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Abstract

Intrusion detection systems (IDSes) are the frontier of defense against transmissible cyber threats that spread across
distributed systems. Modern IDSes overcome the limitation of hardware processing power by offloading computation
extensive operations such as signature matching to the cloud. Moreover, in order to prevent the rapid spread of trans-
missible cyber threats, collaborative intrusion detection schemes are widely deployed to allow distributed IDS nodes
to exchange information with each other. However, no party wants to disclose their own data during the detection
process, especially sensitive user data to others, even the cloud providers for privacy concerns. In this background,
privacy-preserving technology has been researched in the field of intrusion detection, whereas a collaborative intru-
sion detection network (CIDN) environment still lacks of appropriate solutions due to its geographical distribution.
With the advent of fog computing, in this paper, we propose a privacy-preserving framework for signature-based in-
trusion detection in a distributed network based on fog devices. The results in both simulated and real environments
demonstrate that our proposed framework can help reserve the privacy of shared data, reduce the workload on the
cloud side, and offer less detection delay as compared to similar approaches.

Keywords:
Collaborate Network, Privacy Preserving, Intrusion Detection, Cloud Environment, Fog Computing.

1. Introduction

Transmissible cyber threats have become a major se-
curity challenge in the cyber space, due to their abil-
ity to infect and spread rapidly in distributed systems.
For instance, the WannaCry ransomware [4], which ex-
ploits a publicly known vulnerability in Microsoft Win-
dows SMB, spread through the Internet in May 2017
and infected over 200 thousand computers in more than
150 countries and regions. With the world becoming
more connected and more interdependent, greater and
greater scale of damages and impacts could be caused
by transmissible cyber threats like the WannaCry attack
and other types of spreading malware [67]

IA preliminary version of this paper appears in Proc. of the 9th
International Symposium on Cyberspace Safety and Security (CSS),
pp. 163-175, 2017 [1].
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To build the first line of defense against cyber threats,
intrusion detection systems (IDSes) are widely de-
ployed in various distributed systems to monitor a host
or a network for the signs of malicious activities and vi-
olations of policies [38, 49], such that security breaches
can be detected on spot and countermeasures can be
triggered immediately to prevent further infections and
spread. These systems can be generally classified into
signature-based and anomaly-based, according to their
detection mechanisms. Signature-based IDSes identify
potential attacks by looking for specific patterns that
represent known threats, while anomaly-based IDSes
detect deviations from established normal behavior pro-
files, which can be caused by attacks that are previously
known or unknown. In addition, based on the monitored
targets and deployed locations, an IDS can be catego-
rized as network-based IDS (NIDS) or host-based IDS
(HIDS). The former focuses on any threats on network
resources and the latter targets on system-level anoma-
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lies.
Effective and efficient NIDSes are the key to prevent

transmissible cyber threats from spreading across the In-
ternet. However, in the face of the increasing volume of
network traffic, the processing power of traditional IDS
hardware becomes a bottleneck. Therefore, offload-
ing computation extensive operations of IDSes to the
cloud become a trend [42]. For instance, Alharkan and
Martin [3] proposed IDSaaS for Amazon EC2 cloud,
which could monitor and record malicious network be-
haviors between virtual machines and users within a vir-
tual private cloud. Yassin et al. [53] introduced CBIDS,
a cloud-based intrusion detection service framework for
monitoring network traffic in different layers and detect
unexpected activities from different points of a network.

For most cloud-based IDS frameworks, the systems
have to upload the packet payload contents and log files
to the cloud for inspection, which puts sensitive data of
the users in the protected network at risk. For example,
with access to the uploaded traffic data and logs, the
cloud service provider can easily derive the history of
browsing activities of the protected users, which leads to
a leakage of user privacy [66]. To address this problem,
privacy-preserving technology has been widely studied
aiming to protect user privacy in cloud-based IDS. Park
et al. [44] proposed PPIDS, a privacy-preserving detec-
tion approach by applying cryptographic approaches to
log files without a trusted third party (TTP). Their sys-
tem could encrypt the log files and identify intrusions
based on encrypted data.

Motivations. It is difficult for standalone IDSes to
defend against transmissible cyber threats that spread
rapidly across network domains. Distributed intrusion
detection systems (DIDSes) or collaborative intrusion
detection networks (CIDNs) are an important solution
to enhance the detection performance of separate IDSes,
where the key is to allow IDS nodes to exchange threat
intelligence information with each other [52]. However,
uploading all the data to the cloud for processing and
analysis would consume considerable communication
and computing resources, causing a negative impact on
the quality of service (QoS) (i.e., dealing with redun-
dant data [65]). In order to mitigate this issue, fog com-
puting is a paradigm extending cloud computing and
its services to the edge of the network (i.e., proximity
to end-users or nodes), which can support for mobility,
heterogeneity, interoperability and pre-processing [7].

Contributions. Because fog computing provides a
computing and storage platform physically closer to the
end nodes and users, provisioning a new breed of appli-
cations and services with the cloud layer, it well com-
plements the application of cloud computing, which

could be proper for a DIDS or CIDN. Further, signa-
ture matching is an expensive operation for intrusion
detection, which may have a high demand to offload the
workload. In this paper, we propose a novel privacy-
preserving framework for signature-based IDSes in a
distributed environment, based on fog devices. Our con-
tributions can be summarized as below:

• We introduce the background of collabora-
tive intrusion detection environments including
its major components and propose a privacy-
preserving framework for distributed and collabo-
rative signature-based intrusion detection based on
fog devices. The fog computing can provide stor-
age, computing and networking services between
an IDS and a cloud. With the provided resources,
fog devices could help decrease the workload of a
cloud server.

• To protect privacy, we apply Rabin fingerprint al-
gorithm to our proposed framework, and evalu-
ate our approach in a simulated and a real envi-
ronment, respectively. The experimental results
demonstrate that our framework can help secure
the data, reduce the workload of a central server
on the cloud, and achieve less detection delay as
compared to similar approaches like PPIDS.

Organization. The rest of this paper is organized as
follows. Section 2 reviews related work on distributed
IDSs and privacy-preserving technology. In Section 3,
we introduce the background of collaborative intrusion
detection networks and the main components. Section 4
describes our proposed privacy-preserving framework
and the Rabin fingerprint algorithm for signature-based
IDSs. Section 5 evaluates the framework in both sim-
ulated and real environments. Finally, Section 6 con-
cludes our work.

2. Related Work

This section introduces related work regarding dis-
tributed IDSs, challenge-based CIDNs and the applica-
tion of privacy-preserving technology in IDSs.

Distributed trust-based intrusion detection. Collabo-
rative intrusion detection networks (CIDNs) [52] can
enable an IDS node to achieve better detection accuracy
by collecting and exchanging information with other
IDS nodes. Li et al. [16] identified that most distributed
IDSs were depending on centralized fusion, or dis-
tributed fusion with unscalable communication mecha-
nisms. Based on this observation, they proposed a DIDS
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Figure 1: The high-level architecture of a typical challenge-based CIDN.

by considering the emerging decentralized location and
routing infrastructure. Their approach assumes that all
peers are trusted which is vulnerable to insider attacks
(i.e., betrayal attacks where some nodes suddenly be-
come malicious). Khan and Herrmann [15] developed
some IDS mechanisms for IoT Networks like small de-
vices, which applied a trust management mechanism
for managing reputation of others in a processing and
energy-friendly way.

Insider attacks are one of the major threat to a dis-
tributed architecture. To address this issue, Duma et
al. [9] proposed a P2P-based overlay for intrusion detec-
tion (Overlay IDS) that could identify insider threat by
using a trust-aware engine for correlating alarms from
different nodes and an adaptive scheme for managing
reputation levels of others. The trust-aware correlation
engine is capable of filtering out alarms sent by un-
trusted or low quality peers, and the adaptive trust man-
agement scheme could evaluate and predict a node’s
trust via their past experiences.

For group trust, Shaikh et al. [48] proposed a Group-
based Trust Management Scheme (GTMS), which eval-
uated the trust of a group of sensor nodes for two topolo-
gies: intragroup topology and intergroup topology. Guo
et al. [12] described a trust management framework to
generate trust values based on Grey theory and Fuzzy
sets. They computed trust values by using relation fac-
tors and weights of neighbor nodes, not just by simply
taking an average value. A recent survey on trust evalu-
ation can refer to [13, 59].

Challenge-based CIDN. Challenge-based mechanism
is a special way of computing reputation levels for IDS
nodes, based on the satisfaction level between the re-
ceived answers and the challenges. Fung et al. [10]
proposed a HIDS-based collaboration framework that
enabled each HIDS to communicate with others and
evaluate the trustworthiness of others based on its own
experience. They also employ a forgetting factor to
give more emphasis on the recent experience of a node.
Then, they improved their approach with a Dirichlet-
based model in order to measure the reputation lev-
els among IDS nodes according to their mutual expe-
rience [11]. Experimental results demonstrated that the
new model had strong scalability properties and was ro-
bust against common insider threats.

To further improve the detection performance of
CIDNs, Li et al. [17] figured out that IDSs could
have different levels of sensitivity in detecting partic-
ular types of attacks based on their own resources like
signatures and normal profiles. They then proposed a
concept, called intrusion sensitivity and explored its im-
pact on evaluating the trust of an IDS node. They further
designed a trust management model based on intrusion
sensitivity to improve the robustness of CIDNs [18],
and proposed a machine learning-based approach in au-
tomatically allocating the values of intrusion sensitiv-
ity [22]. In the evaluation, their compared three super-
vised classifiers in assigning sensitivity values. Experi-
mental results demonstrated that the intrusion sensitivity
can enhance the detection accuracy of malicious nodes.

On the other hand, Li et al. [19] proposed a novel type
of collusion attack, called passive message fingerprint
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attack (PMFA), which can collect messages and iden-
tify normal requests in a passive way. In the evaluation,
their results demonstrated that malicious nodes under
PMFA could identify normal messages and send mali-
cious answers to only normal requests to maintain their
trust values. A special On-Off attack (called SOOA)
was also developed by them, which could keep behav-
ing normally to one node but send malicious answers
to another node [20, 21]. In this case, there is still a
need to enhance the security of CIDN frameworks [35],
i.e., considering behavior profile [37, 47]. Some other
related studies on IDS improvement can refer to alert
reduction [29, 31], alert verification [33, 34], blokchain
technology [39] and overall filtration mechanism [32].

Privacy-preserving technique and its applications in
intrusion detection. Many privacy-preserving schemes
have been developed to protect data privacy for intru-
sion detection during data sharing. For example, Park
et al. [44] proposed PPIDS, a privacy preserving ap-
proach for an IDS by applying cryptographic methods
to log files without a trusted third party (TTP). Thanks
to the use of cryptographic methods, PPIDS could pre-
vent users’log information from being monitored and
misused. In addition, their approach could provide
anonymity (encryption of ID), pseudonymity (encryp-
tion of quasi-identifier such as IP address), confidential-
ity of data, and unobservability. One major issue is that
PPIDS could lower the performance due to encryptions
when log information was stored in SQL table and it
could not provide perfect unlinkability.

Regarding the integration of a trusted third party, Be-
nali et al. [5] identified and discussed some privacy
issues. For example, when several organizations de-
cided to collaborate in detecting intrusive activities,
each manger handling organization resources was re-
quested to send the events log to a central unit, which
was supposed to act as a trusted entity. In practice,
when the analyzer received the event from the partic-
ipant, a large amount of private information regarding
resources and IP addresses would be communicated. In
addition, it could be embarrassing for a participant to
be pointed out by the third party as a particular weak
participant. Niksefat et al. [43] designed ZIDS, a client-
server solution for private detection of intrusions. The
system consists of an IDS server including sensitive sig-
natures for zero-day attacks and IDS clients for handling
sensitive data. They reduced the problem of privacy-
preserving intrusion detection to an instance of secure
two-party oblivious deterministic finite automata eval-
uation (ODFA). Their approach was proved to not leak
any sensitive information about the nature of the spar-

sity in the private DFA.
Zhou et al. [58] proposed a framework to detect

Sybil attacks, while preserving the privacy of users in
vehicular ad hoc networks. Their framework could
distribute the responsibility of detecting Sybil attacks
to semi-trusted third parties. Kerschbaum and Oer-
tel [14] presented a provably secure pattern matching
algorithm that could be used for distributed anomaly de-
tection. Their algorithm implemented pattern matching
that could be used as the building block for anomaly
detection. The experiments indicated that their al-
gorithm was acceptable in RFID anti-counterfeiting.
Later, Zhang et al. [55] designed a ‘semi-centralized’
architecture, which used secure multiparty computation
(SMC) protocol to conduct a privacy-preserving Princi-
pal Component Analysis (PCA), and maintain its scala-
bility and accuracy for anomaly detection. In the eval-
uation, they showed that none of the participant could
learn the private information of other participants during
the computation progress. The applications of privacy-
preserving technology in other domains can refer to [2,
23, 24, 25, 26, 41, 51, 54, 56, 57, 60, 61, 62, 63, 64].

3. Background on CIDNs

This section introduces the background of collabora-
tive intrusion detection networks (CIDNs) including the
major components and node interactions, and describe
how a challenge-based CIDN works. Due to the dis-
tributed nature, a CIDN is often vulnerable to insider
attacks. Thus, trust management is required to protect
such network against malicious nodes [40]. Challenge-
based trust mechanism is one promising solution for
CIDNs, which can evaluate the reputation levels of IDS
nodes based on the difference between challenges and
received feedback.

Major components. Besides a detection engine that is
used for examining traffic, each IDS node often con-
tains several components including trust management
component, collaboration component and P2P commu-
nication.

• Trust management component. This component
aims to evaluate the trustworthiness of other nodes.
Various trust management approaches can be ap-
plied here. Regarding the challenge-based trust
mechanism, a node’s reputation level can be com-
puted by evaluating the difference between chal-
lenges and received answers. Each node can send
out either normal requests or challenges for alarm
ranking (consultation). To protect challenges, it is
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worth noting that challenges should be sent out in
a random manner and in a way that makes them
difficult to be distinguished from a normal alarm
ranking request [10].

• Collaboration component. This component is re-
sponsible for measuring the trustworthiness of IDS
nodes by sending out normal requests or chal-
lenges, as well as receiving the corresponding feed-
back. If an IDS node receives a request or chal-
lenge, this component can help send back its feed-
back. Taking Fig. 1 as an example, if node A sends
a request or challenge to node B, then node B has
to send back relevant feedback.

• P2P communication. This component is respon-
sible for connecting with other IDS nodes and
providing network organization, management and
communication among various IDS nodes.

Network Interactions. An IDS node within CIDNs can
choose its own collaborators according to its adopted
policies and experience. Several IDS nodes can be as-
sociated if they have a collaborative relationship. Each
node can maintain a list of their collaborated nodes,
called partner list (or acquaintance list). This list con-
tains important information of other nodes, including
public keys and their current reputation levels. If a
node is willing to join the network, it has to register to
a trusted certificate authority (CA) and obtain a unique
pair of identity like a public key and a private key. As
shown in Fig. 1, if node D applies for joining the net-
work, it has to contact an insider node, say node A.
Then, node A makes a decision and sends back an initial
partner list, if node D is accepted.

To improve the detection performance, CIDNs allow
a set of IDS nodes exchanging necessary messages with
each other. There are two major types of messages for
interactions.

• Challenges. A challenge contains a set of IDS
alarms asking for labeling their severity. A test-
ing node can send a challenge to other tested nodes
and obtain the relevant feedback. As the testing
node knows the severity of the alarms in advance,
it can use the received feedback to derive a trust
value (e.g., satisfaction level) for the tested node.

• Normal requests. A normal request is sent by
a node for alarm aggregation. Other IDS nodes
should send back a list of alarm ranking as the
feedback. Alarm aggregation is an important fea-
ture for distributed or collaborative intrusion detec-
tion in detecting some complicated threat like DoS.

Due to the importance, alarm aggregation process
usually only considers the feedback from trusted
nodes.

4. Our Approach

This section introduces the concept of fog computing,
describes our proposed privacy-preserving framework
for distributed and collaborative intrusion detection in-
cluding the adopted threat model and Rabin fingerprint
algorithm for signature matching.

4.1. Fog Computing

Fog computing is proposed by Cisco, which aims to
help ease the burden of the IoT server and safeguard
the quality-of-service (QoS) [6]. As cloud computing
does not need the enterprise and the end user to know
specification or many details, it becomes a problem for
latency-sensitive applications, which require nodes in
the vicinity to meet their delay requirements. For this
sake, fog computing is proposed, which enables a new
set of applications and services. There is a fruitful inter-
play between the cloud layer and the fog layer, particu-
larly in the aspects of data management and analytic.

The main idea of fog computing is to provide storage,
computing and various networking services between the
environmental devices and the cloud side. For this sake,
fog devices are often close to end devices, and provide
a certain amount of storage and computation resources.
With such deployment, fog devices can process the col-
lected data locally, in order to ease the burden of cloud
side (e.g., the workload of a central server). For exam-
ple, the fog devices can perform some specific opera-
tions on the received data locally and then forward the
results to the central server in the cloud. Therefore, the
volume of data sent to the server could be reduced to a
large extend.

4.2. Our Proposed Framework

According to the features of fog computing, it can
help reduce the delay of intrusion examination, which
is suitable for distributed and collaborative intrusion de-
tection. Focusing on rule-based detection and CIDNs,
we propose a privacy-preserving framework based on
fog devices in Fig. 2, which contains a total of three
layers:

• CIDN layer. This layer allows various IDS nodes
to improve their detection performance by ex-
changing required information with each other. As
signature matching is an expensive process for
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Figure 2: Our privacy-preserving framework for CIDNs using fog de-
vices.

rule-based detection. Thus, those expensive oper-
ations like signature matching and sensitive infor-
mation (e.g., logs) could be offloaded to the cloud
side (cloud layer).

• Cloud layer. The cloud environment aims to pro-
vide sufficient computation resources for expen-
sive operations run in IDSs (CIDN layer), so that
data owners can ease the computational burden.
However, cloud side cannot ensure an instant re-
ply or return of the computational results, due to
the geographical locations. In this work, this issue
is expected to be addressed by using fog devices.

• Fog layer. This layer attempts to embody software
modules and embedded operating systems, which
allows to analyze gathered data obtained from the
CIDN layer and thus make decisions locally. Lo-
cal decision making is an important way to reduce
latency and provide quick responses to unusual be-
haviors.

4.3. Threat Model
Due to the wide adoption, this work employs the

curious-but-honest model for a cloud provider [8]. That
is, the cloud provider is trustful to follow the agreed
protocol and perform intrusion inspection (i.e., analyz-
ing network traffic for anomalies); however, the cloud

provider would attempt to monitor, store, and learn the
sensitive (or private) data from the examined traffic, or
attempt to discover anything they have an interest.

4.4. Fingerprint Computation for Signature-based Dis-
tributed IDSs

Similar to [27], as a study, we select Rabin finger-
print algorithm [45] to our proposed framework. More
specifically, Rabin fingerprints can be computed using
polynomial modulus operations with fast XOR, shift
and table look-up operations, resulting in two major
merits: 1) one way; 2) and fast computation. In other
words, a prime p by random selection can be used to
compute the residue of a long-length string. A real-time
string matching is a typical application of Rabin finger-
print algorithm.

For a signature-based IDSs, these fingerprints can be
used during signature matching to meet the real-time re-
quirement. More formally, for a binary string, given a
sliding window and an irreducible polynomial p(x), the
fingerprint of each k-bit gram can be computed as be-
low:

f (x) = mk +mk−1x+mk−2x2 + ...+m1xk−1mod p(x) (1)

Based on Equation (1), we can generate fingerprints
for both IDS signatures and transmitted network pack-
ets, and the cloud side can raise an alarm if any packet
fingerprint matches the signature fingerprints. How-
ever, our previous work [27] indicated that the above
straightforward approach has a privacy concern if there
is a match between two fingerprints from signatures and
packet payloads. For example, the cloud provider can
still learn some useful information (i.e., which part of a
signature did match), as the signatures may be known.

To resolve this issue, we can perturb fingerprints be-
fore sending them to the cloud provider. Note that for
the exact matching, it is hard to completely prevent the
cloud provider from successfully launching brute-force
attacks, but we can reduce the possibility of cracking.
As a study, we employ a simple approach; that is, the
data owner can select a secret s with a length of ls and
use this secret to perturb the original fingerprints. This
approach enables the data owner to decide the length of
ls so that the cloud provider still needs to guess the se-
cret and its length. The equation can be presented as
below:

f ′(x) = f (x) ⊕ s (0 < ls < | f (x)|) (2)

Security discussion. In current IDS scenario, we
consider signatures are sensitive as well. Since we can

6



use Equation (2) to perturb the fingerprints. Accord-
ing to [27], assume that there are matches between sig-
nature fingerprints and payload fingerprints. Given the
secret length ls (assuming that the length of ls is ran-
dom with uniformly distribution) and the fingerprint
length lp, thus, the cloud provider has no more than

1
2ls×2lp (0 < ls < lp) probability of inferring the sensi-
tive information. If there is no match, then the cloud
provider should brute force to reverse the Rabin finger-
printing calculation. This brute-force attack is difficult
for a polynomial-time adversary [45].

For irreducible polynomials, any degree k is accept-
able, but it is more convenience when k is prime, e.g.,
k = 17, 19, .... Based on the previous work on Rabin
fingerprint algorithm [45], we can have the following
knowledge.

Lemma 1. Let k be prime, then the number of irre-
ducible polynomials p(x) = mk + mk−1xk−1 + mk−2xk−2 +

... + m0 ∈ Z2[x], is (2k − 2)/k.

Proof. Let GF(2k) = E be the Galois field with 2k el-
ements. Every irreducible polynomial p(x) ∈ Z2[x] of
degree k has exactly k roots in E, and since 1 < k these
roots are in E − Z2.

Lemma 2. For a prime degree k, it is known that a ran-
dom selection can have an equal probability of an irre-
ducible polynomial p(t) ∈ Z2[x] of degree k.

Proof. Let p1(t), ..., pd(t), d = (2k − 2)/k be an enu-
meration of all the different irreducible polynomials of
degree k. As described above, GF(2k)− Z2 = S 1 ∪ S 2 ∪
S 3 ∪ ... ∪ S D where S i presents the k roots of pi(t). The
random selection γ ∈ GF(2k)− Z2 has equal probability
of falling within each of S j, because all these options
have the same number of elements. In this case, under a
probability of 1/d, we have γ ∈ S i when p(t) = pi(t).

Signature (String) matching. Let α = x1, x2, ..., xn,
β = y1, y2, ..., ym, xi, yi ∈ 0, 1 denote bit strings. The
purpose of string matching is to identify one or more in-
dices i such that α = yiyi+1...yi+n−1. If a match is found
for any i, it means that the signature (or rule) α matches
the ith substring of length n of text β.

Let k be the smallest prime such that k >
log2(nmε−1). In all practical applications, assume a(t) =

x1tn−1+...+xn, ai(t) = yitn−1+...+yi+n−1, 1 ≤ i ≤ m−n+1.
Then, a match for index i is equivalent to a(t) = ai(t).

Theorem 3. For a set of signatures α = x1, x2, ..., xn

and a text β = y1, y2, ..., ym, if k > log2(nmε−1), then the
probability of generating errors is smaller than ε, and all
actual matches can be identified.

Proof. Denote ḡ(t) as the residue module p(t) of the
polynomial g(t). If ā(t) = ā1(t), then the output is ’index
1 is matched’. Thus, all actual matches can be found
since a(t) = ai(t) implies ā(t) = āi(t) for each p(t).

If there is an error, i.e., the output for some i is ’index
i is matched’, then we will have ā(t) = āi(t) and a(t) ,
ai(t). Thus, p(t) divides H(t) = Πa(t),ai(t)(a(t) , ai(t)),
shortly p(t)|H(t). Conversely, if for an irreducible poly-
nomial p(t)|H(t), then p(t) have to divide some factors
a(t) = ai(t) of H(t), However, as we have ā(t) = āi(t)
and a(t) , ai(t), the output is wrong when such p(t) is
used.

Let p1(t), ..., pϕ(t) be a list of irreducible polynomials
of degree k that divide H(t). Then their product P(t) can
divide H(t) as well. As H(t) is a product of at most m−n
factors, we can have ϕ ≤ nm/k. For each pair of (α, β),
at most nm/k irreducible polynomial p(t) of degree k
can produce an error.

It is known that the total number of all irreducible
polynomials of degree k is N = (2k − 2)/k. Since
k > log2(nmε−1), we can have N > nmε−1. For a ran-
dom selection p(t), the probability of an error output
equals the number ϕ divided by the number of N of all
irreducible polynomials of degree k. Then, we can have
the the probability of generating errors is smaller than
(nm/k)/(nmε−1/k) = ε.

5. Evaluation

In this section, we evaluate the performance of our
approach in both simulated and real environments, as
compared to other similar approaches like PPIDS [44].

5.1. Evaluation in a Simulated Environment

To investigate the performance, we simulated a cloud
environment based on iCanCloud1, which can simulate
instance types provided by Amazon. The simulated
CIDN consists of 10 nodes. The implementation of Ra-
bin fingerprint is based on cyclic redundancy code and
all grams are in 8-byte. The fingerprints are in 128-
bit with 129-bit irreducible polynomials, and we set the
length (ls) of the secret s to 64-bit (half length of the
fingerprints).

Workload. Fog devices can help perform signature
matching for the transmitted traffic from the CIDN layer
to the cloud layer, and send the alarms / records to the
cloud side. The reduced workload of the central server
on cloud side is shown in Fig. 3. It is observed that

1http://icancloudsim.org/Home.html.
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Figure 3: Performance result of reduced workload vs. processed traf-
fic on fog devices.

Table 1: Simulation parameters in the experiment.

Parameters Value Description

λ 0.9 Forgetting factor
εl 10/day Low request frequency
εh 20/day High request frequency
r 0.8 Trust threshold

Ts 0.5 Trust value for newcomers
m 10 Lower limit of received feedback
d 0.3 Severity of punishment

with more traffic processed by fog devices, the work-
load of the central server (in the cloud environment) can
be greatly reduced. It is worth noting that the central
server still needs to aggregate IDS alarms and correlate
information. Overall, our results demonstrate that our
proposed framework can help reduce the burden of the
central server on cloud side.

Detection delay. Delay always exists for a cloud-
based IDSs, as the central server on the cloud has to
collect information from different intrusion detectors.
In this work, we take an early privacy-preserving in-
trusion detection approach, called PPIDS [44], in the
comparison. More specifically, PPIDS can encrypt the
audit log file and detect intrusions by means of a secure
computation method without a trusted third party (TTP).
The arithmetic operations over encrypted data was ac-
complished through privacy homomorphism. For im-
plement, their approach was also applied to a signature-
based IDSs.

The settings of collaborative intrusion detection is
summarized in Table 1. The CIDN environment con-
sists of 25 nodes and each node installed Snort [50] as
intrusion detector. Various IDS nodes can communicate
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Figure 4: Convergence of nodes’ trust values regarding three expertise
levels.

necessary information with each other. The initial trust
value of every node is set as Ts = 0.5.

Node Trust Evaluation. To evaluate the reputation lev-
els of others, an IDS node has to send a challenge under
a rate. The trustworthiness of a node can be calculated
by identifying the difference between the expected an-
swers and the received feedback. The trustworthiness of
a node i according to node j can be computed as below:

T j
i = (ws

∑n
k=0 F j,i

k λ
tk

∑n
k=0 λ

tk − Ts)(1 − x)d + Ts (3)

where F j,i
k ∈ [0, 1] describes the satisfaction level of a

feedback k, n is the total number of received feedbacks,
λ is the forgetting factor that gives more weight to re-
cent answers, and ws is the significant weight, which re-
lies on the number of received feedbacks. If the number
of received feedbacks is below a minimum threshold m,
then ws =

∑n
k=0 λ

tk

m ; otherwise ws = 1; x is the percent-
age of “don’t know” replies for a time interval; d is a
positive incentive parameter to control the punishment
severity of “don’t know” replies. More details can be
referred to [10, 11].

Node Expertise. We adopted three expertise levels for
an IDS node: low (0.1), medium (0.5) and high (0.95).
Then the expertise can be represented as below:

f (p′|α, β) =
1

B(α, β)
p′α−1(1 − p′)β−1

B(α, β) =

∫ 1

0
tα−1(1 − t)β−1dt

(4)
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Figure 5: Trust value of malicious node for our approach and PPIDS
in the simulated environment.

where p′(∈ [0, 1]) describes the probability of an
IDS in examining an intrusion, and f (p′|α, β) means the
probability that an IDS node at the expertise level l re-
sponds in p′ to an intrusion examination of difficulty
level d(∈ [0, 1]). α and β can be modeled as below:

α = 1 +
l(1 − d)
d(1 − l)

r

β = 1 +
l(1 − d)
d(1 − l)

(1 − r)
(5)

where r ∈ {0, 1} is the expected result of the detection
and d(∈ [0, 1]) is the difficulty level.

Figure 4 shows the convergence of trust values for
different expert nodes. It is found that nodes with higher
expertise can achieve bigger trust values, which is in-
line with the observations in former work [10, 11]. The
reputation levels become stable after around 25-30 days.

To measure the detection performance of our ap-
proach and PPIDS, we randomly chosen one expert
node (I = 0.95) to perform an attack from Day 45. The
trust value of malicious node is depicted in Figure 5.
It is found that under both approaches, the trust value
of malicious node would decrease below the threshold,
but our approach could reduce the reputation faster than
PPIDS. This is because the computation of Rabin fin-
gerprint is faster than the privacy homomorphism used
in PPIDS.

5.2. Evaluation in a Real Environment
In this experiment, we collaborated with an IT service

provider to validate the performance of our approach in
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Figure 6: Trust value of malicious node for our approach and PPIDS
in the real network environment.

a real network environment. The network deployment is
similar to Figure 2 and the implemented CIDN contains
32 nodes with Snort. The basic settings of CIDN can
refer to Table 1, while the threshold is the same as 0.8.

Due to some privacy issues, the IT administrator
helped implement our approach. The trust values of
IDS nodes could become stable after 24 days. Then we
randomly selected three high expert nodes to send mali-
cious packets from Day 45, which would activate Snort
alarms. The average trust values of malicious nodes un-
der are shown in Figure 6.

Similar to the results obtained in the simulated envi-
ronment, it is visible that our approach could decrease
the trust value of malicious nodes faster than PPIDS.
The IT administrator from the participating organization
confirmed that the computation time of our approach is
faster than PPIDS. Figure 7 depicts the reduced work-
load of the central server on the cloud side. Similarly,
with more traffic processed by fog devices, the work-
load of the central server in the cloud could be greatly
decreased.

Overall, these results demonstrate that our approach
can help protect data privacy and reduce the workload
on the cloud side. Further, it is validated that our ap-
proach may result in less detection delay than other
similar approaches like PPIDS. A fast detection is very
important to prevent further loss when an intrusion oc-
curred.

5.3. Discussion

In this work, we evaluated our approach in both a
simulated and a real network environment, by combin-
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Figure 7: Performance: reduced workload vs. processed traffic on fog
devices.

ing CIDN with fog devices. The results showed that our
proposed privacy-preserving framework is suitable for
signature-based intrusion detection in a distributed en-
vironment. However, some challenges may still affect
the performance when offload the expensive process of
signature matching to the cloud side.

• Privacy and efficiency. In any cloud-based mech-
anism, the data owner has to pre-process all sig-
natures and examined packets. If we consider two
parties without a trusted third party, then it is very
hard to offload the packet encryption to the cloud
provider. While this process may increase the de-
lay locally. This is an open challenge in the field of
cloud-based intrusion detection.

• Detection delay. For a cloud-based IDS, detec-
tion delay is a common challenge, especially when
the geographical distribution is broad. Our results
demonstrate that fog computing technology is a
promising solution to reduce such detection delay;
however, some kind of delay still exists. How to
design an appropriate encryption methods to fur-
ther decrease the detection delay is another inter-
esting issue in this area.

• Adversary model. In the area of intrusion detec-
tion, two adversary model can be considered: weak
adversary model and strong adversary model. The
first model assumes that the signature or strings
used in the signature matching is non-sensitive, so
that users may only require to protect texts (e.g.,
packet payloads) other than the signature-strings.

On the other hand, the second model assumes
that the signatures and strings are sensitive data,
in case that some organizations may have their
self-developed signatures. In this case, a cloud
providers can only identify a match, but should not
know which plaintext signature is matched. How
to address the privacy preserving issue under these
two models are one of our future work.

• Privacy-preserving IDS schemes. In this paper, we
mainly compared our approach with PPIDS [44],
which can encrypt the audit log file and detect in-
trusions by means of a secure computation method
without a trusted third party (TTP). PPIDS is the
most relevant work based on goals and threat
model. There are some other privacy-preserving
IDS schemes available, but it is not easy to com-
pare the performance among different schemes. In
future, we plan to design a more general scenario
and consider more schemes in the evaluation.

6. Conclusion

IDSes have been widely deployed in the Internet to
defend against transmissible cyber threats that spread
across network domains. To overcome the limitation
of processing power in traditional IDS hardware, mod-
ern IDSes employ advanced detection algorithms by of-
floading the process of signature matching to the cloud.
However, during the detection, no party wants to dis-
close their own data especially sensitive data to others.
For this sake, privacy-preserving technology has been
studied for IDSes, whereas most existing approaches
are not suitable for distributed and collaborative intru-
sion detection due to the geographical distribution. With
the advent of fog computing, in this work, we pro-
pose a privacy-preserving framework using Rabin fin-
gerprint algorithm for collaborative signature-based in-
trusion detection by means of fog devices. In the eval-
uation, we evaluated our approach in both simulated
and real network environments. Experimental results
demonstrate that our approach can help protect the pri-
vacy of data, greatly reduce the workload of the central
server on the cloud side, and achieve less detection de-
lay as compared similar approaches like PPIDS.

This is an early study and there are many topics for
our future work. For example, it is an interesting topic to
design a more lightweight encryption scheme to further
decrease the detection delay in distributed environment,
and apply our approach to anomaly detection.
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