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Abstract

In this work we have implemented a novel Linear Algebra Library on top

of the task-based runtime OmpSs-2. We have used some of the most advanced

OmpSs-2 features; weak dependencies and regions, together with the final clause

for the implementation of auto-tunable code for the BLAS-3 trsm routine and

the LAPACK routines npgetrf and npgesv. All these implementations are

part of the first prototype of sLASs library, a novel library for auto-tunable

codes for linear algebra operations based on LASs library. In all these cases, the

use of the OmpSs-2 features presents an improvement in terms of execution time

against other reference libraries such as, the original LASs library, PLASMA,

ATLAS and Intel MKL. These codes are able to reduce the execution time in

about 18% on big matrices, by increasing the IPC on gemm and reducing the

time of task instantiation. For a few medium matrices, benefits are also seen.

For small matrices and a subset of medium matrices, specific optimizations that

allow to increase the degree of parallelism in both, gemm and trsm tasks, are

applied. This strategy achieves an increment in performance of up to 40%.
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1. Introduction

Nowadays computer architectures present a highly variable number of cores,

ranging from a few to thousands in high performance platforms, that need to

be used appropriately in order to attain high performance. This situation is

even more relevant in linear algebra operations, where input data parameters5

often change during the operation (e.g. LU factorization). For this reason,

auto-tuned codes that are able to adapt the amount of workload depending on

the input parameters to the architecture characteristics are essential in order to

make good use of the available resources.

Following the idea of auto-tunable codes but targeting an approach through10

the use of tasks, we present in this work the auto-tunable implementation

of three kernels included in LASs 1, a novel linear algebra library based on

OmpSs [1]. There exist several task-based parallel programming models such

as OpenMP, Cilk++ or Wool, among others. We make use of OmpSs program-

ming model because it is based on tasks and also extends OpenMP directives to15

give support to asynchronous parallelism and device heterogeneity. The main

reasons to choose OmpSs are: i) This model presents efficient management of

the threads based on the use of queues, without the need of dealing with the

overhead found in other models, such as the fork-join model used in OpenMP. ii)

Unlike other programming models, in OmpSs we find some features, not found20

in other programming models, such as weak dependencies and regions, which

are necessary for the implementation of our auto-tunable codes. iii) OmpSs is

also especially well integrated with the tools used for the performance evaluation

Extrae, which allows to obtain execution traces, and Paraver [2], a visualization

and analysis tool for the traces.25

In this work, we explore a set of algorithmic and programming optimizations

1https://pm.bsc.es/mathlibs/lass
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on BLAS-3 and LAPACK level routines based on tasking. We have focused on

trsm and LU factorization since these are the most characteristic and widely

used routines for this kind of operations on dense matrices. We start analyzing

the BLAS 3 trsm routine. Although this is not a LAPACK routine, it is used30

after the factorization of the most LAPACK routines, such as getrf or potrf,

in their corresponding solve, such as gesv or posv. We focus on those program-

ming optimizations, which allow to implement auto-tunable codes by adapting

the execution, according to the features of the architecture and the parameters

of the problem, in particular, the size of the matrix/matrices to be computed.35

We compare our performance results against PLASMA [3], the reference linear

algebra library implemented in OpenMP, and other reference libraries: ATLAS

and Intel MKL, to analyze the potential benefits of the presented approach.

In order to implement the optimizations proposed in [4] for trsm and make

the code adaptable in order to apply them when they are suitable, we use40

some of the latest features provided by OmpSs-2 [1]. In those scenarios where

optimizations are not appropriate, the auto-tunable code is able to run the

non-optimized code, which works better in these scenarios. The auto-tunable

code is created through the use of nesting, weak dependencies, regions, and

the final clause. Weak dependencies [5] and regions [6] are specific of OmpSs-245

programming model (regions syntax is also included in OpenMP), while nesting

and the final clause [7] are included in both, OmpSs-2 and OpenMP. With

the combination of nesting and weak dependencies mechanism we are able to

balance computations better thanks to the relaxation of dependencies among

parent and children tasks, which turns into a higher parallelization degree of50

the tasks. On the other hand, the final clause allows us to choose the most

appropriate version of the code to be executed regarding the input matrix size.

The different optimizations code are automatically selected at run time.

All the results presented in this paper are obtained on a node of the Marenos-

trum 4 supercomputer. Each node features 2 sockets Intel Xeon Platinum 816055

with 24 cores each at 2.10GHz for a total of 48 cores per node. Moreover, each

core has a private L1 cache of 32KB, a private L2 cache of 1MB and all the cores
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in the socket share an L3 cache of 33MB. The peak performance for a single node

is 2300 GFLOPS. We use MKL for the single-threaded BLAS and LAPACK rou-

tines. All tests are run with 48 threads and use OmpSs-2 2018.11 version. In60

addition, mercurium 2.2.0 compiler (icc version 17.0.4) is used with the following

flags -DLASs WITH MKL -O3 -Wall –ompss-2 –openmp-compatibility.

The paper is structured as follows; Section 2 discusses related work, while in

Section 4 we revisit the optimizations proposed for trsm in [4] and analyze the

benefits of the auto-tuned version of LASs. In Sections 5 and 6, we present the65

auto-tuned version for npgetrf and npgesv respectively. Finally, Section 7

presents the conclusions of the work.

2. State of the art

PLASMA [3] is the reference library for Dense Linear Algebra. Based on

OpenMP, PLASMA parallelizes BLAS and LAPACK level operations targeting70

homogeneous multi-core and multi-socket platforms. As in our libraries, LASs

and sLASs, PLASMA makes use of tiled algorithms in order to distribute the

workload among the cores in the platform, using tasking. Other relevant linear

algebra libraries that implement dense, sparse or both types of linear algebra

operations are libFLAME [8], Intel MKL 2 and OpenBLAS 3, among others.75

Another example in the Linear Algebra field is ATLAS [9], a software package

that provides a complete BLAS [10] collection of kernels along with a subset

of LAPACK [11] operations that deliver high performance thanks to its auto-

tunable approach. ATLAS exploits low level features such as the size of the

different memory hierarchy levels in order to customize required parameters80

(e.g. the block size) and consequently making better use of the resources to

improve performance.

Finally, other approaches try to adapt the number of computations to the

resources available on the platform, but the adaption is not done automatically

2https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
3http://www.openblas.net/
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or its implementation requires major changes in the code. Among these strate-85

gies we find those described in [12, 13, 14]. In the first work, a batched gemm

is proposed in order to exploit better the resources of the platform. The idea

is that a gemm is decomposed in batches that contain thousands of smaller

independent gemm in order to maximize the use of the system. In the second

work, a similar idea is proposed but varying the number of operations per batch90

aiming to balance the workload among the batches. Finally, in the last work,

the authors focus on malleability in order to assign the appropriate amount of

resources in each stage of an LU decomposition. In addition, they present a

strategy (Early Termination) in order to automatically tune the block size used

in the factorization when the workload between the panel factorization and the95

update tasks is unbalanced.

All the commented references show improvements for specific scenarios; how-

ever, they present one or more drawbacks: the tuning is not applicable for all

the input cases, it is not easily implementable or it is not automatically done.

This work presents an auto-tunable version of LASs library based on tasks and100

easily implemented thanks to the features provided by OmpSs-2. In addition,

performance results show the capability of adapting the code at each execution

point in order to attain high performance.

3. OmpSs

OmpSs is a task-based programming model that targets parallelism at node105

level by combining ideas used in OpenMP and StarSs. As shown in Figure 1,

OmpSs mainly differs from OpenMP in the execution model; while OpenMP

follows a fork-join approach, OmpSs implements thread-pool parallelism. How-

ever, in both cases applications are parallelized by annotating the source code

(i.e. pragmas).110

Parallelism is extracted at task level (the minimum execution entity), taking

into account the existent data dependencies among them. These dependencies

define a Directed Acyclic Graph (DAG) that is used by the runtime to decide
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Figure 1: OpenMP and OmpSs programming models.

which tasks can be issued to execution. Once the data dependencies are satisfied,

the task will be executed by a single thread.115

4. trsm in sLASs

trsm is the BLAS-3 routine that solves the equation:

A ·X = α ·B (1)

where α is a scalar, X and B are dense matrices, and A is a unit/non-unit

upper/lower triangular matrix.

This routine involves the use of two kernels: trsm and gemm. trsm is used120

in the diagonal blocks of the input matrix (dark blue blocks in Figure 2), while

gemm operates on the remaining blocks (light blue blocks in Figure 2).

First and for the sake of clarity, we review the optimizations presented in [4],

the join of gemm tasks and the modification of the tile size. The first optimiza-

tion consists of joining the set of gemm tasks which compute the tiles of one125

tile-column in one task (Figure 2 - right), instead of using one task per tile (Fig-

ure 2 - left). In this case, we can reduce the number of tasks to be computed,
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Figure 2: trsm implementation in LASs (left) and LASs-opt (right).

as we can see in Figure 3; consequently the overhead of task management is

reduced and better exploitation of the hierarchy memory may happen thanks to

data locality improvement (direct consequence of keeping the data to be reused130

by gemm tasks in the same core memory).

This optimization does not need big modifications in the code. Basically, this

optimization consists of only moving the task instantiation and the modification

of the data-dependence clauses to use the OmpSs regions, as we can see in

Figures 4 and 5. In Figure 4 we present the original code included in LASs;135

Figure 5 shows the modifications in order to perform the join of gemm tasks to

create tile-columns.

To carry out this optimization efficiently, it is also necessary to apply the

second optimization, modifying the tile size to ensure that we have as many

tile-columns (ct in pseudo-codes) as number of cores. Due to this, we need to140
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Figure 3: One task-gemm per tile (top) and one task computing many gemm per tile-column

(bottom).
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1 for ( d = 0; d < dt; d++) {

2 for ( c = 0; c < ct; c++) {

3 #pragma oss task in(TILE_A[d][d]) \

4 inout(TILE_B[d][c]) \

5 shared(TILE_A, TILE_B) \

6 firstprivate(d, c)

7 dtrsm( ... );

8 }

9 for ( c = 0; c < ct; c++) {

10 for ( r = 0; r < rt; r++) {

11 #pragma oss task in(TILE_A[d][d]) \

12 in(TILE_B[d][c]) \

13 inout(TILE_B[r][c]) \

14 shared(TILE_A, TILE_B) \

15 firstprivate(d, r, c)

16 dgemm( ... );

17 }

18 }

19 }

Figure 4: Code for trsm in LASs.

1 for ( d = 0; d < dt; d++) {

2 for ( c = 0; c < ct; c++) {

3 #pragma oss task in(TILE_A[d][d]) \

4 inout(TILE_B[d][c]) \

5 shared(TILE_A, TILE_B) \

6 firstprivate(d, c)

7 dtrsm( ... );

8 }

9 for ( c = 0; c < ct; c++) {

10 #pragma oss task in(TILE_A[0:ct-1][d]) \

11 in(TILE_B[d][r]) \

12 inout(TILE_B[0:ct-1][c]) \

13 shared(TILE_A, TILE_B) \

14 firstprivate(d, r, c)

15 for ( r = 0; c < rt; r++) {

16 dgemm( ... );

17 }

18 }

19 }

Figure 5: Code for optimized trsm in LASs.
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change the size of the tiles according to the next equation:

tile size = N/#cores (2)

N being the number of columns of B and #cores the amount of available

cores in the platform.

For example, for a given problem of N (number of columns of B) and M

(number of rows of B ) equal to 24576, we have a tile size equal to 5122, 512 =145

24576/48.

Another important requirement necessary to carry out this optimization is

the use of regions. Regions are an OmpSs feature, which allows programmers

to define the data-dependencies in terms of a set or sets of elements instead

of one particular variable or element of one array. This makes possible the150

implementation of the aforementioned optimizations, without a big effort from

the programmer’s point of view. This is illustrated in Figure 5.

We include some of our previous results (Figure 6) in order to show the

performance results for LASs, the optimized version of LASs and also PLASMA,

MKL and ATLAS as references. In the light of these results, we can see that in155

all cases MKL attains the highest performance. Nevertheless, for big matrices

(for matrix sizes equal or greater than 24, 5762) LASs-opt matches or is close

to MKL performance. For small matrices, PLASMA followed by LASs could be

an alternative to MKL, although the difference in performance is larger in this

case. Finally, ATLAS provide the lowest GFLOPS.160

This information is detailed in terms of execution time in Table 1. In these

results, we can see that for big matrices, LASs opt outperforms LASs 12%, while

the benefits with respect to PLASMA reach 16% for the biggest matrix size.

Once we have summarized the main characteristics of the optimizations pre-

sented and evaluated in [4], we focus on presenting the effort carried out to165

implement auto-tunable codes. Based on the outcome of the previous study,

we present in this work the implementation and analysis of the auto-tunable

version of the operations, which are able to choose between the best already

presented codes depending on the input matrix size. The main motivation be-
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Figure 6: trsm performance results for PLASMA, LASs, optimized LASs, sLASs, Intel MKL,

and ATLAS.

Table 1: Execution time of trsm for PLASMA, LASs and LASs with optimizations.

Time (s) 6144 12288 18432 24576 30720 36864

PLASMA 0.16 1.12 3.96 9.20 19.89 38.29

LASs 0.20 1.45 4.28 9.83 19.83 36.61

LASs opt 0.29 1.50 4.06 9.44 17.45 32.29
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hind this work is to unify both codes presented in [4], the original LASs and the170

LASs-opt. As shown, while the original LASs achieves the best performance on

small and some medium matrices, LASs-opt consumes considerably less time

than the original LASs on some medium matrices and big matrices. In order to

unify both codes, we make use of the OmpSs features, weak dependencies and

regions. We also make use of the OpenMP final clause. This OpenMP feature175

is included in OmpSs. For the sake of clarity and to help to understand how

these codes are implemented, we include some pseudo-codes in Figure 7.

1 tune_dtrsm(ct);

2 is_final = smart_dtrsm(ct);

3 for ( d = 0; d < dt; d++){

4 for ( c = 0; c < ct; c++){

5 #pragma oss task ...

6 dtrsm( ... );

7 }

8 for ( c = 0; c < ct; c++) {

9 #pragma oss task \

10 weakinout (TILEB[d:rt-1][c]) \

11 final(is_final)

12 for ( r = d; r < rt; r++) {

13 #pragma oss task \

14 inout(TILEB[r][c]) ...

15 dgemm( ... );

16 }

17 }

18 }

Figure 7: Auto-tunable code (combination of codes included in Figures 4 and 5 ).

In the pseudo-code of Figures 4 and 5, we present the LASs original and

LASs-opt implementations respectively, in the last pseudo-code (Figure 7) we

show the proposed auto-tunable code, which unifies the main characteristics of180

the previous ones. We need an extra function in order to determine the tile

size regarding the number of available cores (tune dtrsm) in the pseudo-code.

In addition, we also need to compute if the optimization (join of gemm) needs

to be computed or not. This is done by smart dtrsm. Basically, this function

computes the parameter (boolean) of the final clause, is final. As reported185
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by performance results, the join of gemm is only effective on big matrices, in

particular on those matrices whose number of columns is equal to or greater than

#cores × default tile size. Note that the default tile size used on our target

platform is 5122. Therefore, we need a matrix with a number of columns equal

to or greater than 245762 to effectively use the aforementioned optimization. In190

that case, the is final boolean should be true when computing matrices of such

sizes. If the is final boolean is false, then the nested tasks are not instantiated,

and the weak dependencies are computed as they were “strong” dependencies,

performing the join of gemm thanks to the use of OmpSs regions. Otherwise,

if the matrix is not big enough the is final boolean is false. In that case, the195

tasks instantiated in the “for r” loop are created. It is important to highlight

that this case presents an overhead not presented in the original LASs, since a

bigger number of tasks are instantiated. When the join of gemm is not effective,

we instantiate both, the parent tasks which use weak dependencies and regions

(“for c”) and the nested tasks (“for r”). However, as we see in the rest of this200

work, this overhead is not important.

4.1. trsm Auto-tunable Performance Results.

After explaining the main characteristics and programming strategies to im-

plement auto-tunable codes, in this Section, we evaluate the performance of the

novel code developed during this work. First, we analyze the time consumed205

by the three variants: LASs, LASs-opt. and sLASs (auto-tunable code). These

results are presented in Table 2.

Table 2: Execution time for trsm in LASs, LASs-opt and sLASs.

Time (s) 6144 12288 18432 24576 30720 36864

LASs 0.20 1.45 4.28 9.83 19.83 36.61

LASs opt 0.29 1.50 4.06 9.44 17.45 32.29

sLASs 0.20 1.54 4.35 9.51 17.36 30.63

The auto-tunable code (sLASs) is able to adapt its execution depending on
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the size of the matrices involved in the execution. When small matrices are

used, the execution time of this new variant is similar to the time consumed by210

the original LASs. When the matrices are big, the execution time of LASs-opt

is similar to that consumed by the auto-tunable code.

For the sake of completeness, we also analyze the performance of the differ-

ent approaches in terms of GFLOPS. Figure 6 also includes the performance

results in terms of GFLOPS for the three versions of the codethat we developed215

(LASs, LASs-opt and sLASs). In the plot, it is more clearly illustrated that the

adaptation of the auto-tunable code is able to perform on the two well-defined

areas of interest, from 61442 to 122882 and from 245762 to 368642.

To evaluate more in detail the effectiveness of the presented strategies we

compare first the original LASs code against the auto-tunable version on small220

matrices (122882). Execution traces for this input matrix are presented in Fig-

ure 8. We can see that the overhead presented in the proposed auto-tunable

code does not show an important difference with respect to the original LASs

code. In fact, the instantiation of the extra tasks of the auto-tunable code

corresponds to about 0.82%.225

Similarly to the previous analysis, we now compare the performance achieved

using the original LASs, the LASs-opt code with the auto-tuned code (sLASs)

on big matrices (368642). The execution trace for each case is graphically il-

lustrated in Figure 9. For the sake of performance analysis in the LASs-opt

trace some of the join of gemm present a different color, but in the sLASs trace,230

we did not do this distinction. As we can see, there is no significant difference

between LASs-opt and sLASs traces, which present a quite similar behavior

and performance. However, the reduction in execution time is remarkable with

respect to the original LASs version.

Finally, we analyzed performance results in terms of cache misses. When235

obtaining L1 cache misses for the kernels that are invoked from trsm routine,

trsm and gemm, we see a dramatic reduction in sLASs with respect to LASs.

For trsm tasks, we achieve a reduction cache miss ratio of about 68%. This is

a direct consequence of the change of the tile size since no other optimization is
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Figure 8: Execution trace for trsm of LASs (top) and sLASs (bottom) for an input matrix

size equal to 122882.

15



Figure 9: Execution trace for trsm of LASs (top), LASs-opt (center) and sLASs (bottom) for

an input matrix size equal to 368642.
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applied to these tasks. For gemm tasks, the reduction is around 95% thanks to240

the increase of the tile size and the join strategy that we apply.

4.2. Optimization for Small Matrices

After proposing and evaluating some optimizations, which increment the

performance on big matrices, in this section, we explore a set of different algo-

rithmic and programming strategies based on tasking to optimize the execution245

of small and medium size matrices.

4.2.1. Infra-utilization of computational resources

First of all, let us describe the principal problem found when computing

relative small matrices, i.e. the infra-utilization. This happens when not all the

computational resources are used when computing a problem. In linear algebra250

problems, this can happen if the matrix to be computed is not big enough with

respect to the number of cores.

Figure 10: trsm scheme.

Let us present a simple example for the sake of clarity. For instance, if we

have to compute the BLAS-3 level routine trsm (Figure 10) on a matrix of size

20482 and our tile size is equal to 5122, we will have only 12 gemm (tasks) to be255

computed after computed the first iteration of trsm (“for loop d” of Figure 7).

If the target platform has 48 cores, this means that we are only using the 25%

of the total available resources.

The infra-utilization presented above can be seen in the next trace, where

we execute trsm on a matrix of size 40962 using one node of the MareNostrum260

supercomputer.
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Figure 11: Trace of trsm on a matrix of size 40962.

As shown at the end of the trace, we see that only a few cores are being used.

This is something that it is not possible to eliminate completely, since in trsm,

as in most of the BLAS-3 and LAPACK operations, the parallelism (number

of tasks) is smaller and smaller at the end of the process. At this point, we265

propose a set of optimizations to mitigate the infra-utilization found at the end

of the trace. This final part of the trace does not suppose a big time in those

operations that involve big matrices. However, this part is important on small

and medium matrices, as we can see in the trace shown in Figure 11.

One could think that a possible solution is to minimize the tile size (in LASs,270

the default tile size used in MareNostrum nodes is 5122). However, with smaller

tiles, the tasks take less time, which makes it difficult that the runtime can give

work to all cores. Also, reducing the tile size, the IPC per task may be reduced.

All this is graphically illustrated in Figure 12 (both traces share the same time

scale).275

As we see in Figure 12 a smaller tile does not mitigate the infra-utilization

problem at the end of the trace, but it increases the problem, due to the conse-

quences aforementioned. In fact, when a big tile size (5122) is used, we see an

important reduction in time.

18



Figure 12: Traces of trsm on a matrix of 40962, using a tile size of 2562 (top) and 5122

(bottom)
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4.2.2. Approaches280

At this point, we present two different approaches that attempt to reduce

the infra-utilization on small and medium matrices. Both consist of dividing

the computation of one gemm task into smaller tasks. We focus on gemm

since this represents more than 90% of the total execution time. There are

mainly two different ways to do this decomposition, that we call fine and coarse285

decomposition. In both, we do not use extra memory to do the decomposition,

as it is done at the beginning of the process to pass from flat data-layout to

tiled data-layout. We access directly to the tiles.

Figure 13: gemm fine (top) and coarse (bottom) decomposition.

While in the fine-decomposition (Figure 13-top) we have more tasks (16)

and the use of dependencies is necessary to guarantee the data-dependencies,290

the coarse-decomposition (Figure 13-bottom) is in need of a lower number of

tasks (only 4) and the dependencies are not necessary. Basically, the main

difference, in terms of programming, is found in the location, where the tasks

are instantiated and the absence of dependencies in the coarse-decomposition

(see Figure 14).295

Although the fine-decomposition presents higher parallelism in terms of num-
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1 for ( i = 0; i < it; i++) {

2 for ( j = 0; j < jt; j++) {

3 for ( k = 0; k < kt; k++) {

4 #pragma oss task in( TILE_A[i][k] ) \

5 in( TILE_B[k][j] ) \

6 inout( TILE_C[i][j] ) \

7 shared( TILE_A, TILE_B,TILE_C ) \

8 firstprivate( i, j, k )

9 dgemm( ... );

10 }

11 }

12 }

1 for ( i = 0; i < it; i++) {

2 for ( j = 0; j < jt; j++) {

3 #pragma oss task \

4 shared( TILE_A, TILE_B,TILE_C ) \

5 firstprivate( i, j )

6 for ( k = 0; k < kt; k++) {

7 dgemm( ... );

8 }

9 }

10 }

Figure 14: gemm fine (top) and coarse (bottom) decomposition.
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ber of tasks, the truth is that this parallelism cannot be effectively exploited.

In fact, due to the data dependencies, we can have only 4 tasks being executed

in parallel. Also, the use of dependencies supposes a non-negligible cost for the

runtime at this level. Furthermore, as we see in Figure 12-top, the computa-300

tion of gemm (tasks) of size 2562 presents a problem for the runtime, since the

granularity of these tasks is too fine, as well as the IPC can be reduced.

Because of all this, we propose and implement the coarse-decomposition.

This approach, unlike the fine one, does not have to deal with dependencies.

We create 4 tasks per gemm, which can be executed totally in parallel. As we305

see in Figure 13-bottom, every task computes two matrices of size 256x512 and

512x256, storing the result in a matrix of 2562. Therefore, the tasks are more

expensive computationally against the tasks executed in the fine-decomposition,

which helps the runtime to have bigger tasks and to not reduce the IPC so much.

4.2.3. Implementation310

Once the decomposition has been described in the previous section, the

other important point about the implementation consists of identifying where

the decomposition must be carried out. We previously mentioned that we focus

on gemm, discarding the rest of the routines for now, since the execution of

gemm represents more than the 90% of the execution time.315

The infra-utilization happens when we have fewer tasks than number of

cores. We can easily compute this, obtaining the number of tasks as follows:

(rt(d+ 1)) × ct (3)

Being rt the number of tiles in the vertical (row) dimension, ct the number

of tiles in the horizontal (column) dimension, and d the corresponding level

(diagonal block) to be computed (see Figure 15).320

This equation must be computed at every level of the execution (every “for

loop d” iteration), before executing the set of gemm.

For the sake of clarity, in Figure 15 we present a pseudo-code of our imple-

mentation. It is similar to the code of our original LASs. The differences fall
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1 for ( d = 0; d < dt; d++) {

2 for ( c = 0; c < ct; c++) {

3 #pragma oss task in( TILE_A[d][d] ) \

4 inout( TILE_B[d][c] ) \

5 shared( TILE_A, TILE_B ) \

6 firstprivate( d, C )

7 dtrsm( ... );

8 }

9 for ( r = d+1; r < rt; r++) {

10 for ( c = 0; c < ct; c++) {

11 compute_if_nesting(nesting);

12 #pragma oss task in( TILE_A[d][r] ) \

13 in( TILE_B[d][c] ) \

14 inout( TILE_B[r][c] ) \

15 shared( TILE_A, TILE_B ) \

16 firstprivate( d, r, c )

17 final_dgemm( ..., nesting);

18 }

19 }

20 }

1 final_dgemm( ..., NESTING){

2 if ( NESTING == false ){

3 dgemm( ... );

4 }

5 else{ // Do decomposition via nesting

6 for ( i = 0; i < it; i++) {

7 for ( j = 0; j < jt; j++) {

8 #pragma oss task \

9 shared( TILE_A, TILE_B,TILE_C ) \

10 firstprivate( i, j )

11 for ( k = 0; k < kt; k++) {

12 dgemm( ... );

13 }

14 }

15 }

16 }

17 }

Figure 15: trsm pseudo-code with coarse-decomposition.
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into two main changes: i) instead of calling to the standard gemm API after325

instantiating the task, we call to one intermediate function called final dgemm.

In this function, we pass as parameter the number of tiles (tasks) to be com-

puted in the given d level, following the equation above introduced. ii) into the

final dgemm function, we compute first if we have more tasks than cores or vice-

versa. If we have enough number of tasks, the decomposition is not necessary,330

we compute the gemm standard API, otherwise if we do not have enough tasks,

we compute the coarse-decomposition using nesting.

4.2.4. Performance Evaluation

At this point, we carry out the performance evaluation of the strategies

presented in the previous sections. First, we compare the performance (trace)335

of computing trsm on a matrix of 40962, using only tasks and dependencies

(LASs) against a code that makes use of the changes presented in Figure 15.

As graphically illustrated in Figure 16, the use of coarse-decomposition

achieves an important reduction in time (close to 20%). In the bottom trace of

Figure 16, we can see two dominant colors, the red and the green. While the red340

color corresponds to gemm tasks where we do not apply any optimization, the

green one corresponds to those tasks where we apply the coarse-decomposition.

It is important to highlight that the use of coarse-decomposition, although

it is able to reduce the time by minimizing the effect of the infra-utilization, it

achieves a lower IPC per gemm due to the computation of smaller gemm, which345

is masked by better use of the resources.

We extend this study by testing more matrix sizes. In the next graph, we

see the performance, in terms of GFLOPS (left axis) and the percentage of

performance gain with respect to the original LASs (right axis).

In Figure 17, we see the benefit of using coarse-decomposition (sLASs) with350

respect to not use it (LASs). We note that a matrix of size 5122 (default tile-

size in our tests) is too small to obtain any benefit using coarse-decomposition.

However, on bigger matrices, for instance between 10242 – 40962, the benefit

is important, being almost 40% faster in some cases. The benefit is increasing
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Figure 16: trsm traces using LASs (top) and the proposed strategies (bottom) on a matrix

of 40962.
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Figure 17: trsm performance in GFLOPS and percentage of performance gain with respect

to the original LASs.

from 20182 to 81922. The size of the latest one is too big to see any benefit, since355

the part where we find infra-utilization of the resources is very small compared

with the overall time. We have also included the performance of PLASMA

(OpenMP) for the same test cases. As shown, although LASs achieves clearly

less performance than PLASMA, the strategies presented evaluated in this sec-

tion are competitive with respect to the GFLOPS attained by PLASMA.360

4.2.5. trsm decomposition

In this section, we extend the optimizations for trsm on small and medium

matrices. Although a good performance was achieved with the aforementioned

optimizations presented for gemm tasks, we noted that at the end of the ex-

ecution, the trsm tasks became an important bottleneck. These tasks are in365

the critical path, so, although important improvements were presented by de-

composing gemm tasks into smaller tasks, the dependencies between both type

of tasks, trsm and gemm, does not allow us to reduce the time at the end of

the execution, which is of vital importance to achieve high performance for this

kind of matrices.370
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To deal with these constraints, we implemented an optimization similar to

the one implemented on gemm tasks, but on trsm tasks. The main idea is the

same, decompose the tasks in those parts of the execution where we have an

infra-utilization of the computational resources (when the number of tasks to be

computed is smaller than the number of cores available). Although the idea is375

exactly the same as the one implemented for gemm tasks, the implementation

(decomposition) is different (see Figure 18). The trsm routine can be seen as

a set of independent trsv routines that computes the same input matrix A on

different vectors, which compose the matrix B. So the decomposition consists of

partitioning the matrix B into sub-matrices. For instance, if we have a matrix380

A and B of size 5122, and we want to compute trsm on these two matrices, we

could compute two trsm in parallel, where the first task computes trsm using

A and the first 256 columns of B and the second task computes trsm using the

same matrix A and the last 256 columns. As commented, both tasks use the

same matrix A, this helps us to make an efficient memory hierarchy exploitation385

during the decomposition.

Figure 18: trsm decomposition

The implementation is simple, when one infra-utilization state is detected,

one trsm task is decomposed into smaller tasks by using nesting. In the nested

tasks, it is not necessary the use of dependencies, since these nested tasks are

completely independent among them.390
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Figure 19: trsm PLASMA (top) and sLASs (bottom) on a matrix of 40962.
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To analyze these optimizations, we obtained some traces for a matrix A and

B of size 40962. For the sake of performance comparison, we also include one

trace for PLASMA for the same routine (trsm) and parameters (Figure 19).

Unlike the results presented for gemm (Figure 16), and as it is shown in

Figure 19, the use of the decomposition of trsm presented above not only helps395

to optimize and accelerate the performance of the previous version of sLASs,

but it improves the performance presented by PLASMA.

5. npgetrf (non-pivoting LU factorization) routine

Despite the state-of-the-art routine for LU factorization (getrf) involves

pivoting, we have developed the non-pivoting version (npgetrf) mainly for two400

reasons: i) on well-conditioned matrices the pivoting is not necessary and ii) for

the sake of performance analysis, we want to analyze first the performance of the

proposed optimizations without the influence of pivoting. In addition, although

the use of pivoting for the solving of linear systems of equations is commonly

accepted, we can find multiple problems where the matrices to be solved are405

well-conditioned, and so computationally expensive operations like pivoting are

not necessary. Due to this, it is possible to find multiple implementations in

reference libraries, which do not make use of such a technique. Examples of

this are: MAGMA library 4, Intel MKL 5, NVIDIA cuSolver 6, NVIDIA

cuSparse 7 [15, 16], just to mention a few. Also, the BLKTRI routine of the410

open-source FISHPACK package 8, makes use of non-pivoting algorithms to [17,

18].

Regarding PLASMA we cannot compare our implementation against this li-

brary because this algorithm is not provided. For this reason, results in this sec-

4http://icl.cs.utk.edu/projectsfiles/magma/doxygen/group__group__gesv__nopiv.

html
5https://software.intel.com/en-us/mkl-developer-reference-c-mkl-getrfnpi
6https://docs.nvidia.com/cuda/cusolver/index.html
7https://docs.nvidia.com/cuda/cusparse/
8https://www.netlib.org/fishpack/
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tion are obtained for the LASs and sLASs implementations of the non-pivoting415

LU factorization.

The implementation of npgetrf consists of 3 routines: the non-pivoting LU

factorization, trsm and gemm. For the non-pivoting LU factorization, we make

use of the LAPACKE mkl dgetrfnpi code when the library is linked with MKL.

If the library is not linked with MKL, we use npgetrf, a code implemented by420

us, which computes the LU factorization with non-pivoting.

The LU factorization on a tiled matrix consists of i) factorizing the first

tile of the diagonal, obtaining the L (dark-green in the figure) and U (light-

green) matrices on such tile, ii) once L and U are obtained, we compute several

trsm (light-blue) in the corresponding row, using the L matrix, and in the425

corresponding column, using the U matrix, iii) finally, we compute the so-called

“update” step (dark-blue), which consists of multiplying (gemm) the result of

the set of trsm before mentioned, updating the tiles in the rest of the matrix.

We compute on the next tile of the diagonal and the next two steps until all the

matrix is computed.430

...

.
.
.

...

.
.
.

Figure 20: npgetrf schema.

This process is graphically illustrated in the scheme of Figure 20. As we can

see, the number of tasks (tiles) to be computed is reduced along the factorization,

in particular, the number of gemm is reduced step by step. This behavior forces

us to use a different strategy than the strategy presented in the previous section

for trsm to implement auto-tunable codes. Unlike trsm, where the number435

30



of columns of tiles to be computed does not change along the execution, in

npgetrf the number of columns of tiles is different depending on the step of

the execution. It is because of this that we have to evaluate if there is enough

parallelism (#columns of tiles ≥ #cores) every step. This is illustrated in the

next pseudo-code presented in Figure 21.440

1 tune_dnpgetrf(dt);

2 for ( d = 0; d < dt; d++){

3 #pragma oss task ...

4 dnpgetrf( ... );

5 for ( r = d+1; r < rt; r++){

6 #pragma oss task ...

7 dtrsm( ... );

8 }

9 for ( c = d+1; c < ct; c++){

10 #pragma oss task ...

11 dtrsm( ... );

12 }

13 for ( c = d+1; c < ct; c++){

14

15 is_final = smart_dnpgetrf(c, d, ct);

16

17 #pragma oss task \

18 weakin(TILEA[d+1:rt-1][d]) \

19 final(is_final)

20 for ( r = d+1; r < rt; r++) {

21 #pragma oss task \

22 in(TILEA[r][d]) ...

23 dgemm( ... );

24 }

25 }

26 }

Figure 21: sLASs code for npgetrf.

As we can see in Figure 21, smart dnpgetrf is computed in every “for c”

iteration. This function computes the is final boolean, which, as in the trsm

implementation, is the parameter of the OpenMP final clause. Depending on

the is final boolean, the column of tiles will be computed using one task, when

is final is equal to true and then no more tasks are instantiated using the OmpSs445

weak dependencies and regions, or using multiples tasks (one task per gemm),
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when is final is equal to false and so the weak dependencies and regions are

not considered (omitted). In this way, we apply a dynamic auto-tuning to LU

adapting the number of tasks to be created in each iteration.

We have also explored other optimizations. The first one consists of comput-450

ing the first column of tiles of the “update” step with is final equal to false. This

helps to increase the number of “ready to execute” tasks in the queue of tasks,

since as soon as the gemm task computes the next tile of the diagonal, this tile

can be factorized, increasing the number of tasks ready to be computed. The

other optimization consists of using priorities. The use of priorities helps to bal-455

ance the execution. We use the highest priorities on npgetrf and trsm tasks.

The gemm tasks involved in the update use a different priority depending on

how near are of the left (first) column of the update step. The closer to the left

the higher priority. These two optimizations can be seen as an implementation

of the well known look-ahead optimization by using priorities and nesting.460

Similarly to the analysis performed for trsm, we evaluate the performance

of our auto-tunable npgetrf code by comparing this with the performance

achieved by the implementation of the npgetrf code of the original LASs,

which does not make use of OmpSs weak dependencies, regions and OpenMP

final. The auto-tunable code is part of our sLASs library.465

First, we present the time consumed by both approaches, LASs and sLASs

in Table 3

Table 3: Execution time for npgetrf in LASs and sLASs.

Time (s) 6144 12288 18432 24576 30720 36864

LASs 0.19 0.93 2.90 6.63 13.10 22.40

sLASs 0.19 0.93 2.96 7.04 11.45 20.28

As shown, our auto-tunable code is able to achieve a similar performance

with respect to the original LASs when the optimizations are not carried out

(from 61442 to 184322), however, when the optimizations are done using weak470
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dependencies, regions and the final clause, the same code is able to adapt the

execution to take advantage of the higher parallelism found in these bigger

matrices (from 245762 to 368642), improving performance around 10%.

We also analyzed the performance in terms of GFLOPS to visualize the

benefit of using the auto-tunable code more clearly. Results for npgetrf per-475

formance are reported in Figure 22. This plot also includes MKL results as

a reference (ATLAS is not included because it does not provide an implemen-

tation for the LU factorization without pivoting). Results show that sLASs

outperforms or matches MKL performance in all cases.
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Figure 22: npgetrf performance in GFLOPS.

To perform a deeper analysis, we take advantage of using the BSC tools480

Extrae + Paraver to visualize the traces corresponding to two characteristic

cases, one for a matrix size equal to 122882 and one for a matrix size of 368642.

We start analyzing the case corresponding to a matrix size of 122882 in the

traces of Figure 23.

Although the sLASs code (bottom trace) for the npgetrf routine is in need485

of computing smart dnpgetrf every iteration of the “for c” loop, as well as, a

higher number of tasks must be instantiated, this does not present an important

overhead with respect to the original LASs when the optimizations (is final =

false) are not computed.
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Figure 23: npgetrf execution traces for LASs and sLASs. Input matrix size is 122882.
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However, as we see in the traces of Figure 24, the benefit of the same code490

(sLASs) is notable when applying the optimizations (is final = true), using weak

dependencies, regions and final.

Figure 24: npgetrf execution traces for LASs and sLASs. Input matrix size is 307202.

In the trace which corresponds to sLASs-npgetrf (bottom trace), we can

distinguish two dominant colors, red and green. While the first one corresponds

to those tasks which make use of the OmpSs weak dependencies and regions,495

the green represents the rest of tasks that do not use these OmpSs features. The

optimizations only can be carried out on those regions with enough parallelism

(first steps of the LU factorization). Due to this, we see the “red” tasks only at

the beginning of the trace.
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6. npgesv (non-pivoting LU solve) routine500

This routine basically consists of joining the two routines described in the

previous points, npgetrf and trsm, to solve a linear system of equations,

AX = B. First, we compute the npgetrf to decompose the matrix A into

L and U , A = LU . After this, we solve the next equation using the lower

triangular matrix L, LY = B. Finally, once Y is computed, we solve the next505

equation UX = Y to obtain the final solution X. This is graphically illustrated

in Figure 25.

A=LU:

...

.
.
.

...

.
.
.

LY=B:

UX=Y:

Figure 25: npgesv schema.
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It is important to note that the last trsm (UX = Y ) cannot be computed

until the previous trsm (LY = B) has been completely computed. This does

not allow us to overlap the execution of these two consecutive trsm tasks.510

Like in the two previous routines, we have also implemented an auto-tunable

code for npgesv. This code is part of the sLASs library. The implementation

of npgesv in the sLASs consists basically of combining the two previous codes.

Probably the most interesting contribution of this code is the use of static tuning

(trsm) and dynamic tuning (npgetrf) in one single code. This is implemented515

by using the two “smart” functions, smart dtrsm and smart dnpgetrf. While

smart dnpgetrf must be computed every step of the factorization, as described

in the previous point, the smart dtrsm is only necessary to be computed once

at the beginning, since the parallelism (number of tile-columns) in trsm does

not change along the execution, as it is graphically shown in Figure 25.520

For the sake of clarity, we also include a simple pseudo-code (Figure 26)

which can help to understand the main characteristics of the npgesv code.

We evaluate the performance of our auto-tunable code, which makes use of

the OmpSs weak dependencies and regions and the OpenMP final with respect

to a code that does not make use of these features, only using tasks + data525

dependencies. This last code is part of the LASs library 9. Like in npgetrf

code, in npgesv we keep the use of priorities for better execution. First, we

analyze the time consumed by both codes, LASs (without using weak depen-

dencies, regions, and final) and sLASs (using weak dependencies, regions, and

final). Table 4 presents execution time results for npgesv. We can see that530

execution time is reduced in all cases, being remarkable for big matrices, where

reduction reaches 15% with respect to the original LASs.

The benefit of sLASs with respect to LASs is shown in all the matrices

tested, however the bigger matrix size the higher benefit, achieving a reduction

of about 12 seconds on the biggest matrix evaluated. This is also in concordance535

with the analysis in terms of GFLOPS, as can be seen in Figure 27.

9https://pm.bsc.es/mathlibs/lass
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1 tune_dnpgesv(dt);

2 // DNPGETRF

3 for ( d = 0; d < dt; d++){

4 #pragma oss task ...

5 dnpgetrf( ... );

6 for ( r = d+1; r < rt; r++){

7 #pragma oss task ...

8 dtrsm( ... );}

9 for ( c = d+1; c < ct; c++){

10 #pragma oss task ...

11 dtrsm( ... );}

12 for ( c = d+1; c < ct; c++){

13 is_final = smart_dnpgetrf(c, d, ct);

14 #pragma oss task \

15 weakin(TILEA[d+1:rt-1][d]) ...

16 final(is_final)

17 for ( r = d+1; r < rt; r++) {

18 #pragma oss task \

19 in(TILEA[r][d]) ...

20 dgemm( ... );

21 }

22 }

23 }

24 // DTRSM-Lower

25 is_final = smart_dtrsm(ct);

26 for ( d = 0; d < dt; d++){

27 for ( c = 0; c < ct; c++){

28 #pragma oss task ...

29 dtrsm( ... );

30 }

31 for ( c = 0; c < ct; c++) {

32 #pragma oss task \

33 weakinout (TILEB[d:rt-1][c]) ...

34 final(is_final)

35 for ( r = d; r < rt; r++){

36 #pragma oss task \

37 inout(TILEB[r][c]) ...

38 dgemm( ... );

39 }

40 }

41 }

42 // DTRSM-Upper

43 for ( d = dt-1; d >= 0; d--){

44 for ( c = 0; c < ct; c++){

45 #pragma oss task ...

46 dtrsm( ... );}

47 for ( c = 0; c < ct; c++) {

48 ...

49 }

50 }

Figure 26: sLASs code for npgesv.
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Table 4: Execution time for npgesv in LASs and sLASs.

Time (s) 6144 12288 18432 24576 30720 36864

LASs 0.46 3.32 11.67 27.12 53.90 94.43

sLASs 0.44 3.29 11.45 26.69 46.04 82.74

 0

 500

 1000

 1500

 2000

60
00

61
44

12
00

0

12
28

8

18
00

0

18
43

2

24
00

0

24
57

6

30
00

0

30
72

0

36
00

0

36
86

4

G
F

L
O

P
S

Matrix Size (MxM)

LASs
sLASs

Figure 27: npgesv performance in GFLOPS for LASs and sLASs.

39



Figure 28: npgesv execution traces for LASs and sLASs. Input matrix size is 122882.
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To carry out a deeper analysis we have studied two characteristic test cases,

one for a matrix size equal to 122882 and one for a size of 368642. We start

with the smallest matrix size, 122882. In Figure 28, we see the traces corre-

sponding to the LASs (top) and the sLASs (bottom). In both traces, we note540

that the second trsm (red in the top trace and light-red in the bottom trace)

is not overlapped with computation of the first trsm or npgetrf. This is due

to the data dependencies of the LU solve, since the second trsm cannot be

computed until the first trsm has been completely computed. In the bottom

trace, we also note that the first trsm (in dark-green) is not overlapped with545

the computation of the npgetrf (in dark-yellow). This behavior is not shown

in the LASs trace. This is the consequence of using priorities, since the tasks

involve in the npgetrf have a higher priority than the tasks involved in the

execution of the two trsm. This difference has not important consequences in

terms of performance, being the sLASs execution slightly better than the LASs550

counterpart for small and medium matrices.

Finally we analyze the LASs (top) and sLASs (bottom) traces for a matrix

size of 368642. We see the same behavior shown in the previous traces, i. e. while

the tasks of npgetrf and the first trsm are overlapped in the top trace, these

are not overlapped in sLASs, since this last uses priorities. It is also possible555

to see the notable reduction in time between both traces. In the bottom trace

(sLASs), we are able to see the two different phases of the npgetrf, where the

join of gemm is computed (in dark-green) and not computed (in purple).

6.1. Improving npgesv for small matrices

As expected, when applying the previous optimizations, the performance560

increase is mainly observed for big matrices. In order to improve performance

for small matrices, we also apply the same optimizations that were carried out

for trsm; that is, creating smaller nested tasks when parallelism is not enough

to feed all the available cores in both cases, for gemm and trsm tasks.

Figure 30 shows performance for small matrices (up to 61442) when running565

npgesv. Results show that performance is improved in all cases between 2%

41



Figure 29: npgesv execution traces for LASs and sLASs. Input matrix size is 368642.
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and 36%. Improvements are less effective for very small matrices (e.g. 5122),

where the overhead introduced by the runtime has a higher impact. This effect

is also seen for the largest matrix in this set (61442). In this case, the source of

the reduction in performance is the fact that the percentage of code where the570

optimizations designed for small matrices can be applied is smaller than in the

previous cases, so no effect is seen.
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7. Conclusions

In this work we have presented auto-tunable versions of the BLAS-3 trsm

routine and the LAPACK routines npgetrf and npgesv included in LASs575

library. These new versions of the code, implemented by means of OmpSs-2

features (weak dependencies, regions and the final clause), are part of the first

prototype of sLASs library, a novel library for auto-tunable codes for linear

algebra operations based on LASs library. At the sight of the results, the use

of the OmpSs-2 features presents an improvement in terms of execution time580

against the original LASs library and the OpenMP reference library PLASMA.

The improvement is especially remarkable with respect to ATLAS library and
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Intel MKL. As overview, these codes are able to reduce the execution time in

about 18% on big matrices (in comparison to LASs), by increasing the IPC on

gemm and reducing the time of task instantiation. For a few medium matrices,585

benefits are also seen. For small matrices and a subset of medium matrices,

specific optimizations allow to increase the degree of parallelism in both, gemm

and trsm tasks. These strategies achieve an increment in performance of up

to 40%. When comparing with Intel MKL, the optimized codes achieve similar

performance for trsm and outperform it for npgetrf.590
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