
HDOT - an Approach Towards Productive
Programming of Hybrid Applications

Jan Cieskoa, Pedro J. Mart́ınez-Ferrera,∗, Raúl Peñacoba Veigasa, Xavier
Teruela, Vicenç Beltrana

aBarcelona Supercomputing Center (BSC)

Abstract

A wealth of important scientific and engineering applications are config-
ured for use on high performance computing architectures using functionality
found in the MPI specification. This specification provides application develop-
ers with a straightforward means for implementing their ideas for execution on
distributed-memory parallel processing computers. OpenMP directives provide
a means for operating on shared-memory regions of those computers. With the
advent of machines composed of many-core processors, the strict synchronisa-
tion required by the bulk synchronous parallel (BSP) communication model can
hinder performance increases. This is due to the complexity to handle load im-
balances, to reduce serialisation imposed by blocking communication patterns,
to overlap communication with computation and, finally, to deal with increasing
memory overheads. The MPI specification provides advanced features such as
non-blocking calls or shared memory to mitigate some of these factors. How-
ever, applying these features efficiently usually requires significant changes on
the application structure.

Task parallel programming models are being developed as a means of mit-
igating the abovementioned issues but without requiring extensive changes on
the application code. In this work, we present a methodology to develop hybrid
applications based on tasks called hierarchical domain over-decomposition with
tasking (HDOT). This methodology overcomes most of the issues found on MPI-
only and traditional hybrid MPI+OpenMP applications. However, by empha-
sising the reuse of data partition schemes from process-level and applying them
to task-level, it enables a natural coexistence between MPI and shared-memory
programming models. The proposed methodology shows promising results in
terms of programmability and performance measured on a set of applications.

Keywords: concurrency, parallel programming, hybrid programming, MPI,

I c©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

IIPublished journal article available at https://doi.org/10.1016/j.jpdc.2019.11.003
∗Corresponding author
Email address: pedro.martinez-ferrer@bsc.es (Pedro J. Mart́ınez-Ferrer)

Accepted manuscript in Journal of Parallel and Distributed Computing November 5, 2019

ar
X

iv
:1

91
2.

08
46

4v
2

 [
cs

.D
C

]
 1

9
D

ec
 2

01
9

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jpdc.2019.11.003

OpenMP, OmpSs-2

1. Introduction

Non-coherent, distributed memory is a common characteristic of modern
HPC systems. Such memory organisation allows to assemble large systems
from commodity components which reduces cost, increases versatility of use
and offers flexibility to quickly adapt to application trends. This is referred to
as cluster architecture.

MPI [1] is a commonly used programming specification of such systems. In
this scenario, programmers work at the process level (i.e. MPI rank), where each
of these processes has its memory address space and therefore require explicit
communication for data exchange. The programmer uses functions such as
MPI SEND or MPI RECV to exchange and synchronise data between processes.
In other words, the developer implements data distribution and coherence, such
that this functionality becomes part of the algorithm. Designing algorithms with
concurrency in mind makes software development more difficult, which can be
overwhelming for novice programmers. However, it turns out that the nature
of MPI, and imperative parallel programming models in general, obliges the
developer to consider concurrency early on in the development. Typically this
results in good design that favors concurrency and scalability. As a consequence,
many MPI-only applications, i.e. those whose parallelism is implemented using
functionality from the MPI specification, tend to achieve better performance
scalability compared to applications using incremental parallelism.

Algorithmic design for performance and scalability typically follows one rule:
“always keep the processors busy advancing the computation”. Under the hood
this means: (i) implementing ordering of computation and communication for
overlaps, (ii) ensuring balanced execution, (iii) keeping overheads low and, fi-
nally, (iv) creating enough parallelism. It turns out that this is becoming a real
challenge since the increasing number of processor cores per node1 makes it more
and more difficult to achieve scalability on these systems. This is due to the
fact that, as the number of processes within the same node increases, efficiency
of each MPI process drops [2]. The main causes for this behaviour are data
overheads, system heterogeneity, load imbalances and suboptimal communica-
tion patterns, all of which are difficult to eliminate or optimise. In such cases,
it can be beneficial to combine the message-passing programming model to ex-
ploit internode parallelism with another shared-memory programming model to
exploit intranode parallelism [3, 4].

1Currently, the Intel Skylake processor architecture supports up to 28 physical cores (the
recently announced Cascade Lake processor will double this number) whilst the already avail-
able AMD EPYC 7742 CPU features 64 physical cores.

2

1.1. Are shared-memory programming models the right solution?

On shared memory programming models, threads are building blocks to
exploit parallelism within one MPI process. On a shared data environment, load
balancing techniques can be efficiently implemented, there is no need to replicate
extra data and all the threads have direct access to all the data environment
of their MPI process. However, to benefit from threading, an existing MPI-
only code must be adapted. A variety of ways exist to express concurrency on
thread-level of which OpenMP is a particularly popular one (see Section 2.1).
An application that combines multiple programming models is called hybrid
application.

In practice, hybrid codes can indeed offer an improvement over MPI-only
codes on modern many-core systems [5]. However, it is up to the skill of the
programmer to combine both efficiently to achieve performance gains. In case
of OpenMP, the programmer is in charge of creating, using and closing parallel
regions (fork-join parallelism) and of synchronising threads with MPI calls to
implement a correct communication pattern. The process of adding thread-level
parallelism to an MPI application is characterised by a sequence of “looking for
code sections with significant duration” and then “adding annotations to par-
allelise these code sections”. This is strenuous and as a result, hybrid applica-
tions often end up with interleaved execution of concurrent computation phases
(OpenMP) and communication phases with less parallelism (MPI), which limits
the maximum speed-up of the entire application in accordance to Amdahl’s law.
We call this two-phase programming.

It can be readily seen that it becomes necessary to define a methodology
that helps developers to avoid the limitations of two-phase programming, allow-
ing a more natural coexistence between MPI and shared-memory programming
models.

1.2. From processes to tasks

In this work we present HDOT, hierarchical domain over-decomposition with
tasking, a methodology that simplifies hybrid programming and improves the
execution performance of such applications.

HDOT applies the domain decomposition of an existing MPI application
at process-level to thread-level. At this thread-level, domains are decomposed
into subdomains and executed by tasks. HDOT maximises pattern and code
reuse and adds the advantages of tasking. Tasking simplifies the development
of hybrid applications by eliminating two-phase programming and by reducing
the complexity of synchronisation of parallel work and MPI calls.

The HDOT methodology defines a top-down approach where the developer
uses tasks to encapsulate work from a coarse-grained level down to tasks as
small as individual send and receive MPI messages. This includes the definition
of subdomains and support of common algorithmic patterns such as reductions
and global variables.

The OmpSs-2 programming model (see Section 2.2) eliminates the notion
of threads and emphasises the use of a task as a building primitive for con-
currency. Tasks are expressed declaratively and can encapsulate computation

3

and MPI communication alike. The task-aware MPI (TAMPI) library (see Sec-
tion 2.3) ensures the correct execution of MPI calls within tasks. Finally, the
programming model’s support for data-flow programming allows a streamlined
execution of computation and communication tasks.

In the next chapter we provide useful background information on today’s
challenges of MPI and hybrid programming, give a short introduction to OmpSs-
2 and TAMPI, and discuss the related work. Next, we present the aforemen-
tioned methodology and apply it on a set of applications. Finally, we present
performance results achieved with MPI+OmpSs-2, MPI+OpenMP and MPI-
only implementations.

2. Background

2.1. MPI and OpenMP

Threading allows to reduce the number of MPI processes per node while
maintaining the same degree of concurrency of the application. OpenMP [6] is a
widely known multi-threaded shared-memory programming model. It allows to
parallelise applications by using a set of compiler directives, library routines and
environment variables. OpenMP is flexible and supports most parallel patterns:
from the traditional work-sharing approach to the OpenMP accelerator and
tasking models. However, taking a closer look at existing codes shows that the
prevalent use of OpenMP is the expression of data-parallel algorithms with an
execution model called fork-join. Since OpenMP 3.0 [7], it is possible to express
dynamic task parallelism through task generating constructs (including task,
taskgroup, taskyield and taskwait). A task is a unit of work used to express
portions of code that could be executed concurrently by the participant threads
in accordance to certain restrictions.

Code 1: Representative MPI-only application with interleaved point-to-point and collective
communication.

1 int N = rank; // assign process ID
2 T D = getDomain(Domain, N); // set up domain for current process
3 for(auto t : timesteps){
4 comm(D);
5 f(D); g(D);
6 collective_comm(D);
7 h(D);}
8 MPI_Barrier(...); // synchronise processes

Code 1 shows an MPI-only application where a sequence of functions is
called in a simulation loop over a predefined set of time steps. In this code
example, D is an object that handles data associated with the current MPI
domain whilst comm and collective comm contain point-to-point and collective
MPI communication, respectively. Once the execution of the simulation loop
finishes, processes synchronise at an MPI Barrier. Code 2 shows the same
algorithm enhanced with OpenMP. As the number of processes is reduced in

4

(a) (b)

Figure 1: Execution diagram of an application with interleaved communication and com-
putation using (a) MPI-only and (b) MPI+OpenMP implementations. The hybrid version
illustrates the fork-join parallel execution of the compute functions (parallel) and its ability
to balance load among threads.

favour of threading, the compute functions f, g and h are now placed inside
a parallel region and executed on each thread (fork). Threaded execution
requires to adjust the implementations of these functions, hence we name them
f parallel, g parallel and h parallel. At the end of each parallel region,
an implicit barrier synchronises threads (join). Such thread synchronisation
is necessary in order to maintain the correct ordering of communication and
computation.

Code 2: A hybrid application implemented with MPI and OpenMP showing two parallel
regions and the respective synchronisation points at thread- and process-level.

1 int N = rank; // assign process ID
2 T D = getDomain(Domain, N); // set up domain for current process
3 for(auto t : timesteps){
4 comm(D);
5 #pragma omp parallel
6 {f_parallel(D); g_parallel(D);} // synchronise threads (join)
7 collective_comm(D);
8 #pragma omp parallel
9 h_parallel(D);} // synchronise threads (join)

10 MPI_Barrier(...); // synchronise processes

Figure 1 shows an execution diagram of the fork-join parallelism of MPI-only
and MPI+OpenMP implementations. The execution diagram also illustrates,
on the one hand, the additional amount of data copies of the MPI-only version
(multiple data objects) and, on the other hand, the ability of load-balancing of
the hybrid version.

2.2. Tasking with OmpSs-2

OmpSs-2 [8] (OMP SuperScalar v2) is a high-level, task-based, parallel pro-
gramming model for shared-memory systems developed at the Barcelona Su-

5

percomputing Center (BSC). It consists of a language specification, a source-to-
source compiler for C, C++ and Fortran as well as a runtime. OmpSs-2 defines
a set of directives for a descriptive expression of tasks. Further, it allows the
programmer to annotate task parameters with in, out and inout clauses that
correspond to the input, output or the combination of input-output access type
semantic of these parameters within a task. Each access type clause receives a
list of parameters:

#pragma oss task [in(par-list) | out(par-list) | inout(par-list)]

The access type establishes a producer-consumer relationship between tasks,
also called task dependency or data-flow. With this information the runtime
is capable of scheduling tasks automatically that maintain correctness of code
while alleviating the programmer of implementing manual synchronisation. Fur-
thermore, the taskwait construct allows task synchronisation and instructs the
calling thread to wait on all previously created tasks. While this is similar to
tasking in the recent specification of OpenMP, the OmpSs-2 runtime implements
a different execution model.

In OmpSs-2, every application starts with a predefined set of execution re-
sources, that is, an explicit parallel region does not exist. This view avoids
the exposure of threading to the programmer as well as the requirement to han-
dle an additional scope as in OpenMP. At compile time, the OmpSs-2 compiler
processes pragma annotations and generates an intermediate code file. This file
includes both user code and additional code for task generation, synchronisation
and error handling. In the final step of compilation, OmpSs-2 invokes the native
compiler to create a binary file.

At runtime, the main function is executed, which creates tasks and stops
at (explicit or implicit) synchronisation points. Task creation is composed of
two parts: (i) the creation of the task object itself that carries all its descriptive
information and (ii) its data dependencies. Once a task object has been created,
the runtime inspects the dependency graph to determine the relationship with
respect to previously created tasks. If a dependency has been found, a repre-
sentative node is added to the graph. In the opposite case, the task is placed
into a ready-queue. Tasks in the ready-queue are picked up by worker threads,
removed from the queue and executed.

Interestingly, one question arises: is it possible to leverage the dynamic, data-
flow driven task execution in OmpSs-2 to improve the performance of MPI-only
applications? In the following section we present TAMPI, a task-aware MPI
library, which enables a natural coexistence of the OmpSs-2 shared-memory
programming model with the MPI distributed-memory specification.

2.3. Task-aware MPI

The task-aware MPI (TAMPI) library [9, 10] extends the functionality of
standard MPI libraries by providing new mechanisms for improving the inter-
operability between parallel task-based programming models, such as OpenMP
or OmpSs-2, and both blocking and non-blocking MPI operations.

6

By following the MPI specification, programmers must pay close attention
to avoid deadlocks that may occur in hybrid applications (e.g. MPI+OpenMP)
where MPI calls take place inside tasks. This is given by the out-of-order exe-
cution of tasks that consequently alter the execution order of the enclosed MPI
calls. The TAMPI library ensures a deadlock-free execution of such hybrid ap-
plications by implementing a cooperation mechanism between the MPI library
and the parallel task-based runtime system.

TAMPI provides blocking [9] and non-blocking [10] modes. The blocking
mode targets the efficient and safe execution of blocking MPI operations (e.g.
MPI Recv) from inside tasks, while the non-blocking mode focuses on the effi-
cient execution of non-blocking or immediate MPI operations (e.g. MPI Irecv),
also from inside tasks.

TAMPI is compatible with mainstream MPI implementations that support
the MPI THREAD MULTIPLE threading level, which is the minimum require-
ment to provide its task-aware features. This library is a refinement of the
hybrid MPI+SMPSs approach presented in [11]. We consider it as a key feature
towards achieving performance and scalability of hybrid applications on modern
systems today. It is worth mentioning that it is still the user’s responsibility to
prevent races when threads within the same application post conflicting commu-
nication calls. Furthermore, we would like to emphasise that the development
of hybrid applications based on tasks can be fully achieved without using this
library, but at the expense of a greater programming effort. This is briefly
discussed in Section 4.3.

2.4. Related work

MPI-based parallelisation approaches try to improve performance and scala-
bility of applications by overlapping communication and computation [12, 13, 14]
and by accelerating the execution of the critical path of the program [15, 16,
17, 18].

Although the MPI-only approach is still one of the most popular among
the set of parallelisation alternatives within the high performance computing
community, programmers will have to exploit hybrid solutions (MPI+X) that
allow a better use of hardware resources in order to reach the so-called exascale
era [19]. In general, these hybrid approaches also try to enhance the application
behaviour by overlap and critical path programming techniques [5, 11].

SMPSs [11] enables communication and computation overlap by taskifying
MPI calls and adding a restart functionality which allows re-scheduling tasks
waiting for a certain condition (similarly to a mandatory taskyield with extra
scheduler semantics). In our approach, this functionality is transparently pro-
vided by the TAMPI library. Furthermore, in SMPSs the programmer needs
to explicitly split a blocking call into a non-blocking call to issue the com-
munication request and wait for the data, while TAMPI does not require this
transformation from the programmer.

HCMPI [5] unifies the Habanero-C intranode task parallelism with MPI in-
ternode parallelism and extends the tasking model by allowing regular computa-
tion tasks to create asynchronous communication tasks. In HCMPI’s data-flow

7

model, synchronisation between computation and communication tasks can be
achieved through the specific await clause and other specific MPI-like services
(e.g. wait, waitall or waitany).

Both SMPSs and HCMPI require a communication thread dedicated to ex-
ecute MPI calls, while our methodology does not force how to implement the
communication progress. Moreover, both approaches are focused exclusively on
the communication pattern, independently of how the computational decompo-
sition is carried out. We consider that these two elements (computation and
communication) are so dependent the one to the other that they should be
interrelated when applying any parallel decomposition approach.

The methodology presented in this work is also aligned with those build
on top of task-based runtime systems (also referred to as user-level threads)
as a second level of parallelism. The main reason for using this approach is
that it indeed represents a more natural way to convert MPI code to tasking
of a shared-memory parallel programming model. Among those related works
proposing task-parallelism, we would like to highlight the task parallel over-
decomposition (TPOD) approach [4] due its similarity to the present work.

TPOD combines computation and communication operations in the same
task in a way that maintains the traditional MPI coding style. This strategy
is based on over-decomposing the domain that has been assigned to a set of
cores (i.e. MPI processes) into a set of smaller subdomains (i.e. tasks). The
main difference of TPOD tasks with respect to regular tasks is found when the
code reaches a blocking communication call. In this situation the task may be
swapped out, allowing another task to be swapped in and continue with the
execution. At some point, the communication-blocked task will be swapped
back in and continue with its normal execution.

Although the TPOD approach also uses tasks to overlap computation and
communication phases, it relies on global barriers between different iterations.
This strategy restricts the degree of potential concurrency that the application
can reach, being better to rely on fine-grained synchronisation such as the task
dependency system. MPI+OmpSs-2 naturally exploits nesting capabilities to
balance the trade-off between grain size and the degree of concurrency based on
a top-down approach.

3. HDOT: Hierarchical Domain Over-decomposition with Tasking

HDOT leverages the parallelisation and domain decomposition schemes of
the original MPI application by promoting their reuse on task-level. In this
scheme, domains are split hierarchically, first at process-level (MPI), down to
task-level (shared memory) at which domains are referred to as subdomains.

Applying a hierarchical over-decomposition with tasking follows a set of un-
derlying ideas. Firstly, it minimises requirements for code changes and allows
reuse of original MPI code and its data partitioning. Secondly, it decouples tight
synchronisation between units of work and MPI communication. And lastly, it
emphasises the use of a top-down approach where concurrency is added on differ-

8

ent nesting levels to create opportunity for concurrency at a small development
effort. We discuss this in three steps as follows.

3.1. Taskifying code

Let us continue with Code 2. In this code example, the maximal speed-
up is limited by the fork-join pattern with sequential sections and the tight
synchronisation between computation and communication. To apply the HDOT
methodology, we start with the original, MPI-only Code 1. In the first step,
we taskify code sections. That is, we start adding the OmpSs-2 task pragmas
to the code, stating that the enclosed code is adept for concurrent execution.
It is important to point out that, by taskifying most of the application code,
the number of synchronisation points gets reduced. The execution of tasks in
the correct order is guaranteed by following the application data-flow. Code 3
is based on the previous example but now includes tasks with their respective
data dependencies.

Code 3: Sample code showing the top-down parallelisation of computation and communication
of an MPI application with OmpSs-2 tasks.

1 int N = rank; // assign process ID
2 T D = getDomain(data, N); // set up domain for current process
3 for(auto && t : timesteps){
4 #pragma oss task inout(D)
5 comm(D);
6 #pragma oss task inout(D)
7 {f(D); g(D);}
8 #pragma oss task inout(D)
9 collective_comm(D);

10 #pragma oss task inout(D)
11 h(D);}
12#pragma oss taskwait // synchronise threads
13 MPI_Barrier(...); // synchronise processes

In this case, the non-blocking execution of MPI calls by including them in
tasks and in the application data-flow is an important feature towards scalability
and programmability. In Code 3, dependencies of the type inout serialise the
execution of the three tasks. The code thus requires a finer task granularity via
subdomains, which is discussed in the following section.

3.2. Adding subdomains

To increase the degree of concurrency of the application shown in Code 3,
we implement what we refer to as a domain over-decomposition that splits
domains into subdomains of arbitrary sizes. On the one hand, a domain is a
physical data partition implemented originally by an MPI application; on the
other hand, a subdomain is a virtual data partition implemented for the use
of a shared-memory programming model with the aim of increasing the node-
level parallelism. Subdomains follow the same idea of data partitioning found
on process level. In case of subdomains, tasks and task functions operate on

9

smaller, process-local data with occasional communication. The implementation
of those functions remains unchanged.

Code 4: Subdomains allow to reuse the domain partitioning at process-level but also require
to check for boundary subdomains and the use of weak dependencies.

1 int N = rank; // assign process ID
2 T D = getDomain(data, N); // set up domain for current process
3 for(auto && t : timesteps){
4 #pragma oss task weakinout(D)
5 for(auto && subdomain : D.getSubDomains()){ // subdomain loop
6 i f (subdomain.isBoundary()){
7 #pragma oss task inout(subdomain)
8 comm(subdomain);}}
9 #pragma oss task weakinout(D)

10 for(auto && subdomain : D.getSubDomains()){ // subdomain loop
11 #pragma oss task inout(subdomain)
12 {f(subdomain); g(subdomain);}}
13 #pragma oss task inout (D[0:D.getNumSubDomains()-1])
14 collective_comm(D[0;NB-1]);
15 #pragma oss task weakinout(D)
16 for(auto && subdomain : D.getSubDomains()){ // subdomain loop
17 i f (subdomain.isBoundary()){
18 #pragma oss task inout(subdomain)
19 h(subdomain);}}}
20#pragma oss taskwait // synchronise threads
21 MPI_Barrier(...); // synchronise processes

Code 4 shows the code changes made in order to accommodate subdomains.
It can be seen that we have added an additional task nesting level, i.e. subdomain
loops. On the inner nesting level, new tasks are created in for-loops where the
number of inner tasks corresponds to the number of subdomains. To add these
tasks to the data-flow of the application, each newly created task defines an
inout dependency over an individual subdomain. However, since encapsulating
tasks from the original code would still serialise the execution between loops,
we apply the concept of weak dependencies via the prefix weak.

Weak dependencies [20] is a key feature of the OmpSs-2 programming model
to allow a top-down parallelisation of code. They break coarse-grained depen-
dencies between tasks under the assumption that inner tasks will fulfill the de-
pendency requirements. This results in fine-grained dependencies between tasks
where a communication task over a subdomain can be immediately executed
once the prior computation task over that subdomain has finished. Towards the
end of the code sample, a collective MPI operation accesses all subdomains and
therefore defines an inout dependency over all of them. Furthermore, since not
all subdomains are equal in their correspondence to the geometric position in
the original domain, we have added the condition isBoundary to check whether
the subdomain type requires to communicate halo data with MPI.

Finally, it is worth noting two important aspects about subdomains and
their associated task granularity. Firstly, on task-based runtime systems the
number of tasks (which is inversely proportional to the task granularity) should
be preferably larger than the number of cores (even an order of magnitude

10

larger) available per MPI process to guarantee good scalability properties, that
is, to guarantee enough parallelism without incurring into runtime scheduling
costs. On the other hand, network saturation could become an issue with a fine
granularity, for instance, when tasks communicate message sizes smaller than
1 KB, approximately, on an InfiniBand network. In such case, the task granu-
larity associated with communication must be increased whilst maintaining the
same granularity for computation tasks.

3.3. Including support for common programming patterns

In many scientific codes, developers use reductions and global (static) vari-
ables. Reductions are operations that possess an identity element and can be
processed in parallel since each concurrent unit of work can initialise a private
set of operands to the neutral element following the same approach adopted
by OpenMP. We make use of these properties in HDOT and show how reduc-
tions are computed on task- and process-level. In those cases the reduction
value represents either an intermediate result at task-level or a final result on
process-level.

Code 5: Support for reductions and static variables requires the addition of the reduction
clause and local variables, respectively.

1 double residual = DOUBLE_MAX; // assign value to reduction variable
2 while(residual > norm){
3 double rlocal = DOUBLE_MAX;
4 #pragma oss task weakinout(D) inout(rlocal)
5 for(auto && subdomain : D.getSubDomains()){ // subdomain loop
6 #pragma oss task inout(subdomain) reduction(MAX:rlocal)
7 rlocal = MAX(rlocal, f(subdomain));}
8 #pragma oss task in(rlocal) inout(residual)
9 MPI_Allreduce(rlocal, residual ...);} // MPI collective comm.

10#pragma oss taskwait // synchronise threads
11 MPI_Barrier(...); // synchronise processes

Code 5 is a continuation of the code samples previously shown; however,
we have removed irrelevant code lines. The reduction clause instructs the
runtime system to provide a thread-safe storage such that the execution of any
two concurrent tasks is data-race free. Once all participating tasks complete,
the task calling the MPI Allreduce function can be executed. In OmpSs-2, a
reduction creates an input-output dependency implicitly.

In order to maintain the dependency between computation and communica-
tion tasks, we have added a stack-local reduction variable called rlocal. This
creates a dependency between the computation tasks that perform the reduction
and the communication task that perform the MPI Allreduce which defines an
input over that variable.

Algorithms often use global variables to store the state of the simulation
or geometric properties describing a domain. However, an over-decomposition
of the simulation domain requires stack-local variables that hold pointers to
such data structure for each task. For this purpose, Codes 4–5 implement the

11

functions getSubDomains and getNumSubDomains that return a set of subdo-
mains and their number, respectively. Using pragma annotations similar to
firstprivate for custom data types is not optimal as this typically invokes
the copy constructor of that object resulting in replication of potentially large
data.

4. Applications

In this section we present the performance results obtained for two bench-
marks, Heat2D and HPCCG, and one large application, CREAMS. The results
were obtained on the MareNostrum 4 supercomputer located at the Barcelona
Supercomputing Center (BSC). Each node of MareNostrum 4 is equipped with
a dual-socket Intel Platinum 8160 CPU featuring 24 cores per processor, 96 GB
of main memory and Intel’s Omni-Path HFI interconnect network.

4.1. Heat2D benchmark

Heat2D is a popular benchmark that simulates heat diffusion in two dimen-
sions. At each time step, a blocked Gauss-Seidel iterative solver approximates
a solution of the Poisson equation. The continuous problem is discretised with
finite differences. The resulting calculation for each discrete point is defined as:
Ui,j = (Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1)/4.

Heat2D is characterised by its stencil operation where each point update
requires the access to the corresponding left, right, top and bottom neighbouring
points.

Code 6: Pseudocode of the Heat2D benchmark.

1 N = rank; // assign process ID
2 M = ranks; // assign total number of processes
3 T D = setup(N); // setup simulation domain for current process
4 T first, last; // halos
5 while(residual > norm){
6 i f (N > 0) {send(first, N-1); receive(last, N-1);}
7 i f (N < last) {receive(first, N+1);}
8 solveBlock(D, first, last, residual ...);
9 i f (N < last) {send(last, N+1);}

10 allReduce(residual ...);}

Code 6 gives a basic idea of how the heat benchmark is implemented, in-
cluding the communication of halos and the actual computation carried out
by the function solveBlock, whilst Figure 2a shows the stencil operation and
a visual representation of the progression of the algorithm mapped over the
same data set used for benchmarking later in this section. In this figure, the
simulation space is divided in 4 MPI domains (ranks). During execution, each
MPI rank contains four subdomains (blocks) and each subdomain is updated by
one OmpSs-2 task. Dependencies that originate from the stencil operation for
each element can be equally applied to define dependencies at block or process

12

(a)

(b)

Figure 2: (a) Heat2D stencil operation results in a wave-front progression on process- and
thread-level (its efficient execution requires fine-grained dependency resolution as well as com-
putation and communication overlapping); (b) Heat2D traces on four nodes of MareNostrum
4 show massive differences in resource utilisation and performance between a traditional fork-
join approach using MPI+OpenMP (top) and our HDOT implementation using MPI+OmpSs-
2 (bottom).

Nodes Perf.M+OSs2 Perf.M+OMP Perf.M S.M+OSs2 S.M+OMP S.M
1 6561 2836 2479 2.6 1.1 1.0
2 12 729 2096 4306 5.1 0.8 1.7
4 25 231 2134 6809 10.2 0.9 2.7
8 48 302 2757 9555 19.5 1.1 3.9

16 99 032 4259 11 956 39.9 1.7 4.8
32 145 547 5839 13 211 58.7 2.4 5.3

Table 1: Heat2D execution performance measured in giga updates per second (more is better)
for MPI+OmpSs-2 (M+OSs2), MPI+OpenMP (M+OMP) and MPI-only (M) implementa-
tions. Speed-up numbers (S) are normalised by the execution performance of the MPI-only
version on one node. For the MPI-only version the number of MPI processes or ranks equals
the total number of cores.

level. That is, MPI processes 1 and 2 can only start when blocks 1 and 4 of
process 0 have finished computation and when the associated communication
tasks (marked by the dotted double-sided arrows in Figure 2a) have completed
as well. Hybrid code implementations of this particular benchmark (not shown
here for the sake of conciseness) can be found in an early form in [9].

Figure 2b shows a trace of the execution of the Heat2D application on four
nodes of the MareNostrum 4 supercomputer implemented with MPI+OpenMP
(top) and MPI+OmpSs-2 (bottom). It can be readily seen that the implemen-
tation using OpenMP (fork-join execution model) is not capable of generating
enough parallelism in order to maintain all the processor cores busy.

Table 1 shows the performance results for three parallel implementations of
this application using up to 32 nodes. The implementation with OmpSs-2 and
the TAMPI library allows to streamline the interleaved execution of computation

13

and communication tasks shown in Code 6 and avoid any form of thread-local
(OpenMP) or process-wide (MPI) synchronisation. On the other hand, the
hybrid MPI+OpenMP implementation requires the presence of a thread barrier
(#pragma omp barrier) at the end of each loop that processes the local blocks
(solveBlock). This way, any communication task for a particular halo can only
be executed once computations of all blocks finish their execution. Similarly,
the MPI-only implementation shows significant slow-downs due to the use of
blocking MPI calls in order to maintain a correct ordering of computation and
halo exchange. Authors’ previous publications [9, 10] present a deeper study
about the performance of each of these versions, including the results obtained
by directly using the non-blocking MPI services.

4.2. HPCCG benchmark

The high performance computing conjugate gradient (HPCCG)[21] bench-
mark consists of a synthetic sparse linear system that is mathematically similar
to finite element, finite volume or finite difference discretisations of a three-
dimensional heat diffusion problem on a semi-regular grid. The problem is
solved using domain decomposition with an additive Schwarz preconditioned
conjugate gradient method where each subdomain is preconditioned using a
symmetric Gauss-Seidel sweep.

The HPCCG benchmark generates a three-dimensional partial differential
equation model problem and computes the preconditioned conjugate gradient
iterations from the resulting sparse linear system. The global domain dimensions
are nx × ny × (nz × np), where nx × ny × nz are the local subgrid dimensions
assigned to each MPI process and np the number of MPI processes. In this
work, each MPI process or domain is stacked in the z-direction.

Code 7: HPCCG body loop using an MPI-only implementation.

1 double rtrans, oldrtrans, alpha, beta;
2 double r[], p[], Ap[], x[];
3 HPC_Sparse_Matrix A;
4 for(i = 0; i < max_iter /* and normr > tolerance */; ++i){
5 i f (i == 1){waxpby(1.0, r, 0.0, r, p);} // p = 0.0*r + 1.0*r
6 else{
7 oldrtrans = rtrans;
8 ddot(r, r, &rtrans); // dot_product(r, r) and MPI_Allreduce(rtrans)
9 beta = rtrans/oldrtrans;

10 waxpby(1.0, r, beta, p, p);} // p = 1.0*r + beta*p
11 normr = sqrt(rtrans); // early exit
12 exchange_externals(A, p); // communication
13 HPC_sparsemv(A, p, Ap); // matrix_x_vector(A, p) = Ap
14 ddot(p, Ap, &alpha); // dot_product(p, Ap) and MPI_Allreduce(alpha)
15 alpha = rtrans/alpha;
16 waxpby(1.0, x, alpha, p, x); // x = 1.0*x + alpha*r
17 waxpby(1.0, r, -alpha, Ap, r);} // p = 1.0*r - alpha*r

Halos are computed at the beginning of the program and exchanged at each
iteration of the algorithm, as shown in line 14 of Code 7. On the one hand,

14

Figure 3: HPCCG paraver traces for MPI+OpenMP (top) and MPI+OmpSs-2 (bottom)
implementations obtained with one node of MareNostrum 4.

the MPI+OpenMP approach consists of parallelising each operation using the
pragma omp parallel for clause. On the other hand, the MPI+OmpSs-2 ap-
proach divides all the data structures in subdomains that can be executed in
parallel via tasks.

Code 8: HPCCG (simplified) body loop using an MPI+OmpSs-2 implementation.

1 for(i = 0; i < max_iter /* and normr > tolerance */; ++i){
2 i f (i == 1){
3 for(auto &&subd : D.getSubDomains()){
4 #pragma oss task in(r[subd.from:subd.to]) out(p[subd.from:subd.to])
5 waxpby(subd, 1.0, r, 0.0, r, p);}}
6 else{
7 for(auto &&subd : D.getSubDomains()){
8 #pragma oss task in(r[subd.from:subd.to]) reduction(+:rtrans_L)
9 ddot(subd, r, r, &rtrans_L);}

10 #pragma oss task in(rtrans_L) out(rtrans, beta)
11 {MPI_Allreduce(&rtrans_L, &rtrans); beta = rtrans/oldrtrans;}}
12 exchange_externals(A, p); // tasks made inside
13 for(auto &&subd : D.getSubSubDomains()){
14 #pragma oss task in(p[subd.S:subd.E]) out(Ap[subd.S:subd.E]) reduction(+:alpha_L)
15 {HPC_sparsemv(A, subd, p, Ap); ddot(subd, p, Ap, &alpha_L);}}
16 #pragma oss task in(alpha_L) out(alpha)
17 {MPI_Allreduce(&alpha_L, &alpha); alpha = rtrans/alpha;}}

A snipet of the hybrid implementation of HPCCG using HDOT is illustrated
in Code 8. It is worth noting that some variables, such as rtrans and alpha,
need to be reduced in order to share them with other MPI processes. Moreover,
it is necessary to take out the call to MPI Allreduce inside the function ddot

due to the need of a local reduction. The most computationally demanding
operation, i.e. HPC sparsemv, has been further divided by using nesting within
subdomains, allowing to expose more parallelism.

Figure 3 shows a trace of HPCCG implemented with MPI+OpenMP fol-

15

(a) (b)

Figure 4: (a) HPCCG performace and (b) efficiency for different parallel implementations
using up to 50 nodes (2400 cores) of MareNostrum 4.

lowing a two-phase approach (top) and MPI+OmpSs-2 following the HDOT
approach (bottom). The MPI+OmpSs-2 version has a total of 32 subdomains,
where nesting is applied on the HPC sparsemv operation in order to feed the 48
CPUs available in one node.

Figures 4a–4b show the performance and efficiency of HPCCG for three
parallel implementations running on up to 50 nodes of MareNostrum 4. The
MPI+OmpSs-2 version allows interleaving computation between subdomains by
using the TAMPI library thus avoiding unnecessary waits, whilst the OpenMP
version must wait for each parallel computation due to an implicit fork-join
barrier.

4.3. CREAMS application

The compressible reactive multi-species (CREAMS) partial differential equa-
tion solver [22] is a computational fluid dynamics application that solves the full
Navier-Stokes equations associated to multi-especies gas mixtures. CREAMS is
an MPI-only application written in Fortran and based on the finite difference
method) that is employed for direct numerical simulations and large eddy simu-
lations. This application has been extensively executed on the IBM BlueGene/Q
located at IDRIS using up to 105 MPI processes for grids with approximately
109 points, see for instance [23].

CREAMS can be run in 1D, 2D and 3D Cartesian grids and supports MPI
domain decomposition in the three spatial directions. It utilises sophisticated,
eighth-order accurate spatial discretisation schemes (i.e. WENO stencils) re-
quiring four halo elements (Nh = 4). A third-order accurate time integration
is performed explicitly and in three consecutive stages, which requires at least
three point-to-point MPI communication per time step. In the original MPI ap-
plication, halos are exchanged in one piece at the end of the integration stage.
It is worth noting that each halo element consists of a (non-contiguous in mem-
ory) list of Nv = 5 + Nα double-precision real numbers, where Nv is the total

16

number of independent variables of the problem and Nα the number of species
(which is about tens or even hundreds for real-world applications).

The core of CREAMS can be considered as a time-loop calling the Runge-
Kutta 3 (rk3) subroutine that performs the time integration. This subroutine
consists mainly of a loop of three iterations, inside of which there are four
differentiated phases: (i) data preparation (lines 2–5), (ii) WENO stencils (line
6), (iii) data update (line 7) and (iv) halo communication (line 8) as illustrated
in Code 9 corresponding to the original, MPI-only application.

Code 9: CREAMS original, MPI-only Runge-Kutta 3 subroutine.

1 do rk = 1, 3 ! Runge-Kutta 3 loop
2 i f (rk==1) v0(sx:ex,sy:ey,sz:ez,1:nv) = v(sx:ex,sy:ey,sz:ez,1:nv) ! copy v into v0
3 call upd_prims (thd, v, W_i, T, cp, ha) ! update primitives
4 call upd_boundaries (inp, thd, adi, ctime + cdtime*tk3s, & ! update boundary
5 x,y,z,dx_i,dy_i,dz_i,T,W_i,cp,ha,v) ! conditions
6 i f (ndim >= 1) call euler_LLF_x (thd, T, W_i, cp, ha, v, fhat_x) ! WENO stencil
7 call upd_v (inp,bk3s,ck3s,cdtime,dx_i,dy_i,dz_i,fhat_x,fhat_y,fhat_z,v0,v) ! update v
8 call comm_cons_buffers (v) ! halo communications: use MPI subarray datatypes
9 end do

Code 9 also represents the highest level of application code, with compu-
tation and communication parts clearly differentiated, where a complete hy-
brid approach combining MPI domains and OmpSs-2 subdomains can be im-
plemented. The proposed domain/subdomain methodology seeks to minimise
the changes that need to be applied to the original source code, so that it results
in a relatively simple refactoring. This is of great importance considering that
the application contains about 105 lines of Fortran source code. In order to
define subdomains, one needs to look firstly at the MPI-only application, i.e. at
the domains, in which multi-dimensional arrays representing physical variables
(such as v in Code 9) are allocated in memory in the following way:

v (sx-nh:ex+nh,sy-nh:ey+nh,sz-nh:ez+nh,1:nv)

where the (defined in global memory) indexes nh correspond to Nh, nv to
Nv and sx and ex represent the starting and ending MPI domain indexes
for the first spatial direction, respectively. The same applies to y- and z-
directions but, for the sake of conciseness, only the first direction is considered
here. Hence a problem of size ntx divided in nmpix domains has indexes sx=1

and ex=ntx/nmpix for the first MPI domain, whilst the last one has indexes
sx=1+ntx*(nmpix-1)/nmpix and ex=ntx. For example, a do-loop over half of
each physical (i.e. without halos) MPI domain can be simply written as:

do l = 1, nv; do k = ez/2, ez; do j = ey/2, ey; do i = ex/2, ex

v (i, j, k, l) = 0.0

end do; end do; end do; end do

The next step of the HDOT approach considers that each MPI domain is
composed of an arbitrary number n of OmpSs-2 subdomains: for a 1D problem,
this is equivalent to divide the range sx-nh:ex+nh into n parts. Typically, the

17

value of n is a multiple (e.g. 2, 4, 8. . .) of the number of cores assigned to shared
memory parallel processes. Furthermore, for 2D and 3D problems subdomain
cuts must guarantee that they are always defined in contiguous portions of the
original memory layout: this implies cuts in the y-direction for 2D problems
and in the z-direction for 3D problems.

Code 10: Example of a hybrid loop in CREAMS.

1 use subdomain ! use module subdomain
2 type (subdomain_type) :: sub ! declare subdomain derived data type
3 integer :: s, i0, i1, j0, j1, k0, k1 ! declare local indexes
4 logical :: dummy ! declare dummy boolean variable
5 call subdomain_ini (grainsize, sub) ! initialise sub: get the number of subdomains
6 do s = 1, sub % n ! loop over all subdomains
7 call subdomain_set (s, sub) ! get boundaries (indexes) for current subdomain
8 call subdomain_idx (sub ,ex/2,ex,ey/2,ey,ez/2,ez, & ! convert global MPI indexes
9 dummy,i0 ,i1,j0 ,j1,k0 ,k1) ! into local subdomain indexes

10 i f (.not. dummy) then ! run a task (operation) for each "useful" subdomain
11 !$OSS TASK FIRSTPRIVATE (i0,i1,j0,j1,k0,k1,nv) PRIVATE (i,j,k,l) SHARED (v)
12 do l = 1, nv; do k = k0, k1; do j = j0, j1; do i = i0, i1
13 v (i, j, k, l) = 0.0
14 end do; end do; end do; end do
15 !$OSS END TASK
16 end if ; end do

In order to effectively incorporate subdomains in the source code, it becomes
necessary to define a Fortran module containing a derived data type representing
the subdomain, e.g. total number of subdomains, domain ID and its boundaries
(indexes), as well as functions to manipulate the data type. This approach al-
lows writing a hybrid version of the previous nested loop as shown in Code 10.
This self-explanatory code only depends on the input variable grainsize corre-
sponding to the subdomain partition size defined by the user. Moreover, global
indexes sx and ex are replaced by local indexes i0 and i1 via the function
subdomain idx. This change from global to local indexes is necessary to work
with subdomains and constitutes indeed the major code refactoring.

Nevertheless, the changes to be made are pretty straightforward and only
require defining local integers and passing an additional argument (sub) as
a first-private copy in the corresponding subroutines, thus leaving intact the
original memory layout of the application and ensuring a thread-safe execution.

Moreover, when using subdomains the new local indexes must always re-
fer to absolute coordinates. For instance, defining a symmetry-type boundary
condition at the rightmost point ntx using global, relative indexes:

do l = 1, nv; do k = sz, ez; do j = sy, ey; do i = 1, nh

v (ntx+i, j, k, l) = v (ntx-i, j, k, l)

end do; end do; end do; end do

must be replaced by local, absolute indexes:

do l = 1, nv; do k = k0, k1; do j = j0, j1; do i = i0, i1 ! i0=ntx+1

v (i, j, k, l) = v (ntx+ntx-i, j, k, l) ! i1=ntx+nh

end do; end do; end do; end do

18

for subdomains indexes to be properly defined, which sometimes might be a bit
counterintuitive: it is indeed much easier to perform a loop from 1 to nh and
then count backwards and forwards from the symmetry point ntx as in the first
example corresponding to the original, MPI-only application.

Code 11: CREAMS hybrid Runge-Kutta 3 subroutine (OmpSs-2 pragmas heavily simplified).

1 call subdomain_ini (grainsize, sub)
2 do rk = 1, 3; do s = 1, sub % n
3 call subdomain_set (s, sub)
4 !$OSS TASK FIRSTPRIVATE (sub) PRIVATE (i0, i1) OUT (v0) INOUT (T, W_i, cp, ha, v)
5 call subdomain_idx (sub, sx, ex, sy, ey, sz, ez, dummy, i0, i1, j0, j1, k0, k1)
6 i f (rk==1 .and. .not. dummy) v0(i0:i1,j0:j1,k0:k1,1:nv) = v(i0:i1,j0:j1,k0:k1,1:nv)
7 call upd_prims (sub, thd, v, W_i, T, cp, ha)
8 call upd_boundaries (sub, inp, thd, adi, ctime + cdtime*tk3s, &
9 x, y, z, dx_i, dy_i, dz_i, T, W_i, cp, ha, v)

10 !$OSS END TASK
11 call subdomain_idx (sub,sx-1,ex,sy-1,ey,sz-1,ez,dummy,i0,i1,j0,j1,k0,k1)
12 i f (.not. dummy .and. ndim >=1) then
13 !$OSS TASK FIRSTPRIVATE (sub) IN (T, W_i, cp, ha, v) OUT (fhat_x)
14 call euler_LLF_x (sub, thd, T, W_i, cp, ha, v, fhat_x)
15 !$OSS END TASK
16 end if
17 call subdomain_idx (sub,sx,ex,sy,ey,sz,ez,dummy,i0,i1,j0,j1,k0,k1)
18 i f (.not. dummy) then
19 !$OSS TASK FIRSTPRIVATE (sub) IN (T, W_i, fhat_x, fhat_y, fhat_z, v0) INOUT (v)
20 call upd_v (sub,inp,bk3s,ck3s,cdtime,dx_i,dy_i,dz_i,fhat_x,fhat_y,fhat_z,v0,v)
21 !$OSS END TASK
22 end if ; end do
23 call fill_cons_buffers (v) ! fill custom send buffers before communications
24 call comm_cons_buffers (v) ! communicate data from send buffers to recv buffers
25 call empty_cons_buffers (v) ! empty custom recv buffers after communications
26 end do

On the other hand, it is important to highlight that the creation of sub-
domains/tasks is not performed at low-level loops such as the one shown in
Code 10, but at the highest possible level of the application code: the rk3 sub-
routine itself. As a result, the hybrid version of CREAMS, see Code 11, looks
quite similar to the original MPI-only implementation. Leaving out pragma
annotations, which are heavily simplified here due to page restriction, the appli-
cation core becomes completely hybrid using only three subdomain/task groups
(lines 4–10, 13–15 and 19–21 of Code 11) for computations as illustrated in
Figure 5. From this figure it can be readily seen that the WENO stencils
can be executed simultaneously as they are placed in the same horizontal time
line. For one subdomain and 3D problems there are three simultaneous stencil
executions (one in each spatial dimension), and this number doubles for two
subdomains. Paraver traces depicted in Figure 6 give a better understanding
of the OmpSs-2 real-time execution. The single-threaded CREAMS execution
of Figure 6 reveals that WENO stencils are indeed the most computationally
demanding tasks, which account for more than 95% of the total runtime on
average. However, with two subdomains, there are always six busy threads
computing WENO stencils in either direction and, when data needs to be pre-
pared or updated, this number reduces to the actual number of subdomains,

19

(a)

1
pre_v

2
euler_LLF_x

3
euler_LLF_y

4
euler_LLF_z

5
upd_v

6
pre_v

7
euler_LLF_x

8
euler_LLF_y

9
euler_LLF_z

10
upd_v

11
pre_v

12
euler_LLF_x

13
euler_LLF_y

14
euler_LLF_z

15
upd_v

(b)

1
pre_v

2
pre_v

3
euler_LLF_x

4
euler_LLF_y

5
euler_LLF_z

6
euler_LLF_x

7
euler_LLF_y

8
euler_LLF_z

9
upd_v

10
upd_v

11
pre_v

12
pre_v

13
euler_LLF_x

14
euler_LLF_y

15
euler_LLF_z

16
euler_LLF_x

17
euler_LLF_y

18
euler_LLF_z

19
upd_v

20
upd_v

21
pre_v

22
pre_v

23
euler_LLF_x

24
euler_LLF_y

25
euler_LLF_z

26
euler_LLF_x

27
euler_LLF_y

28
euler_LLF_z

29
upd_v

30
upd_v

Figure 5: CREAMS dependencies graph corresponding to the first stage of the Runge-Kutta
time integration (the other two are just a repetition) for (a) one OmpSs-2 subdomain and (b)
two OmpSs-2 subdomains; WENO stencils (euler LLF *) can run in parallel from each other
and pre v and upd v refer to data preparation and data update tasks, respectively.

following the graph patterns exposed in Figure 5.
The source code containing MPI communication also needs to be adapted

to work with subdomains. In the original, MPI-only application, MPI sub-
array datatypes are used to duplicate halos, whilst communication (line 8 of
Code 9) simply consist of calling all the non-blocking sends (MPI ISEND) and
receives (MPI IRECV) functions with a final blocking call to MPI WAITALL that
synchronises the entire data exchange. For the hybrid version, instead of using
MPI subarray datatypes, we define custom (contiguous in memory) send/recv
buffers that are filled (line 23 of Code 11) and emptied (line 25 of Code 11), re-
spectively, between an MPI communication to ensure that the data is available
before sending it and also available after receiving it and used by another task.

20

Figure 6: CREAMS Paraver trace for one OmpSs-2 subdomain forced to be executed with one
thread (top) and two OmpSs-2 subdomains without thread restrictions (bottom); tasks and
colours are as follows: pre v (pink), euler LLF x (brown), euler LLF y (green), euler LLF z

(yellow) and upd v (red).

Code 12: CREAMS hybrid communication with East neighbours (OmpSs-2 pragmas heavily
simplified).

1 call subdomain_ini (grainsize, sub); countSendE = 1; countRecvE = 1
2 do s = 1, sub % n ! a single subdomain loop to send/recv communication buffers
3 call subdomain_set (s, sub)
4 call subdomain_idx (sub,ex-ng+1,ex,sy,ey,sz,ez,dummy,i0,i1,j0,j1,k0,k1)
5 i f (.not. dummy .and. neigh (E) /= MPI_PROC_NULL) then ! send to East
6 bsize = nv*(i1-i0+1)*(j1-j0+1)*(k1-k0+1)
7 !$OSS TASK FIRSTPRIVATE (i0, j0, k0, bsize, countSendE) IN (consBuffSendE)
8 call MPI_ISEND(consBuffSendE(1,i0,j0,k0),bsize,MPI_DOUBLE_PRECISION,neigh(E), &
9 1000 + countSendE, comm3d, reqSendE (countSendE), mpicode)

10 call TAMPI_IWAIT(reqSendE (countSendE), MPI_STATUS_IGNORE, mpicode)
11 !$OSS END TASK
12 countSendE = countSendE + 1
13 end if
14 call subdomain_idx (sub,ex+1,ex+ng,sy,ey,sz,ez,dummy,i0,i1,j0,j1,k0,k1)
15 i f (.not. dummy .and. neigh (E) /= MPI_PROC_NULL) then ! receive from East
16 bsize = nv*(i1-i0+1)*(j1-j0+1)*(k1-k0+1)
17 !$OSS TASK FIRSTPRIVATE (i0, j0, k0, bsize, countRecvE) OUT (consBuffRecvE)
18 call MPI_IRECV(consBuffRecvE(1,i0,j0,k0),bsize,MPI_DOUBLE_PRECISION,neigh(E), &
19 2000 + countRecvE, comm3d, reqRecvE (countRecvE), mpicode)
20 call TAMPI_IWAIT(reqRecvE (countRecvE), MPI_STATUS_IGNORE, mpicode)
21 !$OSS END TASK
22 countRecvE = countRecvE + 1
23 end if ; end do

The actual MPI communication is performed by the comm cons buffers

subroutine (line 24 of Code 11) and takes place inside subdomain tasks using
the TAMPI library. As an example, the communication involving the East
neighbour, i.e. the neighbour following the positive x-direction, is shown in
Code 12. The code structure remains similar to the one used for computation
tasks. Herein, the TAMPI subroutine TAMPI IWAIT guarantees that the corre-
sponding tasks do not get blocked waiting to receive the buffer and, instead,
return immediately. This way MPI waits are completely substituted by IN and
OUT pragma clauses taking place during the filling and emptying of commu-

21

(a)

sx ex

ey ey

sy sy
sx ex

sx ex

ey ey

sy sy
sx ex

(b)

sx ex

ey ey

sy sy

sx ex

sx ex

ey ey

sy sy

sx ex

(c)

sx ex

ey ey

sy sy
sx ex

sx ex

ey ey

sy sy
sx ex

sx ex

ey ey

sy sy
sx ex

sx ex

ey ey

sy sy
sx ex

Figure 7: CREAMS possible subdomain decompositions yielding to (a) invalid parallel MPI
communication, (b) valid parallel MPI communication and (c) always valid orthogonal MPI
communication.

nication buffers (lines 23 and 25, respectively, of Code 11) and the generated
dependencies are managed by OmpSs-2 as if they were another part of the
computation. Note also that Code 11, corresponding to the hybrid version of
CREAMS, will only work with a version of the MPI library with multi-threading
support due to the use of TAMPI, whilst the MPI-only version is executed with
a single MPI thread.

It should be noted that it is also possible to embed communication inside
tasks without relying upon the TAMPI library (not shown here for the sake
of conciseness). This procedure is similar to the one shown in Code 12 except
that: (i) two subdomain loops are required (instead of a single one), the first
loop only to send the communication buffers, and the second loop only to receive
the communication buffers and where TAMPI IWAIT is replaced by MPI WAIT; (ii)
it must be granted that all the send buffers are sent before start receiving any
recv buffer. It can be readily seen that this alternative approach requires the
programmer to ensure that no MPI dead locks occur by enforcing the order
in which tasks/communication must be executed via blocking directives which
ultimately yield an innefficient usage of MPI.

There are two important aspects regarding MPI communication with subdo-
mains that are worth discussing. The first one deals with the communication in
the direction that is parallel to subdomains, e.g. the y-direction in a 2D problem,
see Figures 7a–b. One needs to take into account that a point-to-point send/recv
communication is always asymmetric with respect to the communication edges
of the two involved MPI domains. In Figure 7a, the proposed subdomain de-

22

composition is not asymmetric and hence there is not a valid correspondence
between the three tasks from the top domain and the two from the bottom
domain. In CREAMS the number of halo elements is Nh = 4 and hence the
minimum allowed grainsize values are 1, 2 (see Figure 7b) or 4 to guarantee
asymmetry. On the other hand, an MPI communication orthogonal to subdo-
main cuts does not have any constraints in terms of subdomain decomposition,
see Figure 7c.

The second aspect concerns the actual implementation of MPI communica-
tion within subdomains. The proposed implementation needs three subroutines
(lines 23–25 of Code 11) and therefore implies generating three groups of addi-
tional tasks and thus potentially more overhead for the OmpSs-2 runtime. A
more optimised implementation could be achieved by embedding these calls in-
side the computation tasks, which would require modifying the pragma clauses
accordingly. This implementation will be studied in a later development phase
of the application as the scalability results obtained using the proposed approach
already look quite promising.

Finally, Table 2 shows CREAMS scalability results obtained with the MPI-
only and hybrid versions of the application. These results correspond to the
Sod tube benchmark, which is commonly employed to test the robustness and
accuracy of numerical schemes for compressible flows [22] and is also suitable for
measuring scalability performance [24]. The dimensions of the computational
domain are Nx×Ny×Nz = 20×20×7000, resulting in a total of 2.8 million grid
points, and runtimes values are measured after 1000 complete time steps using
up to 16 nodes of the MareNostrum 4 supercomputer. Hybrid computations
are set up in such a way that they only use 2 MPI domains per node (one MPI
domain per socket), thus reducing the total amount of MPI messages exchanged
between ranks, and each MPI domain have all the available 28 cores per socket
to carry out subdomain/task computations. Even when using a single node,
the hybrid version is 2.58% faster than the MPI-only version. As the num-
ber of nodes increases, this gain becomes non-negligible and, in this particular
benchmark, reaches a maximum value of 13.33%. This difference is mainly due
to the increasing amount of communication among the 768 MPI processes (16
nodes) present in the MPI-only version compared to the only 32 MPI processes
required by the hybrid version.

The above results confirm the advantages of hybrid parallel programming
over the classical MPI decomposition. It is worth mentioning that, on the one
hand, the communication pattern of the original MPI-only version does not allow
overlapping communication with computation thus yielding suboptimal perfor-
mance. On the other hand, the results of the hybrid version of CREAMS cor-
respond to early stages of development and, consequently, better figures should
be expected with the implementation of array reductions and tasks loops that
are not currently fully supported in the Fortran version of OmpSs-2. Similarly,
better scalability is expected with the integration of MPI communication inside
computation tasks and by reducing the number of MPI processes to only one
per node with an interleaved memory NUMA policy between sockets.

Finally, we would like to summarise the necessary code changes required to

23

Table 2: CREAMS Sod tube parallel scalability results on MareNostrum 4; indexes M and
H refer to the MPI-only and hybrid (MPI+OmpSs-2) CREAMS application, respectively. SI
units.

Nodes RuntimeM RuntimeH S.M S.H Perf.M Perf.H GainM→H

1 962.681 937.886 1 1 100.00% 100.00% 2.58%
2 485.431 470.240 1.98 1.99 99.16% 99.72% 3.13%
4 250.200 235.342 3.85 3.98 96.19% 99.63% 5.94%
8 131.880 118.728 7.30 7.90 91.25% 98.74% 9.97%

16 69.705 60.415 13.81 15.52 86.32% 97.03% 13.33%

apply the HDOT methodology on an MPI-only, complex application composed
of hundreds of thousands of lines of source code. Firstly, to avoid rewriting the
whole application from scratch, it is necessary to build a new module or class
that helps handling the original data layout (where indexes are global) via sub-
domain/tasks (where indexes become local). This still implies some refactoring
as shown in Code 10. Secondly, it is necessary to identify the highest possible
level of application code to define subdomains/tasks in order to: (i) reduce the
refactoring effort to the strict minimum, (ii) also reduce the total amount of
tasks per execution (thus yielding better performance) and (iii) avoid leaving
parts of the code serialised. By combining these two steps, subdomains/tasks
will cover vast regions of the application code and basically consist of calls to
other functions instead of small kernel loops as shown in Code 11. Note also that
OmpSs-2 pragma annotations will only be inserted at this level. Thirdly, MPI
communication must also be made compatible with the specification of subdo-
main/tasks and hence require custom send/recv buffers if this was not originally
the case (e.g. MPI subarray datatypes originally used CREAMS, which greatly
simplify the use of communication buffers, cannot longer be utilised). Moreover,
subdomain decomposition must be consistent with communication patterns as
shown in Figure 7. Finally, there are multiple ways to perform MPI communi-
cation with tasks/subdomains, and the best implementation seeks to overlap it
with computation (avoiding potential dead locks). The approach retained here
achieves that with the aid of the TAMPI library, which greatly simplifies the
treatment of dependencies between OmpSs-2 tasks and avoids MPI deadlocks.

5. Conclusion and future work

In this work, we have presented a methodology to develop hybrid applications
that overcome the main issues of MPI-only and traditional hybrid MPI+OpenMP
applications. The main point of this methodology is to apply the original MPI
domain decomposition strategy as implemented on process-level to task-level.
This way each part of the global domain assigned to an MPI rank is divided in
subdomains that will be processed by OmpSs-2 tasks. This paper describes how
typical computation and communication patterns have to be modified to obtain
the best performance while maximising code reuse. The hierarchical domain

24

over-decomposition with tasking (HDOT) methodology also exploits synergies
between MPI and OmpSs-2: on the one hand, it reuses the original MPI par-
allelisation strategy to expose coarse-grained parallelism inside a node; on the
other hand, the OmpSs-2 data-flow execution based on fine-grained dependen-
cies is leveraged to provide fine-grained, internode synchronisation. HDOT relies
on the task-aware MPI (TAMPI) interoperability library as well as advanced
support of task nesting and fine-grained dependencies provided by OmpSs-2 to
minimise the structural changes required to develop a performant hybrid version.
Although it would be possible to achieve similar performance improvements by
(i) using the current features provided by MPI such as shared-memory, one-side
communication, (ii) developing a custom user runtime on top of MPI and (iii)
implementing a custom interoperatibility library. We think that this solution
will be more complex, harder to use and it will require significant changes in
the application structure.

HDOT has been applied to two benchmarks (Heat2D and HPCCG) and
one large application (CREAMS) and the performance results have shown a
clear gain in performance over other traditional approaches relying on either
MPI exclusively or MPI+OpenMP. Nevertheless, additional testing with more
applications will be required to further refine it. Specifically, we plan to apply
this methodology to other well-known benchmarks (e.g. LULESH [25]) and to
a particle-in-cell based method (similar to iPIC3D [26]) to improve our current
discussion. The main goal of these future studies will be focused on finding new
patterns that could be included in the current methodology, but also on looking
for boundaries of this approach.

In addition, the HDOT methodology is applicable to other message passing
APIs such as GASPI making use of advanced features of the OmpSs-2 runtime
system. We are interested in presenting this approach as well as the discussed
runtime features to the OpenMP architecture review board in order to promote
their adoption for hybrid programming. We will also explore the oportunities
to extend the current specification of the OpenMP detach clause in order to
be more flexible with respect to the number of non-blocking services involved
in the task finalisation.

Acknowledgements

This work has been developed with the support of the European Union
H2020 program through the INTERTWinE project (agreement number 671602);
the Severo Ochoa Program awarded by the Spanish Government (SEV-2015-
0493); the Generalitat de Catalunya (contract 2017-SGR-1414); and the Spanish
Ministry of Science and Innovation (TIN2015-65316-P, Computación de Altas
Prestaciones VII). The authors gratefully acknowledge Dr. Arnaud Mura, CNRS
researcher at Institut PPRIME in France, for the numerical tool CREAMS.
Finally, the manuscript has greatly benefited from the precise comments of the
reviewers.

25

References

[1] Message Passing Interface Forum, MPI: A message-passing interface stan-
dard. Version 3.1, University of Tennessee, 2015.

[2] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barret, R. Brightwell,
W. Gropp, V. Kale, R. Thakur, Leveraging MPI’s One-Sided Communi-
cation Interface for Shared-Memory Programming, in: Proceedings of the
19th European MPI Users’ Group Meeting (EuroMPI 2012), ACM Press,
2012, pp. 132–141. doi:10.1007/978-3-642-33518-1_18.
URL https://dl.acm.org/citation.cfm?id=2404056

[3] Y. Yan, S. Chatterjee, Z. Budimlic, V. Sarkar, Integrating MPI with Asyn-
chronous Task Parallelism, Springer, Berlin, Heidelberg, 2011, pp. 333–336.
doi:10.1007/978-3-642-24449-0_41.
URL http://link.springer.com/10.1007/978-3-642-24449-0{_}41

[4] R. F. Barrett, D. T. Stark, C. T. Vaughan, R. E. Grant, S. L. Olivier,
K. T. Pedretti, Toward an evolutionary task parallel integrated MPI + X
programming model, in: Proceedings of the Sixth International Workshop
on Programming Models and Applications for Multicores and Manycores -
PMAM ’15, 2015, pp. 30–39. doi:10.1145/2712386.2712388.

[5] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,
V. Sarkar, Y. Yan, Integrating Asynchronous Task Parallelism with MPI,
in: 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, IEEE, 2013, pp. 712–725. doi:10.1109/IPDPS.2013.78.
URL http://ieeexplore.ieee.org/document/6569856/

[6] OpenMP Architecture Review Board, OpenMP Application Programming
Interface, version 4.5 (2015).

[7] OpenMP Architecture Review Board, OpenMP Application Programming
Interface, version 3.0 (2008).

[8] Barcelona Supercomputing Center, OmpSs-2 Specification (Accessed on:
April, 8th 2019).
URL https://pm.bsc.es/ftp/ompss-2/doc/spec/

[9] K. Sala, J. Bellon, P. Farre, X. Teruel, J. M. Perez, A. J. Pena, D. Holmes,
V. Beltran, J. Labarta, Improving the Interoperability between MPI and
Task-Based Programming Models, in: Proceedings of the 25th European
MPI Users’ Group Meeting on - EuroMPI 2018, ACM Press, Barcelona,
Spain, 2018.

[10] K. Sala, X. Teruel, J. M. Perez, A. J. Pea, V. Beltran,
J. Labarta, Integrating blocking and non-blocking mpi primi-
tives with task-based programming models, Parallel Comput-
ingdoi:https://doi.org/10.1016/j.parco.2018.12.008.

26

https://dl.acm.org/citation.cfm?id=2404056
https://dl.acm.org/citation.cfm?id=2404056
http://dx.doi.org/10.1007/978-3-642-33518-1_18
https://dl.acm.org/citation.cfm?id=2404056
http://link.springer.com/10.1007/978-3-642-24449-0{_}41
http://link.springer.com/10.1007/978-3-642-24449-0{_}41
http://dx.doi.org/10.1007/978-3-642-24449-0_41
http://link.springer.com/10.1007/978-3-642-24449-0{_}41
http://dx.doi.org/10.1145/2712386.2712388
http://ieeexplore.ieee.org/document/6569856/
http://dx.doi.org/10.1109/IPDPS.2013.78
http://ieeexplore.ieee.org/document/6569856/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
http://www.sciencedirect.com/science/article/pii/S0167819118303326
http://www.sciencedirect.com/science/article/pii/S0167819118303326
http://dx.doi.org/https://doi.org/10.1016/j.parco.2018.12.008

URL http://www.sciencedirect.com/science/article/pii/

S0167819118303326

[11] V. Marjanović, J. Labarta, E. Ayguadé, M. Valero, Overlapping commu-
nication and computation by using a hybrid MPI/SMPSs approach, in:
Proceedings of the 24th ACM International Conference on Supercomput-
ing, 2010, pp. 5–16. doi:10.1145/1810085.1810091.

[12] D. Doerfler, R. Brightwell, Measuring MPI send and receive overhead and
application availability in high performance network interfaces, in: Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface,
Springer, Berlin, Heidelberg, 2006, pp. 331–338. doi:10.1007/11846802_

46.
URL http://link.springer.com/chapter/10.1007/11846802{_}46

[13] T. Hoefler, A. Lumsdaine, W. Rehm, Implementation and performance
analysis of non-blocking collective operations for MPI, in: Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing - SC ’07, ACM Press,
New York, New York, USA, 2007, p. 1. doi:10.1145/1362622.1362692.
URL http://portal.acm.org/citation.cfm?doid=1362622.1362692

[14] R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, G. Shainer, Overlapping computation
and communication: Barrier algorithms and ConnectX-2 CORE-Direct
capabilities, in: 2010 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), IEEE, 2010,
pp. 1–8. doi:10.1109/IPDPSW.2010.5470854.
URL http://ieeexplore.ieee.org/document/5470854/

[15] C.-Q. Yang, B. Miller, Critical path analysis for the execution of parallel
and distributed programs, in: Proceedings. The 8th International Con-
ference on Distributed, IEEE Comput. Soc. Press, 1988, pp. 366–373.
doi:10.1109/DCS.1988.12538.
URL http://ieeexplore.ieee.org/document/12538/

[16] J. Hollingsworth, Critical path profiling of message passing and shared-
memory programs, IEEE Transactions on Parallel and Distributed Systems
9 (10) (1998) 1029–1040. doi:10.1109/71.730530.
URL http://ieeexplore.ieee.org/document/730530/

[17] M. Schulz, Extracting Critical Path Graphs from MPI Applications, in:
2005 IEEE International Conference on Cluster Computing, IEEE, 2005,
pp. 1–10. doi:10.1109/CLUSTR.2005.347035.
URL http://ieeexplore.ieee.org/document/4154078/

[18] F. Schmitt, R. Dietrich, G. Juckeland, Scalable Critical Path Analysis for
Hybrid MPI-CUDA Applications, in: 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops, IEEE, 2014, pp. 908–915.

27

http://www.sciencedirect.com/science/article/pii/S0167819118303326
http://www.sciencedirect.com/science/article/pii/S0167819118303326
http://dx.doi.org/10.1145/1810085.1810091
http://link.springer.com/chapter/10.1007/11846802{_}46
http://link.springer.com/chapter/10.1007/11846802{_}46
http://dx.doi.org/10.1007/11846802_46
http://dx.doi.org/10.1007/11846802_46
http://link.springer.com/chapter/10.1007/11846802{_}46
http://portal.acm.org/citation.cfm?doid=1362622.1362692
http://portal.acm.org/citation.cfm?doid=1362622.1362692
http://dx.doi.org/10.1145/1362622.1362692
http://portal.acm.org/citation.cfm?doid=1362622.1362692
http://ieeexplore.ieee.org/document/5470854/
http://ieeexplore.ieee.org/document/5470854/
http://ieeexplore.ieee.org/document/5470854/
http://dx.doi.org/10.1109/IPDPSW.2010.5470854
http://ieeexplore.ieee.org/document/5470854/
http://ieeexplore.ieee.org/document/12538/
http://ieeexplore.ieee.org/document/12538/
http://dx.doi.org/10.1109/DCS.1988.12538
http://ieeexplore.ieee.org/document/12538/
http://ieeexplore.ieee.org/document/730530/
http://ieeexplore.ieee.org/document/730530/
http://dx.doi.org/10.1109/71.730530
http://ieeexplore.ieee.org/document/730530/
http://ieeexplore.ieee.org/document/4154078/
http://dx.doi.org/10.1109/CLUSTR.2005.347035
http://ieeexplore.ieee.org/document/4154078/
http://ieeexplore.ieee.org/document/6969479/
http://ieeexplore.ieee.org/document/6969479/

doi:10.1109/IPDPSW.2014.103.
URL http://ieeexplore.ieee.org/document/6969479/

[19] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, T. Hoefler, S. Kumar,
E. Lusk, J. L. Trff, Mpi at exascale.

[20] J. M. Perez, V. Beltran, J. Labarta, E. Ayguadé, Improving the integration
of task nesting and dependencies in openmp, in: 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2017, pp. 809–
818.

[21] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Ed-
wards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, R. W. Num-
rich, Improving Performance via Mini-applications, Tech. Rep. SAND2009-
5574, Sandia National Laboratories (2009).

[22] P. J. M. Ferrer, R. Buttay, G. Lehnasch, A. Mura, A detailed verification
procedure for compressible reactive multicomponent Navier-Stokes solvers,
Computers & Fluids 89 (2014) 88–110. doi:10.1016/j.compfluid.2013.
10.014.
URL https://doi.org/10.1016/j.compfluid.2013.10.014

[23] P. J. M. Ferrer, G. Lehnasch, A. Mura, Compressibility and heat re-
lease effects in high-speed reactive mixing layers II. Structure of the
stabilization zone and modeling issues relevant to turbulent combustion
in supersonic flows, Combustion and Flame 180 (2017) 304–320. doi:

10.1016/j.combustflame.2016.09.009.
URL https://doi.org/10.1016/j.combustflame.2016.09.009

[24] S. Macià, S. Mateo, P. J. Mart́ınez-Ferrer, V. Beltran, D. Mira, E. Ayguadé,
Saiph: Towards a DSL for high-performance computational fluid dynamics,
in: Proceedings of the Real World Domain Specific Languages Workshop
2018, RWDSL2018, ACM, New York, NY, USA, 2018, pp. 6:1–6:10. doi:

10.1145/3183895.3183896.
URL http://doi.acm.org/10.1145/3183895.3183896

[25] Hydrodynamics Challenge Problem, Lawrence Livermore National Labora-
tory, Tech. Rep. LLNL-TR-490254.

[26] S. Markidis, G. Lapenta, Rizwan-uddin, Multi-scale simulations of plasma
with ipic3d, Mathematics and Computers in Simulation 80 (7) (2010)
1509 – 1519, multiscale modeling of moving interfaces in materials.
doi:https://doi.org/10.1016/j.matcom.2009.08.038.
URL http://www.sciencedirect.com/science/article/pii/

S0378475409002444

28

http://dx.doi.org/10.1109/IPDPSW.2014.103
http://ieeexplore.ieee.org/document/6969479/
https://doi.org/10.1016/j.compfluid.2013.10.014
https://doi.org/10.1016/j.compfluid.2013.10.014
http://dx.doi.org/10.1016/j.compfluid.2013.10.014
http://dx.doi.org/10.1016/j.compfluid.2013.10.014
https://doi.org/10.1016/j.compfluid.2013.10.014
https://doi.org/10.1016/j.combustflame.2016.09.009
https://doi.org/10.1016/j.combustflame.2016.09.009
https://doi.org/10.1016/j.combustflame.2016.09.009
https://doi.org/10.1016/j.combustflame.2016.09.009
http://dx.doi.org/10.1016/j.combustflame.2016.09.009
http://dx.doi.org/10.1016/j.combustflame.2016.09.009
https://doi.org/10.1016/j.combustflame.2016.09.009
http://doi.acm.org/10.1145/3183895.3183896
http://dx.doi.org/10.1145/3183895.3183896
http://dx.doi.org/10.1145/3183895.3183896
http://doi.acm.org/10.1145/3183895.3183896
http://www.sciencedirect.com/science/article/pii/S0378475409002444
http://www.sciencedirect.com/science/article/pii/S0378475409002444
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2009.08.038
http://www.sciencedirect.com/science/article/pii/S0378475409002444
http://www.sciencedirect.com/science/article/pii/S0378475409002444

	1 Introduction
	1.1 Are shared-memory programming models the right solution?
	1.2 From processes to tasks

	2 Background
	2.1 MPI and OpenMP
	2.2 Tasking with OmpSs-2
	2.3 Task-aware MPI
	2.4 Related work

	3 HDOT: Hierarchical Domain Over-decomposition with Tasking
	3.1 Taskifying code
	3.2 Adding subdomains
	3.3 Including support for common programming patterns

	4 Applications
	4.1 Heat2D benchmark
	4.2 HPCCG benchmark
	4.3 CREAMS application

	5 Conclusion and future work

