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Abstract

Micro-core architectures combine many low memory, low power computing
cores together in a single package. These are attractive for use as accelerators
but due to limited on-chip memory and multiple levels of memory hierarchy,
the way in which programmers offload kernels needs to be carefully consid-
ered. In this paper we use Python as a vehicle for exploring the semantics and
abstractions of higher level programming languages to support the offloading
of computational kernels to these devices. By moving to a pass by reference
model, along with leveraging memory kinds, we demonstrate the ability to
easily and efficiently take advantage of multiple levels in the memory hier-
archy, even ones that are not directly accessible to the micro-cores. Using
a machine learning benchmark, we perform experiments on both Epiphany-
III and MicroBlaze based micro-cores, demonstrating the ability to compute
with data sets of arbitrarily large size. To provide context of our results, we
explore the performance and power efficiency of these technologies, demon-
strating that whilst these two micro-core technologies are competitive within
their own embedded class of hardware, there is still a way to go to reach
HPC class GPUs.
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1. Introduction

Micro-core architectures combine many simple, low power, cores on a
single processor package. Their low power and low cost makes them attrac-
tive for multiple domains and we are seeing the embedded and HPC worlds
converging. The embedded world which has always focused on power effi-
ciency is now interested in parallelism, and the HPC community having to
consider power efficiency in order to facilitate realistic future exa-scale ma-
chines. These micro-core architectures, providing significant parallelism and
performance for low power are therefore of great interest to both communi-
ties and have been at the heart of the top machine in the Green 500 until
March 2019 [1].

Very often machines built around micro-core architectures exhibit multi-
ple levels of memory hierarchy, from the small and fast on-core scratch pad
memory expanding out to slower but larger memory spaces. Knowing where
about to place their data in the memory hierarchy and then retrospectively
changing this if it is not optimal adds significantly to the burden placed upon
the programmer. This problem is magnified by micro-core architectures due
to the immaturity of programming tools and the fact that the hierarchy is of-
ten deep and memory spaces comprise of KBs of manually controlled memory
close to the core rather than automatic caches of many MBs. Hence, with
micro-cores, not only does the programmer need to correctly control data
placement for performance, but they also need to get this right for their code
to even run in the first place.

The severely constrained nature of micro-cores makes the challenge of
data placement and transfer a difficult one. In this paper we ues Python
as a vehicle for presenting and demonstrating our abstractions for offloading
kernels to micro-core accelerators such that the programmer can process
arbitrarily large data sets on micro-cores and control data placement in the
memory hierarchies without having to deal with the low level, complex, nitty-
gritty details of how data is physically moved. In short the contributions of
this paper are:

• Demonstration that a pass by reference model, similar to CUDA’s uni-
fied virtual addressing, is mandatory for enabling micro-core to process
arbitrarily large data-sets. We explore the performance characteristics
of this approach and role that pre-fetching plays in optimising data
transfer.
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• Demonstration that, for micro-cores, memory kinds enable the pro-
grammer to concisely express where in the memory hierarchy their data
is located, with the runtime and kinds themselves then responsible for
low level data transfer.

• A general performance and power efficiency comparison of micro-cores
against embedded and HPC class hardware technologies.

This paper is laid out as follows, after describing general background,
specifics of the hardware used and related work in Section 2, Section 3 then
focuses on the abstractions we have developed to enable the programmer to
seamlessly leverage memory hierarchies in their code. Section 4 then dis-
cusses some of the implementation challenges that had to be addressed to
adopt these new extensions. In Section 5 we use a machine learning code
for detecting lung cancer in 3D CT scans as a benchmark, run on both the
Epiphany-III and MicroBlaze based micro-cores. These experiments are used
to illustrate the performance of our approach and general power efficiency of
micro-cores, comparing that against characteristics of other common tech-
nologies. We then draw conclusions in Section 6 and discuss further work.

2. Background and related work

There are numerous micro-core architectures such as the PEZY-SC2 [2]
which powered the top Green 500 machine until it was decommissioned in
March 2019, although at the time of writing at 17.6 GFLOPS/Watt is still
more energy efficient than the current number one GPU-based machine [1].
The Kalray Boston [3], the Celerity [4], and numerous soft cores are other
examples of micro-cores, and these technologies are at varying levels of avail-
ability, maturity and cost. The work and experiments described in this paper
focuses on two very different types of micro-core, the Epiphany [5] and Mi-
croBlaze [6]. The Epiphany is arguably one of the most ubiquitous of these
micro-cores, developed by Adapteva and packaged as a single physical chip
comprising of low power cores. On the Epiphany-III each of these cores con-
sists of a RISC CPU, 32KB high bandwidth on-core local memory, DMA
engine and network interface. Whereas the Epiphany is a physical chip, Xil-
inx’s MicroBlaze is instead a semiconductor intellectual property core, known
as an IP block, and used in conjunction with interconnection IP blocks, to
configure a Field Programmable Gate Array (FPGA) to present itself as a
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multi-core MicroBlaze CPU. Known as a soft-core, from the end program-
mer’s perspective this chip looks like a CPU, but crucially this approach is
much cheaper than physical cores as there is no need for expensive manu-
facturing, and significantly more flexibility in configuration than a physical
CPU. Out of the numerous soft-cores available, the MicroBlaze is amongst
the most ubiquitous, not least because it is developed by Xilinx, arguably
the world leading FPGA vendor. Irrespective of whether the implementation
is a physical or soft CPU, these technologies contain many cores, each with
very limited amounts of memory, and the reason for picking these two tech-
nologies in our experiments is both their ubiquity, and also representation of
a specific class of micro-cores.

The micro-core architecture is applicable to a wide range of problem do-
mains and performance levels close to 2 GFLOPs per core have been demon-
strated [7] in the field of signal processing on the Epiphany chip. The major
advantage of this technology is the power efficiency, for instance the most
common Epiphany is the 16 core version 3 (Epiphany-III), manufactured at
a process size of 65nm, delivers 32 GFLOPs and draws a maximum of 2 Watts
(16 GFLOPs/Watt.) There have been studies comparing the performance
and power efficiency benefits of FPGAs against GPUs [8] and the Zynq-7020
(28nm process size) used in this paper has a theoretical peak performance
of 180 GFLOPs and 72 GFLOPs/Watt [8]. Specifications regarding the Mi-
croBlaze are more difficult because it also depends on the physical FPGA
that is being used, although it has been claimed that soft-cores retain many
of the power efficiency benefits of FPGAs [9].

In addition to the micro-core, one also requires a board to mount this chip
and expose it to the outside world. In this paper we use two such boards, one
for each technology. For the Epiphany, the same company also developed the
Parallella [10] single board computer (SBC). This machine combines a host
dual core ARM A9 CPU, with 1 GB of RAM and the 16 core Epiphany-III.
Due to limitations in the Parallella, whilst the theoretical off-chip bandwidth
of the Epiphany III is 600 MB/s, the maximum obtainable in practice is 150
MB/s [11]. For MicroBlaze experiments we use the Pynq-II SBC, mounting
a Xilinx Zynx-7020 and 512 MB RAM. Zynq-7020 FPGAs, with an off-chip
bandwidth of 131.25 MB/s, contains both a dual core ARM A9 CPU and re-
configurable FPGA fabric on the same physical package. This specific FPGA
comprises of 53,200 programmable Look-Up Tables (LUTs), and around 627
KBs of block RAM (BRAM) [12]. This means that we can fit a maximum of
eight 64KB MicroBlaze CPUs, and supporting infrastructure IP blocks, onto
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the Zynq, which is the configuration used throughout this paper. Whilst we
have picked these technologies due to their availability and popularity, in our
opinion the MicroBlaze is the more interesting target due to the significant
commitment by Xilinx, and active development of many micro-core style
soft-cores, including implementations of the RISC-V architecture [13] [14].

The programming of these micro-cores is technically challenging, with
both technologies supporting C via the GCC tool chain. Whilst some ap-
proaches beyond using C with the low level hardware specific library, such
as OpenCL [15], BSP [16], OpenMP [17] and MPI [18] have been developed,
these are at different levels of maturity and still require the programmer to
explicitly program the chip using C at a very low level. Indeed, Xilinx’s
Pynq-II board has been designed around ease of use, loading up a default
configuration of three MicroBlaze cores, and presenting a Python interface
via the Jupyter notebook. However, Python only runs on the host ARM
CPU of the Pynq-II and the programmer must still write C code to execute
directly on each MicroBlaze and interface it appropriately with the host code.

This programmability challenge is made more severe when one considers
the tiny 32KB of memory per core on the Epiphany and 64KB on the Mi-
croBlaze. Whilst some of the board’s main memory is directly addressable by
the micro-cores, there is a significant performance penalty in accessing this
and programmers have to either keep their programs and data within the
micro-core memory limits or design their codes to pre-fetch for reasonable
performance. Regardless, this adds considerable additional complexity to
any non-trivial codes. Figure 1 illustrates the memory hierarchy for both the
Epiphany-III running on the Parallella and multi-core MicroBlaze running
on the Pynq-II. The only difference between the two is that the Epiphany/-
Parallela combination contains a top-level that is not directly accessible to
the micro-core whereas the main memory of the MicroBlaze/Pynq-II is all
directly accessible by the MicroBlaze cores.

2.1. Existing accelerators offload approaches

There are numerous offloading approaches that target accelerators in gen-
eral, and specifically GPUs, but none of these technologies currently support
micro-cores due to the memory limit. CUDA [19] and OpenCL [20] are ar-
guably the most popular approaches, and OpenCL even supports FPGAs
[21]. With both these technologies, the programmer decorates specific ker-
nels in their code to run on the device and they also have available to them a
host based library of functionality which enables interaction with the device.

5



Figure 1: Epiphany and MicroBlaze memory hierarchy

The sort of functionality supported from the host is the copying of data,
activation of specific kernels, or queuing up of kernels.

CUDA has supported Unified Virtual Addressing (UVA) since CUDA 4,
which enables the programmer to view GPU and CPU memory as one large
address space. If pointers on the GPU point to some memory held on the
CPU then transfer happens transparently, although there might be some
performance penalty. This corresponds to the Addressable external DRAM
level and below in the memory hierarchy of Figure 1. A limitation of UVA is
that the implementation of this is fairly basic and if the GPU is repeatedly
accessing CPU memory, then a significant performance penalty could be in-
curred. Pascal architectures and later, supported by CUDA 6, implement
Unified Memory (UM). This provides UVA’s virtual address space and addi-
tional support to transparently move memory to the GPU, treating the GPU
memory more like a large cache. The simplest memory movement strategy
moves memory on a page fault, but there are more advanced functionalities
such as pre-fetching to minimise the overhead of data migration. In exper-
imentation [22] it has been shown that UVA’s explicit copying of memory
to a pre-allocated buffer on the GPU is the still fastest, but this is compa-
rable with the pre-fetching performance of UM. Both of these approaches
are significantly faster than non-prefetched UM, due to the overhead of page
migration. However, other experiments of [23] report more limited success
of UM pre-fetching, especially with irregular data patterns.

An important aspect of UVA and UM is that the hardware must provide
support for these technologies which adds extra complexity to the chip, espe-
cially UM [24]. Both the micro-core systems used in this paper support some
degree of UVA, which itself required some addition to the micro-core chip and
target machine software. For instance, in the case of the MicroBlaze running
on the Pynq-II, UVA is facilitated by the existing Zynq IP block at the FPGA
level, and Xilinx libraries running on the host ARM. But micro-cores can ap-
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ply to a variety of different target machines, and as such hardware level UVA
can not always be assumed, nor can direct memory access to higher levels of
the memory hierarchy in Figure 1 be guaranteed.

A downside of CUDA and OpenCL is that is can require explicit, and
sometimes fairly low level, user code to perform actions such as allocating and
data movement. Pragmas are an alternative approach for limiting the amount
of host level support code, with the programmer decorating specific parts of
their code with directives which then instruct the compiler to extract these as
kernels, and execute them on the appropriate device. Common approaches
include OpenACC [25] and OpenMP 4.0 [26], and, for instance, the target
directive of OpenMP 4.0 marks a region of code to execute on a device
and a mapping between the device and host memory can be specified. The
declare target directive can be used to declare global variables on the target
device and kernels can execute concurrently by wrapping them as an OpenMP
task. Numba [27] is an annotation driven approach for offloading Python
kernels to GPUs. The programmer decorates specific functions in their code
and these will be executed on the GPU and perform all data movement
necessary. However, Numba requires on-device memory significantly in excess
of that provided by micro-cores and doesn’t provide any significant support
for hierarchies of memory.

2.2. ePython

ePython [28] is an implementation of Python, initially developed for the
Epiphany, and now ported to other micro-core architectures including the
MicroBlaze. The primary purpose of ePython was initially educational, but
it is also applicable as a research vehicle for understanding how best to pro-
gram these architectures and prototyping applications on them. Due to the
memory limitations of these architectures, the ePython interpreter (written
in C) fits into 24KB of memory, with the remaining memory used for user
byte code, the stack, heap and communications. It is possible for byte code,
the stack and heap to overflow into shared memory but there is a performance
impact of this. ePython also supports a rich set of message passing primi-
tives such as point to point messages, reductions and broadcasts between the
cores.

At 24KB ePython is by far the smallest implementation of Python and
specially designed for highly parallel systems. MicroPython [29] is another
implementation of Python designed for micro controllers but crucially Mi-
croPython is hundreds of KBs, and whilst this is small in comparison to
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many Python interpreters such as CPython, it is still significantly above the
in-core memory limitations of micro-core architectures such as the Epiphany
and MicroBlaze. The other big difference between MicroPython and ePython
is that of parallelism. Whilst there is multi-threading in MicroPython, the
programmer is not able to write distributed memory style parallel codes
in MicroPython running over a multiple cores concurrently, which ePython
trivially supports.

A major aim of ePython was to allow the programmer to view the micro-
cores as an accelerator and offload kernels from a host CPU to these compu-
tational engines. In addition to being able to execute Python codes directly
on the micro-cores, an abstraction for offloading kernels from large scale,
existing codes running on the CPU to the micro-cores has been developed
[30]. There are three major components to ePython, the 24KB ePython
Virtual Machine (VM) running on each micro-core comprising of an inter-
preter and runtime, general supporting functionality running as a process
on the host CPU, and thirdly an ePython module which is imported into a
user’s Python code running under any Python interpreter such as CPython
on the host. Previously the ePython module running on the host did not
directly communicate with the micro-cores and instead communication was
marshalled via the host ePython process.

Listing 1 illustrates an example code, run under any Python interpreter
such as CPython, on the host. A function, in this case mykernel, is decorated
with the offload directive (located in the ePython module) at line 11. When
such an offloaded function is called, such as is the case at line 20, the kernel
and associated arguments are transparently transferred onto the micro-cores
which will then execute the kernel with associated data on the cores using
the ePython VM as an engine. Any return values will then be copied back
from the micro-core to the users code on the host. In this example two lists of
numbers, nums1 and nums2 are filled with 1000 random numbers on the host
(lines 7 to 9.) These are then copied onto the micro-cores as arguments when
the mykernel function is invoked at line 20. On the micro-cores each element
of the first list is summed with the corresponding element of the second list
and the result returned. By default kernel execution is blocking and runs
on every micro-core, for instance with the Epiphany-III, sixteen copies of
the kernel will all run concurrently with the arguments independently passed
to each core. Hence, in this case, sixteen identical results, one from each
micro-core, are copied back in a list, each element representing the return
value(s) of the kernel executing on the corresponding core. ePython provides
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numerous options that the programmer can pass to the offload directive
that will further specialise this kernel, such as running on a subset of cores,
running asynchronously and policies of scheduling the kernel.

1 from epython import offload
2 import random
3
4 nums1 =[0] * 1000
5 nums2 =[0] * 1000
6
7 for i in range (1000):
8 nums1.append(random.randrange (0,100,1))
9 nums2.append(random.randrange (0,100,1))

10
11 @offload
12 def mykernel(a, b):
13 ret_data =[0] * len(a)
14 i=0
15 while i < len(a):
16 ret_data[i]=a[i] + b[i]
17 i+=1
18 return ret_data
19
20 print mykernel(nums1 , nums2)

Listing 1: Python offload example for summing two lists of numbers

The problem with the code illustrated in listing 1 is that of memory
requirements for lists a, b and ret data. Each of these lists is approximately
4KB and the micro-cores are so seriously memory constrained that, combined
with the 24KB ePython interpreter and byte code, it is likely one or more
of these won’t fit in the Epiphany memory, being forced to reside in the
much slower main board shared memory. In this case there isn’t really much
the programmer can do, and the situation becomes more serious when the
programmer wishes to process larger amounts of data that do not even fit in
the shared part of main memory. This limitation has been a significant issue
for the ePython offload approach and one in which, until the work of this
paper, meant that only small data sizes could be tackled by the technology.

It is also possible to use a device resident data approach, a technique
commonly used with GPUs, where variables are allocated directly on the
device and the programmer explicitly controls when values are copied on and
off. These values don’t then need to be transferred on every kernel invocation,
which can be especially useful when kernels are executing multiple times on
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same data. In ePython a define on device API call is provided which the
programmer can call from their host code to allocate a variable on the device,
data can then be copied on and off using copy to device and copy from device
API calls respectively.

3. Modifying the offload behaviour for micro-cores

In this section we describe the two major aspects of our work that enable
micro-cores to run kernels handling arbitrarily large amounts of data. The
first is a change to the behaviour of function offloading, where instead of
eagerly copying the entirety of argument data to the micro-cores on kernel
invocation, a reference to this data is passed to the micro-cores and data
retrieved on demand. Our second contribution is the use of memory kinds
to control where in the memory hierarchy data should reside and these kinds
contain functionality to enable transparent accessed by the programmer.

3.1. Passing kernel data by reference to micro-cores

The semantics of Python, and many similar dynamic languages, is pass by
reference where the reference, or pointer, of an object is passed to a function
rather than the data itself. This is important because, if the programmer
modifies the data during function execution, then it is not the function’s copy
of the data but the original data itself that is modified. However as described
in Section 2.1, technologies for offloading kernels to accelerators commonly
pass by value instead, explicitly copying the entire kernel data and even UM
migrates pages of memory on demand. This eager copying of data, whether it
be the entire kernel’s data before execution, or a page of data before access,
makes a lot of sense for GPUs. However it relies on the assumption that
there is sufficient memory available on the accelerator to hold this data, and
the kernel or data access can not start until transfer has completed. These
two factors, and most critically the memory requirement for holding all the
data, are significantly limitations when applied to micro-core architectures.
Coupled with the fact that no micro-core architectures support hardware
level memory migration, as required with UM, then a programming and/or
runtime level solution must be found.

In our approach we have modified the behaviour of kernel invocation
such that instead of copying the entire data over to the micro-cores (such
as all of nums1 and nums2 in listing 1), instead a memory reference is sent
from the host CPU to the micro-cores. Furthermore, the original data might
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not be in a memory space that is directly accessible by the device, unlike
the assumptions made in GPU UVA. Whenever a micro-core reads from the
variable, behind the scenes, the ePython interpreter will retrieve this value
from the variable’s location in the memory hierarchy, whether it be on the
micro-cores or the host CPU. Likewise, if the programmer writes to such a
variable then data transfer is transparently performed by ePython to where
that variable is physically located. In all these cases, by default, the core will
block for data transfer, either reading or writing, to complete.

Whilst it might seem that explicit fetching data from source on every
access is slow, and indeed it can be, there is little choice if one is to write
kernels that process large data-sets on the micro-cores. Effectively this can
be thought of as a software level UM approach, but also spanning mem-
ory locations that may or may not be directly accessible by the micro-core.
Driven by lessons learnt in [22], for optimisation purposes we have introduced
pre-fetching, where non-blocking data transfers are performed ahead of time
with the intention that data transfer will have completed by the time the code
needs to access a specific piece of data. Listing 2 illustrates the same kernel
function signature as Listing 1, but with the programmer adding an optional
prefetch argument to the offload decorator to pre-fetch data retrieval from
the host to the micro-cores. In this case both arguments a and b to the myk-
ernel function are pre-fetched. This additional pre-fetching argument does
not impact the correctness of the code, the result of computation is identical
with and without pre-fetching.

1 @offload(prefetch ={a, 10, 2, 10, "readonly"}, {b,
10, 2, 10, "readonly"})

2 def mykernel(a, b):
3 ....

Listing 2: Pre-fetching example by annotating the offload decorator

The API signature of the prefetch argument, is prefetch={variable name,
buffer size, elements per pre-fetch, distance, access modifier} where variable
name is the name of the kernel variable argument that this pre-fetching ap-
plies to. The buffer size argument is the number of data elements reserved in
the micro-core local memory for the variable (which pre-fetching will fill up),
for instance in listing 2, 10 integers (40 bytes) will be reserved. The elements
per pre-fetch is the number of elements to fetch on each variable access and
in Listing 2 two elements will be transferred to or from the stored data per
access. The distance argument determines when data transfer should take
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place, for instance in our example data will be pre-fetched 10 elements ahead.
Lastly, the access modifier argument is a further optimisation provided by
the programmer which describes whether the data is mutable (potentially
needs to be copied back from the micro-cores) or read only (so no copy back
is required.) In the case of mutable data, we guarantee that writes complete
atomically and from a single core will be performed in order. When it comes
to different cores writing to the same location, whilst the atomic property is
maintained there are no guarantees around the ordering constraints imposed.
A by product of pre-fetching is that it retrieves multiple pieces of data (the
elements per pre-fetch) on each access which enables the overall number of
data accesses is to be significantly lower than the single fetch on-demand
approach, and for each of these pre-fetch requests to contain larger parcels
of data.

Passing by reference to the device, rather than eagerly copying the entire
data is driven by necessity due to the limited scratch-pad fast memory on
the micro-cores. A cost of pre-fetching is the memory overhead on the micro-
cores where, for instance in the example of Listing 2, 40 bytes are required for
each function argument. By making these settings explicit to the programmer
they themselves can set sensible values and experiment with the most suitable
settings for their application.

3.2. Kinds for hierarchical memory

In addition to passing arguments by reference we leverage memory kinds
[31] to denote which memory space in the hierarchy variables are allocated
in. A reference to this data in the specific memory space is passed to the
micro-core kernel when it is invoked and data is then passed seamlessly to
and from this specific location in the memory hierarchy.

1 from epython import offload , memkind
2 import random
3
4 nums1=memkind.Host(types.int , 1000)
5 nums2=memkind.Host(types.int , 1000)
6
7 for i in range (1000):
8 nums1.append(random.randrange (0,100,1))
9 nums2.append(random.randrange (0,100,1))

10
11 @offload
12 def mykernel(a, b):
13 ....
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14
15 print mykernel(nums1 , nums2)

Listing 3: Python offload using memory kinds to control where in the hierarchy data is
located

Listing 3 illustrates the same example code as Listing 1 but explicitly
providing a level in the memory hierarchy for variables nums1 and nums2.
The API for this is found in the memkind sub-package and this example uses
the Host memory kind initialised with the type of data it will hold (which
are constants provided in the ePython module) and number of elements of
this type to be allocated. We have created numerous kinds, including Host
which allocates the data in the large host memory (not accessible directly by
the micro-cores), Shared which places data in the memory which is accessible
by both the host and micro-cores, and Microcore which allocates the data
in the local memory of each micro-core. Currently these kinds must reside
in the host side code and are themselves are Python objects, implementing
methods to copy data to and from their memory space. From the program-
mer’s perspective, to change where in the hierarchy a variable is allocated,
simply requires a single change in their code by swapping out the existing
memory kind and replacing it with a different one. The underlying library
and memory kind handles the low level details of this. Irrespective of where
a variable is allocated, it is the reference that is passed to the micro-cores
and the kinds interpret this into loads and stores. To create a kind repre-
senting a new level in the memory hierarchy requires a new Python class,
inheriting from the Kind class, with all details about that level of hierarchy
encapsulated inside the kind and everything else remains unchanged.

It is still perfectly acceptable to declare variables in normal Python style
without using memory kinds, as per Listing 1, and in such cases the variable
belongs to the level of memory hierarchy that is currently in scope. Likewise,
these memory kinds also abstract the declare on device, copy to device and
copy from device calls for managing device resident data. If a variable is allo-
cated in the memory of the micro-cores (via the Microcore kind), then reads
and writes to these variables on the host are, under the covers, translated
into copying data to or from the micro-cores using the same mechanism as
the explicit calls.

3.3. Memory model

Python itself does not have a standard memory model and individual
implementations are free to adopt whichever memory model they wish. For
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instance, CPython adopts a strong memory model, relying on the global
interpreter lock to enforce memory access ordering. In contrast ePython
adopts a weaker memory model to optimise multi-core performance.

Whether it be the eager or pre-fetching of data, whenever a micro-core
attempts to accesses a scalar variable or index of an array, held elsewhere
in the memory hierarchy, preference is given to any local copy held on that
micro-core. If there is no local copy, then a data transfer will be performed.
For instance, with the statement a = a * a, ePython will check whether a is
held locally and if not will retrieve the corresponding data. This local copy
will then be used for all the reads (i.e. a * a) and the write occurs both to
the local copy of a and is also written back to the variable’s location on the
host. Due to memory limits of the micro-cores, it might be that locally held
copies of data elsewhere in the memory hierarchy are freed. This is especially
the case with the eager fetching approach which, unlike pre-fetching, does
not allocate any user defined buffer space and instead uses a central storage
pool. Access to data, whether it be a scalar or array element, held in memory
locations outside the core will always first check whether there is a copy held
locally, and if not perform the explicit data movement required.

For the two statements tmp = a; a = tmp * a, on each access of a
ePython will check whether a copy of the data is held locally, and if not
perform necessary data movement. Based on these two statements side by
side, it is highly likely that the copy of a from the first statement will still
be resident for the access in the second statement. The write of a in this
example will update both the local copy and also the variable held in the
memory hierarchy.

Therefore, within a core, updates to data are in-order and atomic. Be-
tween the cores the model is weaker for performance reasons and the ability
to reuse data held locally rather than explicitly fetch each time. This provides
a simple and consistent model, requiring limited support from the hardware
and runtime software. The programmer should be aware of this because, if
two kernels are working with the same data and both reading and writing
to this, then ePython only imposes the atomicity of these updates. There
is no guarantee around the order in which accesses from different cores will
complete, or when kernels will see the data written by kernels on other cores.
This is a somewhat different than that adopted by many multi-core CPUs,
which tend to only write data on cache flush but do support a stronger
memory model, often via directory based cache coherence.
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Figure 2: ePython reference communications architecture

4. Implementation

As outlined in Section 3, passing kernel arguments by reference and the
addition of memory kinds extends the approach of offloading kernels and
interacting with device resident data. These changes not only impact the
behaviour of the language, but also require extensions to the ePython inter-
preter. The purpose of this section is not to examine all the low level changes
required, but instead provide a high level view of how we implemented these
new features as we believe this is also applicable to other dynamic languages.
Given the very limited on-core memory, adding support for pass by reference
and memory kinds resulted in a significant challenge as the approach had to
be both usable by the programmer and also implementable given the memory
constraints.

The first step in supporting this new behaviour was the underlying data
transfer code, connecting the host CPU with the micro-cores. Figure 2 il-
lustrates our approach where the host’s shared memory is used to provide
a direct link between Python running on the CPU and the ePython VM on
each micro-core. A number of channels are constructed, one per core, and
each channel contains thirty two 1KB cells. This enables up to thirty two
concurrent transfers between the host CPU and each micro-core.

Each ePython interpreter running on a micro-core maintains it’s own
symbol table which, for each variable, contains some metadata and a pointer
to the physical data in either the stack or heap. We extended the symbol
table metadata to add an extra external flag indicating whether the pointer
references directly accessible or external, non-directly accessible, data. When
passing kernel arguments by reference to the micro-cores, the variable’s exter-
nal flag in the symbol table and pointer to this reference are set appropriately.
Whenever Python code running on the micro-cores accesses a variable it will
first check this external flag in the symbol table. If the flag is zero then a
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direct access is issued as per normal, but if it is one then the corresponding
data is held externally and extra calls are required by the interpreter.

Extra calls for interacting with external data have been added to the
ePython runtime, which the interpreter calls when external access is required.
These additional functions can be thought of as blocking and non-blocking
primitive data communication calls, which the programmer themselves never
sees. The blocking calls, to copy data on or off the device are the simplest, and
code execution on the micro-core will block until data access has completed.
Pre-fetching requires non-blocking data transfer calls, where the core will
request data ahead of time, continue working and then have some way of
tracking whether the access has completed when the data is required. Non-
blocking external data access functions, again in the runtime, return a handle
which corresponds to a specific data transfer cell in the micro-core’s channel.
A ready function is provided by the runtime to test for completion.

The modifications described here; changes to the symbol table and extra
runtime support are the only extensions required in the ePython interpreter
and runtime running on the micro-cores. All other aspects of our abstrac-
tion are resident on the host CPU, which is not memory constrained, and
effectively translate into these lower level primitives. This is important due
to the memory limits of the micro-cores and the extensions discussed here
require an extra 1.2KB of memory on the micro-core for the interpreter and
runtime. Bearing in mind this enables the programmer to, for the first time
in ePython, work with arbitrarily large amounts of data held anywhere in
the memory hierarchy we believe it is a price worth paying.

The host CPU side must be able to identify what each reference corre-
sponds to, and then decode this and perform physical memory access. In
reality, the reference itself isn’t a physical memory location but instead a
unique identifier which is used to look up the corresponding variable and
memory kind it belongs to. This information is then passed to the asso-
ciated memory kind which decodes the reference and performs appropriate
action(s). Lookup on the host side has been designed this way for further ex-
tensibility, where the memory kinds could perform some functionality other
than memory access, such as communicating with remote memory spaces or
IO.
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5. Results and evaluation

The data science bowl [32] is a prominent data science competition with
significant social impact. In 2017 the challenge was held around the develop-
ment of lung cancer detection algorithms, with the National Cancer Institute
(NCI) making available thousands of high-resolution 3D lung scans. The aim
is to develop techniques and approaches for determining whether lesions are
cancerous or not, as the current generation of detection technology is plagued
with false positives. This paper is using the NCI’s data differently to the com-
petition and asking a separate question. Instead of being concerned with the
absolute accuracy of prediction, we are instead evaluating whether micro-
core architectures and the parallelism that they provide can benefit the area
of machine learning. Accuracy of detection is the primary concern for the
competition, but the execution of these algorithms also needs to be realistic.
Not only does this involve training the model in a timely fashion, but also
employing an architecture which is affordable and utilises a minimal amount
of power, which is where micro-core architectures are of main interest.

In [30] we developed a simple neural network with one hidden layer of
100 neurons which splits the 3D CT lung scans into two groups, 70% for
training and 30% for testing. In this approach the input pixels of the image
are distributed amongst the micro-cores which are used for accelerating the
linear algebra involved in training and model and the back-prop. Parallelism
comes from the fact that each micro-core is operating on a separate part of
the overall image and previously each image was copied on to the micro-cores
on kernel invocation. Our new offload behaviour mean that these images now
remain in host memory and instead a reference to them is passed to the micro-
cores on kernel invocation. Our previous eager copy approach was shown to
perform competitively against Python and native implementations, but the
limited memory of micro-cores meant that images had to be interpolated
down from a maximum on-disk size of over 100MB to a size that the input
data and neural network could fit within the shared chunk of main memory
(e.g. 32MB on the Epiphany/Parallella configuration). In this paper we are
using this same code as a benchmark but crucially the modified behaviour
of kernel invocation as described in Section 3 means that we can run the full
sized images for the first time. In our opinion this moves micro-cores and
ePython from being an interesting research technology, to becoming more
mature and a more serious contender for these real world applications.
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5.1. Experimentation results
Figure 3 illustrates performance results for ePython with our new offload

behaviour for both on-demand and pre-fetching, against the previous eager
data copying on kernel invocation under ePython. Also included are runs on
the ARM host using CPython for the kernels and a native implementation
which calls into Numpy for the kernels, which has been compiled with GCC
at optimistion level 3. There is also an implementation via CPython on
Broadwell, where each ARM and Broadwell result is based on execution on
a single core. For each configuration, there are three results; feed forward is
the time taken to do a forward pass of the neural network, combine gradients
is the time taken to calculate gradients for a batch of training data and model
update is the time taken to update the model with gradients for the batch.

The results in Figure 3 represent the scaled down, interpolated, images as
per experiments in [30] running on both the Epiphany and MicroBlaze. For
these experiments we have 3600 input pixels distributed amongst the micro-
cores, with a hidden layer of 100 neurons. There are two key data structures,
a matrix of input-hidden layer weights distributed among the micro-cores and
a vector of hidden layer-output neuron weights. Each small image, passed
for kernel invocations is 14.4KB. Forward feed involves a dot product on the
weight matrix with the image, and a second dot product on the resulting
values with the hidden layer-output neuron weight vector. Combining gradi-
ents, done for each image (but we don’t update the model weights until after
the batch) involves a dot product and an outer product. For these small
images each kernel involves around 45000 floating point operations.

It can be seen that the original ePython kernel invocation version, ePython
eager data copy, compares favourably against CPython for both the Epiphany
and MicroBlaze, and native versions on the ARM host which is due to the
parallelism provided by the Epiphany. The ePython on-demand versions rep-
resent the benchmark relying on the modified behaviour described in Section
3, with accesses done on-demand and not taking advantage of pre-fetching.
The ePython pre-fetch results represent a version of the code using our mod-
ified behaviour and pre-fetching optimisation.

For both the Epiphany and MicroBlaze, the on-demand version of this
benchmark is significantly slower than the existing, eager data copy, be-
haviour of ePython. This is because the micro-cores retrieve individual ele-
ments of data, one at a time, and for each of these it must block until the
transfer has completed. In contrast the pre-fetch version of the benchmark
provides up to 1.3 times better performance for the calculation of gradients
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Figure 3: Machine learning benchmark results for small, interpolated, images

on the Epiphany than the existing eager data copy ePython implementation
and is around 25 times faster than the on-demand data copy approach for
the Epiphany. The pattern is similar for the MicroBlaze, although the dif-
ferences are less. There is no change in the model update runtimes because
this does not rely on data transfer. The performance improvement of pre-
fetching over eager data copying is due to two factors, firstly the kernel can
start as soon as the single reference is copied across rather than the entire
data, and secondly our new data transfer mechanism enables the ePython
module running in CPython to communicate directly with the ePython VM
on the micro-cores rather than having to go via the ePython host process.

Before the work of this paper it was impossible for these Python kernels
to process the full sized images on the micro-cores. Figure 4 illustrates the
performance of the machine learning benchmark for a forward pass through
the neural network (feed forward) and calculation of gradients (combine gra-
dients) on the Epiphany and MicroBlaze micro-cores when running with
the full sized images (again both on-demand and pre-fetch versions) and
CPython on the ARM host using the same sized hidden layer as previously.
Similarly to the small images, enabling the pre-fetching of data is much faster
than the on-demand approach, especially for the Epiphany where it is around
21 times faster. The full sized images are, on average, around 7 million pix-
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Figure 4: ePython machine learning benchmark results (full sized images)

els which is 1966 times larger than the small, interpolated, images of 3600
pixels. The average, single precision, input data that must be transferred to
the micro-cores for each kernel is around 30 MB.

Technology MFLOPs Watts GFLOPs/Watt
Epiphany III 1508.16 0.90 1.676
MicroBlaze 0.96 0.19 0.005

MicroBlaze + FPU 47.20 0.18 0.262
Cortex A-9 33.20 0.60 0.055

Table 1: Performance and power consumption for LINPACK benchmark
ePython is an interpreter, therefore to explore performance and power

efficiency in more detail, and avoid noise due to the interpreted nature of
ePython, we modified the C LINPACK benchmark [33] to run on the micro-
cores. We measured the voltage and amperage of the board using two UNI-
T UT60E multimeters and this power usage, along with the benchmark’s
measured floating point performance (in MFLOPs) for both technologies,
plus an embedded class ARM Cortex-A9 for comparison, are detailed in Table
1. We have included results for the integer-only and hardware floating point
(FPU) MicroBlaze soft-cores to highlight the significant impact of software
floating point emulation on kernels such as LINPACK. It can be seen that
the Epiphany provides a much greater FLOP rate, 31 times, that of the
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MicroBlaze with FPU. This is, in part, due to fact that the Epiphany contains
sixteen cores running at 600Mhz, verses eight MicroBlaze cores at 100Mhz.
If we normalise the core count and clock rates, the Epiphany is still about 3
times faster per core than the MicroBlaze with FPU.

For comparison, a recent study [11] illustrated that performance per Watt
on the Pascal GPU is 42 GFLOPs/Watt and on the Maxwell 23 GFLOP-
s/Watt for a similar machine learning problem. Whilst these results are sig-
nificantly higher than those achieved in the micro-core LINPACK benchmark,
crucially these two HPC grade GPUs draw a maximum of 250 Watts, whereas
the power draw of the micro-cores used in our experiments was 0.90 Watts
for the Epiphany and 0.18 Watts for the MicroBlaze. This much smaller
power draw is very important because it means that they are highly appli-
cable to high performance embedded devices, where absolute power draw is
very important. Bearing in mind that the Pascal is a smaller process size,
16nm, than both the Epiphany and Zynq-7020 used here, this newer hard-
ware will inevitably exhibit some power benefits. When one considers that
the Maxwell is based on 28nm technology and the Epiphany on 68nm, the
performance per Watt differences between these two technologies becomes
more understandable. The Zynq-7020 FPGA alone has a theoretical per-
formance per Watt of 72 GFLOPs/Watt [8], and even though achieving the
theoretical peak is not realistic, our results for the LINPACK benchmark
indicate that the use of soft-cores sacrifices this power efficiency significantly,
which aligns with the work done in [34]. It is our feeling that the perfor-
mance of the soft-cores, not least the fact that they are running at 100Mhz
in our experiments, is the main limit here and if this can be increased, for
instance by using more advanced FPGAs, redesigning the block layout or
by customising the soft-core designs for specific applications [35] using tech-
niques such as ‘warp’ processors [36], then this will benefit the performance
per Watt metric too.

Another recent study [37] considered performance and power efficiency
of other technologies more commonly found in embedded computing and
hence closer to micro-cores. They used a benchmark based on LINPACK
and NVIDIA’s Jetson TX1 (with a Tegra X1 GPU) achieved 16 GFLOPs,
drawing a maximum of 15.3 Watt and performance per Watt of 1.2 GFLOP-
s/Watt. ARM’s quad core Cortex A53 CPU achieved 4.43 GFLOPs, drawing
a maximum of 5.1 Watts and achieving 1.07 GFLOPs/Watt. For compari-
son, a sixteen core Haswell CPU achieved 47.7 GFLOPs, drawing 29.1 Watts
and delivering 1.64 GFLOPs/Watt. When considered against the results for
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these technologies, especially the Jetson TX1 and ARM designed for embed-
ded systems, the results obtained for the Epiphany and MicroBlaze are more
respectable.

When comparing power consumption (Watts) of the micro-cores running
LINPACK, we find that the Epiphany requires five times as much power as
the MicroBlaze with FPU, and about twice the power of the ARM Cortex
A-9. However, when we consider the power consumption / performance ratio
(GFLOPs/Watt), the situation is reversed, with the Epiphany being about 6
times more efficient than the 8-core MicroBlaze and about 30 times more effi-
cient than the Cortex-A9. The micro-core LINPACK benchmark results are
only impacted by the time it takes for the device kernels to respond to execu-
tion requests and the acknowledgement of completion. Therefore, the results
in Table 1 are not impacted by communications link bandwidth restrictions.
This is why we see a greater difference in results between the Epiphany
and MicroBlaze for LINPACK than for the Machine Learning benchmark,
where there is a significant amount of data transfer. Quite simply, the band-
width to the Epiphany chip is significantly less than the Zynq-7020 and
this explains why, in Figures 3 and 4, even though the MicroBlaze’s com-
putational performance is far more limited due to the lower clock rate, the
performance it delivers is still competitive with the Epiphany. This also ex-
plains why, in Figure 4, the on-demand version for the Epiphany is so much
slower than the MicroBlaze version. From experimentation we found that, on
the Epiphany/Parallella configuration the maximum bandwidth we could get
with our benchmark was 88 MB/s but this frequently dropped to as low as
16 MB/s (theoretical peak is 150MB/s), whereas on the MicroBlaze/Pynq-II
we consistently achieved around 100 MB/s (theoretical peak is 131 MB/s).

Whether it be running on the Epiphany or the MicroBlaze, there is a
significant performance difference between the on-demand and pre-fetch ap-
proaches. To help understand the reasons behind this, and also explore how
the size of data transfer impacts the overall load time, a synthetic benchmark
was written to accurately measure the message load time on the micro-cores.
This benchmark measures the time that the micro-core is stalled whilst data
is copied from the host onto the micro-core.

128B
on-demand

128B
pre-fetch

1KB
on-demand

1KB
pre-fetch

8KB
on-demand

8KB
pre-fetch

Min 0.099 0.098 0.759 0.758 6.396 7.215
Max 0.112 0.111 0.955 0.913 11.801 9.452
Mean 0.104 0.103 0.816 0.804 7.882 8.537

Table 2: Synthetic benchmark micro-core stall time for different data sizes (msecs)
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Table 2 illustrates the results from this benchmark, with minimum (best
case), maximum (worst case) and mean timings against the data size and
access configuration. The reader can imagine the data size here representing
one (very large) element of data for the on-demand approach and for pre-
fetching it represents the size of the chunk of data (the elements per pre-fetch
of Section 3.1) retrieved on each access. The major reason for variation in
timings for a specific configuration (the minimum and maximum) is that a
dedicated thread on the host CPU needs to pick up a request and handle it,
with other activities on the same CPU this response time can vary.

Until 8KB, the average and maximum load time for the on-demand ap-
proach is higher than that of the pre-fetched approach. At the largest data
size of 8KB, the maximum time is still largest for on-demand but the mean
time is lower for on-demand in contrast to pre-fetched, as is the minimum
time. Given the performance results for the machine learning benchmark this
was unexpected and is due to the extra overhead of pre-fetching. Because of
the size of the data, transfer takes longer, and the core runs out of work and-
so must block for much of the time. The more complex pre-fetch protocol,
where the interpreter continually calls into the ready function of the runtime
to check for data, adds much of this additional overhead when compared to
the on-demand approach where the is blocking behaviour is simpler.

This benchmark only measures stall time for a single load, and it can
be seen that there is only a small difference between on-demand and pre-
fetching, not the 21 to 25 times difference that was seen with the machine
learning benchmark. Instead, the reason for poor performance of the on-
demand machine learning benchmark was that this makes individual requests
for each element of data which swamps the communication channels and
keeps the host CPU very busy, continually responding to these requests. In
contrast, the pre-fetch approach retrieves data in chunks and the fact that
there are significantly fewer requests made is most important for perfor-
mance. In terms of the optimal data transfer size (elements per pre-fetch
specified by the programmer for pre-fetching) this depends heavily on the
application. For the benchmark, load time is significantly less for smaller
data sizes, but for a real world application larger data sizes will reduce the
number of requests the host must service. This will likely be especially im-
portant if the host is also required to run some part of the code whilst the
micro-cores are active.
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5.2. Programmability concerns

So far we have considered the performance of our benchmark on the
Epiphany and MicroBlaze micro-core architectures. The programmability
of this code should also be considered, and specifically the qualitative dif-
ferences writing code in other programming technologies that target these
micro-cores. For both these architectures, the most obvious approach would
be to use C and interact with the shared memory directly. From a program-
ming perspective this is a very significant challenge because, whilst these
cores can directly access some part of the host shared memory, similar to
NVIDIA UVA, placing the data in this shared location and using it directly
incurs significant performance penalty due to limited off chip bandwidth as
we have shown in Section 5.1. Therefore, to get good performance necessi-
tates the programmer writes explicit code to perform data copying to core
local memory and piping it in ahead of time. Further challenges here are the
weak hardware memory model of the micro-cores and on the Epiphany, only
32MB of main memory is directly accessible to the micro-core which even a
single, full sized image, does not fit into. This is all possible to be developed,
but requires significant programming expertise, is often bespoke to a specific
code, error prone, and involves the programmer spending significant time on
the tricky, low level aspects rather than their application logic.

Whilst other higher level approaches, such as OpenCL, have been devel-
oped for the Epiphany, this still requires fairly significant modifications on
the host side and the full range of OpenCL features is unavailable due to the
limited on-device memory. Instead, using our approach, the programmer is
far more abstracted from the mechanics of how data transfer occurs, more
like a software implementation of NVIDIA’s UM but with more control over
exactly where in the memory hierarchy we are located using memory kinds,
with minimal code level changes required. It is also important to highlight
that the programmer has significant flexibility to experiment with concerns of
data placement where, just by changing the memory kind, they can move the
location of their data with the kinds themselves handling how this happens.

6. Conclusions

In this paper we have described the abstractions required for enabling
micro-core architectures to handle arbitrary large amounts of data held in
different memory spaces. By changing the behaviour of kernel invocation
to a pass by reference model, and combining this with memory kinds, the
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programmer can manage their data locality and movement whilst still being
abstracted from the lower level details. With a single change in memory kind
the programmer is able to trivially experiment with placing data in different
levels of the memory hierarchy.

Using a machine learning benchmark, we have demonstrated that these
concepts open up the possibility of running kernels on micro-cores with ar-
bitrarily large data sets and the more constrained the off-chip bandwidth, in
the case of the Epiphany/Parallella combination, the more important the pre-
fetching optimisation becomes. Whilst we have used Python, the Epiphany,
and the MicroBlaze as vehicles for developing and testing our ideas, crucially
the work described in this paper is not just limited to these technologies and
defines offloading semantics for the entire class of micro-core architectures
which are becoming more and more widespread. As we argued in Section
2.1, the design of micro-cores is fundamentally different from that of other
accelerators and as such how programming technologies offload kernels, and
specifically deal with data, must be handled differently.

We have seen that, when moving from an eager copy to pass by reference
model, it is important to use pre-fetching in order to obtain best performance.
Interestingly a significant aspect of pre-fetching, in addition to data transfer
occurring whilst the core is busy and hence avoid the micro-core stalling,
is that pre-fetching retrieves data in chunks rather than single individual
elements that the default on-demand approach requires, which is broadly
in line with experiences of UVA and UM memory movement strategies as
described in [22] and [23].

We have considered power efficiency, with the Epiphany delivering up
to 1.7 GFLOPs/Watt and the MicroBlaze 0.262 GFLOPs/Watt. Whilst
power efficiency is competitive with technologies designed for the embed-
ded space, both in terms of performance per Watt and power draw, when
compared against latest generation HPC grade GPUs we can see that these
other technologies provide much greater performance per Watt at the cost of
significantly higher overall power draw. Generation wise, the closest compar-
ison is the Maxwell GPU against the Zynq-7020 running our MicroBlazes,
as these are both 28nm technology. It is our feeling that the MicroBlaze
soft-core on the Zynq-7020 is significantly under-performing, and whilst it
is beyond the scope this being one of our focus on hierarchical memories, it
would be a very interesting to explore alternative soft-cores such as RISC-V
to understand whether this same behaviour holds.

The reader might wonder why we did not make the pre-fetching optimi-
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sation the default option and indeed the results of this paper indicate that it
would be sensible to do so. However pre-fetching can be difficult to do cor-
rectly as it adds memory transfer and instruction level overhead [38]. Indeed
[38] argues that auto-tuning for CPU cache pre-fetching is crucially impor-
tant and, we believe going forwards a similar auto tuning approach would be
useful here. Especially as our optimal pre-fetching arguments, which were
found empirically, were different between large and small image benchmark
runs, and micro-core technologies.

Whilst this paper has focused on micro-cores we also believe that the work
here has a wider applicability. The recently announced European Processor
Initiative will combine many ARM cores together on the CPU and utilise
the RISC-V architecture as a basis for accelerators [39]. There are numerous
soft-core RISC-V implementations, many of which follow a similar pattern
of large numbers of cores each with small amounts of memory. OpenMP has
been suggested as an approach to programming such a future machine and
the ideas discussed in this paper will likely be applicable.
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