follows. We take
the symmetric difference of the suboptimal and the optimal
solution, which gives us a set of paths and cycles of even
length. Thus, a path must exist where the optimal solution has
one additional edge.

Augmenting paths can be computed efficiently, by simply

performing breadth-first searches in B(M), by using the nodes
m ∈M with free capacities as the starting nodes.

C. Submodularity

The set function φ : 2U → N is called non-decreasing iff
φ(U1) ≤ φ(U2) for all U1 ⊆ U2 ∈ 2U , and submodular iff
φ(U1)+φ(U2) ≥ φ(U1∩U2)+φ(U1∪U2) for all U1, U2 ∈ 2U .
Equivalently, submodularity can be defined as follows (See,
e.g. in [37] pp. 766): for any U1, U2 ⊆ U with U1 ⊆ U2

and every u ∈ U \ U2, we have that φ(U1 ∪ {u})− φ(U1) ≥
φ(U2 ∪ {u})− φ(U2). This is in turn equivalent to: for every
U1 ⊆ U and u1, u2 ∈ U \ U1 we have that φ(U1 ∪ {u1}) +
φ(U1 ∪ {u2}) ≥ φ(U1 ∪ {u1, u2}) + φ(U1).

Let U1 ⊆ U2 be two arbitrary subsets of U . Consider
a maximum assignment A(U1) for U1. Let A(U2) be a
maximum assignment for U2 obtained from A(U1) by adding
the members u2 ∈ U2 \U1 to U1 one-by-one, and performing
the augmenting path method until we have a maximum assign-
ment for the incremented set U1 ∪ {u2}. Let AΠ(U1) be the
projection of A(U2) to U1, i.e., for each u1 ∈ U1, p ∈ P , the
pair p is assigned to u1 in AΠ(U1) if and only if p is assigned
to u1 in A(U2). First we show that AΠ(U1) is a maximum
assignment for U1.

Lemma 1. Let A(U1) be a maximum assignment for U1. Let
A(U2) be a maximum assignment for U2 obtained from A(U1)
by adding all u ∈ U2 \ U1 to U1 one-by-one, and performing
the augmenting path method until we have a maximum assign-
ment for U1 ∪ {u}. Let AΠ(U1) be the projection of A(U2)
to U1. Then AΠ(U1) is a maximum assignment for U1.

Proof. By adding u2 ∈ U2 \ U1 to U1 and performing the
augmenting path method until an augmenting path exists (i.e.,
until we obtain a maximum assignment for U1∪{u2}), it holds
that, for each u1 ∈ U1, the number of pairs assigned to u1 does
not change: along the augmenting path each internal node has
one incident assignment edge and one non-assignment edge.
This also holds after exchanging the assignment edges and
the non-assignment edges, i.e., each assignment edge on the
augmenting path becomes a non-assignment edge and vice
versa. The degrees of the start and end nodes increases by
one. Consequently, the degree of each u1 ∈ U1 in AΠ(U1) is
the same as in A(U1). Since A(U1) is a maximum assignment
and each u1 has the same degree in AΠ(U1), AΠ(U1) must
be also a maximum assignment.

Theorem 2. Let U be the set of all possible middlebox
instance locations. Let φ : 2U → N be the set function, such
that for M ⊆ U , φ(M) is the maximum number of pairs in
P that can be assigned to M without violating the capacity
constraints. Then φ is submodular.

Proof. We show that for all M1,M2 ⊆ U , M1 ⊆M2 and for
all m ∈ U \M2 we have that

φ(M1 ∪ {m})− φ(M1) ≥ φ(M2 ∪ {m})− φ(M2). (1)

This is equivalent to the definition of the submodularity of φ.
Consider a maximum assignment A(M1) for M1 and a

maximum assignment A(M2) for M2 obtained from A(M1)
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as described in Lemma 1. Now we add m to M2. Let
A(M2 ∪ {m}) be the maximum assignment for M2 ∪ {m}
obtained from A(M2) by adding m to M2 and performing the
augmenting path method until we have a maximum assignment
for M2∪{m}. Let AΠ(M2) be the projection of A(M2∪{u})
to M2 and let AΠ(M1) be the projection of A(M2 ∪ {u}) to
M1. Let |AΠ(M2)| and |AΠ(M1)| be the number of assigned
pairs of P in the assignments. By Lemma 1, AΠ(M2) is a
maximum assignment for M2 and AΠ(M1) is a maximum
assignment for M1. Therefore, φ(M2) = |AΠ(M2)| and
φ(M1) = |AΠ(M1)|. Furthermore, φ(M2 ∪ {u}) = |A(M2 ∪
{u})|.

Consider the pairs Pm ⊆ P assigned to m in the assignment
A(M2∪{m}). Let AΠ(m) be the projection of A(M2∪{m})
to m. Then |AΠ(m)| = |Pm|. Since AΠ(M2) contains all
elements that are assigned to any element of M2 in A(M2 ∪
{m}), clearly |A(M2 ∪ {m})| = |AΠ(M2)| + |AΠ(m)|, and
thus

φ(M2 ∪ {m})− φ(M2) = |AΠ(m)|. (2)

On the other side, the assignment A∗(M1 ∪ {m}) which is
obtained as the union of AΠ(M1) and AΠ(m) is a valid
assignment for M1 ∪ {m}. Therefore, |A(M1 ∪ {m})| ≥
|A∗(M1 ∪ {m})| = |AΠ(M1)|+ |AΠ(m)|, and thus

φ(M1 ∪ {m})− φ(M1) ≥ |AΠ(m)|. (3)

Using (2) and (3) we obtain

φ(M1 ∪ {m})− φ(M1) ≥ φ(M2 ∪ {m})− φ(M2) , (4)

completing our proof.

D. The Algorithm

Essentially, Algorithm 1 starts with an empty set M and
cycles through the possible middlebox locations m ∈ U \M ,
always deploying the middlebox resulting (with the already
deployed ones) in the highest function value φ.

Given the submodularity and the augmenting path con-
struction, we have derived our main result. Per middlebox,
an augmenting paths problem is solved. Using the Hopcroft-
Karp algorithm, we can compute all (at most κ many) aug-
menting paths starting at a newly added middlebox in time
O(min{κ,

√
|V |} · |E|), where |V | denotes the number of

nodes and |E| the number of edges in B(M).

Theorem 3. Our greedy and incremental middlebox deploy-
ment algorithm computes a O(log n)-approximation.

E. Lower Bound and Optimality

Theorem 3 is essentially the best we can hope for:

Theorem 4. The middlebox deployment problem is NP-hard
and cannot be approximated within c log n, for some c > 0
unless P = NP . Furthermore, it is not approximable within
(1− ε) lnn, for any ε > 0, unless NP ⊂ DTIME(nlog log n).

Proof. We present a polynomial time reduction from the
Minimum Set Cover (MSC) problem, defined as follows:
Given a finite set S of n elements and a collection C of subsets

Algorithm 1: Greedy Algorithm
1: init M ← ∅, A(M)← empty assignment
2: while A(M) is not a feasible assignment do
3: init m∗ ← ∅, opt← 0, tmp← 0
4: for each m ∈ U \M

(* compute all augmenting paths *)
5: tmp← φ(M ∪ {m})− φ(M)
6: if tmp > opt then
7: opt← tmp, m∗ ← m
8: end if
9: end for

10: M ←M ∪ {m∗}, update A(M)
11: end while

of S. A set cover for S is a subset C ′ ⊆ C such that every
element in S is contained in at least one member of C ′. The
objective is to minimize the cardinality of the set cover C ′.

Consider an instance of the MSC problem: let S =
{v1, ..., vn} be a set of n elements, C = {Si ⊆ S, i =
1, ...,m}. We define the instance of the corresponding mid-
dlebox deployment problem in a network G = (V,E) with a
set of communicating pairs P and stretch ρ = 1 as follows.
For each element v ∈ S, we introduce two nodes vs and vt
in V . For each subset Si ∈ C, we introduce a node vSi in
V as well. The edge set E of the network G = (V,E) is
defined by the following rule: there is an edge (vs, vSi

) ∈ E
and an edge (vSi

, vt) ∈ E iff the corresponding element
v is contained in Si. The set of communicating pairs is
defined as P = {(vs, vt) : v ∈ S} and the set of potential
middlebox locations is defined as U = {vSi : Si ∈ C}.
G = (V,E) is a bipartite graph with partitions U and
{vs : v ∈ S} ∪ {vt : v ∈ S}. If v ∈ S is contained in
a set Si ∈ C then there is a path of length 2 between the
corresponding pair (vs, vt) in G. This is also the shortest path
between vs and vt. In the middlebox deployment problem with
stretch ρ = 1, a set of nodes M ⊆ U of minimum cardinality
must be selected such that between each pair (vs, vt) ∈ P
there is a route of length of at most 2 and it contains at
least one node of M . By the construction of the network,
for each pair (vs, vt) ∈ P , there is a route vs, vSi

, vt of length
2 in G if and only if v ∈ Si. Let M ⊆ U be a minimum
cardinality solution of the middlebox deployment problem.
The node set M implies a minimum cardinality solution for
the MSC problem and vice versa. This proves the NP-hardness
of the problem.

The inapproximability results follow from the combination
of the above reduction and the inapproximability results of
the minimum set cover problem by Raz and Safra [35] and
by Feige [15]. Raz and Safra [35] proved that the minimum
set cover problem is not approximable within c log n, for
some c > 0, unless P = NP . Feige [15] showed the
inapproximability within (1 − ε) lnn, for any ε > 0, unless
NP ⊂ DTIME(nlog log n). If we had a better approximation for
the middlebox deployment problem, by the above reduction,
we would have a better approximation factor for the minimum
set cover problem, as well.
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Algorithm 2: Generalized Greedy Algorithm
1: init S ← ∅
2: while |S| < |U | and f(S) ≤ n− 1 do
3: choose i ∈ U \ S s.t. gain(i, S) is maximized
4: S = S ∪ {i}
5: select middleboxes in set S
6: round f(S) to integer solution
7: end while

IV. GROUP AND WEIGHTED VARIANT

There are scenarios in which more than two nodes may have
to share a network function. For example, consider the problem
of placing a multiplexer for a group of users involved in a
teleconference. Or imagine the problem of mapping a shared
object or entire virtual server server of a multi-user game:
in order to avoid state synchronization overheads, the users
should be served from a single location which is also located
close to all the users. Also in the context of distributed cloud
computing, the problem of placing functionality for larger
groups may be relevant. Moreover, so far we have assumed
that all requests induce the same load. However, in reality,
different communication pairs communicate at different rates,
which may also result in different loads on the middleboxes.

In this section, we show that both the group assignment
variant as well as the weighted pair request variant can be
solved by exploiting an interesting connection to energy-
efficient scheduling [16], [17], [23]. As we will see, in order
to make this generalization, we will however need to sacrifice
the incremental property. Moreover, we need a constant factor
resource augmentation (concretely, a factor of 2).

Let n be the total number of requests (set R), and let pj be
the “price”, i.e., the load induced by assigning the j-th request
to a middlebox: the request can be an arbitrarily weighted
node pair or group of nodes. Our greedy algorithm runs in
rounds, where in each round, the “most effective” middlebox,
a middlebox at a location which maximizes a certain (sub-
modular) function, is chosen and added to our solution set.
Concretely, given a set S of already deployed middleboxes,
let F (S) denote the maximum number of requests that can
be processed by a set S of middleboxes of capacity κ. Since
computing F (S) is NP-hard, we follow the work of [23] and
compute a fractional solution using linear programming. The
resulting fractional values will eventually be rounded. For
every middlebox-request pair (i, j), we introduce a binary
variable xi,j : it is 1, if request j is assigned to middlebox
location i, and 0 otherwise. As a preprocessing step, let us
first delete (1) all requests j with pj > κ, i.e., requests which
cannot be served by any middlebox anyway; (2) all request-
middlebox pairs which would exceed stretch constraints; and
(3) all request-middlebox pairs where the middlebox is not at
a legal location. We set the corresponding xi,j values to 0.
We will relax the xi,j variables, and define f(S) to be the
maximum weighted sum of requests that can be fractionally
processed by a set S of middleboxes. We can compute f with
Linear Program (LP) 1:

LP 1: Maximum Fractional Assignment

max f(S) =
∑
i,j

xi,j

subject to
∑
i∈U

xi,j≤ 1 ∀ j ∈ R∑
j∈R

pjxi,j≤ κ ∀ i ∈ S

xi,j= 0 ∀ i ∈ S, j ∈ R : pi,j > κ

0 ≤ xi,j ≤ 1 ∀ i ∈ S, j ∈ R

It follows from [16] that the relaxed function f is submodu-
lar. We define gain(i, S) = f(S∪{i})−f(S) for any S ⊆ U ,
i ∈ U .

The greedy algorithm (Algorithm 2) adds middleboxes
one-by-one, greedily selecting the one yielding the highest
gain(i, S). We stop when f(S) > n − 1: stopping prema-
turely is needed due to the fractional solution of the relaxed
approach [23]. In the end, we round the fractional solution
using the approach by Shmoys and Tardos [39].

Given this transformation, we can apply [23] and obtain
that following approximation: with an augmentation factor of
2, we can serve all requests with at most a logarithmic factor
more middleboxes.

Theorem 5. The weighted resp. group network function
placement problem can be (2, 1 + lnn)-approximated via the
Generalized Greedy Algorithm in polynomial time, i.e., the
number of deployed middleboxes is at most (1 + lnn) times
the minimum and the maximum load on each middlebox is at
most 2κ.

Relationship to Datacenter Scheduling. Let us now elabo-
rate more on the interesting relationship of this problem to
datacenter scheduling problems. In the datacenter scheduling
problem [23], we are given a set of m machines and n jobs.
The processing time of job j on machine i is pi,j . Each
machine i has an activation cost ai. The scheduling algorithm
is given a total activation budget A, and needs to compute
a subset of machines to activate which respect this budget
constraint, and minimizes the makespan T : the length of the
execution schedule.

We translate this problem to our problem as follows. The
machines correspond to the m possible middleboxes (set
M corresponds to all possible locations U ), and the jobs
correspond to the n requests. The cost of assigning a group
resp. a weighted request j to a middlebox i corresponds to
pi,j ; since in our model, this cost only depends on the request
j but not on the middlebox i, we simply write pj instead of
pi,j . The activation cost ai corresponds to the deployment cost
and is the same for all middleboxes; we set ai = 1.

In our algorithm, we greedily aim to select a subset of
servers / middleboxes which maximize the (weighted sum of)
covered requests. We need to cover all the requests, subject
to middlebox capacity constraints κ, which correspond to the
makespan.
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V. EVALUATION

In order to complement our formal analysis, we conduct
a simulation study comparing the approximation algorithms
presented above to the respective optimal algorithms imple-
mented using Integer Programming (IP). We evaluate our
greedy approximation algorithm using the following metrics:
(1) the number of installed middleboxes and (2) runtime.
Furthermore, we explore the performance of the approximation
algorithm for the weighted variant and when incrementally
deploying single middleboxes.

All experiments were conducted on servers with two Intel
XEON L5420 processors (8 cores overall) equipped with 16
GB RAM.

A. Datasets

We have generated two datasets, one for the unweighted
approximation algorithm presented in Section III and one for
the weighted approximation algorithm presented in Section IV.

For the unweighted variant, we use real-world wide-area
topologies obtained from the topology zoo collection [24]. As
shown in Figure 5 (top), the topologies are either country-
wide or continent-wide ISP, backbone, or – in case of Geant –
research networks. The topologies were selected so that the
number of nodes is equally spread across the range 20 to
82. Furthermore, the topologies provide detailed geographical
information for nodes, such that communication latencies can
be estimated based on the geographical distance.

For each graph, we generate instances as follows: Each of
the |V | · (|V |−1)/2 potential communication pairs is selected
with probability p, set to 0.2, 0.3, or 0.4, respectively. Hence,
the number of expected communication pairs to be created
overall is p · |V | · (|V | − 1)/2.

To ensure comparability across topologies, all nodes are
allowed to host middlebox functionality. The capacity κ is
set to d2 · (|V | − 1) · pe: Hence, (in expectancy) around
|V |/4 many middleboxes are likely to be necessary to serve
the communication pairs. All communication pairs have the

Name Type |V | |E|
Quest Continent 20 62

GtsHungary Country 30 62
Geant Continent 40 122

Surfnet Country 50 136
Forthnet Country 62 124
Telcove Country 71 140
Ulaknet Country 82 164

Name Type |V | |E| |D|
cost266 Continent 37 55 1,332

germany50 Country 50 88 662
nobel-eu Continent 28 41 378

ta2 Country 65 108 1,869

Fig. 5: Topology Zoo Instances (top) as well as SNDlib
instances (bottom) used in the evaluation. |D| denotes the
number of defined end-to-end communication requests.

same (latency) stretch. Concretely we set the maximal allowed
latency to {1.00, 1.05, 1.10, . . . 2.50} times the latency of the
shortest path between the nodes of the communication pair. For
each topology and each probability, we generated 11 scenarios
uniformly at random, yielding more than 7,000 instances
overall.

We employ a similar approach for the evaluation of the
approximation algorithm for the weighted variant. Concretely,
we consider four instances (see Figure 5 (bottom)) of the
SNDlib [32], which already define communication pairs ex-
hibiting a diverse demand structure. Analogously, we again
consider stretches of {1.0, 1.05, . . . , 2.5}. To generate multiple
instances from a single SNDlib instance, we sample requests
by selecting each original communication pair independently
at random with a probability of 0.5. We again allow to place
middleboxes on all nodes in the network and set the capacity
of each of the potential middlebox locations to 4 · D/|V |,
where D denotes the cumulative demand of the chosen re-
quests, such that at least 1/4 many nodes must be equipped
with middleboxes. We generate 3,100 scenarios in total by
considering 31 different stretch parameters and considering 25
random generated instances for the four different topologies.

B. Baseline Algorithms

Besides employing the approximation algorithms presented
above, we use Integer Programs to compute optimal solutions.
Integer Program (IP) 2 computes optimal solutions for the
middlebox deployment problem with unitary demands1 and
works as follows:

For all potential middlebox locations u ∈ U , let Su be
the set of pairs P that can be routed through u on a path
of stretch at most ρ, i.e., Su = {p = (s, t) ∈ P : d(s, u) +
d(u, t) ≤ ρ · d(s, t)}, where d(v, w) denotes the length of the
shortest path between nodes v, w ∈ V in the network. Su

can be precomputed efficiently. For all potential middlebox
locations u ∈ U , we introduce the binary variable xu ∈ {0, 1}.
The variable xu indicates that u is selected as a middlebox
node in the optimal solution M , i.e. xu = 1 ⇔ u ∈ M . For
all u ∈ U and p ∈ P , we introduce the binary variable xup ∈
{0, 1}. The variable xup indicates that the pair p = (s, t) ∈ P
is assigned to the node u ∈ U , s.t. the path stretch from s to
t through u is at most ρ.

The Objective Function (5) requires that a minimum cardi-
nality middlebox set must be selected. Constraints (6) declare
that each pair p = (s, t) ∈ P is assigned to exactly one node
u ∈ U . Constraints (7) state that each pair p = (s, t) ∈ P
can only be assigned to a node u ∈ U with p ∈ Su. By
the definition of Su, the pair p can be routed through u via
a path of stretch at most ρ. Constraints (8) describe that the
capacity limit κ must not be exceeded at any node, and nodes
u ∈ U which are not selected in the solution M (where the
corresponding variable xu becomes 0 in the solution) are not
assigned to any pair p ∈ P .

This Integer Program can easily be adapted for the weighted
(and or group) variant by adapting Constraint (8). Concretely,

1 The existence of a 0-1 integer linear program, together with our NP-
hardness result, also proves the NP-completeness [22].



9

IP 2: Baseline for Minimizing the Number of Middleboxes

min
∑
u∈U

xu (5)

subject to
∑
u∈U

xup= 1 ∀ p ∈ P (6)∑
p6∈Su

xup= 0 ∀ u ∈ U (7)∑
p∈P

xup≤ κ · xu ∀ u ∈ U (8)

xu, xup∈ {0, 1} ∀ u ∈ U, p ∈ P (9)

IP 3: Maximum Assignment for exactly n Middleboxes

max
∑
u∈U

xup (10)

subject to
∑
u∈U

xup≤ 1 ∀ p ∈ P (11)∑
u∈U

xu = n ∀ p ∈ P (12)∑
p 6∈Su

xup = 0 ∀ u ∈ U (13)∑
p∈P

xup≤ κ · xu ∀ u ∈ U (14)

xu, xup ∈ {0, 1} ∀ u ∈ U, p ∈ P (15)

Constraint 8 needs to include the additional factor dp, denoting
the demand of request p:∑

p∈P
dp · xup ≤ κ · xu ∀u ∈ U .

As we are also interested in studying the opportunities arising
in incremental deployment scenarios, we also introduce IP 3
which computes the maximum assignment for any given
number of middleboxes. Concretely, given a number n ∈ N
of middleboxes to activate (see Constraint 12), the number
of connected communication pairs is maximized (see Con-
straint 10), while ensuring that a communication pair may at
most be assigned to exactly one middlebox (see Constraint 11).

We have implemented the IPs in Python using Gurobi 6.5.

C. Runtime and Number of Middleboxes

We first study the runtime and the empirical approximation
factor of the approximation algorithm 1 on the randomly
generated topology zoo instances. To this end, we have im-
plemented the greedy approximation algorithm in Python. Our
implementation may use multi-threading for the computation
of the middlebox-selection in Algorithm 1 (Lines 4-9). The
computation of the Integer Program solutions is implemented
via Gurobi 6.5 using a single thread.

In Figure 6 (right and bottom), the average runtime of the
greedy (G) approximation algorithm with 1 and 8 threads, and
the IP is depicted. In the middle plot the averaged runtimes
are shown. Here, each data point represents the aggregate

of 31 × 11 = 341 experiments. The average runtime of the
sequential greedy-algorithm lies below the one of the IP for
20 and 30 nodes, and the greedy algorithm with 8 threads
clearly outperforms the IP on the topologies with 62, 71 and 82
nodes. On the largest topology the computation of the greedy
algorithm can be sped up by a factor of around 5, by using 8
threads. Furthermore, the runtime of the IP is on the largest
topology one magnitude higher than the one of the 8-threaded
greedy algorithm. The left plot of Figure 6 depicts the runtime
of the 8-threaded greedy variant and the IP on the largest
topology as a function of the stretch. Starting at a stretch of
1.3, the runtime of the IP increases dramatically. This is due to
the fact that by increasing the stretch, the number of potential
middleboxes, serving a communication pair, increases. In fact,
on the largest topology, the IP consisted of up to 90k variables.

Regarding the number of installed middleboxes, the left box
plot of Figure 6 shows the approximation ratio, i.e., the number
of middleboxes opened by the greedy algorithm divided by
the optimal number of middleboxes computed by the IP. The
median lies below 1.5 and the maximum is close to 1.8.

D. Weighted Requests

Next, we study the performance of the approximation
algorithm discussed in Section IV, for weighted problems
(cf. Algorithm 2). As discussed in Section V-A, we use
SNDlib instances exhibiting a diverse demand structure (see
Figure 7 left). Again, we have implemented the generalized
approximation algorithm and the corresponding adaption of
Integer Program 2 in Python.

As a first result, the middle plot of Figure 7 shows the
averaged relative number of deployed middleboxes of the
greedy algorithm with respect to the optimal solution of the
IP. The greedy approximation algorithm only seldomly opens
– on average – more than 20% middleboxes more than the
optimal algorithm. Note that, in some cases, the number of
deployed middleboxes lies even beneath the optimal one. This
is possible, as the considered algorithm may (cf. Figure 7
right) violate the middlebox capacity up to a factor of 2.
Indeed, the approximation algorithm violates capacities in less
than 25% of the cases (cf. Figure 7).

E. Incremental Middlebox Activation

Lastly, we study scenarios in which middleboxes are added
one after another. Concretely, we assume that all communica-
tion pairs are known in advance while the network operator
can only incrementally install single middleboxes (e.g. due
to the associated cost). The greedy algorithm always places
one additional middlebox while not being allowed to change
previously selected middlebox locations. We study the number
of assigned communication pairs of the greedy algorithm com-
pared to the optimum number of assignments when middlebox
locations may be arbitrarily selected. To compute the optimum
number of assignments the IP 3 is used.

We consider the same experimental setup as described in
Section V-C (i.e. topology zoo instances), while constraining
the probability to create communication pairs to p = 0.3.
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We present the results of this set of experiments in Figure 8.
The left plot depicts the relative difference of assigned com-
munication pairs when using the greedy algorithm compared
to the IP baseline. Concretely, the relative difference is defined
as (φIP − φG)/φIP, where φIP and φG denotes the number
of assigned communication pairs of the IP and the greedy
algorithm, respectively. The rows of the left plot averages the
results for all scenarios having the same number of minimal
middleboxes to serve all communication pairs. The number of
scenarios averaged in this way is depicted in the right plot of
Figure 8: the number of scenarios for which 10 middleboxes
suffice and which are averaged in the row 10 is for example
around 520.

Considering any row, we see that the greedy algorithm
assigns nearly always as many communication pairs until
the number of middleboxes reaches the optimum (minimal)
number of middleboxes. After coming close to the optimum
number of middleboxes, the relative difference in assignments
reaches a maximum valiue of 0.15 and then diminishes only
slightly with each additional greedily placed middlebox. The
ability to (re-)place middleboxes in an arbitrary fashion hence
only becomes important when sufficiently many middleboxes
were already places to serve almost all communication pairs.

VI. SUMMARY AND CONCLUSION

This paper initiated the study of the network function
placement problem which is motivated by the increasing flex-
ibilities of modern virtualized networked systems. Our main
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Fig. 8: Left: The averaged relative difference in the number
of served communications pairs depending on the optimal
number of middleboxes (y-axis). Right: Minimum number of
middleboxes computed by the IP for the scenarios averages in
the left plot.

contribution is a combinatorial proof of the submodularity of
this problem and an incremental log-approximation network
function placement algorithm. We also initate the study of a
randomized rounding approach for a weighted group-version
of the problem. Our simulation results show that this approach
computes a nearly optimal placement for real world network
instances.

We understand our work as a first step, and believe that our
paper opens several interesting directions for future research.
In particular, it will be interesting to know whether good
approximations exist for the incremental deployment of entire
group requests.
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