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ABSTRACT
Data parallelism has become a dominant method to scale Deep
Neural Network (DNN) training across multiple nodes. Since syn-
chronizing a large number of gradients of the local model can be a
bottleneck for large-scale distributed training, compressing com-
munication data has gained widespread attention recently. Among
several recent proposed compression algorithms, Residual Gradient
Compression (RGC) is one of the most successful approaches—it
can significantly compress the transmitting message size (0.1% of
the gradient size) of each node and still achieve correct accuracy
and the same convergence speed. However, the literature on com-
pressing deep networks focuses almost exclusively on achieving
good theoretical compression rate, while the efficiency of RGC
in real distributed implementation has been less investigated. In
this paper, we develop an RGC-based system that is able to reduce
the end-to-end training time on real-world multi-GPU systems.
Our proposed design called RedSync, which introduces a set of
optimizations to reduce communication bandwidth requirement
while introducing limited overhead. We evaluate the performance
of RedSync on two different multiple GPU platforms, including
128 GPUs of a supercomputer and an 8-GPU server. Our test cases
include image classification tasks on Cifar10 and ImageNet, and
language modeling tasks on Penn Treebank and Wiki2 datasets.
For DNNs featured with high communication to computation ratio,
which have long been considered with poor scalability, RedSync
brings significant performance improvements.
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1 INTRODUCTION
For training large-scale deep neural networks (DNNs) on multiple
computing nodes, data parallelism has emerged as the most popular
choice due to its simplicity and effectiveness [7, 19]. However, the
limited communication bandwidth of the interconnected network
has become the bottleneck limiting data parallel performance. First,
models of DNNs, which already contain tens to hundreds of layers
and totaling 10-20 million parameters today, continue to grow big-
ger [18]. Therefore, the requirement of fast synchronizing model
parameter updates among all computing nodes poses a greater
challenge. Second, the development of DNN-customized training
accelerators has shifted the bottleneck of training from computing
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hardware towards communication across nodes. Meanwhile, the
evolution of the interconnected network is not as fast as computing
hardware, and this trend still continues. As shown in Figure1, in
the past decade, the most powerful GPU has been over 40 times
faster, comparing the latest Tesla V100 GPU with G8800 GPU. How-
ever, the network bandwidth of switches in clusters is only 5 times
faster, comparing InfiniBand HDR with InfiniBand QDR. Third,
high-quality network fabric like InfiniBand is too expensive to be
available for every data center. Publicly available cloud computing
resources are still connected by the low-level network. For example,
Amazon EC2 instances now provide a maximum bandwidth of 25
Gbps, far less than 96 Gbps of InfiniBand EDR 4-Link speed.
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Figure 1: Evolution Speed of Infiniband and GPU.

Many recent studies focused on reducing the communication
cost between nodes by reducing the size of the gradients to be
transmitted. One line of work [22, 28] propose to quantize the
gradients to low-precision values. Considering compression ratio
(ratio of compressed gradients size to their original size) achieved
by quantization is limited, another line of research orthogonal to
quantization is to sparsify communication gradients and restrict
weight-updates to a small subset of parameters. Residual Gradient
Compression (RGC) method [1, 6, 13, 21, 26] is currently the most
promising sparsification method to achieve good compression ratio
while ensuring no loss of training accuracy. It transmits only a
small subset of gradients and maintains the remaining gradients
locally as residuals to be added to gradients of the next iteration.
The first RGC implementation is proposed by Strom[26] and uses a
threshold-based method to only send gradients larger than a pre-
defined constant threshold for fully-connected layers. Considering
a predefined threshold is hard to be chosen appropriately, Aji et.
al.[1] improve the robustness of RGC by selecting top 1% gradients
to communicate according to their magnitude. Because these two
implementations are tuned for some specific network structures,
applying them to other DNNs will lead to accuracy loss as indicated
in AdaComp[6]. Based on their work, after introducing some key
modifications, the latest RGC variant called DGC[13] is able to
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achieve a 0.1% compression ratio on local gradients while ensuring
almost no loss of model accuracy on a variety of DNN structures.

Despite good model accuracy achieved with simulation experi-
ments, no recent studies have discussed the potential performance
gain after integrating the latest RGC methods to a real distributed
training system, especially to the multi-GPU systems equipped with
high-quality network infrastructures. The challenges of applying
RGC to distributed GPU systems come from two aspects. First, there
is no efficient compression algorithm of RGC method designed for
massive parallel processors such as GPU. According to our experi-
mental results of Section 2.1, selecting top-0.1% elements with the
state-of-the-art GPU-based top-k algorithm are so expensive that
the overhead of compression is much higher than the benefits of
network bandwidth reduction. Second, the synchronization scheme
of sparse data structures generated by the RGC method has not
been well studied. It is not easy to be supported with existing effi-
cient communication libraries, such as Message Passing Interface
(MPI), which are designed for dense data structures.

To increase scalability and efficiency of DNN training, we pro-
pose a systematic distributed design called RedSync (short for
Reduction of Synchronization Bandwidth), which combines RGC-
based sparsification and quantization techniques together to com-
press transmitting gradient size of each node to its 0.1%. Our con-
tributions are listed as follows:

• In terms of the algorithm level design, we propose a quantiza-
tion technique called Alternating Signs Quantization (ASQ)
to further compress the size of transmitting data sparsified
by RGC to its half. In addition, we adapt the-state-of-the-
art algorithmic improvements of RGC to a distributed sit-
uation. Applying the proposed algorithmic improvements,
RGC+ASQ improves the efficiency of RGC-only in tasks of
training a set of state-of-the-art DNN models with no accu-
racy loss.
• In terms of the system level design, we remove two main
obstacles for efficient RGC deployment. A set of parallel-
friendly top-0.1% selection algorithms are proposed to sup-
port the sparsification process. They are orders of magnitude
faster than the state-of-the-art top-k selection method on
GPU. Considering the distribution characteristics of commu-
nication data, we apply Allgather operation using MPI for a
sparse synchronization scheme. A cost model is derived to
analyze both communication cost and calculation overhead.
Based on it, we pointed out potential performance gain and
the bottleneck of current RGC method.
• This is the first work, as far as we know, to evaluate the per-
formance of RGC method on supercomputer scale. On 128
GPUs, RedSync provides significant performance improve-
ments for communication-intensive networks, like VGG,
AlexNet, and some LSTMs.

2 DESIGN OF REDSYNC
Algorithm 1 presents the workflow used in RedSync. We de-

note a DNN model as f (w), where w is the vector of parameters.
We assume a system has N workers. Each worker, say the k-th
worker, holds a local dataset χ tk at iteration t with size b and a
local copy of the global weight w. Synchronous SGD method is

Algorithm 1 RedSync Workflow

Input: node id k ; the number of node N
Input: training dataset χ ; mini batch size b per node
Input: initial model w = w[0], ..., w[#layer ]; compression ratio D
V k ← 0
for t = 0, 1, ...max_iter do

sample b elements as χ tk
Gk ← ∇ f (χ tk ; w) : forward and backward propagation
for j = #layer, #layer − 1, ..., 0 do
V k
j + = G

k
j

Masks← select (V k
j , D)

Gk
j ← SparseAllreduce(compress(quantize(V k

j ⊙ Masks)))
V k
j ← V k

j ⊙ (1 - Masks)
end for
w← SGD(w, decompress(Gk ))

end for

adopted in RedSync. At each iteration, node k computes the gra-
dient Gk using local data and we represent Gk

j as gradients of
layer j . Each node also maintains a residualV k , which is initialized
as 0 and used to accumulate untransmitted gradient from previ-
ous iterations. After added with latest gradient, a subset of resid-
uals is selected as the communication-set. The select operation
in Algorithm 1 chooses important elements as communication-
set based on magnitude. Masks is a 0/1 matrix, in which 1 indi-
cating that the element at the corresponding position is selected
as communication-set. After quantize operation, the quantized
communication-set is compressed into sparse data structures for
communication. Those selected elements are synchronized among
all the nodes using SparseAllreduce operations. Synchronous
SGD implementedwithAllreduce, rather than Parameter Server[12],
has been widely adopted in state-of-the-art large-scale DNN train-
ing tasks[9][29] on HPC platforms. Remaining elements outside the
communication-set are assigned as new residuals of the next itera-
tion. Figure 2 presents the design overview of RedSync according
to the Algorithm 1. In the following, we details our contribution in
design of select, quantize, SparseAllreduce and decompress
operations to make this workflow work efficient in practice.
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Figure 2: Overview of RedSync Design.

2.1 Parallel-Friendly Residual Sparsification
The efficiency of communication-set selection operation to sparsify
the gradients is critical to the overall performance of the system.
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There is still a lack of efficient implementation methods on paral-
lel architectures such as GPUs, which is a major obstacle to the
deployment of RGC methods. Recent RGC works [13, 21] suggest
selecting top 0.1% elements from residuals of each layer as the
communication-set. It is well-known that, by applying Quickse-
lect algorithm [10], the time complexity of a top-k selection on a
list of n elements using a single-core CPU is O(n). However, the
top-0.1% selection is not trivial to be implemented on massively
parallel architectures, such as GPUs. One of the most efficient top-k
selection methods designed for GPU can be implemented based on
radixSelect algorithm [2], which determines each bit of the k-th
largest element by scan and scatter. The scan [23] and scatter op-
erations are not suitable for parallel processing and are extremely
time-consuming. As shown in Figure 3, the computation time for
top-0.1% with radixSelect on a Titan X GPU sometimes is even
slightly higher than the time for synchronizing these parameters
through a 28 Gbps network. To overcome the problem of slow
radixSelect operation on GPU, we propose two communication-set
selection algorithms called trimmed top-k selection and threshold
binary search selection, which are more efficient on GPUs.

Trimmed top-0.1% selection.We notice that the distribution
of residuals is usually similar to a normal distribution, we can use
statistical features to removemost of the smaller elements and apply
radixSelect operation on a relatively small subset. As shown in
Algorithm 2, we first calculate the mean and maximum of residuals’
absolute values of this layer. A relative large threshold value is
chosen according to mean and maximum value, for example, 0.8 ×
(max −mean) +mean. Operation count_nonzero gets the number
of elements whose absolute values are greater than the threshold.
If the number is smaller than k (the number of top-0.1% elements ),
we dynamically decrease the threshold until we find the number
of parameters whose absolute value above the threshold is larger
than k . Then we trim all elements that are less than the threshold
and perform a top-k selection operation using radixSelect on the
remaining elements. Operation mean, max and count_nonzero can
all be efficiently implemented with a single reduction operation.
nonzero_indices is a typical stream compaction problem, which
uses just one scan operation as its backbone [24].

Threshold binary search selection. For a network layer with
a large number of parameters, even using radixSelect operation
on a small number of gradient elements is still a very time con-
suming operation. In order to completely avoid using radixSelect
operation on GPU, we propose a method to select approximate
top-0.1% elements as communication-set. Instead of identifying the
kth (top 0.1%th) largest element, we search for a threshold to make
it between the kth to 2kth largest element, and then select elements
larger than the threshold as communication-set. In this case, at
least 0.1% largest elements are included in the communication-set,
so the convergence rate of the algorithm will not be affected. As
shown in Algorithm 3, we use a binary search algorithm to find
such a threshold. To avoid over-searching, the algorithm will auto-
matically terminate when the difference between the left and right
borders is less than the small value ϵ .

For layers with large sizes, such as the first fully-connected layer
in VGG16 and softmax layer in LSTM, the time for count_nonzero
operation is still not negligible. We further improve the efficiency of
the selection algorithm by reducing the number of count_nonzero

operations. We recommend that, after a threshold binary search
for this layer, the threshold element can be reused in the next few
iterations. The interval of search is empirically set to 5, and the
selection algorithm introduces only one nonzero_count overhead
on average. Such a method is called sampled Threshold binary
search selection.

Algorithm 2 Trimmed Top-0.1% Selection
Input: tensor to be compressed X
Input: number of elements remained k
Output: < indices,values >
1: mean← mean(abs(X ));max ← max(abs(X ))
2: ϵ ← 0.2; ratio ← (1 − ϵ)
3: nnz = count_nonzero(abs(X ) > threshold)
4: while nnz < k do
5: threshold ←mean + ratio × (max −mean)
6: nnz = count_nonzero(abs(X ) > threshold)
7: ratio = ratio − ϵ
8: end while
9: indices ← nonzero_indices(abs(X ) > threshold))
10: values ← X [indice]

Algorithm 3 Top-0.1% using Threshold Binary Search Selection
Input: tensor to be compressed X
Input: number of elements remained k
Input: Termination condition parameter ϵ
Output: < indices,values >
1: mean← mean(abs(X ));max ← max(abs(X ))
2: l ← 0.0; r ← 1.0; threshold = 0.0
3: while r − l > ϵ do
4: ratio = l + (r − l)/2
5: threshold ←mean + ratio × (max −mean)
6: nnz = count_nonzero(abs(X ) > threshold)
7: if nnz > k and 2k > nnz then
8: break
9: else if nnz < k/2 then
10: r = ratio
11: else
12: l = ratio
13: end if
14: end while
15: indices ← nonzero_indices(abs(X ) > threshold))
16: values ← X [indices]

In Figure 3, we compared the time cost of different selection
approaches applied to data of different sizes. Test data is generated
from a standard uniform distribution. Allreduce indicates the time
cost to synchronize messages using the Allreduce operation, with
a peak network bandwidth of 28 Gbps. Performance is measured
as total time cost for 100 times independent operations. Compared
with directly performing radixSelect, both proposed methods sig-
nificantly reduce the selection operation time for data of large size.
For top-0.1% selection on 64MB elements, trimmed top-0.1% and
sampled threshold binary search selection are 38.13 and 16.17 ×
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faster than radixSelect. In practice, a hybrid compression strategy is
adopted: For smaller parameter sets such as biases and batch norm
layers, we do not compress residuals or directly use radixSelect to
select top-0.1% significant elements. Trimmed top-0.1% selection
is suitable for parameters of middle size layers, like convolutional
layers, because it can ensure the compression ratio to be exactly
0.1% and introduce no extra communication bandwidth require-
ments. Threshold binary search based selection is suitable for large
size layers, like hidden layers and softmax layers in LSTMs, for
which the compression cost is more critical to be optimized than
the communication cost.

radixSelect
trimmed top-0.1%
threshold binary search top-0.1%
sampled threshold binary search top-0.1%
Allreduce (3.5 GB/s)
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Figure 3: Performance of four communication-set selection
algorithms vs Data sizes.

2.2 Quantization of Sparsified Residuals
The sparsified communication-set to be transmitted includes k
index elements and k value elements. As indicated in Strom[26],
by setting all value elements of the same sign to their average, the
communication bandwidth requirement of value elements can be
eliminated by transmitting only one average element instead of k
elements. As there are both positive and negative elements in the
communication-set, an extra data structure is used to record the
sign of each element and extra efforts are required for quantization
and de-quantization.

To eliminate this overhead, we design a quantization approach
called Alternating Signs Quantization (ASQ) to further reduce 1/2
of the bandwidth requirement. In two adjacent training iterations,
ASQ alternately quantizes the maximum 0.1% elements and the
minimum 0.1% elements as communication-set instead of quanti-
fying the maximum 0.1% elements with the largest absolute value.
In other words, if we select the largest k elements (all positive
numbers) of this layer as the communication-set at current itera-
tion, we will choose smallest k elements (all negative numbers) as
the communication-set for the next iteration. Since top-0.1% and
bottom-0.1% elements are all of the same sign, no communication
bandwidth requires to transmit extra sign information.

As shown in experimental results, the quantized RedSync using
ASQ approach is able to guarantee no accuracy loss. As elements
of residuals are designed to be delayed updated hundreds of steps,
updating the elements of the same sign one more step later does not
have signification impact on the direction of the gradient update.

ASQ introduces no quantization overhead and can be imple-
mented efficiently by slightly modifying our parallel-friendly top-
0.1% approaches. Compared with Strom’s quantization method,
ASQ approach is more memory-efficient and overhead-reduced.
Their method uses an extra bitmap to record the sign of each value
element, which is also required to be transmitted. Instead of once
scan of entire data as ASQ, they have to separate positive and
negative elements in the communication-set, and quantize them
individually. In addition, it is worth noting that sampled threshold
binary search selection cannot be used with quantization. We also
do not quantify the output layer of the DNN, in order to distinguish
the correct classification information.

2.3 Sparse Synchronization and Decompression
Synchronization of dense gradient structures in traditional dis-
tributed DNN systems can be simply implemented with an Allre-
duce operation, which has been well-studied on multiple-GPU
systems[4]. However, the design of a sparse Allreduce in a dis-
tributed setting is not as simple because each worker may con-
tribute different non-zero indices from its own communication-set.
According to our observation, there are very few overlapping in-
dices of the communication-set distribution of different nodes. For
example, training VGG16 on Cifar10 dataset using 16 GPUs with a
compression ratio as 0.1% for each node, the averaged compression
ratio of synchronized residuals of all nodes is 1.55%. In this case,
it is inefficient to use a sparse Allreduce [20, 30] for synchroniza-
tion. We utilize the Allgather operation, an operation in which
the data contributed by each node is gathered at all nodes, to im-
plement sparse Allreduce. The compressed message representing
communication-set of each node should include the information of
indices and values of elements in communication-set. When using
threshold binary search selection, the length of each node’s message
is different. As a result, the packaged message should also include
an initial element, which indicates the length of the compressed
elements. Instead of using two Allgather operations for indices and
values message separately, we package the indices and values into
a single message to reduce latency.

After finishing the Allgather operation, each node collects N
compressed communication-sets from all the other nodes. We add
the compressed communication-sets to the corresponding weights
in the local model after scaling with the learning rate. It can be seen
as an operation that adds a sparse array to a dense array, which has
been fully-optimized in Level 1 function axpyi() of cuSparse library
on GPU.

To analyze the potential performance gain of sparse synchro-
nization, we adopt a performance model which is widely-used
by [5, 16, 27] to analyze the cost in terms of latency and bandwidth
used. We assume that the time taken to send a message between
any two nodes can be modeled as α + nβ , where α is the latency
(or startup time) per message, independent of message size, β is
the transfer time per byte, and n is the number of bytes transferred.
Generally, the node’s network interface is assumed to be single
ported, i.e. at most one message can be sent and one message can
be received simultaneously.M is the number of elements in resid-
uals of the current layer. D is the compression ratio. If we use
threshold binary search for communication-set selection, D here
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should be the average compression ratio of all nodes. In the case
of reduction operations, we assume that γ2 is the computational
cost for performing the reduction operation for a message of size
M , and γ1 is the cost to decompress the collected sparse message of
sizeM .

Suppose that we use recursive doubling for Allgather and Raben-
seifner’s algorithmmentioned in [27] for Allreduce communication.
The cost of quantized sparse and dense synchronization is illus-
trated Equation (1) and Equation (2), respectively. The derivations
are as follows:

The left part of Figure 4 illustrates how sparse Allgather works
by recursive doubling method. In the first step, nodes that are a
distance 1 apart exchange their compressed data, the size of which is
M×D. In the second step, nodes that are a distance 2 apart exchange
their own compressed data as well as the data they received in the
previous step, which is 2M × D in total. In the third step, nodes
that are a distance 4 apart exchange their own data as well the data
they received in the previous two steps, which is 4M × D in total.
In this way, for a power-of-two number of processes, all processes
get all the data in lgp steps. The amount of data exchanged by
each node is M × D in the first step, 2M × D in the second step,
and so forth, up to 2lд(p)−1M × D in the last step. Therefore, The
time for message transfer taken by this algorithm is Ttransf er =
lд(p)α + (p − 1)M × Dβ . After including decompressing overhead
γ and communication-set selection overhead Tselect , the time for
all-gather based synchronization should be TAllдather = Tselect +
lд(p)α + (p − 1)M × Dβ + pγ1.

As shown in the right part of Figure 4, the Rabenseifner’s algo-
rithm is adopted for Allreduce operation. It does a reduce-scatter
followed by an Allgather. Reduce-scatter is a variant of reducing in
which the results, instead of being stored at the root, are scattered
among all p nodes. We use a recursive halving algorithm, which is
analogous to the recursive doubling algorithm used for Allgather
but in a reverse way. In the first step, each node exchanges data
with a node that is a distance p/2 away: Each process sends the
data needed by all processes in the other half, which is of sizeM/2.
They also receive the data needed by all processes in its own half
and performs the reduction operation on the received data. In the
second step, each process exchanges data with a process that is
a distance p/4 away. This procedure continues recursively, halv-
ing the data communicated at each step, for a total of lgp steps.
After reduce-scatter, Allgather phase will have the the same band-
width and latency requirements. Therefore, the communication
time taken by this algorithm isTtransf er = 2lд(p)α + 2p−1p Mβ . The
time taken by Allreduce is the sum of the times taken by reduce-
scatter, Allgather and reduction operations. The total time should
be Tdense_Allreduce = 2lд(p)α + 2p−1p Mβ +

p−1
p γ2.

Tsparse_Allr educe = Tselect + lg(p)α + (p − 1)(MD)β + pγ1 (1)

Tdense_Allr educe = 2 lg(p)α + 2p − 1
p

Mβ +
p − 1
p

γ2 (2)

As implicated by the performance model, two important con-
clusions about the current RGC algorithm can be drawn. First, the
compression rate for the model is not equal to the compres-
sion rate for communication bandwidth. The bandwidth term
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Allgather
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Figure 4: Communication pattern of sparse synchronization
with Allgather and dense synchronization with Allreduce.

of sparse synchronization is (p − 1)DMβ , which is proportional to
the number of nodes p. Even if the compression ratio D is 0.1% for
all p node, when p is 128, the communication bandwidth for sparse
synchronization will be 12.8% of dense synchronization rather than
0.1%. Second, the overhead of decompression rather than com-
munication will be a bottleneck when scaling RGC method
to larger scale. The last term pγ1 in Equation 1 indicates that the
overhead of decompression in sparse Allreduce also increases lin-
early with the number of nodesp. However, in Equation 2, reduction
overhead of dense Allreduce almost does not increase with number
of nodes.

2.4 Overlapping Communication and
Computation

It is necessary to improve data parallel efficiency by overlapping
communication with computation through pipelining gradient
Allreduce operations and backpropogation calculations. Before up-
dating aggregated gradients to weights, gradient clipping is usually
adopted to avoid gradient explosion. It rescales all of the gradients
when the sum of their norms exceeds a threshold. For RGCmethods,
the local clipping technique [13] is used to perform gradient clip-
ping by a new threshold (N−1/2 of the original one) locally before
adding the current gradients to previous residuals. The difference
is that traditional data parallel does clipping after communication
of all layers is completed, while the RGC algorithm needs to do
clipping before communication. In this case, we need to wait for
the completion of the entire back-propagation to get gradients of
all layers. And then we do clipping on gradients and then per-
form compression for communication. Local clipping introduces
synchronization between computing and communication and thus
eliminates the overlapping of communication and computation.

As shown in Figure 5, RedSync has abandoned gradient clipping
for CNNs, which seldom have gradient exploration problem in
order to explore the potential overlapping. As for RNNs, gradients
are achieved after backpropagation of all time steps using Back
Propagation Through Time (BPTT). When backpropagation of the
last time step is completed, gradients of all layers are used to conduct
local gradient clipping. In this case, the communication time can
only overlap with the compression (selection) operation.

2.5 Other techniques
RedSync supports a set of algorithmic improvements proposed by
DGC[13] to avoid convergence problem. For momentum SGD and



, , Jiarui Fang, Haohuan Fu and Guangwen Yang and Cho-Jui Hsieh

Comp.

Comm.

sync

…

Comp.

Comm.

sync

…

backward
propagation Compression Clipping Decompression

!!
!!

!! !!"#
CNN

$!"# !!"% $!"$

!!"# !!"%

!& !&

RNN
!'()

!&!#

Communication

…$! $&

!! !&…

!'()"# !'()"% !'(& $% $#
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Nesterov momentum SGD optimizers, the momentum masking and
momentum correction schemes of DGC are implemented by simply
modifying workflow of Algorithm 1. A warm-up training, by expo-
nentially decreasing the compression ratio in the first few epochs,
is generally adopted to accelerate convergence. For example, it is
recommended to decrease the compression ratio in the warm-up
period as follows: 25%, 6.25%, 1.5625%, 0.4%, 0.1%. However, accord-
ing to our performance model of communication, such an approach
is inefficient on a large scale. For example, synchronization with
a compression ratio as 1.5625% requires 100% bandwidth of dense
Allreduce for quantized RedSync on 64 GPUs. Instead of adopting a
high-compression-ratio RGC method of warm-up training, we use
original SGD optimizer synchronized by dense Allreduce in first
few epochs if necessary.

3 EXPERIMENTAL RESULTS
3.1 Setups
We tested the accuracy, speed of convergence and scalability of
RedSync on two different multi-GPU systems, including a world’s
top GPU supercomputer (Piz Daint) and a multi-GPU server (Mu-
radin).

Muradin is a server with eight GPUs in the same node. It is
equipped with one Intel(R) Xeon(R) CPU E5-2640 v4 and 8 TITAN
Vs, which is connected to the CPU through PCI-E 3.0.

Piz Daint is a GPU supercomputer. Each node of it includes two
Intel Xeon E5-2690v3 CPUs and one NVIDIA Tesla P100 GPUs. In
total, there are 5320 nodes connected by Aries interconnect with
Dragonfly topology.

We used pytorch v0.4 to conduct DNN training on a single GPU.
In terms of the communication library, an MPI wrapper upon py-
torch called horovod [25], is used to provide collective communica-
tion operations. The CUDA version is 9.1 on Muradin and 8.0 on Piz
Daint. Horovod was compiled with OpenMPI v3.1 with cuda-aware
supported on both systems.

Two major types of mainstream deep learning applications are
used in the experiments. For Image Classification tasks, we stud-
ied ResNet44 and VGG16 on Cifar10[11], AlexNet, VGG16 and
ResNet-50 on ImageNet[8]. For all CNNs, we used Nesterov’s mo-
mentum SGD as the optimizer. RGCmethods used the same learning
rate strategies as SGD. The warm-up technique was applied to the
first 5 epochs of ResNet50 and VGG16 for both SGD and RGC. For
Language Modeling tasks, we picked two datasets for evaluation.

The Penn Treebank corpus (PTB) dataset [14] consists of 923,000
training, 73,000 validation and 82,000 test words. The WikiText
language modeling dataset is a collection of over 100 million tokens
extracted from the set of verified Good and Featured articles on
Wikipedia [15]. It consists 2,088,628 training, 217,646 and 245,569
test words. We adopted a 2-layer LSTM language model architec-
ture with 1500 hidden units per layer [17] to evaluate both datasets.
We tied the weights of encoder and decoder and use vanilla SGD
with gradient clipping. Learning rate decays when no improvement
has been made in validation loss. For RedSync, we used trimmed
top-0.1% selection for convolutional layers larger than 128 KB and
used threshold binary search top-0.1% selection for hidden layers
and the softmax layer of LSTM.

3.2 Evaluation of Accuracy and Convergence
Speed

Table 1: Accuracy Results for Various DNNs.

Dataset DNN Size Gflops Accuracy
SGD RGC RGC+ASQ

Cifar10 ResNet44 2.65 0.20 7.48% 7.17% 7.87%
VGG16 59 0.31 8.31% 8.45% 8.13%

ImageNet AlexNet 233 0.72 44.73% 44.91% 44.80%
ResNet50 103 8.22 24.07% 23.98% 23.85%
VGG16 528 15.5 29.5% 29.1% 29.3%

PTB LSTM 204 2.52 75.86 75.14 74.69
Wiki2 LSTM 344 2.52 88.23 88.01 87.84

As shown in Table 1, we examined the accuracy of both RGC
and our proposed quantization version RGC+ASQ on Muradin. The
results of RGC and RGC+ASQ are compared with a classical data
parallel implementation using SGD. Size indicates the model size in
Megabyte. GFlop shows Giga Floating-Point Operations required
for a forward pass using a single input sample. Accuracy of CNNs
was measured as top-1 validation errors, and accuracy of LSTMs
is measured as perplexity on validating dataset. Results on Cifar10
were achieved using 4 nodes (batch-size1 = 64). Results on ImageNet
were achieved using 6 nodes (batch-size = 32). Results of LSTM
were achieved using 4 nodes (batch-size = 5).

As implicated by Table 1, the accuracy of the models obtained by
the RGC and RGC+ASQ methods using RedSync is similar to that
obtained by the SGD method using classical data parallel, with a
difference of no more than 1%. In only one case (ImageNet-AlexNet),
SGD achieves the best accuracy results, and in the other six cases,
RGC and RGC+ASQ are even slightly better than SGD. In three cases
(Cifar10-VGG16, ImageNet-ResNet50, Wiki2-LSTM), RGC+ASQ is
slightly better than RGC, which indicates that the ASQ quantization
method proposed in this chapter is very reliable and has no impact
on training accuracy.

Figure 6 shows the speed of convergence of RGC and RGC+ASQ
implemented with RedSync on three typical test cases compared
with SGD implemented with the classical data parallel. The left
figure shows top-1 validation accuracy vs the number of epochs
of training VGG16 on Cifar10 (batch-size = 64). The center figure
1The batch-size here is for a single node.
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Table 2: Accuracy of RGC and SGDMethods Under Different
Batch Size.

Batch Size 128 256 512 1024 2048

ResNet44
SGD 7.09% 7.48% 8.18% 10.02% 10.84%
RGC 6.40% 7.17% 7.47% 10.13% 10.87%

RGC+ASQ 7.06% 7.87% 7.62% 11.86% 10.83%

VGG16
SGD 7.74% 8.31% 9.06% 9.49% 10.09%
RGC 7.43% 8.45% 9.31% 9.90% 11.12%

RGC+ASQ 8.17% 8.13% 9.09% 9.97% 9.81%

shows top-1 validation accuracy vs the number of epochs of training
ResNet50 on ImageNet (batch-size = 32). The right figure shows
Perplexity vs the number of epochs of training LSTM on PTB (batch-
size = 5).

As shown in Table 2, we also tested the sensitivity of the RGC
and RGC+ASQ methods to large training data batch size. when
increasing the batch size to 2048, RedSync got no loss of accuracy
compared to the original SGD.

3.3 Evaluation of Scalability
To evaluate the scalability of RedSync on different scales, we com-
pare RGC and RGC+ASQ implemented by RedSync with SGD im-
plemented by the data parallel scheme provided by horovod. The
performance was measured by averaging training time of 1000 it-
erations. Figure 7 shows the performance of RedSync on Muradin
with six test cases. Figure 9 illustrates the scalability of RedSync
on Piz Daint with four test cases. In order to find time-consuming
parts, we also illustrate the cost of different parts in RedSync in
Figure 8 when scaling it to 128 GPUs on Piz Daint. Our observations
are summarized as follows.

Our proposed parallel-friendly selection algorithms for gradient
sparsification are critical for improving the overall performance
of RGC-based system. In Figure 7, we added a naive RGC imple-
mentation, which uses radixSelect to select top 0.1% elements as
communication-set rather than our proposed methods. Since the
compression time is too long, the performance of the naive RGC is
even much slower than the original data parallel SGD version. After
adopting our top-0.1% selection algorithms, the RGC and RGC+ASQ
systems are now able to run faster than the SGD version.

Our proposed RGC+ASQmethod is better than RGC-onlymethod
in most cases. RGC+ASQ always achieves better performance than
RGC for CNNs. However, for LSTM training on a small scale,
RGC+ASQ achieves worse performance than ASQ. The variance of
communication and computational overhead accounts for such a
phenomenon. CNN adopts trimmed top-0.1% as the communication-
set selection method and its quantized version (RGC+ASQ) has a
similar computation cost. As shown in Figure 8, no significant
difference of selection cost between RCG and RGC+ASQ in CNN
training. Therefore, the reducing of communication cost by ASQ
improves the system’s overall performance. As for selection algo-
rithm of LSTMs, RGC uses sampled threshold binary search selec-
tion as communication-set selection, but RGC+ASQ uses threshold
binary search. As we mentioned, the sampled selection is much
faster. Therefore, on small-scale, RGC has better scalability than
RGC+ASQ due to less selection overhead. When scaling to more

than 16 GPUs, benefit from the reduction of communication band-
width compensates for the cost of the communication-set selection.

RedSync is suitable for training DNNs of high communication to
computation ratio. In the past, these DNNs have been considered
as not suitable for classical data parallel. As shown in the Figure
9, for VGG16, AlexNet, and LSTM, although the performance of
RedSync using RGC and RGC+ASQ on a single GPU are not as
good as the data parallel due to compression and decompression
overhead, RedSync can achieve significant speedup on more than
2 GPUs. An exception is ResNet50. in most of the cases, RedSync
brings no performance gain for it both on Piz Daint and Muradin.
As implicated in Table 1, the ratio of computation to the commu-
nication of ResNet50 is the highest in the DNNs we investigated.
On a large scale, most of the time during ResNet50 training with
RedSync is wasted on the decompression phase, as shown in Figure
8, which overshadows the benefit of communication bandwidth
reduction.

RedSync is suitable for the medium parallel scale. As shown in
the right part of Figure 9, for the AlexNet network, RedSync is
strong (brings the most significant performance improvement) on
4-16 nodes, bringing around 3x speedup. For the ResNet50 network,
RedSync is strong on 4-16 nodes, bringing around 1.2x speedup.
For the VGG16 network, RedSync is strong on 4-64 nodes, bringing
around 2x speedup. For LSTM networks, RedSync is strong on 2-16
nodes, bringing around 3x speedup. Since both communication
bandwidth requirements and decompression overhead increase lin-
early with the number of GPUs in use, RedSync is relatively weak on
a larger scale. This phenomenon just confirms the communication
performance model proposed in Section 2.3.

4 RELATEDWORKS
As shown in Table 3, the related works to reduce communication
cost in data parallel training of DNNs can be divided into two
categories: quantification (Qunat.) and sparsification (Spars.). The
compression ratio (Ratio in the table) is for a single node. Impl. in
the table Indicates whether the method has been implemented in a
real distributed environment.

Table 3: Related Works.

Name Spars. Quant. 1/Ratio Sync. Impl. Scale
1-bit SGD[22] × √

32x PS
√

40 GPU
QSGD[3] × √

4-6.8x PS
√

16 GPU
Strom[26]

√ √
800x PS

√
80 GPU

AdaComp[6]
√ × 40-200x PS × -

TernGrad[28] × √
16x PS × -

DGC[13]
√ × 1000x AllRed. × -

SparCML[20]
√ √

256x AllRed.
√

128 GPU

In terms of synchronization scheme (Sync.), DGC and SparCML
use Allreduce and the other methods adopt Parameter Server (PS).
Allreduce is more suitable for HPC platforms, while PS can hardly
benefit from efficient Allreduce routines designed for HPC network
hardware. For Allreduce systems, according to analysis in Section
2.3, it should be distinguished from the compression ratio of commu-
nication bandwidth. Similar for PS systems, the local compression
ratio only reflects the bandwidth reduction of pushing gradients of
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Figure 6: Speed of Convergence using RedSync compared with classical data parallel implementation.
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Figure 7: Scalability of RedSync for CNNs and RNNs training using Muradin.

works to the servers, while the bandwidth requirement of pulling
gradients from the servers to works also increases linearly with
the number of nodes. RedSync is the best in terms of scale com-
pared with the other distributed implementations. SparCML also
scales DNN training to 128 GPUs, but it adopts a "fast random-
ized top-k algorithm", which is not equal to the top-k selection.
Its communication-set misses some important gradient elements
and the system will suffer from convergence problem. Both Storm
and SparCML combine quantization technique with sparsification,
but in a less efficient way than our proposed ASQ method. As we
mentioned, Storm’s method is less efficient than ASQ, while Spar-
CML quantizes the value elements of communication-set using
4-bit precision.

In terms of accuracy, DGC, TernGrad, and AdaComp presented
comprehensive evaluation results on classical CNNs and RNNs. The

other methods are either tested on some specified DNN models or
have relative large accuracy loss compared with SGD. RedSync has
been comprehensively evaluated using most of the test cases used
in DGC. It is unfair to compare the absolute speedup achieved by
each proposed method, because the achievable benefit is dependent
on multiple factors of experimental settings, including the type of
DNN model, the bandwidth of network hardware and the speed
of computing hardware. The Aries interconnect of Piz Daint used
in our experiments is the most high-quality one compared with
others, which means RedSync is able to achieve more performance
gain on low-quality network hardware.

5 CONCLUSION
This paper proposes an innovative data parallel DNN training de-
sign called RedSync that compressing transmitting data by gradient
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sparsification and quantization. Residual Gradient Compression
(RGC) method is used for sparsification. RedSync solved two major
obstacles to implement RGC on multi-GPU systems: the high over-
head of communication-set selection on GPU and lack of support
for collective communication scheme for sparse data structures.
Based on RGC, Alternating Signs Quantization (ASQ) method is
first proposed, which further reduces half of the communication
bandwidth requirement and introduces no extra overhead. The per-
formance and accuracy of RedSync are evaluated on two typical
GPU platforms, including a supercomputer system and amulti-GPU
server. For AlexNet, VGG16, and LSTM, RedSync brings significant
speedup for large-scale DNN training.

REFERENCES
[1] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for dis-

tributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).
[2] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. 2012. Fast

k-selection algorithms for graphics processing units. Journal of Experimental
Algorithmics (JEA) 17 (2012), 4–2.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-efficient SGD via gradient quantization and encoding.
In Advances in Neural Information Processing Systems. 1709–1720.

[4] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and
Dhabaleswar K Panda. 2017. S-Caffe: Co-designing MPI runtimes and Caffe for
scalable deep learning on modern GPU clusters. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM,
193–205.

[5] Mike Barnett, Lance Shuler, Robert vanDeGeijn, Satya Gupta, David G Payne, and
Jerrell Watts. 1994. Interprocessor collective communication library (InterCom).
In Proceedings of IEEE Scalable High Performance Computing Conference. IEEE,
357–364.

[6] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and
Kailash Gopalakrishnan. 2018. Adacomp: Adaptive residual gradient compres-
sion for data-parallel distributed training. In Thirty-Second AAAI Conference on
Artificial Intelligence.

[7] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[9] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677 (2017).

[10] Charles AR Hoare. 1961. Find (algorithm 65). Commun. ACM 4, 7 (1961), 321–322.
[11] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features

from tiny images. Technical report, University of Toronto (2009).

[12] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server.. In OSDI, Vol. 14. 583–
598.

[13] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. arXiv preprint arXiv:1712.01887 (2017).

[14] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
linguistics 19, 2 (1993), 313–330.

[15] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843 (2016).

[16] Prasenjit Mitra, David Payne, Lance Shuler, Robert van de Geijn, and Jerrell Watts.
1995. Fast collective communication libraries, please. In Proceedings of the Intel
Supercomputing UsersâĂŹ Group Meeting, Vol. 1995.

[17] Ofir Press and Lior Wolf. 2016. Using the output embedding to improve language
models. arXiv preprint arXiv:1608.05859 (2016).

[18] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2018. Regularized
evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548
(2018).

[19] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693–701.

[20] Cèdric Renggli, Dan Alistarh, and Torsten Hoefler. 2018. SparCML: High-
Performance Sparse Communication for Machine Learning. arXiv preprint
arXiv:1802.08021 (2018).

[21] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. 2018.
Sparse binary compression: Towards distributed deep learning with minimal
communication. arXiv preprint arXiv:1805.08768 (2018).

[22] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
DNNs. In 15th Annual Conference of the International Speech Communication
Association.

[23] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens. 2007. Scan
primitives for GPU computing. In Graphics hardware, Vol. 2007. 97–106.

[24] Shubhabrata Sengupta, Aaron E Lefohn, and John D Owens. 2006. A work-
efficient step-efficient prefix sum algorithm. InWorkshop on edge computing using
new commodity architectures. 26–27.

[25] A Sergeev and MD Balso. 2017. Meet Horovod: UberâĂŹs Open Source Dis-
tributed Deep Learning Framework for TensorFlow. Uber Engineering Blog (2017).

[26] Nikko Strom. 2015. Scalable distributed DNN training using commodity GPU
cloud computing. In Sixteenth Annual Conference of the International Speech
Communication Association.

[27] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49–66.

[28] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. In Advances in Neural Information Processing Systems. 1508–1518.

[29] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018.
Imagenet training in minutes. In Proceedings of the 47th International Conference
on Parallel Processing. ACM, 1.

[30] Huasha Zhao and John Canny. 2014. Kylix: A sparse allreduce for commodity
clusters. In Parallel Processing (ICPP), 2014 43rd International Conference on. IEEE,



, , Jiarui Fang, Haohuan Fu and Guangwen Yang and Cho-Jui Hsieh

SGD
RGC
RGC+ASQ

W
ea

k 
Sc

al
ab

ilit
y

0

5

10

15

#Node
1 4 8 16 32 64 128

ImageNet-AlexNet (B=64)

RGC
RGC+ASQ

Sp
ee

du
p

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#Node
1 4 8 16 32 64 128

ImageNet-AlexNet (B=64)

SGD
RGC
RGC+ASQ

W
ea

k 
Sc

al
ab

ilit
y

0

10

20

30

40

50

#Node
1 4 8 16 32 64 128

ImageNet-ResNet50 (B=32)

RGC
RGC+ASQ

Sp
ee

du
p

0.7

0.8

0.9

1.0

#Node
1 4 8 16 32 64 128

ImageNet-ResNet50 (B=32)

SGD
RGC
RGC+ASQ

W
ea

k 
Sc

al
ab

ilit
y

0

10

20

30

40

50

#Node
1 4 8 16 32 64 128

ImageNet-VGG16 (B=32)

RGC
RGC+ASQ

Sp
ee

du
p

1.0

1.5

2.0

2.5

#Node
1 4 8 16 32 64 128

ImageNet-VGG16 (B=32)

SGD
RGC
RGC+ASQ

W
ea

k 
Sc

al
ab

ilit
y

0

1

2

3

4

#Node
1 4 8 16 32

PTB-LSTM (B=2)

RGC
RGC+ASQ

Sp
ee

du
p

0

1

2

3

4

5

#Node
1 4 8 16 32

PTB-LSTM (B=2)

Figure 9: Left: Scalability of RedSync for four DNNs on Piz Daint. Right: Speedup of RedSync compared with a classical data
parallel implementation.
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