
Communication-free Massively Distributed
Graph Generation

Daniel Funkea, Sebastian Lamma, Ulrich Meyerd, Manuel Penschuckd, Peter Sandersa, Christian Schulzb,
Darren Strashc, Moritz von Looze

aKarlsruhe Institute of Technology, Karlsruhe, Germany
bUniversity of Vienna, Vienna, Austria

cHamilton College, Clinton, New York, USA
dGoethe University, Frankfurt, Germany

eHumboldt University of Berlin, Berlin, Germany

Abstract

Analyzing massive complex networks yields promising insights about our everyday lives. Building scalable
algorithms to do so is a challenging task that requires a careful analysis and an extensive evaluation. However,
engineering such algorithms is often hindered by the scarcity of publicly available datasets.

Network generators serve as a tool to alleviate this problem by providing synthetic instances with controllable
parameters. However, many network generators fail to provide instances on a massive scale due to their
sequential nature or resource constraints. Additionally, truly scalable network generators are few and often
limited in their realism.

In this work, we present novel generators for a variety of network models that are frequently used as
benchmarks. By making use of pseudorandomization and divide-and-conquer schemes, our generators follow
a communication-free paradigm. The resulting generators are thus embarrassingly parallel and have a near
optimal scaling behavior. This allows us to generate instances of up to 243 vertices and 247 edges in less than
22 minutes on 32 768 cores. Therefore, our generators allow new graph families to be used on an unprecedented
scale.

Keywords: graph generation, communication-free, distributed algorithms

1. Introduction

Complex networks are prevalent in every aspect
of our lives: from technological networks to biologi-
cal systems like the human brain. These networks
are composed of billions of entities that give rise
to emerging properties and structures. Analyzing
these structures aids us in gaining new insights about
our surroundings. In order to find these patterns,
massive amounts of data have to be acquired and
processed. Designing and evaluating algorithms to

Email addresses: funke@kit.edu (Daniel Funke),
lamm@kit.edu (Sebastian Lamm),
umeyer@ae.cs.uni-frankfurt.de (Ulrich Meyer),
mpenschuck@ae.cs.uni-frankfurt.de (Manuel Penschuck),
sanders@kit.edu (Peter Sanders),
christian.schulz@univie.ac.at (Christian Schulz),
dstrash@hamilton.edu (Darren Strash),
loozmori@hu-berlin.de (Moritz von Looz)

handle these datasets is a crucial task on the road
to understanding the underlying systems. However,
real-world datasets are often scarce or are too small
to reflect future requirement.

Network generators solve this problem to some
extent. They provide synthetic instances based on
random network models. These models are able
to accurately describe a wide variety of different
real-world scenarios: from ad-hoc wireless networks
to protein-protein interactions [1, 2]. A substan-
tial amount of work has been contributed to un-
derstanding the properties and behavior of these
models. In theory, network generators allow us to
build instances of arbitrary size with controllable
parameters. This makes them an indispensable tool
for the systematic evaluation of algorithms on a mas-
sive scale. For example, the well known Graph 500
benchmark (graph500.org), uses the R-MAT graph

ar
X

iv
:1

71
0.

07
56

5v
3

 [
cs

.D
C

]
 1

8
M

ar
 2

01
9

graph500.org

generator [3] to build instances of up to 242 vertices
and 246 edges.

Even though generators like R-MAT scale well, the
generated instances are limited to a specific family
of graphs [3]. Many other important network models
still fall short when it comes to offering a scalable
network generator and in turn to make them a viable
replacement for R-MAT. These shortcomings can
often be attributed to the apparently sequential na-
ture of the underlying model or prohibitive hardware
requirements.

Our Contribution

In this work we introduce a set of novel network
generators that focus on scalability. We achieve
this by using a communication-free paradigm [4],
i.e. our generators require no communication between
processing entities (PEs). An implementation is
available as the KaGen library at https://github.
com/sebalamm/KaGen.

Each PE is assigned a disjoint set of local vertices.
It then is responsible for generating all incident edges
for this set of vertices. This is a common setting in
distributed computation [5].

The models that we target are the classic Erdős-
Rényi models G(n,m) andG(n, p) [6, 7] and different
spatial network models including random geomet-
ric graphs (RGGs) [8], random hyperbolic graphs
(RHGs) [9] and random Delaunay graphs (RDGs).
The KaGen library also supports the preferential
attachment model of Barabási and Albert [10] using
the algorithm from Sanders and Schulz [4].

For each new generator, we provide bounds for
their parallel (and sequential) running times. A key-
component of our algorithms is the combination of
pseudorandomization and divide-and-conquer strate-
gies. These components enable us to perform efficient
recomputations in a distributed setting without the
need for communication.

To highlight the practical impact of our generators,
we also present an extensive experimental evaluation.
First, we show that our generators rival the current
state-of-the-art in terms of sequential and/or parallel
running time. Second, we are able to show that our
generators have near optimal scaling behavior in
terms of weak scaling (and strong scaling). Finally,
our experiments show that we are able to produce
instances of up to 243 vertices and 247 edges in less
than 22 minutes. These instances are in the same
order of magnitude as those generated by R-MAT for
the Graph 500 benchmark. Hence, our generators

enable the underlying network models to be used in
massively distributed settings.

2. Preliminaries

We define a graph (network) as a pair G = (V,E).
The set V = {0, . . . , n − 1} (|V | = n) denotes the
vertices of G. For a directed graph E ⊆ V × V
(|E| = m) is the set of edges consisting of ordered
pairs of vertices. Likewise, in an undirected graph E
is a set of unordered pairs of vertices. Two vertices
that are endpoints of an edge e = {u, v} are called
adjacent. Edges in directed graphs are ordered tuples
e = (u, v). An edge (u, u) ∈ E is called a self-loop.
If not mentioned otherwise, we only consider simple
graphs that contain no self-loops or parallel edges.

The set of neighbors for any vertex v ∈ V is defined
as N(v) = {u ∈ V | {u, v} ∈ E}. For an undirected
graph, we define the degree of a vertex v ∈ V as
d(v) = ∆(v) = |N(v)|. In the directed case, we have
to distinguish between the indegree and outdegree of
a vertex.

We denote that a random variable X is distributed
according to a probability distribution P with param-
eters p1, . . . , pi as X ∼ P(p1, . . . , pi). The probabil-
ity mass function of a random variable X is denoted
as µ(X).

2.1. Network Models

2.1.1. Erdős-Rényi Graphs

The Erdős-Rényi (ER) model was the first model
for generating random graphs and supports both
directed and undirected graphs. For both cases, we
are interested in graph instances without parallel
edges. We now briefly introduce the two closely
related variants of the model.

The first version, proposed by Gilbert [7], is de-
noted as the G(n, p) model. Here, each of the
n(n − 1)/2 possible edges of an n-node graph is
independently sampled with probability 0 < p < 1
(Bernoulli sampling of the edges).

The second version, proposed by Erdős and
Rényi [6], is denoted as the G(n,m) model. In the
G(n,m) model, we chose a graph uniformly at ran-
dom from the set of all possible graphs which have
n vertices and m edges.

For sake of brevity, we only revisit the generation
of graphs in the G(n,m) model. However, all of our
algorithms can easily be transferred to the G(n, p)
model.

2

https://github.com/sebalamm/KaGen
https://github.com/sebalamm/KaGen

2.1.2. Random Geometric Graphs

Random geometric graphs (RGGs) are undirected
spatial networks where we place n vertices uni-
formly at random in a d-dimensional unit cube
[0, 1)d. Two vertices p, q ∈ V are connected by
an edge iff their d-dimensional Euclidean distance
dist(p, q) = (

∑d
i=1(pi − qi)

2)1/2 is within a given
threshold radius r. Thus, the RGG model can be
fully described using the two parameters n and r.
Note that the expected degree of any vertex that
does not lie on the border, i.e. whose neighborhood
sphere is completely contained within the unit cube,
is d̄(v) = π

d
2 rd/Γ(d2 + 1) [11]. In our work we fo-

cus on two and three dimensional random geometric
graphs, as these are very common in real-world sce-
narios [12].

2.1.3. Random Hyperbolic Graphs

Random hyperbolic graphs (RHGs) are undi-
rected spatial networks generated in the hyperbolic
plane with negative curvature. To generate a RHG,
n points are randomly placed on a disk with radius

R = 2 log n+ C, (1)

where C controls the average degree d̄ with

d̄ =
2

π
[

α

α− 1/2
]2e−C/2(1 + o(1)) (2)

with high probability. [9, 13] Additionally, the model
features a dispersion factor α > 1/2 affecting con-
centration of points near the center of the disk.

Each vertex q corresponds to a point with a polar
coordinate θq and a radial coordinate rq. Its angle θq
is sampled uniformly at random from the interval
[0, 2π), while its radius rq is chosen according to the
probability density function

f(r) = α
sinh(αr)

cosh(αR)− 1
. (3)

Krioukov et al. [9] and Gugelmann et al. [13] show
that for α > 1/2 the degree distribution in the thresh-
old model follows a power-law distribution with expo-
nent γ = 1 + 2α. In this RHG variant, two vertices
p, q are connected iff their hyperbolic distance

distH(p, q) = acosh(cosh rp cosh rq−
sinh rp sinh rq cos(θp − θq)) (4)

is below the threshold R. Therefore, the neighbor-
hood of a vertex consists of all the vertices that are
within the hyperbolic circle of radius R around it.

2.1.4. Random Delaunay Graphs (RDGs)

A two-dimensional Delaunay graph is a planar
graph whose vertices represent points in the plane.
Its edges form a triangulation of this point set, i.e.,
they partition the convex hull of the point set into
triangles. Furthermore, the circumcircle of each
triangle must not contain other vertices in its interior.
This concept can be generalized for d-dimensional
Euclidean space [14]. In particular, for d = 3 we
get a tetrahedralization, i.e., a decomposition of the
space into tetrahedra whose circumsphere may not
contain vertices in their interior.

In this paper, we are concerned with Delaunay
graphs defined by points sampled uniformly at ran-
dom from the d-dimensional unit cube [0, 1)d for
d ∈ {2, 3}. We view this as a good model for meshes
as they are frequently used in scientific computing.
Indeed, these simulations frequently use periodic
boundary conditions, in order to make small simu-
lations representative for a large simulated system
(e.g., [15]). This can also be viewed as replacing the
infinite Euclidean space by a d-dimensional torus.
We adopt these periodic boundary conditions, i.e.,
we implicitly compute the Delaunay-Triangulation of
a point set where for every point x in the unit cube,
also the points x+ o with o ∈ {−1, 0, 1}d are in the
point set. Two points in the unit cube are connected
in the output, if any of their copies are connected.
For a scalable distributed graph generator, periodic
boundary conditions have the advantage that we
avoid the need to compute some very long edges that
appear at the convex hull of random point set.

2.2. Sampling Algorithms

Most of our generators require sampling
(with/without replacement) of n elements from
a (finite) universe N . Sequentially, both of these
problems can be solved in expected time O(n) [16].
These bounds still hold true, even if a sorted
sample has to be generated [16, 17]. However,
most of these algorithms are hard to apply in
a distributed setting since they are inherently
sequential. Recently, Sanders et al. [18] proposed
a set of simple divide-and-conquer algorithms
that allow sampling n elements on P PEs. Their
algorithms follow the observation that by splitting
the current universe into equal sized subsets, the
number of samples in each subset follows a hyper-
geometric distribution. Based on this observation,
they develop a divide-and-conquer algorithm to
determine the number of samples for each PE. In

3

particular, each PE first determines its local interval
of the input universe and then recursively generates
a set of hypergeometric random variates. At each
level of the recursion, it follows the remaining
subset of the universe that contains its local interval.
Hypergeometric random variates are synchronized
without the need for communication by making use
of pseudorandomization via (high quality) hash
functions. To be more specific, for each subtree
of the recursion, a unique seed value is computed
(independent of the rank of the PE). Afterwards,
a hash value for this seed is computed and used
to initialize the pseudorandom number generator
(PRNG) for the random variates. Therefore, PEs
that follow the same recursion subtrees generate the
same random variates, while variates in different
subtrees are independent of each other. Once the
remaining subset is smaller than a given threshold,
a linear time sequential algorithm [16] is used to
determine the local samples. They continue to show
that their algorithm runs in time O(n/P + logP)
with high probability1 (w.h.p.) if the maximum
universe size per PE is O(N/P) [18]. Additionally,
they demonstrate that their algorithm can be
efficiently implemented on Single Instruction
Multiple Data (SIMD) architectures, such as vector
units of modern CPUs and general purpose graphic
processors (GPGPUs).

We also require the sampling of random num-
bers that follow a particular probability distribu-
tion, e.g. binomial or hypergeometric distributions.
For this purpose, we use the acceptance-rejection
method [19, 20]. Thus, we are able to generate
binomial and hypergeometric random variates in ex-
pected constant time O(1) [21, 22].

2.3. GPGPU Computation Model

The computation and programming model for
GPGPUs varies from traditional CPU programming
in several aspects. Computations are organized in
blocks of threads. All threads of a block have access
to some common memory block and are able to use
synchronization between them. Blocks, on the other
hand, are scheduled independent from each other and
have no means of synchronization or communication.
The threads of a block are processed in a SIMD-style
manner. Branches in the code are possible, however
threads of a block taking different branches are no
longer processed in parallel but sequentially.

1 i.e. with probability at least 1− P−c for any constant c

We consider an accelerator model where every PE
has a GPGPU available to offload computations to
but the CPU is considered the main processing and
steering facility.

3. Related Work

This paper is the journal version of [23] augmented
with more proofs and experiments as well as with
material based on the results in [24].

We now cover important related work for each of
the network models used in our work. Additionally,
we highlight recent advances for other network mod-
els that are relevant for the design of our algorithms.

3.1. ER Model

Batagelj and Brandes [25] present optimal sequen-
tial algorithms for the G(n,m) as well as the G(n, p)
model. Their G(n, p) generator makes use of an
adaptation of a linear time sampling algorithm (Al-
gorithm D) by Vitter [16]. In particular, the algo-
rithm samples skip distances between edges of the
resulting graph. Thus, they are able to generate
a G(n, p) graph in optimal time O(n + m). Their
G(n,m) generator is based on a virtual Fisher-Yates
shuffle [26] and also has an optimal running time of
O(n+m).

Nobari et al. [27] proposed a data parallel gen-
erator for both the directed and undirected G(n, p)
model. Their generators are designed for graph-
ics processing units (GPUs). Like the generators
of Batagelj and Brandes [25], their algorithm is
based on sampling skip distances but uses pre-
computations and prefix sums to adapt it for a data
parallel setting.

3.2. RGG Model

Generating random geometric graphs with n ver-
tices and radius r can be done näıvely in time Θ(n2).
This bound can be improved if the vertices are known
to be generated uniformly at random [28]. To this
end, a partitioning of the unit square into squares
with side length r is created. To find the neighbors of
each vertex, we consider each cell and its neighbors.
The resulting generator has an expected running
time of O(n+m).

Holtgrewe et al. [28, 29] proposed a distributed
memory parallelization of this algorithm for the
two dimensional case. Using sorting and vertex ex-
changes between PEs, they distribute vertices such
that edges can be generated locally. The expected

4

time for the local computation of their generator
is O(n/P log(n/P)), due to sorting. Perhaps more
important for large supercomputers is that they need
to exchange all vertices resulting in a communication
volume of O(n/P) per PE.

We are not aware of efficient distributed implemen-
tations of RGG generators for dimensions greater
than two.

3.3. RHG Model

Von Looz et al. [30, 31] propose two different al-
gorithms for generating random hyperbolic graphs.
Their first algorithm relates the hyperbolic space
to Euclidean geometry using the Poincaré disk
model to perform neighborhood queries on a po-
lar quadtree. The resulting generator has a running
time of O((n3/2 +m) log n).

In their second approach, von Looz et al. [31]
propose a generator with an observed running time
of O(n log n + m). Their algorithm uses a parti-
tioning of the hyperbolic plane into concentric ring-
shaped annuli where vertices are stored in sorted
order. Neighborhood queries are computed using
angular boundaries for each annulus to bound the
number of vertex comparisons.

Bringmann et al. [32] introduce a generalization
of random hyperbolic graphs called Geometric Inho-
mogeneous Random Graphs (GIRGs). Their model
simplifies theoretical studies of random hyperbolic
graphs by ignoring constant factors while maintain-
ing their qualitative behavior. Additionally, they
propose an optimal sampling algorithm for GIRGS
with expected linear time.

Finally, independent of this work, Penschuck [24]
proposed a memory efficient streaming generator
that can be adapted to a distributed setting. Similar
to von Looz et al. [31], they partition the hyperbolic
plane into concentric annuli. They use a sweep-line
based algorithm to generate nodes and edges on the
fly in a request-centric fashion. They propose two
practical algorithms optimized for either a time com-
plexity of O(n log log n+m) or a memory-footprint
of O([n1−αd̄α + log n] log n) with high probability.
Additionally, they present a shared memory paral-
lelization of their algorithms that can be adapted to
a distributed setting with a constant communication
overhead.

3.4. RDG Model

As the Delaunay triangulation (DT) of a point
set is uniquely defined, generating random Delaunay

graphs can be separated into generating a random
point set and computing its DT. A plethora of al-
gorithms for computing the DT of a given point
set in two and three dimensions exist. Funke and
Sanders [33] review recent work on parallel DT al-
gorithms and propose a competitive DT algorithm
suitable for large clusters. The generation of a ran-
dom point set is identical to the one in the RGG
model.

3.5. Miscellaneous

3.5.1. Barabasi and Albert Model

Batagelj and Brandes [25] give an optimal sequen-
tial algorithm for the preferential attachment model
of Barabasi and Albert [10]. Sanders and Schulz [4]
parallelize this algorithm that appears to be inher-
ently sequential. They observe that each edge can
be generated independently if the randomness used
for generating other edges is reproduced redundantly
and consistently using a pseudorandom hash func-
tion. We adapt this technique to other random graph
models.

3.5.2. Recursive Matrix Model

The recursive matrix model (R-MAT) by
Chakrabarti et al. [3] is a special case of the stochas-
tic Kronecker graph model [34]. This model is well
known for its usage in the popular Graph 500 bench-
mark. Generating a graph with n vertices and m
edges is done by sampling each of the m edges inde-
pendently. For this purpose, the adjacency matrix is
recursively subdivided into four partitions. Each par-
tition is assigned an edge probability a+b+c+d = 1.
Recursion continues until a 1× 1 partition is encoun-
tered, in which case the corresponding edge is added
to the graph. The time complexity of the R-MAT
generator therefore is O(m log n) since recursion has
to be repeated for each edge.

4. ER Generator

We now introduce our distributed graph genera-
tors, starting with the Erdős-Rényi generators for
both the directed and undirected case.

4.1. Directed Graphs

Generating a (directed) graph in the G(n,m)
model is the same as sampling a graph from the
set of all possible graphs with n vertices and m
edges. To do so, we can sample m edges uniformly
at random from the set of all possible n(n−1) edges.

5

Since we are not interested in graphs with parallel
edges, sampling has to be done without replacement.
We do so by using an adaptation of the distributed
sampling algorithm by Sanders et al. [18].

Our generator starts by dividing the set of possible
edges into P chunks, one for each PE. Each chunk
represents a set of rows of the adjacency matrix
of our graph. We then assign each chunk to its
corresponding PE using its id i. Afterwards, PE
i is responsible for generating the sample (set of
edges) for its chunk. Note that we can easily adapt
this algorithm to an arbitrary number of consecutive
chunks per PE.

To compute the correct sample size (number of
edges) for each chunk, we use the same divide-and-
conquer technique used by the distributed sampling
algorithm [18] (see Section 2.2). The resulting sam-
ples are then converted to directed edges using simple
offset computations.

Theorem 1. The directed G(n,m) generator runs
in time O((n+m)/P + logP) with high probability.

Proof. Our algorithm is an adaptation of the
distributed sampling algorithm that evenly divides
the set of vertices, and therefore the set of potential
edges, between P PEs. Thus, the universe per PE
has size O(n(n−1)/P) and the running time directly
follows from the proof given by Sanders et al. [18].

4.2. Undirected Graphs

In the undirected case, we have to ensure that
an edge {i, j} is sampled by both PEs, the one that
is assigned i and the one that is assigned j. Since
each PE is assigned a different chunk, they follow
different paths in the recursion tree. Hence, due to
the independence of the random variables generated
in each recursion tree, it is highly unlikely that they
both sample the edge {i, j} independently. To solve
this issue, we introduce a different partitioning of
the graphs adjacency matrix into chunks.

Our generator begins by dividing each dimension of
the adjacency matrix into P sections of size roughly
n/P . A chunk is then defined as a set of edges that
correspond to a (n/P)×(n/P) submatrix of the adja-
cency matrix. Due to the symmetry of the adjacency
matrix, we are able to restrict the sampling to the
lower triangular adjacency matrix. Thus, we have
a total of P (P + 1)/2 chunks that can be arranged
into a triangular P × P chunk matrix. Afterwards,
each PE is assigned a row and column of this matrix

based on its id i as seen in Fig. 1. By generating
rectangular chunks instead of whole rows or columns,
we can make sure that both PE i and PE j ≤ i re-
dundantly generate chunk (i, j) using the same set of
random values. In turn, they both sample the same
set of edges independently without requiring com-
munication. Note that our partitioning scheme into
chunks results in each chunk being computed twice
(once for each associated PE) except for the chunks
on the diagonal of our chunk matrix. Therefore, the
recomputation overhead is bounded by 2m.

We now explain how to adapt the divide-and-
conquer algorithm by Sanders et al. [18] for our
chunk matrix. To generate the required partitioning
of the adjacency matrix, we start by dividing the
P ×P chunk matrix into equal sized quadrants. This
is done by splitting the rows (and columns) into two
equal sized sections {1, . . . , l} and {l+1, . . . , P}. We
choose l = dP/2e as our splitting value.

We then compute the number of edges within
each of the resulting quadrants. Since we are only
concerned with the lower triangular adjacency matrix,
there are two different types of quadrants: triangular
and rectangular. The second and fourth quadrant
are triangular matrices with l and P − l rows (and
columns) respectively. We then generate a set of
three hypergeometric random variates to determine
the number of samples (edges) in each quadrant. As
for the distributed sampling algorithm [18], we make
use of pseudorandomization via hash functions that
are seeded based on the current recursion subtree to
synchronize variates between PEs.

Each PE then uses its id to decide which quadrants
to handle recursively. Note that at each level of the
recursion, a PE only has to handle two of the four
quadrants. We use a sequential sampling algorithm
once a single chunk remains. Offset computations
are performed to map samples to edges based on the

0

P − 1

i

0

P − 1
0 P − 1

i

Figure 1: Examples of an adjacency matrix subdivided into
chunks in the directed (left) and undirected (right) case. The
chunk(s) for PE i are highlighted in blue.

6

type of the chunk (rectangular or triangular). The
resulting recursion trees has at most dlogP e levels
and size (4P 2 − 1)/3.

Theorem 2. The undirected G(n,m) generator runs
in O((n+m)/P + P) with high probability.

Proof. Each PE i has to generate a total of P
chunks consisting of a single triangular submatrix
and P − 1 rectangular submatrices. Additionally,
each edge {i, j} has to be generated twice (except
when P = 1), once by the PE that is assigned vertex
i, and once by the PE that is assigned vertex j.
Thus, we have to sample a total of 2m edges. At
every level of our recursion, we need to split the
quadrants and in turn compute three hypergeometric
random variates. Therefore, the time spent at every
level only takes expected constant time. Since there
are at most dlogP e levels until each PE reaches
its P chunks, the total time spent on recursion is∑logP
i=0 2i = 2(P − 1) = O(P) with high probability.
Following the proof by Sanders et al. [18], we can

use Chernoff bounds to show that the total number
of samples (edges) that is assigned to any PE will
be in O(m/P) with high probability. Thus, the
undirected G(n,m) generator has a running time of
O((n+m)/P + P).

4.3. Adaptations for the G(n, p) model

We now discuss how to adapt our previous gen-
erators for the G(n, p) model. The key observation
for the G(n, p) generators is that we do not have to
recursively compute hypergeometric random variates
in order to derive the correct number of edges for
each chunk. Since the distribution of vertices for
each individual chunk is predetermined, we can de-
termine the sample size for each chunk by generating
binomial random variates. To make sure the sample
size for an individual chunk is the same across PEs,
the binomial random generator is seeded using a
hash value based on the id of the chunk. Afterwards,
we perform the same sampling procedure used to
generate edges in the G(n,m) generator.

4.3.1. Adaption to GPGPUs

Since the ER generators are a direct application of
sampling, the GPGPU implementation from [18] can
be used to generate graphs on PEs with GPGPUs
available. As before, each PE is assigned a chunk
and computes the correct sample size and seeds for
the pseudorandom generator on the CPU and then
invokes the GPGPU algorithm to sample the edges
of the graph.

5. RGG Generator

Generating a d-dimensional random geometric
graph can be done näıvely in Θ(n2) time. We reduce
this bound by introducing a spatial grid data struc-
ture similar to the one used by Holtgrewe et al. [28].
We use a uniform grid of cells with side length
max(r, n−1/d). The vertices of the graph are first
placed into the grid cells. Edges must then run be-
tween vertices within one cell or between neighboring
cells. Hence, for a point A assigned to a cell C, it
suffices to perform distance calculations to the points
in cell C and its neighboring cells (3d cells overall).

Theorem 3. The expected work for generating a
random geometric graph with n nodes and m edges
is O(n+m).

Proof. The work for placing the points is Θ(n).
The work for initializing the cell array is proportional
to its size(

1

max(r, n−1/d)

)d
≤
(

1

n−1/d

)d
= n .

For estimating the remaining work, we estimate the
expected number of edges m as well as the number
of comparisons Y between points.

Consider the indicator random variable Zij that
is 1 if there is an edge between points i and j and
0 otherwise. Then, m =

∑
i 6=j Zij . There is an

edge between a fixed point i and another point j if
j is placed in a ball of radius r (and volume Θ

(
rd
)
)

around point i. Note that at least a constant fraction
of this ball intersects with the unit cube. The ratio
between the volume of this ball and the volume of the
unit cube is Θ

(
rd
)
. Overall, P [Zij = 1] = Θ

(
rd
)
,

and, exploiting the linearity of expectation,

Em =
∑
i6=j

EZij = Θ
(
n2rd

)
. (5)

Similarly, consider the indicator random variable
Yij that is 1 if points i and j are compared and 0
otherwise. Then, Y =

∑
i 6=j Yij . Points i and j

are compared if they are placed into neighboring
cells. Recall that each cell has Θ(1) neighboring
cells (including itself). We now make a case distinc-
tion depending on what determines the cell size. If
r ≥ n−1/d we have r−d cells. Considering a fixed
point i, a point j is thus placed into one of the Θ(1)
neighboring cells with probability Θ

(
rd
)
. Hence,

exploiting the linearity of expectation,

EY =
∑
i 6=j

EYij =
∑
i 6=j

P [Yij = 1] = Θ
(
n2rd

)
.

7

Hence EY = Θ(Em).
When r < n−1/d, there are n cells. We can make

a similar calculation as above, now with P [Yij] =
Θ(1/n) which yields EY = n2/Θ(n) = Θ(n).

5.1. Parallelization

We now discuss how to parallelize our approach
in a communication-free way. To the best of our
knowledge, the resulting generator is the first efficient
distributed implementation of a RGG generator for
d > 2.

Our generator again uses the notion of chunks.
A chunk in the RGG case represents a rectangular
section of the unit cube. We therefore partition
the unit cube into P disjoint chunks and assign one
of them to each PE. There is one caveat with this
approach, in that the possible values for P are limited
to powers of d. To alleviate this issue, we generate
more than P chunks and distribute them evenly
between PEs. To be more specific, we are able to
generate k = 2db ≥ P chunks and then distribute
them to the PEs in a locality-aware way by using a
Z-order curve [35].

Each PE is then responsible for generating the
vertices in its chunk(s) as well as all their incident
edges. Again, we use a divide-and-conquer approach
similar to the previous generators.

For this purpose the unit cube is evenly partitioned
into 2d equal-sized subcubes. In turn, the probability
for a vertex to be assigned to an individual subcube
is the ratio of the area of the subcube to the area
of the whole cube. Thus, we can generate 2d − 1
binomial random variates to compute the number of
vertices within each of the subcubes. The binomial
distribution is parameterized using the number of re-
maining vertices n and the aforementioned subcube
probability p. As for the ER generators, variates
are generated by exploiting pseudorandomization
via hash functions seeded on the current recursion
subtree. Therefore, we generate the same variates
on different PEs that follow the same recursion. In
turn, we require no communication for generating
local vertices. Note that the resulting recursion tree
has at most dlogP e levels and size (2dP − 1)/2d − 1.
Once a PE is left with a single chunk, we compute ad-
ditional binomial random variates to get the number
of vertices in each cell of side length c ≥ r.

As we want each PE to generate all incident edges
for its local vertices, we have to make sure that the
cells of neighboring chunks that are within the radius
of local vertices are also generated. Because each

Figure 2: Example of a two dimensional random geometric
graph with 256 vertices and a radius of 0.11 on nine PEs. The
local vertices of PE 4 are highlighted in blue. The non-local
vertices computed redundantly by PE 4 are highlighted in
green.

cell has a side length c of at least r, this means
we have to generate all cells directly adjacent to
the chunk(s) of a PE. Due to the communication-
free design of our algorithm, the generation of these
cells is done through recomputations using the same
divide-and-conquer algorithms as for the local cells.
We therefore repeat the vertex generation process
for the neighboring cells. Note that for sufficiently
large graphs, each chunk consists of many cells so
that redundantly generating border layers of cells
becomes a negligible overhead. An example of the
subgraph that a single PE generates for the two
dimensional case is given in Fig. 2.

Afterwards, we can simply iterate over all local
cells and generate the corresponding edges by vertex
comparisons with all vertices in each neighboring cell.
To avoid duplicate edges, we only perform vertex
comparisons for local neighboring cells with a higher
id.

5.2. Analysis of the Parallel Algorithm

The above communication-free free parallel algo-
rithm emulates a more traditional algorithms that
places n points uniformly at random into their cells
and performs the necessary distance calculations.
Each PE takes time O(n/P + logP) for generating
chunks together with the required parts of the cell
array. We do not analyze the number of performed
distance calculation directly but indirectly by ana-
lyzing the emulated algorithm. We first note that
using standard Chernoff bound arguments, one can
prove the following lemmas:

8

Lemma 4. If the random variable Occ denotes the
occupancy of a cell then Occ = O(EOcc + lnn) with
probability 1− n−c for any constant c > 0.

Lemma 5. If the random variable W denotes the
number of cells allocated to one PE then W =
O(n/P + lnn) with probability 1− n−c for any con-
stant c > 0.

Furthermore, analogous to Theorem 3, one
can prove that the expected work at each PE is
O((m+ n)/P) (taking into account that at most a
constant fraction of cells has to be generated redun-
dantly).

Lemma 6. The expected number of distance calcu-
lations on each PE is O((m+ n)/P).

However, this does not suffice to bound the parallel
execution time since the PE assigned the largest work
determines the overall running time. We conjecture
that the amount of work performed on each PE is
O((m+ n)/P) w.h.p.for n = Ω

(
p log2 n

)
. However,

we do not know how to prove that formally due
to dependencies in the involved random variables
(e.g., the variables Yij and Zij from the proof of
Theorem 3). Instead, we prove the following more
loose result.

Theorem 7. For any constant c > 0, there is a
constant a(c) such that n ≥ a(c)P 2 log3 P implies
that the amount of work performed by each PE is
O((m+ n)/P) with probability at least 1− n−c.

Proof. Let X = X1,. . . , Xn denote the vector
of positions of the n randomly placed points. Let
Y (X) denote the number of distance computations
performed by a fixed PE. Since this is a function of
n independent random variables, we can apply the
bounded difference inequality [36]. We have

P [Y (X) > EY (X) + δ] ≤ exp

(
−2δ2

nb2

)
, (6)

where b is a bound on the maximum change in the
value of Y (X) when one of the random variables
Xi is changed. Changing Xi means moving point i.
This changes the number of distance computation
by the occupancy of the O(1) cells neighboring the
source and target cell of the moved point. Since
the worst case value of the occupancies is very large
(n), we condition on the case that the bound from
Lemma 4 applies. Note that the remaining cases are
sufficiently unlikely, say have probability ≤ n−c/2.

Equation 6 yields the desired result if δ is large

enough such that exp(− 2δ2

nb2) ≤ n−c/2P . The factor
2 in the right hand side comes from the fact that we
reserve half of the allowed failure probability for the
above conditioning. The factor P comes from the
fact that we want to bound the work done on all
PEs. Since we already assume that n > 2P , we will

make the stronger requirement exp(− 2δ2

nb2) ≤ n−(c+1).
Solving this for δ yields

δ ≥ b
√

(c+ 1)n ln(n)/2 = Ω
(
b
√
n lnn

)
. (7)

We now make a case distinction on the ball ra-
dius r. If r ≥ (ln(n)/n)1/d, the expected occupancy
Θ
(
nrd
)

of a cell is Ω(lnn) and Lemma 4 yields that

b = Θ
(
nrd
)

is also a high probability bound. Condi-

tion (7) then becomes δ = Ω(n3/2rd
√

ln(n)). At the
same time we want δ = O(Em/P) = O

(
n2rd/P

)
;

see also Equation 5. Both conditions can hold if
n3/2rd

√
ln(n) = O

(
n2rd/P

)
. This is equivalent to

n = Ω
(
P 2 lnn

)
. Since this is only a nontrivial condi-

tion when n is polynomial in P , we get the equivalent
condition n = Ω

(
P 2 lnP

)
≤ Ω

(
P 2 ln3 P

)
.

Similarly, for the case r < (ln(n)/n)1/d, the ex-
pected occupancy of a cell is O(lnn) and Lemma 4
yields b = Θ(lnn). Condition (7) becomes δ =
Ω
(√
n ln1.5 n

)
. We want at the same time that δ =

O(n/P). Both conditions hold when
√
n ln1.5 n =

O(n/P), or, equivalently, n = Ω
(
P 2 ln3 n

)
. This is

equivalent to n = Ω
(
P 2 ln3 P

)
.

5.3. Adaption to GPGPUs

As before, each PE is responsible for generating
the vertices and edges of one chunk. The algorithm
for GPGPUs follows two phases. In the first phase,
the PE generates the appropriate seeds and vertex
numbers for the cells of its chunk and all neighboring
cells on the CPU. Subsequently, the vertices of these
cells are sampled on the GPGPU. Depending on the
expected number of vertices per cell, a cell is either
processed by a whole block with several threads or
by a single thread, therefore grouping several cells
in one block. Recall, as the cell side length c is
greater than r, only the cells of neighboring chunks
immediately adjacent to the PEs chunk need to be
generated.

In the second phase, the actual edges between the
vertices are determined, which requires a three step
algorithm. In the first step, for each cell and its
neighbors, the number of edges with length smaller
than r are counted on the GPGPU. Secondly, the

9

prefix sum of these counts provides both the total
number of edges generated as well as offsets into
the edge array for each block. The CPU can then
allocate memory on the GPGPU for the third stage
and the cells are processed again, this time actually
outputting all edges into the newly allocated array.
The amount of work performed per vertex is the
same for all vertices of a cell – as the same number
of vertices need to be considered in the neighboring
cells – but can differ between cells. Therefore, each
cell is processed by one block on the GPGPU to
avoid any load-balancing issues.

6. RDG Generator

The point generation phase for Delaunay graphs
follows the same principles as for RGGs, differing
only in the definition of the cell side length c, which
is set to the mean distance of the (d+ 1)th-nearest-
neighbor for n vertices in the unit d-hypercube,
c ≈ (d+1

n)1/d [37].
To produce the DT of the generated point set,

our algorithm proceeds as follows. For each assigned
chunk, the PE considers the chunk itself plus a halo of
neighboring cells. Initially, the cells directly adjacent
to the chunk are added to the halo. The PE computes
the DT of the chunk plus halo and checks whether
all points of the convex hull are from the halo and
whether each computed simplex s that contains at
least one point from the inside of the assigned chunk
has a circumsphere that is completely contained
within the chunk plus halo. The local computation
finishes when both conditions are fulfilled. Otherwise,
the halo is expanded by one layer of cells and the
DT is updated; see also [33, 38]. As for RGGs, we
can ensure that all PEs generate the same vertices
for the same cell.

We do not have a complete analysis of the algo-
rithm but note that by Lemma 5, each PE get as-
signed O(n/P + logP) nodes from the chunks w.h.p.
and that the halo contributes only a lower order term
as long as the number of extension steps remains
constant. Our experiments indicate that usually no
repetitions at all are needed. Moreover, a Delaunay
triangulation of a random point set can be computed
in linear time [39]. Hence, we might conjecture a
running time of O(n/P + logP) for our algorithm.

Adaptation to GPGPUs

For the RDG generator, the points can be sampled
on the GPGPU according to the algorithm outlined

for the RGG generator in the previous section. Fol-
lowing point generation, the algorithm of Cao et
al. [40] can be used to compute the DT in two and
three dimensions on the GPGPU. Their algorithm
initially produces a near-Delaunay triangulation on
the GPGPU and then fixes potential violations us-
ing a star splaying technique on the CPU. The
subsequent steps can be efficiently performed on the
GPGPU again: checking whether the circumhyper-
sphere of all simplices is contained within the halo
and, if not, generating the next layer of halo cells
by first generating the seeds and vertex numbers of
those cells on the CPU and then sampling the points
on the GPGPU. Since Cao et al. propose an in-
cremental construction algorithm, it can be directly
applied to insert the newly generated halo points
into the DT.

7. RHG Generators

We now describe two approaches for generating
random hyperbolic graphs. The first generator
(RHG) requires pre-computing local vertices before
processing neighborhood queries and allows for an al-
ready partitioned output graph. However, this comes
at the cost of load-balancing and memory limitations.
The second generator (sRHG) processes vertices and
their incident edges in a streaming fashion. Although
this does not directly give a partitioned output graph,
it significantly improves load-balancing and memory
requirements. Additionally, we cover important op-
timizations that improve the performance of both
generators.

7.1. In-memory Generator

As for the RGG generator, we can näıvely create
a random hyperbolic graph in Θ(n2) by comparing
all pairs of vertices. We first improve this bound
by partitioning the hyperbolic plane (cf. [41, 30,
31]). To this end, we split the hyperbolic disk of
radius R into k := bαR/ln(2)c concentric annuli
of constant height, i.e. annulus i covers the radial
interval [`i−1, `i) with `0 = 0 and `k = R. This
results in k = O(log n) annuli due to Eq. 1.

Since each PE has to determine the number of
vertices in each annulus, we compute a multinomial
random variate with k outcomes: we iteratively com-
pute a set of dependent binomial random variates
via pseudorandomization. The probability that a
specific vertex is assigned to annulus i is given by

10

Figure 3: Partitioning of the hyperbolic plane into set of
equidistant annuli and chunks and cells. Each chunk is dis-
tributed to one PE and further subdivided into cells. The
number of vertices is n = 512 with an average degree of d̄ = 4
and a power-law exponent of γ = 2.6. The expected number
of vertices per cell is set to 24. The local vertices for each PE
are highlighted in different colors.

integration over the radial density function (Eq. 3)
between the annulus’ limits `i and `i+1:

pi =

∫ `i+1

`i

f(r)dr
(Eq.3)

=
cosh(α`i+1)− cosh(α`i)

cosh(R)− 1
.

Hence, the expected number ni of vertices in an-
nulus i follows Eni = n · pi.

We further partition each annulus in the angular
direction into P chunks using a divide-and-conquer
approach that uses binomial random variates as for
the other generators. The resulting recursion tree
within a single annulus has a height of dlogP e.

Finally, we perform a third partitioning of chunks
into a set of equal-sized cells in the angular direction.
The number of cells per chunk is chosen such that
each cell contains an expected constant number of
vertices k. Fig. 3 shows the resulting partitioning of
vertices in the hyperbolic plane into cells and annuli.

Lemma 8. Assuming n = Ω(P logP), our parti-
tioning algorithm assigns each PE O(n/P) vertices
with high probability.

Proof. Chunks are chosen such that they assign
each PE i an equally sized angular interval of the
hyperbolic plane [i · 2π/P, (i+ 1) · 2π/P). The num-
ber of vertices per chunk in an annulus is generated
through a set of binomial random variates. This
results in a uniform distribution of the vertices in

the interval [0, 2π) with respect to their angular co-
ordinate. Thus, each PE is assigned O(n/P) ver-
tices in expectation. Assuming n = Ω(P logP) this
holds w.h.p. by a standard Chernoff bound.

Lemma 9. Generating the grid data structure for
P PEs takes time O(P log n+ n/P) with high prob-
ability.

Proof. The time spent during the chunk creation
per annulus is O(P) w.h.p. since the size of the
recursion tree is at most 2P − 1 and we only spend
expected constant time per level for generating the
binomial random variates. We have to repeat this
recursion for each of the O(log n) annuli. Thus, the
total time spent for the recursion over all annuli
is O(P log n). The runtime bound then follows by
adding the time for vertex creation (Lemma 8).

Neighborhood Queries

We now describe how we use our grid data struc-
ture to efficiently reduce the number of vertex com-
parisons. For this purpose, we begin by iterating
over the cells in increasing order from the innermost
annulus outwards and perform a neighborhood query
for each vertex.

The query begins by determining how far the an-
gular coordinate of a potential neighbor u = (ru, θu)
is allowed to deviate from the angular coordinate of
our query vertex v = (rv, θv). If we assume that u
lies in annulus i with a lower radial boundary `i, we
can use the distance inequality

|θu − θv| ≤ cos−1
(cosh(rv) cosh(`i)− cosh(R)

sinh(rv) sinh(`i)

)
to determine this deviation. We then gather the
set of cells that lie within the resulting boundary
coordinates. To do so, we start from the cell that
intersects the angular coordinate of our query vertex
and then continue outward in both angular directions
until we encounter a cell that lies outside the bound-
ary. For each cell that we encounter, we perform
distance comparisons to our query vertex and add
edges accordingly. To avoid the costly evaluation of
trigonometric functions for each comparison we main-
tain a set of pre-computed values (see Section 7.2.1).
Note that in order to avoid duplicate edges in the
sequential case, we can limit neighborhood queries to
annuli that have an equal or larger radial boundary
than our starting annulus.

11

Lemma 10. Consider a query vertex with radius r
and an annulus with boundaries [a, b). Our candidate
selection overestimates the probability mass of the
actual query range by a factor of OE(b−a, α) where

OE(x, α) := α−1/2
α

1−eαx
1−e(α−1/2)x .

Proof. If r < R−b, the circle around the querying
vertex covers the annulus completely. Hence, each
candidate is a true neighbor and the selection process
is optimal.

We now consider r ≥ R−a and omit the fringe case
of R−b < r < R−a which follows analogously. The
probability mass µQ := µ [BR(r) ∩ (Bb(0)\Ba(0))]
of the intersection of the actual query circle BR(r)
with the annulus Bb(0) \ Ba(0) is calculated in
Appendix B.4. Our generator overestimates the
actual query range at the border and covers the

mass µH := 1
π∆θ(r, a)

∫ b
a
ρ(y)dy as detailed in Ap-

pendix B.5. The claim follows by the division of
both mass functions µH/µQ.

Corollary 11. Given a constant annulus height,
i.e. b−a = O(1), Lemma 10 implies a constant
overestimation for any α>1/2. In case of b−a =
bln(2)/αc, we have OE(1, α) ≤

√
e ≈ 1.64 ∀α>1/2.

Lemma 12. Let Nj be the number of neighbors the
point pj=(rj , θj) has from below, i.e. neighbors with
smaller radius. With high probability, i.e. with proba-
bility 1−n−c for any constant c > 0, there exist only
O(n/ log2 n) points with Nj = O(n1−αd̄α log(n))
while the remainder of points with rj > R/2 has
Nj = O(n1−2α log2α(n)d̄2α) neighbors.

Proof. Let X1, . . . , Xn be indicator variables
with Xi=1 if p and pi are adjacent. Due to radial
symmetry we directly obtain the expectation value
of Xi conditioned on the radius pi:

E[Xi | ri= x] = P [Xi=1 | ri= x]

=

{
1 if x < R− r
∆θ(x, r)/π otherwise

We remove the conditional using the Law of Total
Expectation and equations (B.1) and (B.2):

EXi =

R−r∫
0

ρ(x)dx +
1

π

r∫
R−r

ρ(x)∆θ(x,R)dx

=
[
e−αr−e−αR

]
(1+o(1)) +

1

π

α

α− 1
2

e−αr

·
[
e(α−

1
2)(2r−R) − 1

]
(1±O(e−r))

Fix the radius rT = R− 2
α log log n with R/2 < rT

(wlog) and consider three cases for r: First, we ig-
nore all points r ≤ R/2 as they belong to the cen-
tral clique and are irrelevant here. Second, observe
that with high probability there exist O(n/ log2(n))
points below rT . Exploiting the monotonicity of
Eq. 8 in r, we maximize it by setting r = R/2, which
cancels out the second term. Linearity of the ex-
pectation value, substitution of R = 2 log(n) + C,
and the definition of the expected degree yield
E
∑
iXi = O

[
n
(
d̄/n

)α]
. Then, Chernoff’s bound

gives
∑
iXi = O(n1−αd̄α log(n)) with high proba-

bility. Third, for all points above rT , set r = rT
yielding

∑
iXi = O(n1−2α log2α(n)d̄2α) with high

probability analogously.

Lemma 13. The time complexity of the sequential
RHG generator for n vertices with radius R, an av-
erage degree d̄, and a power-law exponent γ ≥ 2 is
O(m) with probability 1−n−c for any constant c > 0.

Proof. We bound our generators time complexity
by considering each component individually:

• The preprocessing requires O(1) time per point
making it non-substantial.

• Processing the vertices within the cells requires
O(n) time in total with high probability.

• By applying Lemma 12 and Cor. 11, the candi-
date selection requires O(n log d̄) = O(m) time
with high probability.

• All distance calculations require in total O(m)
time since Cor. 11 bounds the fraction of com-
putations that do not yield an edge to O(1).

To adapt our queries for a distributed setting,
we need to recompute all non-local vertices that lie
within the hyperbolic circle (of radius R) of any of
our local vertices. To find these vertices, we perform
an additional inward neighborhood query.

Queries in the distributed setting work similarly
to the sequential case, with the addition that any
non-local chunks that we encounter during the search
are recomputed. These newly generated vertices are
then assigned their respective cells and stored for
future searches.

One issue with this approach is that the innermost
annulus, which contains only a constant number of
vertices (w.h.p.), is divided into P chunks. However,
since all vertices with radius r ≤ R/2 form a clique
and are almost always contained within the search

12

begin-of-request
tokens

end-of-request
tokensnode token

`i

`i+1

`i+2

`i+3

(1) v (2)
∆θ

sweep direction (increasing angles)

Figure 4: The shaded area illustrates the region in which
candidates for node v can be found (an overestimate of the
dotted hyperbolic query circle). It is encoded with one request
per annulus. Instead of generating points at random, sRHG
draws the beginning of requests (1) and then places the points
(2) accordingly by increasing their angle by ∆θ. Only when
the sweep-line encounters the begin of a request in annulus i,
the request is propagated to annulus i+1.

radius for any given vertex, we compute and store
these points redundantly in a single chunk on all PEs.
This severely lowers the running time for inward
searches, especially for a large number of PEs.

Theorem 14. The expected time complexity of the
parallel RHG generator for n vertices with radius R,
average degree d̄ and a power-law exponent γ ≥ 2 is
O(n+mP + P log n+ n1−α(P d̄)αn

1
2α).

Proof. We bound the time complexity by consid-
ering each component individually:

• Building our cell data structures takes time
O(P log n) as shown in Lemma 9.

• Sampling local vertices and edges has an ex-
pected running time of O((n+m)/P) as for the
sequential approach.

• The expected number of vertices recomputed
during the inward search can be bounded by
µ(Br(0)) = O(n1−α(P d̄)α) (see Lemma 15).

• The expected number of edges computed for
high degree vertices (as well as the num-
ber of vertices recomputed during the out-
ward search) can pessimistically be bounded
by assuming that vertices in the inner an-
nuli (see Lemma 15) all have maximum degree
∆ = n1/(2α)+o(1) [13]. This yields an expected
number of O(n1−α(P d̄)αn1/(2α)) edges.

7.2. Streaming Generator

We now present sRHG, a generator that improves
the load-balancing and the memory requirements of

RHG. Extending [24], its main idea is to invert the
neighborhood search: while RHG selects a node and
then directly searches all neighbors by ruling out
wrong candidates, sRHG does the opposite and first
accumulates all queries a node is candidate in before
processing them in a single batch. This not only
reduces unstructured accesses to main memory, but
more importantly allows us to narrow the window
of space that has to be kept in memory.

As for RHG, we decompose the hyperbolic plane
into a set of concentric annuli and draw the number
of points in each annuli uniformly at random. This
step is performed by all PEs independently and we
use pseudorandomization to ensure that each PE
draws the same numbers without communication.

Next we perform the second decomposition by
splitting each annulus in the angular direction into
a set of P chunks of equal size.

Conceptually, sRHG then executes a sweep-line
algorithm in angular direction starting with the in-
nermost annulus. To this end, the PE maintains a
sweep-line state per annulus storing the currently
active requests and pending events: as illustrated
in Fig. 4, we use tokens for each node v to mark
the position of v, as well as the begin and end of
the region in which neighbor candidates of v can be
found.

sRHG executes the next pending event (i.e. the
unprocessed token with smallest polar coordinate)
of the current annulus:

• A begin-of-request token adds the request to
the current sweep state, and creates a begin-
of-request token for the next higher annulus (if
existing). It also generates an appropriate end-
of-request token for the current annulus.

• An end-of-request removes the request from the
current sweep state.

• If a node token is found, the distance to each
node with a request in the current sweep state
is computed and an is edge emitted if it is below
the threshold R.

Observe this design causes sRHG to process the
begin-of-request token of a node v before its node
token becomes active. We hence invert the causality
relation, and draw begin-of-request tokens from a
monotonic sequence of uniform variates and position
a matching point token accordingly.

To further reduce the memory footprint, we do
not complete an annulus before starting the next

13

higher one. Instead, each PE interleaves the process-
ing of its local annuli with the only constraint that
no sweep-line may overtake the sweep-line below it.
This is legal, since the only information flow is from
lower to higher annuli: it is triggered by begin-of-
request tokens which never move towards smaller
angles during this process.

After the decomposition, sRHG partitions the an-
nuli into two groups, lower global annuli and upper
streaming annuli, and starts by processing the global
annuli first (see Fig. 5):

• Global annuli are those where the maximum
potential request width of a point within that
annulus is larger than 2π/P (the width of a
single chunk). Similarly to RHG, we merge the
innermost annuli with a radial boundary below
R/2 into a special clique annulus.

• Streaming annuli are those where the maximum
potential request width of a point within that
annulus is at most 2π/P .

Let rG be the smallest radial boundary of a
streaming annulus (i.e. every streaming annulus i
has a lower boundary of `i−1 ≥ rG). We ob-
tain rG . R/2 + log(2P/π) for P ≥ 2 by solving
2∆θ(rG, rG) = 2π/P for rG and applying Eq. B.1.

Lemma 15. The expected number of vertices gen-
erated in the global annuli is O(n1−α(P d̄)α).

Proof. Consider a point (rG, θ) with a request
width of at most 2∆θ(rG, rG). The number of ver-
tices nG(P) that each PE has to generate during the
global phase is thus binomially distributed around
the mean of

EnG(P) = nµ(BrG(0)) = n

(
d̄P

2n

)α(
α− 1

2

α

)2α

= O
(
n1−α(P d̄)α

)
.

Lemma 16. Assuming n = Ω(P logP), the number
of vertices generated in the streaming annuli of any
PE is O(n/P) with high probability.

Proof. Each PE is assigned a polar interval of
2π/P width and generates all streaming points whose
request begins there. As the angle at which a request
starts is drawn uniformly at random, the numbers
(n1, . . . , nP) of vertices generated by each PE are
distributed multinomially with an equal bucket mass

of p = 1/P . We pessimistically place all point with
in the streaming annuli (cf. Lemma 15), and hence
have

∑
i ni = n and Eni = O(n/P) for all i. Concen-

tration follows directly from Chernoff bounds.

Global annuli

By construction, points in the global annuli have
long requests, potentially covering the whole hyper-
bolic space. In order to guarantee that no PE has to
generate all vertices, requests within the lower global
annuli are computed redundantly on all PEs. Again,
consistency across PEs is achieved using pseudoran-
domness. Each PE then restricts the requests to its
own streaming chunk and propagates applicable ones
to a designated insertion buffer in the first upper
streaming annulus.

During the creation of a request, it might happen
that we encounter an angular deviation of [a, b] where
either a < 0 or b > 2π. Taking the angular 2π-period
of the hyperbolic plane into account, these requests
are separated into two ranges. To be more specific,
we separate the angular deviation [a, b] with a < 0
into the two ranges [a+ 2π, 2π] and [0, b]. The case
b > 2π is treated analogously.

Due to the nature of hyperbolic space, vertices in
the global annuli are likely to have a very high degree
as they have a relatively small hyperbolic distance to
any other point. However, due to our request-centric
approach the computation of their neighbors in the
upper streaming annuli is fully distributed.

To achieve a good scaling, we distribute the exe-
cution of requests for the inner annuli evenly across
all PEs. This results in a much more even distribu-
tion of work compared to the query-centric approach.
However, it does not directly produce a partitioned
output graph.

Streaming annuli

After this so-called global phase, we continue with
the upper streaming annuli. By construction, each
PE is responsible for generating and processing all
requests within its local chunks (i.e. one per annulus).
It maintains a context for each of its streaming annuli
consisting of:

• The sweep state containing all active requests.

• An PRNG emitting monotonically increasing
variates distributed uniformly over the chunk’s
polar interval.

14

• A priority queue to receive begin-of-request to-
kens from the annuli below (referred to as inser-
tion buffer).

• A priority queue storing points generated after
drawing their begin-of-request.

• A priority queue storing end-of-request tokens.

As aforementioned, we execute a sweep-line algo-
rithm and always process (and remove) the token
with smallest angle from one of the four sources.
Note that by definition of the angular width of each
request, the candidate selection for each request gives
the same overestimation as our previous generator
(see Lemma 13). The in-order generation of requests
and edges however significantly decreases unstruc-
tured memory accesses compared to RHG.

While sRHG needs to process annuli in an inter-
leaved fashion to bound the insertion buffers’ sizes,
it tries to infrequently switch between annuli to im-
prove data locality. We implemented this by splitting
each chunk into cells; the number of cells per annulus
is chosen such that the expected number of points
in them is constant. The algorithm then switches
between annuli only after processing complete cells.

We conclude the main generation if all sweep-lines
reached the upper bound of the PE’s polar interval.
Observe that at this point, unprocessed node or end-
of-request token can remain which are dealt with
during final phase.

For the final phase, each PE is responsible for
generating edges from pairs where either the request
or vertex stem from the main phase. To do so, we
repeat the same process as in the local phase, but
replicate the configuration of the PE responsible for
the adjacent chunks. We also annotate vertices and
requests from these foreign chunks in order to not
generate duplicate edges.

The final phase involves at most one additional
chunk as all points and requests with large polar shift
were processed during the global phase. In practice,
it can often be stopped earlier once all old vertices
and requests are processed, we count their number.

Lemma 17. If we limit the final phase to the size
of a chunk, the expected number of edges generated
for streaming annuli is O((nP)2−αd̄α).

Proof. Following the proof of Lemma 12, we in-
troduce indicator variables X1, . . . , Xn with Xi = 1
if two points p and pi are adjacent. This yields the

expected value

EXi =

R−r∫
0

ρ(x)dx +
1

π

r∫
R−r

ρ(x)∆θ(x,R)dx

=
[
e−αr−e−αR

]
(1+o(1)) +

1

π

α

α− 1
2

e−αr

·
[
e(α−

1
2)(2r−R) − 1

]
(1±O(e−r))

We now (pessimistically) assume r = rG (Lemma 15).
The resulting expected number of neighbors is given
by EXi = O(Pα−1(d̄/n)α − (d̄/n)2α). In turn, we
can use Lemma 16 to bound the expected total num-
ber of request and vertex pairs for vertices in the
streaming annuli by O((n/P)2−αd̄α).

Lemma 18. The time complexity of the sequential
sRHG generator for n vertices with radius R, an
average degree d̄, and a power-law exponent γ ≥ 2
is O(m) with probability 1 − n−c for any constant
c > 0.

Proof. We bound the time complexity by consid-
ering each component individually:

• The preprocessing requires O(1) time per point
making it non-substantial.

• Handling of cliques is trivially bounded by O(m)
since every iteration emits an edge.

• By applying Lemma 12 and Corollary 11, the
candidate selection requires O(n log d̄) = O(m)
time with high probability. Here we exploit that
request tokens can be addressed to discrete cells
allowing for linear time integer sorting.

• All distance calculations require in total O(m)
time since Cor. 11 bounds the fraction of com-
putations that do not yield an edge to O(1).

Theorem 19. The expected time complexity of the
parallel sRHG generator for n vertices with radius
R, average degree d̄ and a power-law exponent γ ≥ 2
is O(n+mP + P log n+ n1−α(P d̄)α + (nP)2−αd̄α).

Proof. We bound the time complexity by consid-
ering each component individually:

• Building our cell data structures takes time
O(P log n) as shown in Lemma 9.

• The expected number of vertices that have to be
recomputed for the global annuli O(n1−α(P d̄)α)
due to Lemma 15.

15

0

3
π

1

3
π

2

3
π

3

3
π

4

3
π

5

3
π

Clique

Global

Stream

main phase of
of chunk

endgame of
chunk 1

Figure 5: The hyperbolic plane is partitioned along the polar
axis into P chunks of equal size. Radially, there are two
groups: the lower global annuli which are preprocessed and
kept in memory, and the upper streaming annuli. In the main
phase, each PE streams through its chunks towards increasing
polar angles (red arrow). Requests overlapping into the next
chunk are then completed in the final phase.

• Lemma 17 bounds the expected number of
distance comparisons for the outer annuli to
O
(
(n/P)2−αdα

)
.

Given the running time of our parallel algorithm,
we can now assume n/P = k = Ω(log n) vertices per
PE and set k to n2/3. For values of γ ≥ 3 this results
in a running time linear in the number of edges per
PE O(m/P). However, for very small values of γ
close to 2, the running time is dominated by the
global phase an becomes nearly linear.

7.2.1. Further Optimizations

Adjacency tests without trigonometric functions.
The runtime of preliminary versions of our generators
was dominated by repeated evaluations of trigono-
metric functions. We address this issue with a pre-
computing scheme. Let p = (rp, θp) and q = (rq, θq)
be two arbitrary vertices in DR and let `i be the
lower radial boundary of annulus i.

The scheme accelerates the two most frequent
query types, namely the computation of request
widths of the form ∆θ(rp, `i) and tests whether the
hyperbolic distance d(p, q) < R of two vertices falls
below the threshold R. The former computation
type occurs Ω(n) times, while the latter is required
in each of the Ω(m) candidate checks. Based on
Equation A.3 we obtain

∆θ(rp, `i) = cos−1
(

coth(rp) · coth(`i)

− cosh(R)

sinh(`i)
· 1

sinh(rp)

)
, (8)

where coth(x) := cosh(x)/ sinh(x). By pre-
computing coth(rp) and 1/ sinh(rp) for each vertex,
as well as coth(`i) and cosh(R)/ sinh(`i) for each
annulus, the argument of cos−1 follows from two
multiplications and a subtraction.

Similarly, we test d(p, q) < R by rewriting Equa-
tion 4:

cos(θp) cos(θq) + sin(θp) sin(θq) >

coth(rp) coth(rq)− cosh(R)
1

sinh(rp)

1

sinh(rq)
, (9)

The left-hand-side is an expansion of cos(θp − θq).
Hence, the additional pre-computation of cos(θp)
and sin(θp) for each vertex gives distance checks in
at most five multiplications and two additions, which
can be further improved by re-using parts of earlier
computations.

After pre-computation, Expression 9 can be vec-
torized efficiently to compute the distance between
a node and multiple requests in a data-parallel fash-
ion. To support vectorized computations, we also
use a structure-of-arrays memory layout to store ac-
tive candidates. We employ the Vc library [42] for
explicit vectorization.

Batch-processing of requests. Our streaming gener-
ator effectively sweeps all annuli in an interleaved
fashion and maintains for each annulus a separate
state containing the active candidates. During this
sweep, it encounters three event types, namely the
occurrence of a vertex, the beginning of a request,
and eventually its end.

Our implementation splits each annulus into cells
of equal width and then processes these events batch-
wise. Given the number nj of vertices in annulus j,
we select the number cj of cells in annulus j such
that c ≤ ni/ci < 2c where c is a small tuning pa-
rameter (typically 8). More precisely, we choose cj
as a power-of-two which by construction aligns cell
boundaries between annuli and avoids corner cases
when traversing the geometry.

When entering a cell, we move all requests con-
tained into the active state by first overwriting obso-
lete requests that went out-of-scope in the last cell;
we thereby avoid redundant operations otherwise
caused by separated deletions and insertions. Subse-
quently, all vertices contained are matched against
the active candidates again increasing data locality
and exploiting minor synergies.

The usage of cells also allows us to relax the sorting
of requests received from below since we only need

16

to distribute start and end-points of requests to the
appropriate cells. Our implementations hence only
stores for each request the indices of cells in which
it starts and ends, and orders the items in a radix
heap.

8. Experimental Evaluation

We now present the experimental evaluation of our
graph generators. For each algorithm, we perform
a running time comparison and analyze its scaling
behavior.

8.1. Implementation

An implementation of our graph generators (Ka-
Gen) in C++ is available at https://github.com/

sebalamm/KaGen. We use Spooky Hash2 as a hash
function for pseudorandomization. Hash values are
used to initialize a Mersenne Twister [43] for generat-
ing uniform random variates. Non-uniform random
variates are generated using the stocc library3. If
the size of our inputs (e.g. the adjacency matrix size)
exceeds 64 bit, we use the multiple-precision float-
ing points library GMP4 and a reimplementation
of the stocc library. Profiling indicates that most
generators spend only a negligible fraction of their
time in random number generation (≤ 1 %). For
the ER generator this figure is about 20 %. Hence,
we did not experiment with alternative implemen-
tations. All algorithms and libraries are compiled
using g++ version 5.4.1 using optimization level fast
and -march=native. In the distributed setting, we
use Intel MPI version 1.4 compiled with g++ version
4.9.3.

8.2. Experimental Setup

We use two different machines to conduct our ex-
periments. Sequential comparisons are performed on
a single core of a dual-socket Intel Xeon E4-2670 v3
system with 128 GB of DDR4-2133 memory, running
Ubuntu 14.04 with kernel version 3.13.0-91-generic.
If not mentioned otherwise, all results are averages
of ten iterations with different seeds.

For scaling experiments and parallel comparisons
we use the Phase 1 thin nodes of the SuperMUC
supercomputer. The SuperMUC thin nodes consist
of 18 islands and a total of 9216 nodes. Each compute

2http://www.burtleburtle.net/bob/hash/spooky.html
3http://www.agner.org/random/
4http://www.mpfr.org

node has two Sandy Bride-EP Xeon E5-2680 8-core
processors, as well as 32 GB of main memory. Each
node runs the SUSE Linux Enterprise Server (SLES)
operating system. We use the maximum number of
16 cores per node for our scaling experiments. The
maximum size of our generated instances is limited by
the memory per core (2 GB). To generate even larger
instances, one could use a full streaming approach
which will be discussed in Section 9.

We analyze the scaling behavior of our algorithms
in terms of weak and strong scaling. Weak scal-
ing measures how the running time varies with the
number of PEs for a fixed problem size per PE. Anal-
ogously, strong scaling measures the running time
for a fixed problem size over all PEs. Due to memory
limitations of the SuperMUC, strong scaling experi-
ments are performed with a minimum of 1024 PEs.
Again, results are averaged over ten iterations with
different seeds.

8.3. Erdős-Rényi Generator

There are various implementations of efficient se-
quential Erdős-Rényi generators available (e.g. [25]).
However, there is little to no work on distributed
memory generators. Thus, we perform a sequential
comparison of our generator to the implementation
found in the Boost5 library. Their generator uses
a sampling procedure similar to Algorithm D [16]
and serves as an example for an efficient linear time
generator.

For our comparison, we vary the number of vertices
from 218 to 224 and the number of edges from 216

to 228. Fig. 6 shows the running time for both
generators for the two largest sets of vertices.

First, we note that both implementations have a
constant time per edge for large m. However, the
Boost implementation also has an increasing time
per edge for growing numbers of vertices n. In con-
trast, the running time of our generator is indepen-
dent of n. This is no surprise, since our generator
uses a simple edge list and does not maintain a full
graph data structure.

For the directed G(n,m) model, our generator is
roughly 10 times faster than Boost for the largest
value of m = 228. In the undirected case, our
G(n,m) generator is roughly 21 times faster and
has an equally lower running time All in all, the
results are consistent with the optimal theoretical
running times of O(n+m) for both algorithms.

5http://www.boost.org/doc/libs/1_62_0/libs/graph/

doc/erdos_renyi_generator.html

17

https://github.com/sebalamm/KaGen
https://github.com/sebalamm/KaGen
http://www.burtleburtle.net/bob/hash/spooky.html
http://www.agner.org/random/
http://www.mpfr.org
http://www.boost.org/doc/libs/1_62_0/libs/graph/doc/erdos_renyi_generator.html
http://www.boost.org/doc/libs/1_62_0/libs/graph/doc/erdos_renyi_generator.html

219 223 227

Number of edges m

0.1

10.0

R
un

ni
ng

tim
e

(s
)

Directed

219 223 227

Number of edges m

Undirected

KaGen(n = 224)

Boost(n = 224)

KaGen(n = 222)

Boost(n = 222)

Running time G(n,m)

Figure 6: Running time for the sequential directed (left) and
undirected (right) Erdős-Rényi generators for 222 and 224

vertices and 216 to 228 edges.

23 27 211 215

Number of PEs P

1.0

R
un

ni
ng

tim
e

(s
)

Directed

23 27 211 215

Number of PEs P

Undirected

n/P = 222 n/P = 220 n/P = 218

Weak scaling G(n,m)

Figure 7: Running time for generating m edges and n = m/24

vertices on P PEs using the G(n,m) generators.

Next, we discuss the scaling behavior of our Erdős-
Rényi generators. For the weak scaling experiments,
each PE is assigned an equal number of n/P vertices
and m/P edges to sample. In particular, we set
n = m/24 and let the number of edges per PE range
from 222 to 226. For the strong scaling experiments,
we keep the number of edges fixed from 234 to 238.
Results are presented in Fig. 7 and Fig. 8 respectively.

We can see that our directed generator has an
almost perfect scaling behavior. Only for the smaller
input sizes and more than 212 PEs, the logarithmic
term of our running time becomes noticeable. The
minor irregularities that we observe for the largest
number of PEs are due to performance differences
for nodes in the supercomputer. Nonetheless, our
results are consistent with our asymptotic running
time O((n+m)/P + logP).

If we look at the scaling behavior of our undirected
generator, we can see that for small numbers of PEs
the running time starts to increase and then remains
nearly constant. This is due to the fact that as
the number of PEs/chunks increases, the number
of redundantly generated edges also increases up

211 213 215

Number of PEs P

0.1

1.0

10.0

R
un

ni
ng

tim
e

(s
)

Directed

211 213 215

Number of PEs P

Undirected

n = 234 n = 232 n = 230

Strong scaling G(n,m)

Figure 8: Running time for generating m edges and n = m/24

vertices on P PEs using the G(n,m) generators.

to twice the number of sequentially sampled edges.
This effect is not noticable in the strong scaling case,
since we perform these experiments with a minimum
of 1024 PEs. Furthermore, for smaller values of m/P
and large P , we also see a linear increase in running
time. We attribute this to the linear time O(P)
needed to locate the correct chunks for each PE.

8.4. RGG Generator

There are various implementations of the näıve
Θ(n2) generator available (e.g. [44]). However, a
more efficient and distributed algorithm is presented
by Holtgrewe et al. [28].

Since their algorithm and our own generator are
nearly identical in the sequential case, we are mainly
interested in their parallel running time for a grow-
ing number of PEs. Therefore, we measure the to-
tal running time and vary the input size per PE
n/P from 216 to 220. It should be noted that
Holtgrewe et al. only support two dimensional ran-
dom geometric graphs and thus the three dimen-
sional generator is excluded. The radius is set to

r = 0.55
√

lnn
n /
√
P . This choice ensures that the

resulting graph is almost always connected [45] and
is used in many previous papers. Fig. 9 shows the
running time of both competitors for a growing num-
ber of P = p2 PEs. Additionally, Fig. 10 shows
weak scaling experiments for our two and three di-
mensional generators. Finally, we present the strong
scaling behavior of our generators in Fig. 11. For
these experiments, the number of vertices n is fixed
from 226 to 232.

Due to the recomputations used by our generator,
Holtgrewe et al. quickly become faster by up to a
factor of two as the number of PEs increases. To be
more specific, the number of neighbors that we have
to generate redundantly increases from zero for one

18

23 27 211

Number of PEs P

0.1

1.0

10.0

R
un

ni
ng

tim
e

(s
)

Scaling comparison 2D RGG(n, r) KaGen(n = 220)

Holtgrewe(n = 220)

KaGen(n = 218)

Holtgrewe(n = 218)

KaGen(n = 216)

Holtgrewe(n = 216)

Figure 9: Running time for the two dimensional random geo-
metric graph generators for growing numbers of PEs P = p2

and a constant input size n/P per PE. The radius is set to

r = 0.55
√

lnn
n
/
√
P .

23 27 211 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

2D

23 27 211 215

Number of PEs P

3D

n/P = 222 n/P = 220 n/P = 218

Weak scaling RGG(n, r)

Figure 10: Running time for generating n vertices on P
PEs using the RGG generators. The radius r is set to

0.55 {2,3}
√

lnn
n
/
√
P .

PE up to eight neighbors for more than four PEs.
This increase in running time can be bounded by
computing the additional amount of vertices created
through redundant computations and multiplying
it by the average degree nπr2. For our particular
choice of r this yields roughly twice the running
time needed for the sequential computation, which
is consistent with the experimental results. However,
for sufficiently sparse graphs, the additional time
for recomputations is negligible as the number of
vertices in each cell becomes constant. A very similar
analysis can also be done for our three dimensional
generator. Again, minor irregularities are due to
performance differences for individual nodes in the
supercomputer.

Once we reach 212 PEs, the communication re-
quired by Holtgrewe et al. rapidly becomes notice-
able and KaGen is significantly faster. Overall, the
results are in line with the asymptotic running time
presented in Section 5.

8.5. RDG Generator

Our implementation uses the CGAL library [46]
to compute the DT of the vertices of a chunk and

211 213 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

2D

211 213 215

Number of PEs P

3D

n = 234

n = 232
n = 230

n = 228

Strong scaling RGG(n, r)

Figure 11: Running time for generating n vertices on P PEs us-

ing the RGG generators. The radius r is set to 0.55 {2,3}
√

lnn
n

.

23 27 211 215

Number of PEs P

1.0

10.0
R

un
ni

ng
tim

e
(s

)

2D

23 27 211 215

Number of PEs P

3D

n/P = 222

n/P = 220
n/P = 218

n/P = 216

Weak scaling RDG(n)

Figure 12: Running time for generating a graph with n vertices
on P PEs using the RDG generators.

its halo. CGAL provides a state-of-the art imple-
mentation, which most of the other available DT
generators use as backend as well. We therefore omit
sequential measurements.

The experimental setup for the RDG is equivalent
to the RGG scaling experiments. For the weak scal-
ing experiments, we vary the input size per PE from
218 to 222 for the 2D RDG and – due to memory con-
straints – from 216 to 220 for the three dimensional
one. Moreover, for 3D RDG and 215 PEs, only the
smallest input size could be computed within the
memory limit per core of SuperMUC. For the strong
scaling experiments, the input size varies from 226

to 232. Our experiments show an almost constant
time – depicted in Fig. 12 and Fig. 13 – well in
agreement with our conjectured asymptotic running
time of O(n/P + logP). Similarly to the RGG, the
initial increase in runtime can be attributed to the
redundant vertex generation of neighboring cells. As
the halo rarely grows beyond the directly adjacent
cells, no significant further increase in runtime can
be observed for more than 28 PEs.

19

211 213 215

Number of PEs P

0.1

1.0

10.0

R
un

ni
ng

tim
e

(s
)

2D

211 213 215

Number of PEs P

3D

n = 232

n = 230
n = 228

n = 226

Strong scaling RDG(n)

Figure 13: Running time for generating a graph with n vertices
on P PEs using the RDG generators.

0.1

1.0

10.0

100.0

d̄ = 16, γ = 2.2 d̄ = 16, γ = 3.0

106 107 108 109

Number of nodes n

0.1

10.0

1000.0
d̄ = 256, γ = 2.2

106 107 108 109

Number of nodes n

d̄ = 256, γ = 3.0

NkGen
RHG

HyperGen
sRHG

R
un

ni
ng

tim
e

(s
)

Figure 14: Running time as function of number n of nodes
for power-law exponents γ ∈ {2.2, 3} (i.e., α ∈ {0.6, 1}) and
average degrees d̄ ∈ {16, 256}. All generators use 39 threads
or processes, on a dual-socket Intel Xeon Broadwell E5-2640 v4
machine with and 128 GB of RAM.

8.6. RHG Generator

We compare RHG and sRHG to the state-of-
the-art generators NkGen6 by von Looz et al. [31],
and HyperGen by Penschuck [24] (see section 3.3).
Since both reference implementations support shared-
memory parallelism only, we restrict the experiments
to a single machine with 40 hardware threads.

We measure the runtime of all generators as the
number n of nodes varies between 106 ≤ n ≤ 109

for different average degrees d̄ and power-law ex-
ponents γ. These values mimic settings found in
various real-world networks [30].

In general, NkGen exhibits the highest runtime per
edge generated. We attribute this to the fact that the

6 Optimized version of the generator found in the Net-
worKit library http://network-analysis.info [24].

23 27 211 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Non-streaming

27 210 213

Number of PEs P

Streaming

n/P = 224

n/P = 222
n/P = 220

n/P = 218
n/P = 216

Weak scaling RHG(n, 16, 3)

Figure 15: Running time for generating a graph with n vertices,
average degree d̄ = 16 and γ = 3.0 on P PEs using both RHG
generators.

implementation uses only partial pre-computation
and heavily relies on unstructured accesses to main
memory. NkGen is typically followed by RHG which
demonstrates limited scaling for small values of γ; in
this setting, the increase in runtime for large graphs
is primarily caused by exhaustion of the system’s
main memory. We consider this unrepresentative for
the distributed case, in which the collective memory
available is typically much larger.

The related sRHG and HyperGen are consistently
the fastest implementations with sRHG producing
up to 7.5 · 108 edges per second for d̄ = 256 and
γ = 3 on a single machine. Similar to RHG both use
pre-computation as a means to speed up distance
computation. Additional performance gains are due
their emphasis on cache and memory efficiency and
data parallelism.

Finally, we present the results of our scaling ex-
periments for the RHG generators. For the weak
scaling experiments each PE is again assigned an
equal number of n vertices. Note, that we use a des-
ignated computing node with 16 cores for calculating
the inner core for our second generator. Thus, the
corresponding scaling experiments start at 32 cores.
The number of vertices per PE ranges from 216 to
224. Again, for the strong scaling experiments the
number of vertices is fixed and ranges from 228 to
232. The power-law exponent γ varies from 2.2 to 3.0
to cover different extremes of the degree distribution.
Fig. 15 (γ = 3) shows the weak scaling results of the
RHG generators with an average degree of d̄ = 16.
Likewise, Fig. 16 (γ = 3) shows the strong scaling
results of the RHG generators with an average degree
of d̄ = 16.

Looking at the scaling behavior of our first gen-
erator, we see that there is a considerable increase

20

http://network-analysis.info

211 213 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Non-streaming

211 213 215

Number of PEs P

Streaming

n = 236

n = 234
n = 232

n = 230
n = 228

Strong scaling RHG(n, 16, 3)

Figure 16: Running time for generating a graph with n vertices,
average degree d̄ = 16 and γ = 3 on P PEs using the non-
streaming RHG generator.

in running time for a growing number of PEs. We
can attribute this behavior to the redundant compu-
tations that are introduced through parallelization.
Additionally, high degree vertices are hard to dis-
tribute efficiently if we want a partitioned output
graph. This severely impedes the scaling behavior.
Since the maximum degree is O(n

1
2α) with high prob-

ability [13], these vertices dominate the running time
of our algorithm. Overall, these effects are less noti-
cable in the case of our strong scaling experiments,
because we start with a minimum of 1024 PEs.

If we examine the scaling behavior of our second
algorithm, we can see that these effects are less no-
ticeable, especially for larger values of γ. For smaller
values of γ, the running time of our algorithm is
again dominated by the time needed to generate the
inner core (global annuli) on its dedicated comput-
ing node. Overall, our second generator is roughly
16 times faster than our first generator. However,
keep in mind that the resulting graph is not fully
partitioned, i.e. not all incident edges are generated
on the corresponding PEs. Thus, we can achieve
a similar speedup for our first generator, by only
performing outward queries and omitting the inward
ones. Nonetheless, the lower memory requirements
of our second generator enable us to generate up to
16 times larger instances.

8.6.1. Comparison with R-MAT

In order to further evaluate the performance of our
generators, in particular of our hyperbolic generators,
we now compare them to the R-MAT generator. For
this purpose, we use the reference implementation
available at the Graph 500 website (graph500.org).
The R-MAT generator is commonly used in bench-
marks for large scale graph computations due to its
scalability and flexibility. Fig. 17 shows the weak

23 27 211 215

Number of PEs P

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Weak scaling RMAT (n,m)

n/P = 222 n/P = 220 n/P = 218

Figure 17: Running time for generating a graph with n vertices
and m = 24n edges on P PEs using the R-MAT generator.

211 213

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Strong scaling RMAT (n,m)

n = 232 n = 230 n = 228

Figure 18: Running time for generating a graph with n vertices
and m = 24n edges on P PEs using the R-MAT generator.

scaling behavior of R-MAT an equal number of m/P
edges per PE. In particular, we set n = m/24 and
let the number of edges per PE range from 222 to
226.

First, we see that R-MAT has a slight increase
in running time for growing numbers of PEs (and
thus a growing number of vertices). This increase in
running time is due to the fact that R-MAT needs
to generate O(log n) random variates for each edges.
Second, if we compare the overall performance of
R-MAT with our own generators we can see that
it is roughly ten times slower than the streaming
version of our hyperbolic graph generator. Further-
more, it is up to 15 times slower than our undirected
Erdős-Rényi generator. This difference in perfor-
mance can be attributed to the difference in the
number of random variates that each generator has
to generate. Due to the costs of generating these
variates, minimizing the number of variates yields
large performance benefits.

9. Conclusion

We presented scalable graph generators for a set
of commonly used network models. Our work in-
cludes the classic Erdős-Rényi model, in both the

21

graph500.org

G(n,m) and G(n, p) variants, random geometric
graphs, random Delaunay graphs and random hy-
perbolic graphs.

Our algorithms make use of a combination of
divide-and-conquer schemes and grid data structures
to narrow down their local sampling space. We re-
dundantly compute parts of the network that are
within the neighborhood of local vertices. These
computations are made possible through the use of
pseudorandomization via hash functions. The re-
sulting algorithms are embarrassingly parallel and
communication-free.

Our extensive experimental evaluation indicates
that our generators are competitive to state-of-the-
art algorithms while also providing near-optimal scal-
ing behavior. In turn, we are able to generate in-
stances with up to 243 vertices and 247 edges in less
than 22 minutes on 32 768 cores.7 Therefore, our
generators enable new network models to be used
for research on a massive scale. In order to help
researchers to use our generators, we provide all
algorithms in a widely usable open-source library.
Finally, to show the broad applicability of the con-
cepts used in our generators, we provide adaptations
for their use in a GPGPU setting.

Future Work

As mentioned in Section 8.2, we would like to ex-
tend our remaining generators to use a streaming
approach similar to sRHG (see Section 7.2). This
would drastically reduce the memory needed for the
auxiliary data structures, especially for the spatial
network generators. Allowing the efficient genera-
tion of random hyperbolic graphs on GPGPUs also
remains for future work.

Furthermore, we would like to extend our
communication-free paradigm to various other net-
work models such as the stochastic block-model and
the probabilistic random hyperbolic graph model [9].
More specifically, we would like to extend the KaGen
library by a faster generator for R-MAT graphs than
currently available.

Finally, our generators allow us to perform an
extensive study on new graph models for high-
performance computing benchmarks. In turn, these
benchmarks could target a wider variety or real-world
models and scenarios. A more detailed theoreti-
cal analysis using tighter bounds, especially for the
parallel running times of our generators would be
beneficial for this purpose.

7Using the directed G(n,m) generator.

Acknowledgment

The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by
providing computing time on the GCS Supercom-
puter SuperMUC at Leibniz Supercomputing Centre
(www.lrz.de). The authors gratefully acknowledge
the Gauss Centre for Supercomputing (GCS) for
providing computing time through the John von
Neumann Institute for Computing (NIC) on the
GCS share of the supercomputer JUQUEEN [47]
at Jülich Supercomputing Centre (JSC). GCS is
the alliance of the three national supercomput-
ing centres HLRS (Universität Stuttgart), JSC
(Forschungszentrum Jülich), and LRZ (Bayerische
Akademie der Wissenschaften), funded by the
German Federal Ministry of Education and Research
(BMBF) and the German State Ministries for
Research of Baden-Württemberg (MWK), Bayern
(StMWFK) and Nordrhein-Westfalen (MIWF). We
thank the Center for Scientific Computing, Univer-
sity of Frankfurt for making their HPC facilities
available. This work was partially supported by
Deutsche Forschungsgemeinschaft (DFG) under
grants ME 2088/3-2, and ME 2088/4-2.

Appendix A. Hyperbolic Geometry Re-
lated Definitions

Radial density:

ρ(r) := α
sinh(αr)

cosh(αR)− 1
(A.1)

Radial cdf:

µ(Br(0)) :=

∫ r

0

ρ(x)dx =
cosh(αx)− 1

cosh(αR)
(A.2)

Angular deviation:

∆θ(r, b) :=

{
π if r+b < R

acos
[cosh(r) cosh(b)−cosh(R)

sinh(r) sinh(b)

]
otherwise

(A.3)

22

www.gauss-centre.eu
www.lrz.de

Appendix B. Hyperbolic Geometry Re-
lated Approximations

Gugelmann et al. derived the following approxi-
mations8 [13].

Angular deviation:

∆θ(r, b) =

{
π if r + b < R

2e
R−r−b

2 (1 + Θ(eR−r−b)) if r + b ≥ R
(B.1)

Radial cdf:

µ(Br(0)) =

∫ r

0

ρ(x)dx =
cosh(αr)

cosh(αR)− 1
(B.2)

= eα(r−R)(1 + o(1)) (B.3)

The probability mass µQ of the intersection of the
actual query circle BR(r) with the annulus Bb(0) \
Ba(0) as defined in Lemma 10 is given by:

µQ := µ [(Bb(0)\Ba(0)) ∩BR(r)]

=
2

π
e−

r
2−(α−

1
2)R

[
α

α− 1
2

(
e(α−

1
2)b − e(α− 1

2)a
)

+O
(
e−(α−

1
2)a
)]

(B.4)

RHG and sRHG overestimate the actual query
range at the border and covers the mass µH :

µH :=
1

π
∆θ(r, a)

b∫
a

ρ(y)dy

=
2

π
e−

r
2−(α−

1
2)R

[
eαb−a/2 − e(α− 1

2)a
]

·
(

1±O
(
e(1−α)(R−a)−r

))
(B.5)

References

[1] S. Muthukrishnan, G. Pandurangan, Thresholding ran-
dom geometric graph properties motivated by ad hoc
sensor networks, JCSS 76 (7) (2010) 686 – 696.

[2] A. Clauset, C. R. Shalizi, M. E. Newman, Power-
law distributions in empirical data, SIAM review 51 (4)
(2009) 661–703.

8We drop the (1 + O(·)) error terms in our calculations
without further notice if they are either irrelevant or dominated
by other simplifications made

[3] D. Chakrabarti, C. Faloutsos, Graph mining: Laws, gen-
erators, and algorithms, ACM Comput. Surv. 38 (1).

[4] P. Sanders, C. Schulz, Scalable generation of scale-free
graphs, Inf. Process. Lett. 116 (7) (2016) 489–491.

[5] A. Lumsdaine, D. Gregor, B. Hendrickson, J. Berry,
Challenges in parallel graph processing, Parallel Process.
Lett. 17 (01) (2007) 5–20.

[6] P. Erdős, A. Rényi, On Random Graphs I., Publicationes
Mathematicae (Debrecen) 6 (1959) 290–297.

[7] E. N. Gilbert, Random graphs, Ann. Math. Statist.
30 (4) (1959) 1141–1144.

[8] X. Jia, Wireless networks and random geometric graphs,
in: IEEE I-SPAN, 2004, pp. 575–580.

[9] D. V. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat,
M. Boguñá, Hyperbolic geometry of complex networks,
CoRR (abs/1006.5169).

[10] A.-L. Barabási, R. Albert, Emergence of scaling in
random networks, Science 286 (5439) (1999) 509–512.

[11] M. Penrose, Random geometric graphs, no. 5, Oxford
University Press, 2003.

[12] N. Pržulj, D. G. Corneil, I. Jurisica, Modeling interac-
tome: scale-free or geometric?, Bioinformatics 20 (18)
(2004) 3508–3515.

[13] L. Gugelmann, K. Panagiotou, U. Peter, Random hyper-
bolic graphs: Degree sequence and clustering, in: ICALP,
Vol. 7392 of LNCS, 2012, pp. 573–585.

[14] H. Edelsbrunner, Voronoi Diagrams, Springer, 1987, pp.
293–333.

[15] A. Stukowski, Structure identification methods for atom-
istic simulations of crystalline materials, Modelling and
Simulation in Materials Science and Engineering 20 (4)
(2012) 045021.

[16] J. S. Vitter, An efficient algorithm for sequential random
sampling, ACM Trans. Math. Softw. 13 (1) (1987) 58–
67.

[17] J. L. Bentley, J. B. Saxe, Generating sorted lists of
random numbers, ACM TOMS 6 (3) (1980) 359–364.

[18] P. Sanders, S. Lamm, L. Hübschle-Schneider, E. Schrade,
C. Dachsbacher, Efficient random sampling – parallel,
vectorized, cache-efficient, and online, ACM Transaction
on Mathematical Sofware 44 (3) (2018) 29:1–29:14.

[19] C. Robert, G. Casella, Monte Carlo statistical methods,
Springer Science & Business Media, 2013.

[20] J. Von Neumann, Various techniques used in connection
with random digits, in: Monte Carlo Method, Vol. 12 of
National Bureau of Standards, 1951, pp. 36–38.

[21] E. Stadlober, Ratio of uniforms as a convenient method
for sampling from classical discrete distributions, in:
WSC, ACM, 1989, pp. 484–489.

[22] E. Stadlober, H. Zechner, The Patchwork rejection tech-
nique for sampling from unimodal distributions, ACM
Trans. Model. Comput. Simul. 9 (1) (1999) 59–80.

[23] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash,
M. von Looz, Communication-free Massively Distributed
Graph Generation, in: 32nd IEEE International Parallel
& Distributed Processing Symposium (IPDPS), 2018,
best paper award.

[24] M. Penschuck, Generating practical random hyperbolic
graphs in near-linear time with sub-linear memory, in:
SEA, Springer, 2017.

[25] V. Batagelj, U. Brandes, Efficient generation of large
random networks, Phys. Rev. E 71 (2005) 036113.

[26] R. A. S. Fisher, F. Yates, Statistical tables for biologi-
cal, agricultural, and medical research, Oliver and Boyd,
1963.

23

[27] S. Nobari, X. Lu, P. Karras, S. Bressan, Fast random
graph generation, in: EDBT, ACM, 2011, pp. 331–342.

[28] M. Holtgrewe, A scalable coarsening phase for a multi-
level graph partitioning algorithm, Master’s thesis, Uni-
versity of Karlsruhe (2009).

[29] M. Holtgrewe, P. Sanders, C. Schulz, Engineering a
scalable high quality graph partitioner, in: IPDPS, IEEE,
2010, pp. 1–12.

[30] M. von Looz, H. Meyerhenke, R. Prutkin, Generating ran-
dom hyperbolic graphs in subquadratic time, in: ISAAC,
Vol. 9472 of LNCS, 2015, pp. 467–478.

[31] M. von Looz, M. S. Özdayi, S. Laue, H. Meyerhenke,
Generating massive complex networks with hyperbolic
geometry faster in practice, in: IEEE High Performance
Extreme Computing Conference (HPEC), 2016, pp. 1–6.

[32] K. Bringmann, R. Keusch, J. Lengler, Sampling Geomet-
ric Inhomogeneous Random Graphs in Linear Time, in:
25th Annual European Symposium on Algorithms (ESA
2017), Vol. 87 of Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, pp. 20:1–20:15.

[33] D. Funke, P. Sanders, Parallel d-D Delaunay Triangu-
lations in Shared and Distributed Memory, in: 19th
Workshop on Algorithm Engineering and Experiments
(ALENEX), SIAM, 2017, pp. 207–217.

[34] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos,
Realistic, mathematically tractable graph generation and
evolution, using Kronecker multiplication, in: PKDD,
Springer, Berlin, Heidelberg, 2005, pp. 133–145.

[35] G. M. Morton, A computer oriented geodetic data base
and a new technique in file sequencing, IBM, 1966.

[36] C. J. H. McDiarmid, On the method of bounded differ-
ences, Surveys in Combinatorics (1989) 148–188.

[37] P. Bhattacharyya, B. K. Chakrabarti, The mean distance
to the nth neighbour in a uniform distribution of random
points, European Journal of Physics 29 (3) (2008) 639.

[38] S. Lo, Parallel Delaunay triangulation in three dimen-
sions, Comput.Methods in Appl.Mech.Eng. 237-240
(2012) 88–106.

[39] R. A. Dwyer, Higher-dimensional voronoi diagrams in
linear expected time, Discrete & Computational Geome-
try 6 (3) (1991) 343–367.

[40] T.-T. Cao, A. Nanjappa, M. Gao, T.-S. Tan, A gpu
accelerated algorithm for 3d delaunay triangulation, in:
18th SIGGRAPH Symposium on Interactive 3D Graphics
and Games, ACM, New York, NY, USA, 2014, pp. 47–
54.

[41] K. Bringmann, R. Keusch, J. Lengler, Geometric inho-
mogeneous random graphs, CoRR (abs/1511.00576).

[42] M. Kretz, V. Lindenstruth, Vc: A C++ library for
explicit vectorization, Softw., Pract. Exper. 42 (11)
(2012) 1409–1430. doi:10.1002/spe.1149.

[43] M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random
number generator, ACM Trans. Model. Comput. Simul.
8 (1) (1998) 3–30.

[44] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring net-
work structure, dynamics, and function using NetworkX,
in: SciPy, 2008, pp. 11–15.

[45] M. J. Appel, R. P. Russo, The connectivity of a graph
on uniform points on [0, 1] d, Statistics & Probability
Letters 60 (4) (2002) 351–357.

[46] S. Hert, M. Seel, dD Convex Hulls and Delaunay Tri-
angulations, in: CGAL 4.7 User and Reference Manual,
CGAL, 2015.

[47] M. Stephan, J. Docter, Jülich Supercomputing Centre.
JUQUEEN: IBM Blue Gene/Q Supercomputer System
at the Jülich Supercomputing Centre, Journal of large-
scale research facilities.

24

http://dx.doi.org/10.1002/spe.1149

	1 Introduction
	2 Preliminaries
	2.1 Network Models
	2.1.1 Erdos-Rényi Graphs
	2.1.2 Random Geometric Graphs
	2.1.3 Random Hyperbolic Graphs
	2.1.4 Random Delaunay Graphs (RDGs)

	2.2 Sampling Algorithms
	2.3 GPGPU Computation Model

	3 Related Work
	3.1 ER Model
	3.2 RGG Model
	3.3 RHG Model
	3.4 RDG Model
	3.5 Miscellaneous
	3.5.1 Barabasi and Albert Model
	3.5.2 Recursive Matrix Model

	4 ER Generator
	4.1 Directed Graphs
	4.2 Undirected Graphs
	4.3 Adaptations for the G(n,p) model
	4.3.1 Adaption to GPGPUs

	5 RGG Generator
	5.1 Parallelization
	5.2 Analysis of the Parallel Algorithm
	5.3 Adaption to GPGPUs

	6 RDG Generator
	7 RHG Generators
	7.1 In-memory Generator
	7.2 Streaming Generator
	7.2.1 Further Optimizations

	8 Experimental Evaluation
	8.1 Implementation
	8.2 Experimental Setup
	8.3 Erdos-Rényi Generator
	8.4 RGG Generator
	8.5 RDG Generator
	8.6 RHG Generator
	8.6.1 Comparison with R-MAT

	9 Conclusion
	Appendix A Hyperbolic Geometry Related Definitions
	Appendix B Hyperbolic Geometry Related Approximations

