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Abstract

High-performance data analytics largely relies on being able to efficiently execute various distributed data operators such as dis-
tributed joins. So far, large amounts of join methods have been proposed and evaluated in parallel and distributed environments.
However, most of them focus on inner joins, and there is little published work providing the detailed implementations and analysis
of outer joins. In this work, we present POPI (Partial Outer join & Partial Inner join), a novel method to load-balance large parallel
outer joins by decomposing them into two operations: a large outer join over data that does not present significant skew in the input
and an inner join over data presenting significant skew. We present the detailed implementation of our approach and show that
POPI is implementable over a variety of architectures and underlying join implementations. Moreover, our experimental evaluation
over a distributed memory platform also demonstrates that the proposed method is able to improve outer join performance under
varying data skew and present excellent load-balancing properties, compared to current approaches.
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1. Introduction

An increasing number of companies rely on the results of big
data analytics to improve their operations, planning, customer
service and risk management. For example, in a survey of 476
executives around the world, more than half say that they have
made existing services and products more profitable from their
data [1]. Although hundreds of large data centers have been
built across the globe to support high-performance data analyt-
ics, efficient execution of analysis jobs is still very challenging.
For example, China Mobile gathers 58TB of phone call records
per day [2], just formatting that much data within a specified
schema in a timely manner is already a challenge.

As one of the core tasks in such scenarios, distributed joins,
which always incur significant costs in communication and
computation, have received notable attention from various do-
mains. These areas include but are not limited to data manage-
ment [3] and high-performance computing [4]. Over the past
years, inner join algorithms in parallel and distributed environ-
ments have been widely studied [3, 5, 6]. However, there has
been relatively little work done on outer joins, especially on
their detailed implementations. In fact, outer joins are common
in complex queries and widely used in various applications [7].
For instance, it is common to perform left outer joins between
customer ids and transaction ids for analyzing purchase patterns
in e-commerce [8]. Compared to inner joins, an outer join does
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not discard records from one (or both) table(s) that do not match
with any tuple in the other table. For example, for a left outer
join R(a, x) ./ S (b, y), in which a and b are the join keys and x
and y are the payloads, the output results contain not only the
matched tuples in the form of 〈a, x, y〉, but also the non-matched
ones 〈a, x, ω〉1 if there is no matched key for a in S .

Currently, there are two mainstream algorithms for dis-
tributed outer join implementations [8]: ROJA (redistribution
outer join algorithm) and DOJA (duplication outer join algo-
rithm). As we will explain later, these two methods suffer from
performance issues when data skew is encountered: the for-
mer method has load-balancing problems while the latter one
induces significant network communication. Since data skew
occurs naturally in various applications [5, 9] and join perfor-
mance is always challenged by large-scale datasets, it is im-
portant for practical approaches to perform efficiently in such
contexts.

To achieve good load-balancing in the presence of diverse
workloads, and consequently to improve the scale-out ability
of big data applications, many algorithms have been designed
for skew handling for inner joins [5, 6]. However, there is only
limited research on the detailed analysis and implementation for
distributed outer joins. Some approaches transform the expres-
sion of an outer join into multiple (inner/anti) joins, and thus
allow us to reuse existing inner join techniques. This could not
impact the join performance on a standalone machine. How-
ever, because of system overheads (e.g., for additional jobs) and
redundant data transferring over networks, rewriting could lead

1We use ω as a null value in outer joins throughout this paper.
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to bad performance in a distributed enviroment [10]. Up to the
present, several methods have been proposed to optimize dis-
tributed outer join implementations from a data-centric angle
(e.g., [8]), and they have been shown to be able to outperform
the conventional approaches. Nevertheless, these approaches
are designed for small-large table outer joins rather than the
large-large ones, which are actually common in this Big Data
era [11].

In this paper, we present a novel outer join decomposition
method called POPI. It is designed for skew-resistant outer
joins over distributed environments. On a reference implemen-
tation, POPI can outperform current implementations in large-
scale data processing scenarios. We list the contribution of this
work as follows:

• We propose a novel approach called POPI (Partial Outer
join & Partial Inner join) for load-balancing parallel outer
joins over distributed systems.

• The POPI join geography does not require major changes
to the current implementations of a shared-nothing ar-
chitecture. Moreover, its underlying implementation is
still based on the widely-used redistribution and dupli-
cation operations and can thus be applied to current sys-
tems/applications directly.

• Our experimental results demonstrate that the proposed
POPI method is robust in the presence of various data skew
and can efficiently process large table outer joins in a dis-
tributed environment.

This manuscript is an extension of our previous work [11].
We have enhanced the core parts of the POPI approach in
three aspects, including the theoretical analysis, the applica-
bility analysis and the experimental evaluation. We theoreti-
cally prove that the high-level decomposition and parallelism of
POPI are correct and also show that our approach can achieve
optimal load balancing with less network traffic in the presence
of large skew datasets, compared to current approaches. More-
over, we present a detailed discussion on the applicability of
our approach, showing that our approach is applicable to many
computing systems and is agnostic to the implementation of un-
derlying joins. Therefore, POPI can be applied as a new outer
join pattern in conjunction with many current (mainstream) join
implementations in current data systems. In terms of experi-
ments, we have conducted a new and also more comprehen-
sive evaluation of the proposed approach in a more challenging
environment, i.e., a distributed in-memory computing environ-
ment (i.e., Spark [12]) rather than a disk-based platform such as
MapReduce [13] as we have described in [11]. This allows us
to focus on the performance issues arising from the approach
itself, rather than its implementation complexity, i.e., we are
not influenced by the overheads from I/O and different num-
bers of jobs. We believe that all these extensions are necessary
and important. They make the proposed POPI more convinc-
ing and self-contained, and thus push it as the state-of-the-art
distributed outer join approach to be be applied in current data
systems.

The rest of this paper is organized as follows: In Section 2,
we analyze current outer join implementations. In Section 3,
we discuss some advanced skew handling strategies for large
data outer joins. In Section 4, we introduce our POPI approach.
In Section 5, we present our experimental results. We report
on related work in Section 6 while we conclude the paper in
Section 7.

2. Problem Description

We focus on the left outer join ( ./) in this work, since it is
the most common outer joins used in data applications. Specif-
ically, we focus on the joins between two input relations R and
S . Without loss of generality, we assume that tuples in both
relations are 〈k, v〉 pairs, where k is the join attribute (or key),
and the size of the relation R is smaller than S . A typical par-
allel join can be decomposed into a data redistribution stage
followed by a local join [5]. As the latter has been extensively
studied, we will focus on the redistribution process. In this sec-
tion, we mainly discuss the possible performance issues of cur-
rent outer join approaches.

2.1. Two Conventional Approaches
We explain the implementations of the two conventional

outer joins algorithms in detail based on the example demon-
strated in Figure 1. There, there are 15 input tuples, which are
initially distributed over two computing nodes. We only show
join keys without the values, since the values are not relevant
for the application of the methods described in this paper.

2.1.1. ROJA
The implementation of ROJA (redistribution-based outer

join algorithm) is very similar to the case for inner joins, and
its join pattern is demonstrated in Figure 1(a). There, the input
tuples of R and S at each node are firstly redistributed over the
system based on the hash values of their join keys. If we just
use a simple hash function like h(k) = k mod 2 here, then the tu-
ples with key {1, 3} in R and S will be transferred to node 1 and
the rest are going to node 0. After this redistribution, local outer
joins between received tuples on each node can be executed in
parallel. Namely, the green/light color join will commence on
node 1, and the red/dark one will be on node 0. Obviously, the
number of final output results is 11, including 1 non-matched
result (with the key 2) and 10 matched ones (with the keys 1, 3
and 4).

Similar to a redistribution-based inner join algorithm, ROJA
can achieve good performance under ideal balancing condi-
tions. However, when the join keys present significant skew,
large amounts of tuples would be transferred to some speci-
fied computing nodes, and this will result in computation and
network hotpots. For example, if the tuples with key 1 in Fig-
ure 1(a) appears 1 million times on both the nodes, then there
will be 1 million tuples moving from node 0 to 1 while there
are only 5 tuples from node 1 to 0 (the ones with key 2 and 4).
Such poor load balancing impairs system scalability because
employing new nodes will not bring in obvious performance
improvement [10].
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Figure 1: The join patterns of the two conventional outer join methods over two computing nodes. The solid lines in on format are outer joins and the dashed one
are inner joins.

2.1.2. DOJA
Compared to ROJA, DOJA (duplication-based outer join al-

gorithm) shows significantly different implementations. As
demonstrated in Figure 1(b), its main processing stage contains
two sequential phases. Firstly, there is an inner join between R
and S to formulate the intermediate result T , which is imple-
mented by duplicating all the tuples of R on each node to all
other nodes. As we can see in Figure 1(b), T contains 10 tu-
ples (with the key 1, 3 and 4). The second phase is a left outer
join between R and T using ROJA. Namely, the tuples with key
{1, 3} in R and T will be transferred to node 1 and the rest are
going to node 0. In this case, we still get the 11 results.

Duplication is an effective way to remove hot spots resulting
from join key skews for inner joins. Therefore, the first phase of
DOJA can achieve good load-balancing. However, DOJA will
still meet performance issues when S is skewed. This is be-
cause the number of intermediate results T could be very large.
Moreover, T can also incur attribute value skew. Both factors
will make the join execution in the second phase very costly.

In fact, DOJA is seldom used in data applications. From its
implementation, the method will be only suitable for the case
that the join selective is very low, R is very small and S is
skew. In this condition, the intermediate results will be small
and DOJA could outperform the ROJA algorithm. It should be
noted that the join in the first phase of DOJA is an inner join.
The reason is that using an outer join would bring either re-
dundant or erroneous non-matched results [10]. To avoid this
problem, DOJA redistributes the intermediate inner join results
and then outer joins with R to obtain the final output.

2.2. Outer Join Optimization - DER
Xu et al. [8] propose an efficient algorithm called DER (du-

plication and efficient redistribution), which is the state-of-the-
art method for optimization of outer join implementations in
a distributed environment. The algorithm is composed of two
phases. In the first phase, all the tuples of R at each node are
duplicated to all other nodes. Then, a local left outer joins be-
tween the received tuples of R and S is performed in parallel at
each node. Different from a conventional local outer join imple-
mentation, the ids of all non-matched rows of R are recorded as
the intermediate result T ′ at this step. In the second phase, the
ids in T ′ are redistributed according to their hash values and the

non-match join results at each node are organized on this basis:
the received ids at each node are counted, if the number of times
an id appears is equal to the number of computing nodes, then
the record in R with this row-id will be extracted to formulate
the non-matched results. The final output is the union of the
matched results in the first phase and the non-matched results
in the second phase.

Following the example in Figure 1, assuming that the row-id
of each tuple in R is equal to the value of its key, then, after the
first phase, we have that the matched results are the tuples with
key 1, 3 and 4, and the intermediate result T ′ contains four ids,
i.e., {2, 4} on node 0 and {2, 3} on node 1. By redistributing T ′,
the id 2 appears two times node 0, which is equal to the number
of nodes. Therefore, there will be a non-matched result for the
tuple with key 2. In contrast, there is no non-matched result
from the key 3 and 4, because their responsible ids only appear
one time respectively.

Altough DER follows a duplication-based way, compared to
DOJA, it uses a more advanced approach, i.e., a customized left
outer join to identify non-matched results. This will generate a
intermediate result. However, the size of T ′ will be much more
smaller then the T in DOJA. The reason is that T ′ only records
the ids of all non-matched rows of R, the number of which is not
greater than the number of tuples in R. This makes DER be able
to greatly reduce network communication, compared to DOJA.
As presented in [8], DER is actually considered a replacement
for DOJA.

Although the work [8] does not focus on the skew handling
problem, it can be predicted that DER will be very effective in
such aspect. The reason is that DER only redistributes the non-
matched ids of R, which is not affected by the skewness of S .
Moreover, when R is small, the redistributed data in DER will
be very small in size, and redistribute such a small data set will
not bring in notable load-imblance even when it is skewed. As
DER has to duplicate all tuples of R, the method is designed
to work best for small-large outer joins rather than large-large
ones.

3. Strategies for Distributed Outer Joins

In this section, we present some advanced skew handling
strategies in parallel joins and discuss about the possibility to
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Figure 2: The join patterns of the different advanced inner and outer join methods over two nodes. The colored solid lines in on format are outer joins and dashed
are inner joins.

apply them to outer join implementations in large data analyt-
ics platforms such as Spark.

3.1. The PRPD Method

Xu et al. [6] propose an algorithm named PRPD (partial re-
distribution & partial duplication) for inner joins. For the input
tuples in Figure 1, assume that the skew keys are 1 and 4, the
detailed data partitioning and join pattern of PRPD is demon-
strated in Figure 2(a). There, S is partitioned into two parts: (1)
S loc, which comprises skew items; and (2) S redis, which com-
prises the tuples with low frequency of occurrence. Meanwhile,
R is also partitioned into two parts: (1) Rdup, which contain the
keys in S loc; and (2) Rredis, the remaining part of R. For exam-
ple, the tuples with key 1 in S on node 0 belong to S loc and the
tuples with key 4 in R on node 1 belong to Rdup. After this parti-
tioning, the inner join between R and S can then be represented
as:

R on S = (Rredis on S redis)
⋃

(Rdup on S loc)

In detail, the tuples in S loc are kept locally, the tuples in Rdup

are duplicated to all other nodes, and the rest ones in Rredis and
S redis are redistributed using a common redistribution-based ap-
proach. This design presents an efficient way to process the
high skew tuples (i.e., the ones with keys that are highly repet-
itive) - all such tuples of S are not transferred at all, instead,
a small number of tuples containing the same keys from R are
duplicated. Therefore, the network communication cost can be
greatly reduced and also the hotspots caused by skewed tuples
can be avoided.

As PRPD combines both the redistribution and duplication-
based join scheme, one possible way for a distributed outer join
implementation is that we use outer joins to replace the corre-
sponding inner joins in PRPD. Namely,

R ./ S = (Rredis ./ S redis)
⋃

(Rdup ./ S loc) (1)

Following our theoretical analysis in the later Section 4.2,
we will see that Eq. 1 is correct. However, this implementation
could meet the same performance issue as DOJA: the cardinal-
ity of the intermediate results of Rdup ./S loc could be large. This

means that a PRPD-based algorithm is actually not suitable for
distributed outer joins. A solution for this is to use DER to pro-
cess Rdup ./S loc. However, as we will show later in Section 4.1,
our proposed method uses a more simple and effective way to
solve the problem.

3.2. The PRPS Strategy

Cheng et al. [5] propose an efficient algorithm for inner joins
called PRPS. They use a semijoin-alike way to handle data
skew, inspiring us to apply it to outer joins. As illustrated in Fig-
ure 2(b), the data partitioning of PRPS is the same as PRPD, and
its outer join pattern follows Eq. 1. However, unlike a ROJA ex-
ecution for the skewed tuples, PRPS processes the outer join as
following: the unique keys in S loc are extracted to perform an
outer join with Rdup, and then the matched part of Rdup is joined
with S loc (inner join), which is unioned with the non-matching
part of Rdup to formulate the outputs.

For example, for the case in Figure 2(b), the unique keys of
S loc, (1 and 4) will outer join with Rdup. Then, the matched
tuples will be duplicated to be part of an inner join with S loc

while the non-matched part will be output directly as a part of
final results. Obviously, this PRPS-based outer join method
(referred to as PRPS-O) will be effective on skew handling, as
the skew tuples in S are locally kept and just a small number
of unique keys are extracted and transferred. However, as we
will explain later, we can use a more straightforward way for
the outer join implementation.

3.3. Other Techniques

Track [14] employs of a very fine-grained multi-phase
scheduling algorithm to explore data locality for distributed
joins and thus it can minimize their network traffic. Although
the technique can be used to outer joins, its core data opera-
tion (i.e., select broadcast and migration) can not be applied to
some mainstream data processing platforms. Take the Spark as
an example, neither broadcasting tuples to some specified parti-
tions nor migrating tuples between partitions of a RDD will be
possible.
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Some other algoritihms (e.g., [15]) are shown to be efficient
on distributed outer joins. However, their executions will be
even more complex than PRPS-O. This is because they focus on
a fine-grained control of per-node data movement (e.g., peer-to-
peer communication based on the requirements). Moreover, all
these techniques (including PRPS-O) do not follow a conven-
tional redistribution and duplication communication pattern,
and thus applying them in data analytics applications directly
would impact the design of underlying systems (such as query
optimization) or implementation choices (such as communica-
tion and scheduling [11]). In such a case, we do not consider
the detailed implementation and evaluation of these techniques
in this work. In comparison, we will propose a new approach,
which can be directly applied to current data systems/solutions.
Additionally, although the recent DDR algorithm [16] has been
shown to be able to achieve comparable performance as DER
in cloud computing environments, it just provides an engineer-
ing redesign for DER and is only suitable to small-large outer
joins. The detailed performance comparison between DER and
DDR has been studied in [16], thus we will only compare our
proposed approach with DER in the following sections.

4. Our Approach

In this section, we present the details of the proposed POPI
approach and analyze how it can address load balancing issues
in distributed outer joins. Moreover, we compare it with cur-
rent approaches and present its detailed implementation over
the Spark platform [12].

4.1. The POPI Approach
The basic design principles of POPI are: (1) large-scale re-

distribution of skewed tuples should be limited, so as to avoid
load balancing problems; and (2) duplication-based outer join
operations should be avoided to the extent possible, in order to
simplify the implementation and also reduce possible redundant
communication and computation.

For simplicity, let us consider a uniform-skew condition, i.e.,
the join keys in S have skewed values and R is not skewed.
Assuming that we know the set of skewed keys L in S (detailed
discussion on skew selection is give in Section 4.4), then the
implementation of POPI can be summarized as the following
two phases:

• Phase 1.

– On each computation node i, the sub-relation S i is
partitioned into two parts based on L: (i) a locally-
retained part S loc, which comprises all the tuples
with popular keys (i.e., key with values in L). This
part is not involved in the redistribution operation;
and (ii) the remaining part S redis, for which the tu-
ples are hash-redistributed as in the ROJA implemen-
tation.

– Similarly, the relation R at each node is also divided
into two parts: (i) the duplicated part Rdup, com-
prising the tuples with key values in L. This part

is broadcast to all other computation nodes; and (ii)
the remaining part Rredis, the tuples that are hash-
redistributed.

• Phase 2. After the duplication and the redistribution op-
erations, the following two joins are implemented at each
computation node in parallel: (i) an outer join between re-
distributed part of R and S : Rredis ./S redis; and (ii) an inner
join between the duplicated part of R and locally kept S :
Rdup on S loc. The final output is the union of these two
joins on all the nodes.

Based on the description above, the outer join between the
two relations R and S in our approach can be represented as:

R ./ S = (Rredis ./ S redis)
⋃

(Rdup on S loc) (2)

An example of such implementation is illustrated in Figure 2(c).
We can see that the data partitioning and the join pattern of
POPI are the same as the PPRD and PRPS, but their detailed
join executions are different. Namely, there is an inner join
and an outer join in POPI rather than two inner joins or two
outer joins. Here, we highlight the two key characteristics of
the proposed POPI as follows:

1. At a high level, an outer join is composed of an inner join
and an outer join implementation. This is different from a
naive transformation, such as R ./ S = (Rredis ./ S redis) ∪
(Rdup ./ S loc), which involves two outer join operations.

2. At a low level, the two input relations are partitioned into
two parts and each partition participates in a join imple-
mentation independently. This is different from some tra-
ditional transformations such as R ./ S = (R on S )∪ ((RB
S ) × {ω}), in which all the tuples fully participate in the
two distributed joins respectively - an inner join and an
anti-join.

That is also the motivation behind the naming of our ap-
proach, POPI (Partial Outer join & Partial Inner join). Dis-
tinguishing between the skewed part and non-skewed part is
different from the outer join implementations described in Sec-
tion 2 and allows us to replace an outer join with an inner join.
Although our partitioning strategy is the same as PRPD, their
targets and executions are totally different, i.e., we focus on de-
veloping an efficient approach for distributed outer joins while
PRPD can not be applied to outer joins directly as we have de-
scribed.

4.2. Correctness of POPI
The implementation of an outer join is more challenging than

an inner join in distributed systems, since a careless design will
bring in redundant and erroneous non-matched results. To show
that POPI can indeed provide correct outputs for outer joins, we
prove the correctness of the approach in two aspects. We first
give a proof for the correctness of our operator decomposition
and then we prove that our parallel implementation in a dis-
tributed environment is correct. For simplicity, we focus on the
uniform-skew outer joins first, then we discuss about the skew-
skew condition.
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4.2.1. Correctness of Operator Decomposition
Eq. 2 shows that an outer join operator in POPI can be de-

composed into two data operators: an outer join and an inner
join. Here, we prove that such a decomposition is correct. As-
sume that there are n computing nodes, and the tuples in the
relations R and S on each node i have been partitioned based
on the skewed join keys L. As both R and S are split into two
disjoint sets, we have:R = Rredis ∪ Rdup, S = S redis ∪ S loc,

Rredis ∩ Rdup = ∅, S redis ∩ S loc = ∅
(3)

Since the tuples in R and S are split by their join keys, we
have that the following two inner joins will produce the empty
set:

Rredis on S loc = ∅, Rdup on S redis = ∅ (4)

Based on Eq. 3, there is:

R ./ S = (Rredis ∪ Rdup) ./ (S redis ∪ S loc)
= (Rredis ./ (S redis ∪ S loc))⋃

(Rdup ./ (S redis ∪ S loc))

In the outer join Rredis ./ (S redis ∪ S loc), for any tuple 〈a, x〉 ∈
Rredis, its output will be either 〈a, x, y〉 for a match case or
〈a, x, ω〉 for a non-match one. From Eq. 4, the tuple will never
have a match for Rredis ./S loc. This means that the output tuples
in the outer join actually depend on the outer join between Rredis

and S redis, i.e., we have Rredis ./ (S redis ∪ S loc) = Rredis ./ S redis.
Similarly, for the outer join Rdup ./ (S redis∪S loc), the outputs

will only depend on outer join between Rdup and S loc, because
a tuple in Rdup does not have any matched tuples in S redis from
Eq. 4. As L is the set of skewed keys of S , thus we have that:
(1) L is extracted from the skewed part of S , namely, there is
L = πb(S loc); (2) because the partitioning of tuples in R is based
on the keys in L, namely, a tuple of R, 〈a, x〉 ∈ Rdup only if
the key meets the condition a ∈ L. Namely, every key of the
tuples in Rdup appears in L. In this condition, there will be no
non-matched results in Rdup during its outer join execution with
S loc. Therefore, the outer join can be represented as an inner
join, i.e., Rdup ./ (S redis∪S loc) = Rdup on S loc. Note that, even if
a skewed key in S does not appear in R, the inner join between
Rdup and S loc will still be valid here, since the final left outer
join results depend on the match conditions of R only. Then,
we have Eq. 2 for POPI. �

4.2.2. Correctness of Parallel Implementation
In fact, the above proof only shows that POPI is correct from

a logical (or task) perspective. If we consider the operator de-
composition from an angle of parallelism, we can only con-
clude that the task-parallel computations of POPI are correct.
Namely, a job (outer join) can be divided into two tasks (joins),
and these two tasks can be computed in parallel (i.e., indepen-
dent). Here, on the basis of the decomposition, we prove that
actually the data-parallel computations of POPI are also cor-
rect.

A superscript is used to indicate the tuples for a give sub-
relation on a specified node. For example, R1

redis means that
tuples in Rredis on node 1. Then, we have:Rredis = ∪n

i=1Ri
redis, Rdup = Ri

dup ∀i ∈ [1, n]
S redis = ∪n

i=1S i
redis, S loc = ∪n

i=1S i
loc

(5)

From Eq. 2 and Eq. 5, there is

R ./ S = (∪n
i=1Ri

redis ./ ∪
n
i=1S i

redis)⋃
(Rdup on ∪n

i=1S i
loc)

= (∪n
i=1(Ri

redis ./ ∪
n
j=1S j

redis))⋃
(∪n

i=1(Ri
dup on S i

loc))

The tuples in Rredis and S redis are redistributed based on their
join keys, a tuple in Rredis matches a tuple in S redis if and only
if the two tuples are located on the same computing node after
the redistribution. This means that Ri

redis on S j
loc = ∅,∀i ,

j. Similar as our above analysis, the outputs of the outer join
Ri

redis ./ ∪
n
j=1S j

redis depend on the outer join between Ri
redis and

S i
redis, i.e., there is:

R ./ S = (∪n
i=1(Ri

redis ./ S i
redis))⋃

(∪n
i=1(Ri

dup on S i
loc))

= ∪n
i=1((Ri

redis ./ S i
redis)

⋃
(Ri

dup on S i
loc))

It should be noticed that here the Ri
dup on S i

loc is a duplication-
based join, because the Ri

dup on each node i is actually the Rdup

(because of duplication) as presented in Eq. 5. From the equa-
tion, it can be seen that the data on each node can be computed
in parallel, and the two joins (an inner and outer join) on each
node can be also executed in parallel if possible. Therefore,
our outer join can be implemented in a distributed system in
parallel. �

4.2.3. Skew-skew Outer Joins using POPI
We focus on the uniform-skew condition above. Regarding

to the case of skew-skew outer joins (R is also skewed), similar
to PRPD [6], we partition R into three parts: the Rdup and Rredis

as we have described previous, as well as the locally kept part
Rloc, which contains all the skewed tuples in R. Correspond-
ingly, tuples in S are partitioned into three parts as well, the
S loc, S redis and the duplicated part S dup, in which tuples con-
tain join keys belonging to Rloc. Then, the final outputs will be
composed of three joins: a left outer join for the non-skew tu-
ples, namely Rredis ./ S redis, and two inner joins for the skewed
tuples, namely Rdup on S loc and Rloc on S dup. In this case, the
outer join R ./ S can be presented as the following statement,
which can be also proved in a similar way as the uniform-skew
condition.

(Rredis ./ S redis)
⋃

(Rdup on S loc)
⋃

(Rloc on S dup)

It can be seen that data partitioning is a very important op-
eration in our approach. Therefore, how to identify the skewed
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keys in both input relations is critical for our outer join imple-
mentation. We will discuss this problem later when we ana-
lyze the applicability of our method. Moreover, because the
uniform-skew join is the core part of a join [6] [17], we will
focus on such kind of outer joins in our following analysis and
also the evaluation in Section 5.

4.3. Advantages of POPI

In this subsection, we theoretically analyze why POPI can
achieve good load-balancing and reduce network traffic for dis-
tributed outer joins in the presence of data skew. Moreover, we
also discuss that POPI is simpler to implement by comparing
with current advanced techniques.

4.3.1. Load Balancing
The proposed POPI approach can efficiently address the data

skew problem in two aspects: (1) unlike ROJA, POPI does not
transfer any skewed tuples in the redistribution process, thus
hotspots induced by data redistribution can be avoided (improv-
ing load-balancing); (2) we only broadcast part of the tuples to
join with the locally kept tuples, and this duplication operation
does not bring in any hot spots resulting from join key skews.

To investigate the load-balancing of POPI in detail, we fo-
cus on tracking the number of transferred/received tuples in an
outer join and compare it with the most commonly used ROJA.
The reason is that the metric gives the insight into the work-
loads and network communication, i.e., the larger the number
of joined tuples a node receives, the greater its associated work-
load will be. We call a relation is skew when its join keys are
unevenly distributed in the relation, i.e., some keys appear more
frequently than others.

For the simplicity of our analysis, we assume that the skew
tuples are evenly distributed over computing nodes. Moreover,
without loss of generality, we assume that each node has the
same number of tuples before distributed joins, and the non-
skew tuples are uniformly distributed. We use the notations in
Table 1. There, the value of the load-imbalancing factor is the
ratio of skewed tuples on the hot nodes (i.e., nodes that to pro-
cess a disproportional load) over the number of tuples on non-
hot nodes. Its obvious that there is Bi ≥ 1, and the greater the
value of an imbalancing factor is, the worse the load balancing
will be.

For a simple ROJA method, all the skew tuples S are flushed
to the hot nodes while others are redistributed, therefore the
number of tuples on each node W1 will be:

W1 =

{
α|S | + (1−α)|S |

n +
|R|
n (hot nodes)

(1−α)|S |
n +

|R|
n (non-hot nodes)

Thus, the value of the load-imbalancing factor B1, is

B1 = 1 + n ·
α|S |

(1 − α)|S | + |R|
(6)

In comparison, after the redistribution and duplication opera-
tions, the number of tuples on each node W2 for POPI is shown

as below. There, the |L| is the number of duplicated tuples in R
and (|R| − |L|) is the redistributed part.

W2 =
α|S |

n
+

(1 − α)|S |
n

+
|R| − |L|

n
+ |L|

Therefore, the load-imbalancing factor B2 for POPI :

B2 = 1 (7)

From Eq. 6, we can see that ROJA will meet serious load-
balancing problems when n and α is large. For example, if the
skew tuples dominate about 20% of S and n is 100, then B1 will
be 26. In contrast, B2 still equals to 1. This means that POPI
can always achieve an optimal load balancing, which is critical
for the scalability of joins in a distributed environment.

In above analysis, we assume that skewed tuples are evenly
distributed over computing nodes, i.e., each node has the same
number of skew tuples. To capture the upper bound of B2, we
consider an extreme condition for the case that the skew is not
evenly distributed: all the skew tuples are only located in the
first few nodes (according to their numbering), while there is
no skew tuples for the final nodes. In this case, for the relation
S , all the |S |

n tuples in the first few nodes are skew and thus
will be locally kept in joins. In the meantime, all the non-skew
tuples, i.e., (1−α)|S |

n will be redistributed as normal. Therefore,
the number of tuples on each node W ′2 for POPI is:

W ′2 =

{
|S |
n +

(1−α)|S |
n +

|R|−|L|
n + |L| (first few nodes, i.e., hot nodes)

(1−α)|S |
n +

|R|−|L|
n + |L| (non-hot nodes)

Because the number of unique skew keys is normally quite
small compared to input tuples, i.e., |L|≪ |R| ≤ |S |, we have
B′2:

B′2 = 1 +
|S |

(1 − α)|S | + |R|
< 1 +

1
(1 − α)

(8)

We can see from Eq. 8 that the value of B′2 is actually in-
creasing with increasing the value of α. However, for any give
data skew, POPI still demonstrates a much better load balancing
than ROJA. For example, there is B′2 < 2.25 rather than B1 = 26
when α = 20% and n = 100. It should be noticed that in real
applications, we can use various strategies to remedy such kind
of uneven skew such as redistribute skew tuples [6].

4.3.2. Network Traffic
In addition to the advantage of better load balancing, the pro-

posed POPI can also effectivly reduce the network traffic for
distributed outer joins. This advantage is important, as any
communication reduction in a distributed join will be directly
translated to faster execution [14].

The network traffic of each join algorithm can be measured
by the amount of tuples transferred over network in join exe-
cutions (assume the size of each tuple is the same). As all the
tuples are redistributed in ROJA, its network traffic N1 is:

N1 = (|S | + |R|) ·
n − 1

n
(9)
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Table 1: Table of notations

Notation Meaning

T an input relation of an outer join (i.e., R and S )
|T | the number of tuples in relation T
n the number of computing nodes in the system
α the portion of skew tuples in S
L set of skewed keys in S

Wi number of to be join tuples on each node for the i-th algorithm
Ni the number of transferred tuples for the i-th algorithm
Bi the load imbalancing factor for the i-th algorithm

For POPI, the skew tuples, the number of which is α|S |, are
not transferred at all. Instead, only a small number of tuples
from R (i.e., |L|) is duplicated. Therefore, the network traffic N2
is:

N2 = ((1 − α)|S | + (|R| − |L|)) ·
n − 1

n
+ |L|(n − 1) (10)

Moreover, following the details in Section 2.2, the DER al-
gorithm duplicates the relation R and redistributes the non-
matched row-ids. We use X|R| to represent the network traffic
for latter operation. Here, the value of X depends on the size of
a row-id (compare to a tuple) and the also selectivity of the join
in the first phase of DER. Obviously, we have X < 1, and the
network traffic N3 for DER is:

N3 = (n − 1)|R| + X|R| (11)

From Eq. 9 and Eq. 10, we have N1 − N2 ≈ α|S |. Namely,
POPI will transfer less data than ROJA, and this difference will
be obvious when the data skew is high. Consider the case be-
tween POPI and DER based on Eq. 10 and Eq. 11, we can see
that DER would perform better than POPI when R is small.
For an extremely case such as that |R| = |L| ≪ |S |, we then
have that N2 − N3 ≈ (1 − α)|S |. However, POPI will have
an obvious advantage in network traffic when R is large, i.e.,
our approach will be able to efficiently process large-large table
outer joins while DER can not. The reason is that POPI does
not rely on the operation of duplicating a full input relation but
DER does. Namely, N3 will be much greater than N2 when
|R| is large in a distributed environment. For example, there is
N3−N2 ≈ (n−3 +α)|S | when |R| = |S |. In fact, as we will show
in our later evaluation that POPI outperforms DER even when
the input relation R is relatively small (i.e., 1 million tuples,
around 138 MB in size).

4.3.3. Implementation Complexity
The proposed POPI is very easy on implementation. For

example, it does not require the additional operations used in
DOJA and DER to identify the non-matched results. Moreover,
as depicted in Figure 2, we can observe that the data partition-
ing and join pattern of POPI is very similar to the PRPD and
PRPS-O approach. However, as we have discussed that the
PRPD algorithm can not be effectively applied to outer joins.
On the other hand, although PRPS-O can efficiently process dis-

tributed outer joins, its detailed implementation is much more
complex than POPI, i.e., for the skewed tuples, POPI uses a
straightforward inner join rather than a semijoin-like approach.
In such scenarios, POPI will be simpler to implement and also
be more efficient. Therefore, unlike our previous work [11], we
will not compare the detailed performance difference between
POPI and PRPS-O in this work, although the difference could
be insignificant in a memory-based distributed platform.

4.4. Applicability

As we have discussed in Section 3, some join techniques are
efficient and can be used for outer join executions, however,
they could meet problems on being applied to current data sys-
tems. In contrast to this, POPI is actually a very practical ap-
proach and can be integrated to current systems directly. In
terms of parallel and distributed data processing, redistribution
and duplication are the two most popular patterns used in cur-
rent big data platforms (frameworks) such as MapReduce [13]
and Spark [12]. POPI is based on the two patterns, therefore
it can be easily applied to these computing platforms for data
operators including outer joins, without any changes to their
underlying architectures.

We have described that the PRPD algorithm [6] is very ef-
ficient on skew handling. In fact, PRPD is a one of the most
mainstream approaches for inner joins. It has been adopted and
studied in various commercial solutions (e.g., Microsoft [3] and
Oracle [18]) and data applications (e.g., semantic web [19]).
The proposed POPI uses the same data partitioning strategy as
PRPD, therefore it can be seamlessly integrated in the current
solutions and applications which have adopted PRPD. More-
over, advanced strategies designed for PRPD (e.g., skew quan-
tification and tuning) can be also applied to POPI directly.
For instance, statistical information of underlying data col-
lected by a system for inner join implementations such as data
skew will be able to be used by POPI. In detail, skew statis-
tics on the join keys (a, b, c) for the inner join implementation
R(a, x) on S (b, y) on T (c, z) can be applied to the implemen-
tation of R(a, x) ./ S (b, y) on T (c, z) directly. Actually many
approaches can be used to collect such statistics in database
systems and other data processing platforms. Examples include
histograms [20] and bifocal-sampling [21] etc., and all such ap-
proaches are orthogonal to POPI. In our later implementations,
we have chosen a very simple method, i.e., we sample the whole
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input to quantify the data skew2.
It should be noticed that POPI focuses on high-level decom-

position and parallelism for outer-joins rather than providing
detailed underlying join implementations. In terms of join im-
plementations, Rredis ./ S redis and Rdup on S loc in our case,
we will be able to use any existing distributed join method.
For example, we can adopt the conventional redistribution and
duplication-based joins, or the advanced designs such as the
ones considering data locality [22] and network bandwidth con-
ditions [23]. Moreover, we can simply change to the outer join
in Rredis ./ S redis to an inner join when processing an inner join
between the relations R and S . In such scenarios, we believe
that POPI has provided a general decomposition and parallel
framework for distributed join executions, and this approach
will be very suitable for processing large and skew data joins.

The outer join between the non-skew part in POPI will not
generate any data skew. However, the inner join between
the skewed tuples could possibly bring in the join product
skew [24], because of unevenly partitioned skew. In this case,
current approaches against such kind of skew appearing in inner
joins can be also directly applied to our implementation (e.g.,
skew redistribution [3]), as these operations are independent
with our underlying join implementation. We do not consider
such kind of skew in our later evaluations, as we focus on han-
dling the more common attribute skew in this work. Actually,
as stated in [6], unevenly partitioned skew is rare. Moreover,
in a real data processing system, a cost based optimizer will
determine whether the cost of applying POPI is smaller. We
will leave out the discussion on how an optimizer computes
and compares the costs of POPI with current approaches such
as ROJA and DER, which is beyond the scope of this paper.

4.5. An Implementation

We present a general implementation of our method using
Spark [12]. Specifically, we have implemented all approaches
using Scala on Spark over HDFS [25] in our evaluations. We
choose Spark as it supports distributed in-memory computing,
can achieve high performance for data processing and is very
popular. Moreover, it has provided concise notations for vari-
ous join implementations, such as the redistribution-based outer
joins (e.g., leftOuterJoin) and inner joins (e.g., join). This
means that local join operations as well as data transfer pro-
cesses (e.g., shuffle and broadcast) have been integrated in the
platform, which allows us for a fair performance comparison in
our later evaluations. In the following, we assume that readers
are familiar with the concepts of HDFS and the RDD in Spark.

The general implementation of POPI over Spark is shown
in Algorithm 1. There, R, S , k, t refer to the left table of the
outer join, the right side of the outer join, the sampling rate and
the threshold to chose skewed keys respectively. Initially, all
the tuples in R and S are read as key-value pairs from under-
lying HDFS system. Then, we sample the table S (line 1) and

2Note that this is the worst case for our implementation. In the results
section, we can see that POPI still performs faster than current outer join ap-
proaches.

Algorithm 1 POPI Outer Joins
Input: R, S , k, t
Output: R ./ S

1: read R and S as key-value pairs from HDFS
//skew collection

2: var SSample = S .sample(false, k)
3: var SkewedKey = SSample.map(x⇒ (x. 1,1))

.reduceByKey( + ).collectAsMap()

.filter(x⇒ x. 2 ≥ t)
//data partitioning

4: val Bsk = sc.broadcast(SkewedKey)
5: var SLoc = S .filter(x⇒ Bsk.value.get(x. 1) != None)
6: var SDis = S .filter(x⇒ Bsk.value.get(x. 1) == None)
7: var RDup = R.filter(x⇒ Bsk.value.get(x. 1) != None)
8: var RDis = R.filter(x⇒ Bsk.value.get(x. 1) == None)

//join execution
9: var Results1 = RDis.leftOuterJoin(SDis)

10: val Brd = sc.broadcast(RDup)
11: var Results2 = SLoc.map(x⇒ (x. 1, Brd.value.get(x. 1), x. 2))
12: output the union of Results1 and Results2

count the number of occurrences of join keys in sampled tu-
ples on each RDD partition. All the statistic information will
be collected and the skewed key will be filtered out by the input
threshold t (line 3). Based on the extracted skewed keys, all the
tuples in R and S are partitioned into two parts respectively by
checking whether each of their join key is skewed or not (lines
4-8). With the partitioned data, we then start the outer join (line
9) and the inner join (line 10-11). It should be noticed that there
is always a match for each tuple in the later inner join, thus there
we can output the joined result of each tuple directly. Finally,
the outputs of the outer join are composed by the results from
the two joins (line 12).

In this implementation, we have to sample and partition the
input relations before the joins. However, these operations will
be very light-weight in a distributed environment, since the for-
mer processing is only a simple statistics-based job and latter
one contains only local scans. In fact, in real data systems, the
required statistic information are normally collected by opti-
mizer when the data is stored. In this condition, we will be able
to partition the relations directly by the collected statistic.

It is obvious that implementing an algorithm using differ-
ent programming languages or systems would lead to differ-
ent execution times. However, the technique for parallel exe-
cution rather than the language or library used for implemen-
tation is more important. As we have theoretically analyzed in
Section 4.3, POPI can always achieve optimal load-balancing
and is able to process large outer joins, regardless of underly-
ing systems. In such scenarios, we believe that implementing
current outer join approaches over other distributed in-memory
platforms will demonstrate a similar result as that on Spark.
Additionally, although Spark SQL [26] has provided the func-
tional programming APIs on relational processing, it mainly fo-
cuses offering optimization for query execution (i.e., multiple
database operators). Namely, its detailed join implementations
still rely on the conventional redistribution and duplication-
based joins. Since we have provided an outer join approach
building these operation, POPI can be used in Spark SQL to
enrich its APIs or as part of the optimisation process.
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5. Evaluation

In this section, we present a detailed experimental evalua-
tion of POPI and compare its performance with the approaches
as described in Section 2. Because the DER algorithm is an
optimized method for DOJA, we only use ROJA and DER in
our comparisons. The test code for each approach we have
used in this section is available at https://github.com/

longcheng11/POPI.

5.1. Platform

We have evaluated the performance of our approach on a
cluster of up to 17 computing nodes. Each node has two 12-
core Intel Xeon CPU E2680 processors running at 2.50 GHz,
resulting in a total of 24 cores per physical node. Each node has
128GB of RAM, a single 128GB SSD local disk, and nodes are
connected by Infiniband. The operating system is Linux ker-
nel version 2.6.32-279 and the software stack consists of Spark
version 2.0.0, Hadoop version 2.7.3, Scala version 2.11.4 and
Java version 1.7.0 25.

5.2. Datasets

We adopted the widely used TPC-H benchmark [27] in our
tests. We used the query shown as below in our experiments.
For simplicity, we refer the relation CUSTOMER as R and
SUPPLIER as S in the following.

select *

from CUSTOMER as R left outer join SUPPLIER as S

on R.NATIONKEY = S.NATIONKEY

For the datasets generated by TPC-H, each tuple has 8 at-
tributes in the relation R and 7 attributes in S . We choose
Nationkey as the their join key and other attributes as the pay-
load. Since there are only 25 unique uniform Nationkey values
in TPC-H, if we generate a large number of tuples, all tuples
in both R and S will be skewed. To highlight data skew and
also control the skew in our experiments, similar to the many
approaches [6], we increase the number of unique Nationkey
to 50000, and randomly choose a portion of tuples in S and
change their Nationkey to a specified value. For example, the
following statement specifies that the skewness of S is 10%. In
this way, we can easily understand exactly what experiment is
being performed and also be able to capture the essence of a
Zipfian distribution [28, 29].

update SUPPLIER

set S.NATIONKEY = 1

where random(1,100) ≤ 10

We vary the scale factor of TPC-H to generate datasets with
different sizes. We fix the tuples of the relation S to 100 million
(around 13.4 GB) and vary the number of tuples in R using 50
million as the default value. Moreover, we vary the inner join
cardinality (referred to as select) of R and S to 0%, 50% and
100% by controlling the values of join keys in R while keeping
the sizes of R and S constant. We set 50% as the default value.

5.3. Setup

We set the following parameters for the underlying Spark
platform: spark. worker.memory and spark.executor.memory
are set to 120 GB and spark. worker.cores is to 24. Because
the size of the query results could be very large (e.g., around 10
billion rows for a full match condition), outputting all of them
will be costly. To focus on the runtime performance of each
outer join implementation, we only record the number of the
final outputs, rather than materialising the output. Moreover, as
there is only one skewed key in our data sets, we just extract
the skew by checking whether the value of the key equals 1 or
not, after collecting the data statistic information in our imple-
mentation. In all our experiments, the operations of input file
reading and final result output are both on the HDFS system.
We configure HDFS to use the SSD on each node, to try our
best to prepare a fully in-memory computing environment. We
measure runtime as the elapsed time from job submission to the
job being reported as finished and we record the mean value
based on three measurements.

5.4. Runtime

We examine the runtime of three algorithms: the ROJA, DER
and POPI. We implement our tests using 9 nodes in the cluster,
one master and 8 slaves (i.e., worker nodes, 192 cores), on the
default datasets with varying skew.

5.4.1. Experiments with Default Setting
Figure 3(a) shows the runtime of each algorithm under vary-

ing skew. We see that, with increasing data skew, the runtime of
ROJA increases sharply, showing its performance issues in the
presence of data skew. In comparison, the runtime of DER and
POPI remains fairly constant or slightly lower, which means
that these two algorithms are more robust in the presence of
data skew. Moreover, though the DER algorithm is a specific
approach on outer join optimization, we can observe that its per-
formance is generally worse than that of ROJA algorithm, ex-
cept in the case of very high skew (i.e., 40%). As DER mainly
relies on data duplication, we can see that this operation could
lead to performance issues on outer join implementation (i.e. it
could be much more costly compared to data redistribution in
the ROJA algorithm). In all cases, we can see that POPI always
performs the best3. Additionally, compared to DER, POPI is
significantly faster on performing outer joins. As shown in Ta-
ble 2, the average runtime (under varying skew) of DER is 16.8
mins while POPI is only 1.5 mins, demonstrating a speedup of
11.2.

5.4.2. Experiments by Varying Cardinality
We examine the outer join execution time by varying the car-

dinality of the relation R. Using the TPC-H data generator, we
create additional data sets with the number of tuples set to 1

3We are slightly slower than the ROJA algorithm when the skew is 0, as
we have the additional sampling operation. Regardless, the time difference is
small. For example, sampling the full input datasets in our tests (again, the
worst case in real applications) takes 0.22 minutes.
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Figure 3: Runtime of each algorithm under varying skew, with varying cardinality and selectivity over 8 worker nodes (192 cores).

million, 10 million and 100 million. The first relation can be
considered as a very small dataset and the latest one can be
considered as a large dataset. We vary the data skew of S and
record the runtime.

The results under these conditions are shown in Figure 3(b),
Figure 3(c), and Figure 3(d) respectively. We see that, (1) for
a very small R, the runtime of DER and POPI is very close to
each other and smaller than the ROJA algorithm when the data
is skewed; (2) for a relatively small R (i.e., 10M), our POPI ap-
proach starts to outperform the other two algorithms, and DER
starts to become to be slower than ROJA on the condition of
data skew is not very high; (3) for the case with 100 million
tuples for R, DER times out4. The reason could be that broad-
casting large data set is costly and time spend on redundant
computation dominates the runtime. In addition, we can see
that POPI is much faster than ROJA under skew.

In the meantime, we can see that the runtime of DER and
POPI remains fairly constant with increasing data skew, which
shows their robustness in the presence of skew under differ-
ent cardinality conditions. Moreover, we can observe that with
the increase of the size of R, the performance advantage of
our POPI approach becomes more pronounced. Obviously, the
runtime of all the three approaches increases with the growing
of the input size. However, DER runtimes are increasing at a
higher rate than those of POPI (see Table 2) illustrating its in-
efficiency in large-large outer joins. In comparison, the runtime

4The implementation of DER approach suspends for more than two hours
and thus we stop the execution manually.

of POPI increases slightly with increasing the size of the input,
indicating its very good scalability in this aspect. Moreover, it
shows that POPI can processing large outer joins very quickly.
Looking at edge cases, when one input relation would be ex-
tremely small, DER would outperform POPI (as POPI has the
overhead of data partitioning and skew sampling). Regardless,
for a small case here (i.e., 1 million tuples), we can see that
POPI is still faster than DER.

5.4.3. Experiments by Varying Selectivity
We also examine how join selectivity affects the performance

for each algorithm. For datasets with different skew distribu-
tions, we created two different R that have the same cardinal-
ity as the default dataset but with 0% and 100% of the tuples
having a match in S . The results for these two conditions are
presented in Figure 3(e) and Figure 3(f) respectively. Again,
they demonstrate that DER and POPI can efficiently handle data
skew under conditions with different join selectivity. In con-
junction with the results in Figure 3(a), we notice that ROJA
and POPI show increased runtime with increasing selectivity,
and the runtime of ROJA increases much more severely than
POPI under skew in this process. In comparison, DER firstly
decreases and then increases (also can be seen in Table 2). The
possible reasons for this are: (1) For ROJA, local computation
increases since the number of final results increases with in-
creasing the selectivities5. In the meantime, the skew amplifies

5Note that Spark uses a single map data structure to collect all the tuples in
both R and S in the form of (K, (iterable[Vr], iterable[Vs]), and the local join
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Table 2: Average time cost (mins) by varying the skew under different cadinalities and inner join cardinality.

parameter # tuples in R selectivity
/method 1M 10M 50M 100M 0% 50% 100%

DER 0.9 4 16.8 INF. 19.8 16.8 17.6
POPI 0.8 1.1 1.5 2.4 1.4 1.5 1.8

speed-up 1.1 3.6 11.2 INF. 14.1 11.2 9.8

this increase for the hotspot nodes and thus the general runtime
increases. (2) POPI, though it is not impacted by data skew, is
still impacted by the increased cost of result collection. More-
over, the size of the duplicated part also increases with increas-
ing the selectivity, which could incur extra time cost. (3) For
DER, the redistribution of non-matched row-ids decreases with
increasing selectivity, which leads to a decrease on runtime as
it reduces network communication. With selectivity reaching
100%, local computing gradually outweighs the reduction ef-
fects of network communication, which leads to an increase in
runtime. To summarise the difference between DER and POPI,
we see that POPI is always notably faster than DER, but the
difference is more pronounced for low selectivity, which can be
also observed in Table 2.

Summary. Combining the results presented above, we can
see that, both the DER and POPI algorithms can efficiently deal
with data skew under various cardinality and selectivity con-
ditions, while the ROJA approach can not. In the meantime,
POPI outperforms the other two approaches in general, espe-
cially compared to the state-of-art DER algorithm, demonstrat-
ing its advantages in big data applications.

5.5. Network Communication and Load Balancing

We analyze the network communication by recording the
metric shuffle read, as provided by Spark. This number quan-
tifies the amount of data in bytes read from remote executors
(physical machines) but not the data read locally. This means
that this metric indicates the data transfers over the network dur-
ing executions. Results by varying skew over 8 workers (192
cores) are shown in Figure 4(a). We can see that ROJA and
POPI transfer almost the same amount of data in the absence
of skew. This is reasonable, since all tuples in these two algo-
rithms are processed only by redistribution. In the meantime,
we can see that the transferred data by the DER algorithm is
much higher than ROJA and DER. The reason for this is that
the entire relation R is broadcast. Moreover, with increasing
data skew, the transferred data remains roughly constant for
DER and ROJA while significantly decreasing for our POPI ap-
proach. The reason is that the redistributed and the duplicated
data in ROJA and DER do not change. In comparison, skewed
tuples are local kept in POPI, the more skewed the data is, the
more the data will be local kept, thus the network communica-
tion is decreasing with increasing the skew.

We measure the load-balancing characteristics of the three
algorithms based on the shuffle read at each executor metric

results are formulated based on iterate operations over the map.

provided by Spark. This metric records the received data by
each executor. The more data an executor receives, the more
time will be spent on data transfer (and join operations) on this
node. We record the results for the conditions in which the
skew is set to 20% and 40% and present them in Figure 4(b)
and Figure 4(c) respectively. We can observe that the ROJA al-
gorithm have a obvious peak in its two curves respectively. This
means that a large number of tuples has been flushed to a single
worker node, demonstrating the bad load balancing of the algo-
rithm in the presence of data skew. Moreover, with increasing
skew, the load imbalance is becoming more pronounced (as the
peak value becomes larger). In comparison, the amount of data
read from remote nodes of each executor is generally the same
for DER and POPI for the two cases, showing their good load
balancing on outer join implementations under various skews.
Additionally, we can see that the data read at each executor for
POPI algorithm is much less than that of DER, reaffirming its
advantage on network communication.

5.6. Scalability and Speedup over ROJA Algorithm

We test the scalabilty (scale-out) of our implementation by
varying the number of executors (worker nodes) under varying
skew over 4 nodes (96 cores), 8 nodes and 16 nodes (384 cores).
The results for the runtime are demonstrated in Figure 5(a). We
can observe that the proposed POPI algorithm can achieve sig-
nificant speedups with increasing the number of nodes under
different skew. For example, when the skew is 20%, its runtime
is 1.99 mins, 1.47 mins and 0.84 mins respectively by doubling
the number of nodes, demonstrating that it scales well with the
number of nodes. For different worker configurations, we no-
tice that we can get almost linear speedup when doubling the
number of workers from 8 to 16 while relatively small speedup
when doubling the number of workers from 4 to 8. We attribute
this to the following two reasons: (1) the inter-machine com-
munication is limited and very fast in a small system of four
nodes. Namely data redistribution and duplication could be rel-
atively cheaper. In such a case, the additional overhead of data
sampling and partitioning for POPI plays a relatively more im-
portant role in performance; and (2) the increased transferred
data is becoming less with increasing the number of nodes and
thus bring additional runtime improvements. This is also sup-
ported by recording the network communication as shown in
Figure 5(b). There, the size of the retrieved data across the en-
tire system increases with increasing the number of nodes. The
reasons could be: (1) data transmission on the broadcast part
increases, and (2) the number of local assigned tuples for the
redistributed part decreases. However, we can see that the in-
creases of the network communication is at a reducing ratio to

12



0 % 1 0 % 2 0 % 3 0 % 4 0 %0

1 0

2 0

3 0

4 0

5 0

Sh
uff

le 
Re

ad
 (G

B)

s k e w n e s s

 R O J A
 D E R
 P O P I

(a) 50M with 100M, select=50%

1 2 3 4 5 6 7 80
1
2
3
4
5
6
7

Sh
uff

le 
Re

ad
 (G

B)

E x e c u t o r  I D

 R O J A
 D E R
 P O P I

(b) 50M with 100M, skew=20%

1 2 3 4 5 6 7 80
1
2
3
4
5
6
7
8

Sh
uff

le 
Re

ad
 (G

B)

E x e c u t o r  I D

 R O J A
 D E R
 P O P I

(c) 50M with 100M, skew=40%

Figure 4: The size of shuffle read data and detailed read data for each executor under different skews. Select=50%, 8 worker nodes (192 cores).
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Figure 5: Runtime and the shuffle read data of POPI algorithm as well as its speedup ration over the ROJA algorithm by varying the number of worker nodes in the
presence of different skews.

the number of workers. Namely, for larger numbers of work-
ers, the retrieved data at each executor will obviously decrease
when doubling the number of workers.

We conclude our analysis with the presentation of speedup
against the most widely used ROJA method as a baseline, by
analyzing the performance improvement achieved by POPI for
different numbers of nodes. The results are presented in Fig-
ure 5(c). As we can see, our POPI approach can achieve ob-
vious speedups under different skews, and the speedup ration
increases with increasing the data skew. In the meantime, un-
der different skews, the larger the systems is, the higher the
speedup we achieve, indicating superior scalability.

6. Related Work

Research in parallel joins on shared memory systems has al-
ready achieved significant performance speedups through im-
provements in architecture at the hardware-level of modern pro-
cessors. Moreover, to support real-time data analytics, current
studies have tried to accelerate stream joins over in-memory
multi-core platforms [30]. Orthogonally to these techniques,
we focus on the challenges of data skew in large distributed
outer joins in this work.

Besides the conventioanl databases, data skew is also a sig-
nificant problem for various data applications. Generally, there

are four main types of skew in distributed joins [31]: tu-
ple placement skew, selectivity skew, redistribution skew and
join product skew. The first two types can be effevtively
avoided [6]. For example, tuple placement skew can be re-
moved by a good hash function. In contrast, the latter two
types of skew bring significant challenges on performance of
real applications. To alleviate these problems, there has been
in-depth research on skew handling in parallel and distributed
systems [3, 5, 6, 18, 28, 20]. Most approaches focus on inner
joins and there has been relatively little done on the topic of
outer joins - a surprising fact given that outer joins are common
in complex queries and in data warehousing scenarios. This
makes some applications (e.g., [19]) be able to process their in-
ner joins efficiently, but they can only use ROJA for their outer
joins. In such scenarios, we believe that POPI has provided a
new and effective option for outer joins in big data applications.

Several efforts in designing high level query languages in
the large-scale data analytics community, such as Pig [32] and
Hive [33] as well as the systems (and techniques) presented
in the suvey [34], have employed mechanisms on skew han-
dling in outer joins (e.g., histogram-based outer join), however,
as we have shown in our previous evalutions [11], sometimes
they could be not very efficient. Additionally, although some
platforms (e.g., Stratosphere [35]) have provided efficient tech-
niques on big data analytics, they focus on creating optimized
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plans of executing jobs, in contrast to the detailed implementa-
tion of a single data operation as we have studied in this work.
On the other aspect, our approach can be also applied to all
above frameworks and platforms to process outer joins.

Current research on outer joins focuses on optimization of
existing methods, which mainly includes outer join elimina-
tion [36], outer join reordering [7] and view matching for outer
join views [37]. There is little done on the skew handling on
outer join implementations. The reason for this may be the as-
sumption that inner join techniques can be simply applied to
outer joins [8]. However, as we have analysis in [10], some-
times, applying such techniques for outer joins directly may
lead to poor performance (e.g., the PRPD algorithm [6]). To
the best of our knowledge, there are only few approaches de-
signed for skew handling in outer joins. The work [38] proposes
an efficient method called OJSO (outer join skew optimization)
for outer joins. However, the approach focuses on handling the
skew generated by an outer join, which is different from the
attribute skew problem as we have studied in this work. More-
over, although the approach DER [8] (as well as DDR [16]) can
process attribute skew, it can be only applied for small-large
table outer joins but not for the large-large ones. As we have
shown in our evaluation, the proposed POPI can perform much
better than DER even when a dataset is relatively small.

Recently, Bruno et al. [3] presented three SkewJoin transfor-
mations to mitigate the impact of data skew in a distributed join
operations. There, the alternatives F-SkewJoin and H-SkewJoin
are able to handle outer joins with skewed distributions. To
prevent an outer join operator from generating null values, they
partition the skewed tuples (e.g., in S ) in a round-robin way
so that each node can see at least one such tuple. In compar-
ison, our approach is more light-weight, since we do not need
to repartition the skewed tuples, the number of which is always
huge. Even in the condition that some skewed tuples do not ap-
pear on some nodes, we will not generate null values, as we use
an inner join operation for the skewed tuples in our approach.

Moreover, Cheng et al. [15, 10] introduce several new ap-
proaches on skew handling for large table outer joins. How-
ever, their proposed query-based implementations either rely
on fine-grained control of data movement at a thread level, or
have to rewrite data structures of underlying frameworks. Com-
pared to this, the proposed POPI approach uses a more efficient
and simple way - inner joins, on the skewed part of the data.
On the other hand, this also means that well-studied inner join
techniques can be applied in our outer join implementation.

7. Conclusions

In this paper, we have introduced an efficient outer join ap-
proach, called POPI (Partial Outer join & Partial Inner join),
which specifically handles data skew in a distributed environ-
ment. We have presented the detailed implementation of our ap-
proach and conducted an extensive performance evaluation by
comparing with the current methods. The experimental results
have shown that our method is efficient, scalable and presents
good load balancing characteristics.

Since POPI follows the conventional redistribution and du-
plication operations, we anticipate that our approach will be
a supplement to existing schemes on parallel joins, and thus
be applied on a variety of existing systems, ranging from par-
allel database systems to analytics frameworks. As join-like
operations are ubiquitous in the area of big data, it would be
valuable to quantify the benefit of our approach across different
datasets and applications (e.g., large-scale machine learning).
In the meantime, with the advent of more advanced computing
architectures and platforms, we are also interested in applying
our approach in more complex computing environments (e.g.,
such as mobile and cloud computing systems [39, 40]). Our
long-term goal is to develop a high-performance data analyt-
ics system which can process big data in a robust and efficient
manner in large-scale distributed scenarios.
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