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Abstract. In the classic Symmetric Rendezvous problem on a Line
(SRL), two robots at known distance 2 but unknown direction exe-
cute the same randomized algorithm trying to minimize the expected
rendezvous time. A long standing conjecture is that the best possible
rendezvous time is 4.25 with known upper and lower bounds being very
close to that value. We introduce and study a geometric variation of SRL
that we call Symmetric Rendezvous in a Disk (SRD) where two robots
at distance 2 have a common reference point at distance ρ. We show that
even when ρ is not too small, the two robots can meet in expected time
that is less than 4.25. Part of our contribution is that we demonstrate
how to adjust known, even simple and provably non-optimal, algorithms
for SRL, effectively improving their performance in the presence of a ref-
erence point. Special to our algorithms for SRD is that, unlike in SRL,
for every fixed ρ the worst case distance traveled, i.e. energy that is used,
in our algorithms is finite. In particular, we show that the energy of our
algorithms is O

(
ρ2
)
, while we also explore time-energy tradeoffs, con-

cluding that one may be efficient both with respect to time and energy,
with only a minor compromise on the optimal termination time.

1 Introduction

In a rendezvous game two players reside at unknown locations in a given
domain and they wish to minimize the (expected) meeting (rendezvous)
time. Various rendezvous problems have been studied intensively, with
applications in computer science and real-world modeling, such as the
search for a mate problem in which species with a low spatial density
try to find suitable partners [9]. Rendezvous problems can be classified as
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asymmetric, in which each agent may use a different strategy, or symmet-
ric, in which each agent follows the same algorithm; moreover, strategies
can be classified as mixed, incorporating randomness, or pure which are
deterministic.

In this paper, we discuss symmetric rendezvous with advice. Two speed-
1 robots (mobile agents) start at known distance but at unknown locations
and they are trying to meet (rendezvous). At any time, robots have the
option to meet at a known immobile reference point that is initially placed
ρ away from both agents. The goal is to design mixed strategies so as to
minimize the expected rendezvous time, i.e. the expected value of the first
time that robots meet. After scaling, our problem can be equivalently
described as a Symmetric Rendezvous problem in a unit Disk (SRD),
where mobile agents lie at the perimeter of disk at known arc distance
2α, having the option to always meet at the origin.

SRD is a geometric variation of the well-studied Symmetric Ren-
dezvous problem on a Line (SRL) where no reference point is available,
and for which a long-standing conjecture stipulates that it can be solved
in expected time 4.25. Critical differences between the two problems is
that in SRD (a) the rendezvous can always be realized deterministically,
(b) the performance can be much better than the distance from the refer-
ence point ρ and better than the conjectured 4.25 even for not too small
values of ρ and (c) the worst case rendezvous time can be bounded in ρ
even when one tries to minimize the expected rendezvous time. The latter
is an important property, since if the two agents are vehicles with limited
fuel, our strategies can be used to guarantee rendezvous before the fuel
runs out.

1.1 Related Work

The rendezvous problem is a special type of a search game where two or
more agents (robots) attempt to occupy the same location at the same
time in a domain. Search games and rendezvous have a long history; see [9]
and [4] for a thorough introduction to the area, and [3] for a not so re-
cent survey. The challenge of the task (search or rendezvous) is induced
by limitations related to communication, coordination, synchronization,
mobility, visibility, or other types of resources, whereas examples of ren-
dezvous domains include networks, discrete nodes and geometric envi-
ronments. Notably, each of the aforementioned specifications, along with
combinations of them, have given rise to a long list of publications, a short
representative list of which we discuss below.



The rendezvous problem was first proposed informally by Alpern [1]
in 1976, and received attention due to the seminal works of Anderson and
Weber [12] for discrete domains and of Alpern [2] for continuous domains.
Our work is a direct generalization of the special and so-called Symmetric
Rendezvous Search Problem on a Line (SRL) proposed by Alpern [2] in
1995. In that problem, two blind agents are at known distance 2 on a
line, and they can perform the same synchronized randomized algorithm
(with no shared randomness). The original algorithm of Alpern [2] had
performance (expected rendezvous time) 5, which was later improved to
4.5678 [13], then to 4.4182 [15], then to 4.3931 [35], and finally to the
best performance known of 4.2574 [28] by Han et al. Similarly, a series of
proven lower bounds [8], [35] have lead to the currently best value known
of 4.1520 [28].

A number of variations of SRL have been exhaustively studied, and
below we mention just a few. The symmetric rendezvous problem with
unknown initial distance or with partial information about it has been
considered in [17] and [16]. A number of different topologies have been
considered including labeled network [10], labeled line [18], ring [31], [27]
(see survey monograph [30]), torus [29], planar lattice [5], and high di-
mensional host spaces [7]. We note here that the topology we consider
in this work follows a long list studies of relevant search/rendezvous-type
problems in the disk. The rendezvous problem with faulty components
has been studied in [24] and [25]. Asynchronous strategies have been ex-
plored in [34] and [33]. Studied variations of robots capabilities include
sense of direction [6], [14], memory [20], visibility [22], speed [26], power
consumption [11] and location awareness [19]. Interesting variations of
communication models between agents have been studied in [23] (white-
boards), [21] (tokens), [30] (mobile tokens), and [33] (look-compute-move
model). Finally, [32] is a comprehensive survey in deterministic rendezvous
in networks.

1.2 Formal Definitions, Notation & Terminology

Problem Definition In the Symmetric Rendezvous problem in a Disk
(SRD) two agents (robots) are initially placed on the plane at known
distance from each other but at unknown location. A common reference
point O is at known distance and known location to both robots. The
robots can move at speed 1 anywhere on the plane, and they detect each
other only if they are at the same location, i.e. when the meet. Given
that robots run the same (randomized) and synchronized algorithm, the



goal is to design trajectory movements so as to minimize the (expected)
meeting, also known rendezvous, time.

The natural way to model SRD is to have robots start on the perime-
ter of disk, where its center serves as the common reference point. We
adopt two equivalent parameterizations of the problem that arise by ei-
ther normalizing robots’ initial distance or the radius of the disk. In SRDρ

the disk has radius ρ, and the robots have Euclidean distance 2, while in
SRDα robots start on the perimeter of a unit disk and their arc distance
is 2α.

As we explain below, SRDρ is the natural extension of the well-studied
rendezvous on a line problem, while SRDα is convenient for analyzing the
performance of trajectory movements. We will use both perspectives of
the problem interchangeably. Clearly, the initial Euclidean distance of
the two robots in SRDα is 2 sin (α). Hence, after scaling the instance by
1/ sin (α), the initial distance of the robots becomes 2, and the reference
point (the origin) is at distance ρ = 1/ sin (α). Therefore, SRDρ and
SRDα are equivalent under transformation α = arcsin (1/ρ). Moreover,
we will silently assume that 0 < α < π/4 as otherwise SRDα is degenerate,
or that ρ >

√
2 for SRDρ.

The Related Rendezvous on a Line Problem In the well-studied
Rendezvous problem on a Line (SRL), two robots, with the same spec-
ifications as in SRD are placed at known distance 2, but at unknown
locations on the line. The objective is again to minimize the (expected)
rendezvous time. Note that SRL is exactly the same as SRD∞.

Natural randomized algorithms for solving SRL are so-called k-Markovian
Strategies, i.e. random processes that iterate indefinitely, so that in every
iteration each robot follows a partial trajectory of total length k (or k
times more than the original distance of the agents). The simplest 2-
Markovian Strategy achieves expected rendezvous time 7: each robot with
probability 1/2 moves distance 1 to the left and then to the right, back
to its original position (and robot follows the symmetric trajectory to the
right with the complementary probability). Note that robots meet with
probability 1/4 after time 1, and otherwise they repeat the experiment
after moving distance 2. If f denotes the expected meeting time, then
clearly f = 1

4 + 3
4(2 + f) from which we obtain f = 7.

An elegant refinement was proposed by Alpern [2] and achieves ex-
pected rendezvous time 5. In this 3-Markovian Strategy each robot with
probability 1/2 moves distance 1 to the left, then to the right back to its
original position and then further right at distance (and robot follows the



symmetric trajectory to the right with the complementary probability).
This time, robots meet with probability 1/4 after time 1, and with proba-
bility 1/4 after time 3, otherwise the repeat the same process. If f denotes
the expected meeting time, then f = 1

4 + 1
43 + 1

2 (3 + f) from which we
obtain f = 5. Interestingly, this is also the best possible 3-Markovian
strategy.

Alpern’s algorithm above is a distance-preserving algorithm, that is,
after each iteration robots either meet or they preserve their original dis-
tance (but not their original locations). After a series of improvements,
this idea was fruitfully generalized to k-Markovian Strategies by Han et
al. [28] giving the best known rendezvous time 4.2574 (for k = 15). No-
tably, the best lower bound know is 4.1520 [28], which has resulted into
the believable conjecture that 4.25 is the best rendezvous time possible.

Measures of Efficiency SRD and SRL can be viewed as online prob-
lems, where robots attempt to solve the problem only with partial input
information. The natural measure of efficiency of any proposed online al-
gorithm is the so-called competitive ratio, defined as the ratio between
the (expected) online algorithm performance over the best possible per-
formance achievable by an offline algorithm that knows the input. With
this terminology in mind, it is immediate that Alpern’s Algorithm [2] for
SRL is 5-competitive, while the conjecture above stipulates that 4.25 is
the best possible competitive ratio for the problem.

Using the terminology above, the best offline algorithm can solve
SRDρ in time 1, and SRDα in time sin (α), hence for our competitive
analysis we will always scale the expected performance of our randomized
algorithms accordingly. As a result, the competitive ratio of our algo-
rithms will be described by functions of ρ and α for SRDρ and SRDα,
respectively, that are at least 1 for all values of the parameters.

Our main goal will be to beat the psychological threshold of 4.25 for
SRDρ, even for not too small values of ρ, demonstrating this way both the
usefulness of a reference point and the effectiveness of our algorithms. In
order to quantify this more explicitly, we introduce one more alternative
measure of efficiency: an algorithm for SRDρ will be called δ-effective, if
δ is the largest value of ρ for which the expected rendezvous time is no
more than 4.25. If such ρ does not exist, i.e. if the algorithm has expected
rendezvous time at least 4.25 for all ρ >

√
2, then we call the algorithm

0-effective. To conclude, apart from calculating the competitive ratio of
our algorithms for SRDρ, we will complementarily comment also on the
effectiveness, with the understanding that the the higher their value is,



the better the algorithm is. Note for example that the naive algorithm
that simply has robots go to the reference point is ρ-competitive and
4.25-effective.

Finally, we also consider the worst case performance of our algorithms
that we call energy. Formally, the energy of a rendezvous algorithm is
defined as the supremum of the time by when the rendezvous is realized
with probability 1. Note that any algorithm for SRL is bound to have
infinite energy, whereas we show in this paper a family of algorithms for
SRD that have bounded energy.

1.3 Our Results

Techniques Outline Our main contribution is the exploration of 3-
Markovian strategies for SRD. In particular, we adjust Alpern’s opti-
mal 3-Markovian algorithm [2] so as to take advantage of the reference
point. Similar to the algorithm for SRL, our algorithm uses infinitely
many random bits. In each random step, robots attempt to meet twice.
If the rendezvous is not realized, then the projection of their trajectory
to the perimeter of the original disk has length 3, however agents reside
in a smaller disk but still at the same arc-distance. Then, robots repeat
the process, so that, overall, the distances of the possible meeting points
to the origin are strictly decreasing, i.e. the disk is sequentially shrinking.
The trajectories of the robots are determined by two critical angles, that
determine the distance of the possible meeting points to the origin, i.e.
how much the disk are shrunk.

If in each iteration, the disk is shrunk “a lot”, then robots move much
more than half their Euclidean distance in order to meet, however when
they repeat the experiment, they are solving a simpler problem since they
are at the same arc-distance but the reference point is closer. If, on the
other hand, the new disk is comparable to the original one, then robots
attempt to greedily rendezvous as fast as possible, however if the meeting
is not realized, robots have to solve an identical rendezvous problem (and
such a strategy is bound to have a competitive ratio no better than 5,
i.e. the ratio of the original SRL). Hence, the heart of the difficulty is to
determine the two critical angles so that the instance that robots have to
solve in each step shrinks by the right amount. Part of our contribution
is that we demonstrate how to model the latter problem as a non-trivial
non-linear optimization problem, which we also solve.

High Level Contributions As it is typical in online algorithmic prob-
lems, the impossibility of achieving optimal solutions is due to the un-



known input (in our case the exact location of the robots). Our work
contributes toward the fundamental algorithmic question as to whether
additional resources (partial information about the unknown input - in
our case a reference point) could yield improved upper bounds. Not only
we answer this question in the positive, and we quantify properly our
findings, but our trajectories also demonstrate how a rendezvous can be
realized in 2 dimensions, even though the detection visibility of the robots
in one dimensional. Part of our contribution is to also demonstrate how
to adjust known algorithms for SRL so as to solve SRD. In particular,
our methods can be generalized and induce improved competitive ratio
upper bounds when the starting rendezvous algorithm is some other k-
Markovian trajectory, k > 3 (see [28]). However, each such adaptation
requires the determination of more than two critical angles, and the in-
duced non-linear optimization problems would be possible to solve only
numerically, rather than analytically as we do in this work. At the end, our
algorithms are simple, yet powerful enough to induce good performance
for a wide range of SRD instances.

Discussion on Energy We also consider the worst case rendezvous
time for our algorithms that we deliberately call energy. In real-life appli-
cations, robots are bound to run only for limited time due to restricted
resources (e.g. fuel). Assuming that the actual energy spent (fuel burnt)
by a robot is proportional to it’s operation time, we view the worst-case
running time of our algorithms as the minimum energy required by the
robots that ensures that the execution of the algorithm terminates suc-
cessfully with probability 1. Note that in the original SRL problem, and
for any feasible rendezvous strategy, there is a positive probability (though
exponentially small) that the rendezvous is arbitrarily large. Given that
mobile robots should have access to bounded energy (fuel), the probabil-
ity that the rendezvous is never realized is positive. In contrast, we show
that our algorithms for SRD require bounded energy, that there is a fi-
nite time by when the rendezvous is realized with probability 1. We show
that this property holds true under mild conditions for our algorithms,
and in particular it holds true for our algorithm that minimizes the ex-
pected rendezvous time. For the latter algorithm we show that the energy
required in Θ

(
ρ2
)
. Finally, and somehow surprising, we also show that

by compromising slightly on the expected termination time, the required
energy becomes Θ (ρ).



Paper Organization Section 2 is devoted to the optimization prob-
lem of minimizing the expected rendezvous time. First, in Section 2.1
we introduce some simple rendezvous algorithms that are mostly used as
benchmark results for what will follow. Section 2.2 introduces the first
non-trivial refinement, by providing a single random bit 1-Markovian al-
gorithm. Our observations and results of that section are later used in
Section 2.3, where we discuss general 3-Markovian strategies. Our main
contribution is the determination of optimal critical angles, as well as of
the induced competitive ratio, and induced effectiveness. We also provide
the asymptotic behavior of the critical angles, as well as the convergence
to competitive ratio 5, as the distance ρ of the reference point goes to in-
finity. Then, in Section 3 we study the worst case rendezvous time induced
by our most efficient algorithm for SRD. In particular, the main contribu-
tion of Section 3.1 is the asymptotic analysis of the worst case rendezvous
time for our algorithm that is meant to minimize the expected rendezvous
time, and is shown to be Θ

(
ρ2
)
. Motivated by this, we study in Section 3.2

time-energy tradeoffs. More specifically, we show that asymptotically in
ρ, the expected termination time can stay optimal achieving improved
but still Θ

(
ρ2
)
energy, while only slightly suboptimal termination time

allows for Θ (ρ) energy. Our expected rendezvous time positive results for
SRD are summarized in Figure 1. Many of our calculations throughout
the paper are assisted by computer symbolic software (Mathematica),
but all our results are rigorous. Appendix A contains additional technical
lemmata (and their proofs) omitted altogether from the main body, and
which are invoked throughout this paper.

2 Rendezvous Algorithms in a Disk

2.1 Some Immediate Benchmark Upper Bounds

First we establish some immediate positive results that can be used as
benchmarks for rendezvous trajectories that we will present in subsequent
sections. Recall that the naive “go-to-origin” algorithm is 4.25-effective.

The first attempt is to blindly implement the 4.2574-competitive al-
gorithm of [28] for SRL. Indeed, given instance SRDα, robots can be re-
stricted to move on the perimeter of the disk. It is clear that the resulting
algorithm has expected rendezvous time α, and hence competitive ratio
4.2574 α

sin(α) for SRDα (note that α
sin(α) ≥ 1). However, one can slightly

improve upon this by making robots move along chords instead. Indeed,
the algorithm of [28] for SRL has the property that robots always move
and attempt to meet at integral points, assuming that one of the robots
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Fig. 1. A comparison between the competitive ratio of the discussed algorithms for
SRDρ. The horizontal axis corresponds to ρ, and the vertical to the competitive ratio.
The curves, along with the corresponding theorems that establish each result are as
follows: purple curve is the naive “go-to-origin” ρ-competitive 4.25-effective algorithm,
green curve is the 4.888-effective 1-random bit Algorithm due to Theorem 3, yellow
curve is the 5.3236-effective Algorithm due to Theorem 4, red curve is the 2.57-effective
Algorithm due to Theorem 2, and blue curve is the 7.1367-effective Algorithm due to
Theorem 5.

starts from the origin of the real line. Now for problem SRDρ in the disk,
and given any initial location of the robots, consider an infinite sequence
of clockwise and of counterclockwise arcs of length 2, along with their
corresponding chords of length 2 sin (1). Any integral movement of robots
in the line can be simulated by movements on the chords by multiples
of sin (1), while sin (1) is also the optimal offline solution. Therefore, we
immediately obtain the following.

Theorem 1. SRDρ admits an online algorithm which is 4.2574-competitive
and 0-effective.

Next we show that Theorem 1 admits an easy refinement using a
simple 3-Markovian process, which is a direct application of [2].

Theorem 2. SRDρ admits an online algorithm which is
(

7ρ2+8
√
ρ2−1ρ−3

3ρ2+1

)
-

competitive and 2.57-effective.

Proof. We introduce the language of SRDα. The main idea of the algo-
rithm is that each robot iteratively tries to greedily meet her peer in the
“middle point of their locations”. More specifically, in each iteration, each
robot tosses a coin, which advices the robot whether her peer is at arc



distance α cw or ccw. Call the current robot’s location A, say on a unit
disk, and let B be a point at cw distance α. Then the robot attempts
to meet her peer in the middle point M of A,B, and this succeeds with
probability 1/4. If this fails, it might be due to that the other robot was
actually in the opposite direction and her random ccw move brought her
at the corresponding point M ′. Then the two robots attempt to meet in
the middle point of M,M ′, and again this meeting is realized with proba-
bility 1/4. In the complementary event, with probability 1/2 both robots
choose to move in the same direction in their first move. Still after their
second move, and given they have not met, they are still at arc-distance
α, but now they reside on a smaller disk, and they repeat the process.

Denote byR the expected rendezvous time of the algorithm, given that
agents start on the perimeter of a radius-1 disk. If robots do not meet,
they are still at arc distance α in a disk that is scaled by cos (α). Therefore,
their Euclidean distance in the resulting disk is 2 cos (α) sin (α) = sin (2α).

Notice that with probability 1/4 robots meet at time sin (α). With
probability 1/4, they meet at time sin (α)+ 1

2 sin (2α). Otherwise, the have
already walked distance sin (α) + 1

2 sin (2α), and they are at arc distance
α of a radius-cos (α) disk, when they repeat the process. Therefore,

R = sin (α) +
3

4
sin (2α) +

1

2
cos (α)R.

Solving for R gives expected rendezvous time R = sin(a)(2+3 cos(a))
2−cos(a) . Hence,

the competitive ratio for SRDα is 2+3 cos(a)
2−cos(a) and for SRDρ it is 7ρ2+8

√
ρ2−1ρ−3

3ρ2+1
.

Note that the competitive ratio becomes 4.25 exactly for ρ = 29√
165
≈

2.25765. ut

2.2 Rendezvous with Minimal Randomness

Theorems 1 and 2 were obtained by algorithms that use infinitely many
random bits. This section is devoted into showing that even with 1 random
bit, we can perform better than the naive “go-to-origin” algorithm, as well
as of the algorithms of Theorems 1 and 2, at least for certain values of
α, ρ. This will also help as a warm-up for our later results.

Consider instance SRDα and mobile agents at arc distance α as in
Figure 2. Each of them knows that their peer is α away either clockwise or
counterclockwise, and consider the corresponding arcs. Notice that in both
algorithms of Theorems 1 and 2 robots attempt to meet at the bisectors
of the two arcs. Given a fixed angle β, each robot, and at each iteration



chooses uniformly at random either the cw or the ccw direction, and moves
in that direction with respect to the origin till the bisector is hit. We call
this move a random β-darting. Notice that 0-darting corresponds to going
to the origin, while the algorithm of Theorem 2 we have β = π/2 − α.
The main idea behind our 1-random bit algorithm 1RB with parameter
β is to choose the optimal β ∈ [0, π/2 − α) that minimizes the expected
termination time.

Fig. 2. Geometry of Algorithm 1RBβ .

Algorithm 1 1RBβ
1: Do a random β-darting.
2: Go to origin (if peer is not already met).

Lemma 1. The expected rendezvous time R(β) of 1RBβ is

R(β) = sin (α) csc(α+ β) +
3

4
sin (β) csc(α+ β).

Proof. For fixed α, let w = w(β) be the length of the line segment between
the position of a robot and the possible meeting point at the bisector of
the critical arcs. Let also y = y(β) denote the distance of the possible
meeting point from the origin (see also Figure 2).

Clearly, with probability 1/4 robots move after time w, and otherwise
they meet at time y + w. Hence

R(β) = 1

4
y +

3

4
(y + w) = y +

3

4
w.



The proof follows by noticing that w = sin (α) csc(α + β) and that y =
sin (β) csc(α+β), which is obtained by a simple geometric argument based
on the Law of sines. ut

Theorem 3. The optimal 1RBβ algorithm uses

β = max
(
0,− sin (1/ρ) + arccos

(
3
4

))
in which case the algorithm is 3

√
ρ2−1+

√
7

4 -competitive and 4.88813-effective.

Proof. For convenience, we analyze the performance on SRDα instead.
Using Lemma 1, we find the critical values of the expected rendezvous
time R(β) by calculating

d

dβ
R(β) =

(
3
4 − cos (α+ β)

)
csc2 (α+ β) sin (α) .

Observe that as 0 < α ≤ α + β ≤ π
2 we have cos(α + β) ≤ cosα

and thus, for α > arccos 3
4 we see that R(β) is increasing. Hence, R(β) is

minimized at R(0) = sinα cscα = 1.
For α ≤ arccos 3

4 , R(β) is decreasing when β < β and increasing
when β > β, where β = −α + arccos

(
3
4

)
. Thus, R(β) is minimized at

β and by some straightforward trigonometric calculations we see that
R(β) = cos

(
arccos

(
3
4

)
− α

)
. Since arccos 3

4 − α ∈ [0, π2 ], then this cost is
no more than 1.

When the problem is not degenerate, we conclude that 1RBβ is
cos(arccos( 3

4)−α)
sin(α) -

competitive. Our claim now follows for SRDρ using transformation α =

sin (1/ρ). Finally note that 3
√
ρ2−1+

√
7

4 is increasing, and it is equal to
4.25 when ρ = 1

3

√
305− 34

√
7 ≈ 4.88813. ut

2.3 Improved Rendezvous with 3-Markovian Trajectories

In this section we generalize the algorithm of Section 2 in two ways; first we
allow more random bits, and second, in every random trial, we allow robots
trajectories two darting attempts (recall that Algorithm 1RBβ allows for
only one darting attempts. In the language of the established results for
SRL we will adopt Alpern’s 3-Markovian trajectory [2].

The main idea behind our new algorithms is as follows
At every random step, robots will reside at the perimeter of a disk,

and they will be at constant arc distance α. As in 1RBβ , each robot is
associated with two bisectors in which robot will make an attempt to



meet her peer. A fixed angle β along with a random bit will determine
the direction (cw or ccw) of the random β-darting that will bring the
robot in one of the bisectors. Note that due to the symmetry imposed by
the trajectory, a meeting is realized in this step with probability 1/4. If
the rendezvous is not realized, the robot will attempt a deterministic γ-
darting to the other bisector, and the meeting is realized in this step with
probability 1/4 as well. If the rendezvous fails again, then the process
repeats or robots go to the origin to meet. A process that involves k
random bits (and hence 2k possible meeting points) will be referred to as
k-step 3-Markovian. Note that we allow k = ∞. The formal description
of the algorithm is as follows.

Algorithm 2 k-RBβ,γ
1: Repeat k times
2: Do a random β-darting.
3: Do a γ-darting in the opposite direction
4: Go to origin (if peer is not already met).

Observe that the algorithm of Theorem 2 can be alternatively de-
scribed as ∞-RBπ/2−α/2,π/2−α/2, while 1RBβ is equivalent to 1-RBβ,0.
Next we analyze k-RBβ,γ for all values of k, β, γ. Our goal is to analyze
the expected rendezvous time, denoted by Rk (β, γ). We adopt the lan-
guage either of SRDρ or of SRDα depending on what is more convenient,
in which case Rk (β, γ) will be either a function of ρ or of α. To make this
more explicit in our notation, and in order to remove any ambiguity, we
will be writing Rρk (β, γ) and Rαk (β, γ) for the expected running time in
SRDρ and SRDα, respectively. Note that Rρk (β, γ) =

Rαk (β,γ)
sin(α) .

Lemma 2. For every fixed α, the performance of k-RBβ,γ for SRDα,
when k = 1,∞, is

Rα1 (β, γ) = 1
2 csc(α+ β)(sin(β) csc(2α+ γ)(3 sin(α) cos(α) + sin(γ)) + 2 sin(α))

(1)

Rα∞ (β, γ) =
sin(α)(3 sin(α− β)− 3 sin(α+ β)− 4 sin(2α+ γ))

−2 cos(α− β + γ) + 2 cos(3α+ β + γ) + cos(β − γ)− cos(β + γ)
.

(2)

Proof. Note that each random step of k-RBβ,γ involves two darting moves.
For fixed α, and a disk of radius 1, let w = w(β) be the length of the line



segment between the position of a robot and the possible meeting point at
the bisector of the critical arcs in the first darting move. Let also y = y(β)
denote the distance of the possible meeting point from the origin (see also
Figure 3). The values for w, y are obtained as in the proof of Lemma 1 and
are summarized below. Notice that after the first darting move, robots are

Fig. 3. Geometry of Algorithm k-RBβ,γ , where Θ = α+ β and ∆ = 2α+ γ.

in a disk of radius y. Similarly, let d = d(β, γ) be the length of the line
segment between the position of a robot after the first darting attempt
and the possible meeting point at the bisector of the critical arcs in the
second darting move. Let also x = x(β, γ) denote the distance of the
second possible meeting point from the origin. Overall, we have

w = sin (α) csc(α+ β) (3)
y = sin (β) csc(α+ β) (4)
x = y sin (γ) csc (2α+ γ) (5)
d = y sin (2α) csc (2α+ γ) . (6)

Now consider an iteration of the algorithm, where the radius of the disk is
1. The probability of the agents meeting at this iteration is 1

2 , and given
that they meet the distance travelled is equally likely to be w or w + d,
giving a contribution to the mean cost equal to w + 1

2d. If robots do not
meet at this step, then they are at distance x from the origin. So they
either go to the origin, if number of iterations has exceeded k, or they



repeat. Hence,

Rαk (β, γ) =
k−1∑
i=0

(
1

2

)i+1
xi(w + 1

2d) +
i−1∑
j=0

(w + d)xj

+

(
1

2

)k
(xk +

k−1∑
j=0

(w + d)xj)

=

k−1∑
i=0

(
1

2

)i+1 [
xi(w + 1

2d) + (w + d)
xi+1 − x
x2 − x

]
+

(
1

2

)k (
xk + (w + d)

xk − 1

(x− 1)

)

=

(
1

2

)k+1 xk(3d+ 4w + 2x− 4)− 2k(3d+ 4w)

x− 2
,

Setting k = 1 and taking the limit k →∞ (note that 0 < x < 1) gives

Rα1 (β, γ) = w + 3
4d+

1
2x,

and

Rα∞ (β, γ) =
3d+ 4w

2(2− x)
.

Then, the statement of the Lemma follows after elementary trigonometric
manipulations. ut

Theorem 4. Consider problem SRDρ. If ρ < csc
(
1
2 cos

−1 (2
3

))
≈ 2.44949,

then the optimal 1-RBβ,γ algorithm is obtained for γ = 0, and the algo-
rithm is identical to the optimal 1RBβ algorithm (see Theorem 3).

If ρ ≥ csc
(
1
2 cos

−1 (2
3

))
, then the optimal 1-RBβ,γ is obtained for the

following parameters

γ = cos−1
(
2

3

)
− 2 sin−1

(
1

ρ

)
β = cos−1

(
3

4
cos

(
cos−1

(
2

3

)
− 2 sin−1

(
1

ρ

)))
− sin−1

(
1

ρ

)
For the optimal parameters, the algorithm has competitive ratio cos

(
β
)

which equals

1

2

−
√
5

ρ2
+
√
ρ2 − 1− 2

√
ρ2 − 1

ρ2
+ 2

√√√√
1−

(
ρ
(√

5− 5
ρ2

+ ρ
)
− 2
)2

4ρ4
+
√
5


and it is 5.32366-effective.



Proof. Lemma 2 gives us performance Rα1 (β, γ) of 1-RBβ,γ for problem
SRDα, and the competitive ratio is obtained by scaling by sin (α). The
critical points of Rα1 (β, γ) are β, γ satisfying equations

γ = arccos 2
3 − 2α (7)

β = arccos(34 cos(γ))− α, (8)

as shown in Lemmata 7, 8. These equations have unique solutions in
[0, π2−α] if and only if α ≤ 1

2 arccos
2
3 ; otherwise, they have no solution. As

Rα1 (β, γ) has at most one critical point and is locally convex at that point
(see Lemma 9), these equations minimize Rα1 (β, γ) for α < 1

2 arccos
2
3 .

Now we substitute (7) and (8) in (1) to obtain, after straightforward
manipulations, that at it’s minimum Rα1

(
β, γ

)
= cosβ.

For α ≥ 1
2 arccos

2
3 , R

α
1 (β, γ) is monotone increasing with respect to

γ, and thus is optimized at γ = 0, at which the strategy becomes identical
to the one-step algorithm described before. Optimal parameters and run
times can be calculated accordingly for SRDρ using transformation α =
arcsin (1/ρ) and simplifying trigonometric expressions. ut

We can now compute also the optimal parameters for∞-RBβ,γ . Since
the competitive ratio becomes a lengthy expression in ρ for SRDρ, we
choose to only comment on the effectiveness of the resulting algorithm.
The competitive ratio will be explicit from our calculations.

Theorem 5. For all ρ ≥ 1/ sin (1/2) ≈ 2.08583, the optimal ∞-RBβ,γ
algorithm for SRDρ uses parameters β, γ satisfying equations

3
4 cos (γ) = cos

(
arcsin (1/ρ) + β

)
(9)

2
3 cos

(
β
)
= cos (2 arcsin (1/ρ) + γ) . (10)

In particular, we have

β := arctan

−v +
√
v2 − (94 cos

2 α− 1)(54 − v2)
9
4 cos

2 α− 1

 (11)

γ := arccos
(
4
3 cos

(
α+ β

))
. (12)

where v := (2 cosα− cos 2α) csc 2α and α = arcsin (1/ρ). The competitive
ratio of the algorithm can be computed by substituting β, γ in (2). Also for
these values of β, γ, the algorithm is 7.13678-effective.



Proof. For convenience we adopt the language of SRDα. The nonlinear
system (9), (10) characterizes the critical points of function Rα∞ (β, γ) :
R2 7→ R, i.e. it is obtained by requiring that

∂

∂β
Rα∞ (β, γ) =

∂

∂γ
Rα∞ (β, γ) = 0.

We prove this in Lemma 10.
Now observe that equations (9), (10) is just a system of polynomial

equations in cos (β) , cos (γ). In fact, substituting one for the other results
in a degree 4 polynomial equation that can be solved analytically. Only
one of the solutions satisfies conditions 0 ≤ β ≤ π/2 − α, which is the
β = β(α) described in (11). The value of γ is calculated using (9) as
γ := arccos

(
4
3 cos

(
α+ β

))
.

For all α < 3/4, we show in Lemma 11 that 0 ≤ β, γ ≤ π/2−α. Finally,
in Lemma 12 we show that, for all α < 1/2, the aforementioned values of
β, γ do indeed correspond to a minimizer for Rα∞ (β, γ) by showing that
∇2Rα∞

(
β, γ

)
is positive definite.

Overall, we conclude that β, γ do minimize Rα∞ (β, γ), in which case
the competitive ratio becomes Rα∞

(
β, γ

)
/ sin (α). Equating the last ex-

pression with 4.25, and solving for ρ = 1/ sin (α) gives numerical value
ρ = 7.13678. ut

We conclude this section by providing some asymptotic analysis for the
optimal parameters β, γ of Algorithm ∞-RBβ,γ as ρ → ∞. As expected,
both β, γ tend to π/2, as well as Rρ∞

(
β, γ

)
tends to 5 (the competitive

ratio of the SRL algorithm we are extending). This is what we make
explicit with the next theorem, by also providing the rate of convergence.

Theorem 6. For the optimal parameters β = β(ρ), γ = γ(ρ) of Algorithm
∞-RBβ,γ, we have

lim
ρ→∞

π/2− β
arcsin (1/ρ)

= 5 (13)

lim
ρ→∞

π/2− γ
arcsin (1/ρ)

=
16

3
(14)

Moreover,
lim
ρ→∞

ρ2(5−Rρ∞
(
β, γ

)
) = 289/6.

Proof. We use the language of SRDα, and in particular we consider β =
β(α), γ = γ(α), and α→ 0. By Theorem 5, and using (11), it is easy to see



that limα→0 β(α) = π/2. Some straightforward but tedious calculations
also show that limα→0

π/2−β(α)
α = 5. The statement for γ follows similarly

using again Theorem 5 and in particular that γ = arccos
(
4
3 cos

(
α+ β

))
.

Note that the expected rendezvous time Rρ∞
(
β, γ

)
in SRDρ is also

the competitive ratio of the problem. In the language of SRDα the com-
petitive ratio is Rα∞

(
β, γ

)
/ sin (α).

By (13) we know that as α tends to 0, β behaves similar to π/2− 5α,
and by (14) that γ behaves similar to π/2−16

3 α. Using now (2) of Lemma 2,
we have that

lim
α→0

Rα∞
(
β, γ

)
sin (α)

= lim
α→0

Rα∞
(
π/2− 5α, π/2− 16

3 α
)

sin (α)

= lim
α→0

−4 cos
(
10α
3

)
− 3(cos(4α) + cos(6α))

cos
(
α
3

)
− 2

(
cos
(
2α
3

)
+ cos

(
22α
3

))
+ cos

(
31α
3

) = 5.

Similarly, we can can show that limα→0
5−Rα∞(β,γ)

sin(α)

sin2(α)
= 289/6. ut

3 Energy-Efficient Rendezvous

3.1 Energy Analysis of our Infinite-Step Rendezvous
Algorithm

A unique feature of the SRD problem is that, unlike in SRL, the worst
case rendezvous time can be finite. As before we distinguish whether we
calculate the energy of∞-RBβ,γ in SRDρ or in SRDα by writing Eρ∞ (β, γ)
and Eα∞ (β, γ), respectively.

Lemma 3. The energy Eα∞ (β, γ) of ∞-RBβ,γ for SRDα is finite if and
only if sin (β) sin (γ) < sin (α+ β) sin (2α+ γ) . Moreover

Eα∞ (β, γ) :=
sin (α) csc(α+ β) + sin (β) csc(α+ β) sin (2α) csc (2α+ γ)

1− sin (β) csc(α+ β) sin (γ) csc (2α+ γ)
.

(15)

Proof ( of Lemma 3). For convenience, we analyze the performance for
SRDα. As in the proof of Lemma 2 (see also Figure 3), in every iteration
of ∞-RBβ,γ agents walk a distance equal to w+ d and the radius of their
disk is shrunk by x, so that the energy of ∞-RBβ,γ is calculated as

(w + d)
∞∑
j=0

xj ,



where w, x, d are as in (3), (5) and (6), respectively. Clearly, the sum of
the energy converges if and only if x < 1, or equivalently

sin (β) sin (γ)

sin (α+ β) sin (2α+ γ)
< 1.

When the energy sum converges, it equals

w + d

1− x
.

Now we use (3), (5), (6), and the claim follows. ut

Lemma 4. For any fixed ρ, the energy Eρ∞
(
β, γ

)
of the optimal ∞-RBβ,γ

is finite.

Proof. Translating Theorem 5 to the language of SRDα we know that
parameters β, γ satisfy

3
4 cos (γ) = cos

(
α+ β

)
and

2
3 cos

(
β
)
= cos (2α+ γ)

or equivalently that

sin
(
α+ β

)
=
√
1− 9

16 cos
2 (γ),

and
sin (2α+ γ) =

√
1− 4

9 cos
2
(
β
)
.

But then, it is immediate that sin
(
α+ β

)
> sin (γ) and that sin (2α+ γ) >

sin
(
β
)
. Multiplying side-wise the latter two inequalities shows that the

condition of Lemma 3 is satisfied. Hence, the energy of ∞-RBβ,γ is finite
for every ρ. ut

Using values β, γ (see (11) and (12) of Theorem 5), and substituting
in (15) of Lemma 3 we obtain an explicit, yet complicated, function of α
(or equivalently of ρ = 1/ sin (α)) for Eα∞

(
β, γ

)
. Using Mathematica we

can observe graphically that Eρ∞
(
β, γ

)
is strictly increasing (which is also

expected), and that Eρ∞
(
β, γ

)
/ρ2 is strictly decreasing in ρ > 2. However

a formal proof is eluding us due to the complication of the formulas.
Nevertheless, we can find the asymptotic behaviour of the energy as ρ
tends to infinity.



Theorem 7. For the optimal parameters β = β(ρ), γ = γ(ρ) of Algorithm
∞-RBβ,γ, we have

lim
ρ→∞

Eρ∞
(
β, γ

)
ρ2

=
18

79
.

Proof. We adopt the language of SRDα, and we invoke Theorem 6. By (13)
we know that as α tends to 0, β behaves similar to π/2− 5α, and by (14)
that γ behaves similar to π/2− 16

3 α.
Using now (2) of Lemma 2, we have that

lim
α→0
Eα∞
(
β, γ

)
sin (α) = lim

α→0
Eα∞
(
π/2− 5α, π/2− 16

3 α
)
sin (α)

= lim
α→0

sin(α)
(
sin(α) + sin(2α) cos(5α) sec

(
10α
3

))
cos(4α)− cos(5α) cos

(
16α
3

)
sec
(
10α
3

) .

The latter limit can be computed in Mathematica and it equals 18/79.
ut

An immediate corollary of Theorem 7 is that Eρ∞
(
β, γ

)
= Θ(ρ2). As

long as the rendezvous between the two agents is not realized, both follow
random-walk-like trajectories (see Figure 4).

Fig. 4. Possible trajectories of one agent in Algorithm ∞-RBβ,γ in SRDα when α =
0.01. The figure on the left depicts the trajectory in which the agent always attempts
to meet her peer first by moving ccw and then cw, resulting in a spiral. The figure on
the right depicts a random trajectory. Both trajectories have the same length which is
approximately 22.7911.

3.2 Expected Rendezvous Time - Energy Tradeoffs

In this section we attempt to understand how energy constraints can im-
pact the performance of ∞-RBβ,γ . By Theorem 6 we know that the op-



timal ∞-RBβ,γ Algorithm induces competitive ratio 5, asymptotically in
ρ→∞. By Theorem 7 we know that the same algorithm (with the same
parameters) requires Θ

(
ρ2
)
energy. In the other extreme, if the energy

is less that ρ, then the problem admits no solution (and if the energy
equals ρ, then the best rendezvous is attained when robots go directly
to the reference point). Hence, we are motivated to study the problem
of minimizing the expected rendezvous time in SRDρ given that agents’
energy is between ρ and 18

79ρ
2. Somehow surprisingly, we show below that

for every ε > 0 we can preserve a competitive ratio of 5 and energy no
more than ερ2+ o(ρ2) or competitive ratio 5+ ε and energy no more than
2√
ε
ρ+ o(ρ), both asymptotically in ρ.

Theorem 8. The following claims are true asymptotically for SRDρ as
ρ→∞. For every ε > 0, there exist β1, γ1 so that the competitive ratio of
∞-RBβ1,γ1 is 5, as well as Eρ∞ (β1, γ1) /ρ

2 ≤ ε. Moreover, for every δ > 0,
there exist β2, γ2 so that the competitive ratio of ∞-RBβ2,γ2 is 5 + δ, as
well as Eρ∞ (β1, γ1) /ρ ≤ 2/

√
δ.

The two claims of Theorem 8 follow directly from the two lemmata
below. In particular, Lemma 5 shows that the competitive ratio of ∞-
RBβ,γ can stay 5, even if the energy needed to solve SRDρ is ερ2, for each
ε > 0. Lemma 6 shows that if one is willing to have competitive ratio 5+ε,
then that would be possible with linear energy in ρ, and in particular no
more than 2ρ/

√
ε, again for every ε > 0.

Lemma 5. For every positive ε > 0, there exist β, γ, such that for the
performance of ∞-RBβ,γ for SRDρ, we have that

lim
ρ→∞

ρ (Rρ∞ (β, γ)− 5) =
27

11ε2
−Θ(1/ε),

and
lim
ρ→∞

Eρ∞ (β, γ)

ρ2
= ε.

Proof. We use the language of SRDα. For some positive constants k,m,
we use β = π/2− kα and γ = π/2−mα. First, using Lemma 2, it is easy
to see that

lim
α→0

Rα∞ (β, γ)

sin (α)

= lim
α→0

−6 cos(α) cos(αk)− 4 cos(α(m− 2))

cos(α(k −m))− 2(cos(α(k −m+ 1)) + cos(α(k +m− 3))) + cos(α(k +m))

= 5.



Some more elaborate calculations can show in fact that

lim
α→0

Rα∞(β,γ)
sin(α) − 5

sin2 (α)
= k2 − 10k +

3m2

2
− 16m+

39

2
(16)

By the proof of Lemma 3

lim
α→0

sin (α) Eα∞ (β, γ)

= lim
α→0

sin2(α) csc
(
α
2

)
(cos(α(k + 1)) + cos(α− αk) + cos(α(m− 2)))

2 cos
(
α
2

)
sin(α(k +m− 1))− 2 cos(α− αk) sin

(
α
(
3
2 −m

))
=

6

2k + 4m− 5
. (17)

The claim follows by choosing k = 31ε+18
22ε and m = 6ε+12

11ε . These
values are obtained by requiring that (17) equals ε and minimizing (16).
In particular, substituting m, k in (16) we obtain

lim
α→0

Rα∞(β,γ)
sin(α) − 5

sin2 (α)
=

27

11ε2
− 237

11ε
− 39

44
.

Finally, substituting m, k in (17) we obtain

lim
α→0

sin (α) Eα∞ (β, γ) = ε.

ut

Lemma 6. For every positive ε > 0, there exist β, γ, such that for the
performance of ∞-RBβ,γ for SRDρ, we have that

lim
ρ→∞

Rρ∞ (β, γ) = 5 + ε,

and
lim
ρ→∞

Eρ∞ (β, γ)

ρ
≤ 2√

ε
.

Proof. We start with some simple observations. Using Lemma 2 we have

lim
α→0

Rα∞ (β, γ)

sin (α)
= lim

α→0

csc(α+ β)(3 cos(α) sin(β) csc(2α+ γ) + 2)

2− sin(β) sin(γ) csc(α+ β) csc(2α+ γ)
=

2

sin (β)
+

3

sin (γ)

By the proof of Lemma 3 and after simple manipulations, we have

lim
α→0
Eα∞ (β, γ) = lim

α→0

2 cos
(
α
2

)
(− sin(α− β) + sin(α+ β) + sin(2α+ γ))

(2 cos(α) + 1) sin
(
3α
2 + β + γ

)
− sin

(
α
2 − β + γ

)
=

sin (γ) + 2 sin (β)

cos (β) sin (γ) + 2 cos (γ) sin (β)



Now use abbreviation b = sin (β) and c = sin (γ). Set b = c = 5
5+ε ,

and observe that

lim
α→0

Rα∞ (β, γ)

sin (α)
= 5 + ε

while

lim
α→0
Eα∞ (β, γ) =

ε+ 5√
ε(ε+ 10)

≤ 2√
ε
.

Finally, we note that we can achieve the same competitive ratio, and
slightly improve the required energy. For this, we need to set alternatively
b = 2

λε+2 and c = 3
−λε+ε+3 . For each λ ∈ [0, 1] it is easy to see that

2/b + 3/c = 5 + ε. Choosing also λ = 3/11 minimizes the energy, which
becomes

lim
α→0
Eα∞ (β, γ) =

41ε+ 198

3
√
3
√
ε(3ε+ 44) + 16

√
ε(4ε+ 33)

.

ut

4 Conclusion

We introduced and studied a new geometric variant of symmetric ren-
dezvous that we call Symmetric Rendezvous in a Disk (SRD). Our main
contribution pertains to the algorithmic reduction of known suboptimal
algorithms for the classic Symmetric Rendezvous problem on a Line (SRL)
to SRD. Since SRD can also be interpreted as a variant of SRL in which
agents are equipped with additional advice, our results demonstrate how
this advice can be beneficial to the expected rendezvous time, beating in
some cases the conjectured best possible time for SRL. Special to SRD is
also that, unlike in SRL, our algorithms induce bounded worst case (en-
ergy) performance. Motivated by this, we also studied energy-efficiency
tradeoffs, and we showed that, somehow surprisingly, one can achieve ren-
dezvous with limited energy (and with probability 1) by compromising
only slightly on the expected rendezvous time.

Our techniques can be generalized for all known improved rendezvous
protocols for SRL, however optimal reductions will be challenging to
obtain. Nevertheless, it is interesting to investigate heuristic reductions,
which we leave as an open research direction. Other interesting variants
of our problem include the introduction of more agents, or relaxations of
the notion of advice that we are using.
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A Omitted Lemmata (and Their Proofs)

Lemma 7. Let (β, γ) be a critical point of Rα1 , and set ∆ = 2α+γ. Then
cos∆ = 2

3 .

Proof. Let β, γ be a critical point of Rα1 . Then

∂Rα1 (β, γ)
∂γ

=
d csc∆

4
(−3 cos∆+ 2) = 0,

and thus as d is nonzero, it must be true that cos∆ = 2
3 . ut



Lemma 8. Any critical point β, γ of Rα1 satisfies

cos(Θ) =
3

4
cos(γ), (18)

where Θ = α+ β.

Proof. Let β, γ be a critical point of Rα1 . Then

∂Rα1 (β, γ)
∂β

= w cscβ
(
−y cosΘ + 3

4d+
1
2x
)
= 0,

and thus cosΘ = 3
4

(
d
y +

2x
3y

)
= 3

4

(
sin 2α csc∆+ 2

3 sin γ csc∆
)
. Substitut-

ing in 2
3 = cos∆ (by Lemma 7) gives

cosΘ = 3
4 (sin 2α+ cos∆ sin γ) csc∆,

which simplifies to cosΘ = 3
4 cos γ. ut

Lemma 9. The critical points β, γ of Lemma 8 are local minima of Rα1 .

Proof. Let β, γ be a critical point ofRα1 . Now, taking the second derivative
of Rα1 (β, γ) with respect to γ gives

∂2Rα1 (β, γ)
∂γ2

= d(34 cot
2∆− csc∆ cot∆+ 3

4 csc
2∆),

the right hand side of which simplifies to 2d cot∆(−1
2 csc∆+ 3

4 cot∆)+ 3
4d.

Observe that −1
2 csc∆ + 3

4 cot∆ =
∂Rα1 (β,γ)

∂γ = 0 at a critical point, and
thus

∂2Rα1 (β, γ)
∂γ2

= 3
4d.

Now,
∂Rα1 (β, γ)

∂β
= w

(
− cotΘ +

(
3
4d+

1
2x
)
cscβ

)
,

which simplifies to

∂Rα1 (β, γ)
∂β

= w cscβ(Rα1
(
β, γ)− cosβ

)
.

Differentiating and rearranging once more obtains

∂2Rα1 (β, γ)
∂β2

= −2 cotΘ∂R
α
1 (β, γ)

∂β
+ w = w



Similarly,
∂2Rα1 (β, γ)
∂βdγ

= w cscβ
∂Rα1 (β, γ)

∂γ
= 0.

Then the determinant of the Hessian of Rα1 (β, γ) is equal to 3
4wd,

which is positive; thus, Rα1 (β, γ) is locally convex and attains a minimum
at its unique critical point. ut

Lemma 10. The critical points of Rα∞ (β, γ) : R2 7→ R are the solutions
to the system

cosΘ = 3
4 cos γ

cos∆ = 2
3 cosβ,

where ∆ = β + γ and Θ = 2α+ γ.

Proof. Taking the first derivative of Rα1 (β, γ) with respect to β gives

∂Rα1 (β, γ)
∂β

=
1

2(2− x)

(
4
∂w

∂β
+ 3

∂d

∂β
+ 2Rα1 (β, γ)

∂x

∂β

)
.

By substituting in the appropriate derivatives ∂w
∂β = −w cot(α+ β), ∂d∂β =

wd cscβ, and ∂x
∂β = wx cscβ, we attain

∂Rα1 (β, γ)
∂β

=
w csc(β)

2(2− x)
(4y cos(Θ) + 3d+ 2xRα1 (β, γ)) .

This derivative is zero at β when and only when

Rα1 (β, γ) =
4y cos(Θ) + 3d

2x
(19)

Similarly, as ∂w
∂γ = 0, ∂d∂γ = −d cot(∆), and ∂x

∂γ = d csc(∆), then

∂Rα1 (β, γ)
∂γ

=
d csc(∆)

2(2− x)
(−3 cos(∆) + 2Rα1 (β, γ)) .

At a critical point, this derivative is zero and thus

Rα1 (β, γ) =
3

2
cos(∆). (20)

Assume that both equations (19) and (20) hold; then, equating both for-
mulas for Rα1 (β, γ) gives

4y cos(Θ) + 3d

2x
=

3

2
cos(∆).



As x is nonzero, y must also be nonzero and thus solving for cos(Θ)
gives

cos(Θ) =
3

4

(
x cos∆+ d

y

)
.

Substituting in formulas for d, x, and y gives

cos(Θ) =
3

4
cos γ. (21)

Now, returning to equation (20), substituting in a formula forRα1 (β, γ)
and solving for w gives

w = 3
4((2− x) cos∆− d).

Dividing both sides by y, substituting in explicit formulas, and simplifying
gives

sinα

sinβ
=

3

4

(
2 sinΘ cos∆

sinβ
− cos γ

)
,

which solves for

sinα = 3
2 sinΘ cos∆−

(
3
4 cos(γ)

)
sinβ.

Using (21), we obtain

sinα = 3
2 sinΘ cos∆− cosΘ sinβ,

which with some minor trigonometric manipulation gives

cos∆ = 2
3 cosβ.

ut

Lemma 11. Let β, γ be as described in the statement of Theorem 5. Then,
for all α ∈ (0, 3/4), we have that

0 ≤ β, γ ≤ π/2− α.

Proof. The lemma is established numerically by plotting β, γ against π/2−
α, see Figure 5.

ut

Lemma 12. Let β, γ be as described in the statement of Theorem 5. Then
both eigenvalues of ∇2R∞

(
β, γ

)
are strictly positive for all 0 < α < 1/2,

and hence critical values β, γ minimize R∞
(
β, γ

)
.
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Fig. 5. Horizontal axis corresponds to α. Graph depicts the behaviour of β = β(α)
(blue curve) and of γ = γ(α) (yellow curve) as described in (11), (12), respectively, of
Theorem 5, against π/2− α (green line).

Proof. Rα∞ (β, γ) is given by (2) of Lemma 2, so for all β, γ, we can com-
pute ∇2Rα∞ (β, γ). In the resulting 2× 2 matrix, we substitute the values
β, γ, as in (11), (11) of Theorem 5 to obtain∇2Rα∞

(
β, γ

)
whose entries de-

pends exclusively on α. Using symbolic software, we calculate both eigen-
values of ∇2Rα∞

(
β, γ

)
, and we verify that they are both strictly positive,

for all 0 < α < 1/2, see Figure 6.
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Fig. 6. The two eigenvalues of ∇2Rα∞
(
β, γ

)
as a function of α.
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