

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/161846

Naranjo-Delgado, DM.; Risco, S.; Alfonso Laguna, CD.; Pérez-González, AM.; Blanquer
Espert, I.; Moltó, G. (2020). Accelerated serverless computing based on GPU virtualization.
Journal of Parallel and Distributed Computing. 139:32-42.
https://doi.org/10.1016/j.jpdc.2020.01.004

https://doi.org/10.1016/j.jpdc.2020.01.004

Elsevier

Accelerated Serverless Computing based on GPU
Virtualization

Diana M. Naranjo∗, Sebastián Risco∗, Carlos de Alfonso∗, Alfonso Pérez∗,
Ignacio Blanquer∗, Germán Moltó∗

aInstituto de Instrumentación para Imagen Molecular (I3M)
Centro mixto CSIC - Universitat Politècnica de València

Camino de Vera s/n, 46022, Valencia

Abstract

This paper introduces a platform to support serverless computing for scalable

event-driven data processing that features a multi-level elasticity approach com-

bined with virtualization of GPUs. The platform supports the execution of

applications based on Docker containers in response to file uploads to a data

storage in order to perform the data processing in parallel. This is managed

by an elastic Kubernetes cluster whose size automatically grows and shrinks

depending on the number of files to be processed. To accelerate the process-

ing time of each file, several approaches involving virtualized access to GPUs,

either locally or remote, have been evaluated. A use case that involves the

inference based on deep learning techniques on transtoracic echocardiography

imaging has been carried out to assess the benefits and limitations of the plat-

form. The results indicate that the combination of serverless computing and

GPU virtualization introduce an efficient and cost-effective event-driven accel-

erated computing approach that can be applied for a wide variety of scientific

applications.

Keywords: Serverless Computing, GPUs, GPU Virtualization

∗Corresponding author
Email addresses: dnaranjo@i3m.upv.es (Diana M. Naranjo), serisgal@i3m.upv.es

(Sebastián Risco), caralla@upv.es (Carlos de Alfonso), alpegon3@upv.es (Alfonso Pérez),
iblanque@dsic.upv.es (Ignacio Blanquer), gmolto@dsic.upv.es (Germán Moltó)

Preprint submitted to Journal of LATEX Templates February 3, 2020

1. Introduction

Serverless computing [1] stands out as a computing paradigm that has been

widely adopted by the industry for ultra-scalable event-driven processing on ab-

stracted computational Clouds. Major public Cloud providers such as Amazon

Web Services [2] have included services such as AWS Lambda [3] to support

the definition and managed execution of functions. Those functions, coded in

the supported programming languages, can be executed in response to certain

events such as an HTTP request to an API Gateway [4] or a file upload to an

object storage service, such as Amazon S3 [5]. AWS Lambda provides a con-

venient platform for processing a large number of short stateless independent

jobs. To be more precise, up to 3000 parallel invocations is currently supported

for up to 15 minutes of execution time using ephemeral storage and without the

ability to perform communications among the invocations since no incoming

TCP connections are supported.

Indeed, serverless computing has been widely adopted to support multiple

use cases such as creating scalable web sites, real-time file processing, real-

time stream processing, and Extract, Trasform and Load (ETL) processes, as

indicated in the work by Lynn et al [6].

However, the following limitations of current serverless platforms offeblack

by major public Cloud providers impose a serious restriction for their adop-

tion in the scientific computing domain: i) limited maximum execution time,

unfeasible for long-running scientific applications; ii) limited resources, since

resource-intensive scientific applications may require beyond 3008 MB of RAM

(current maximum memory size of AWS Lambda); iii) restricted execution envi-

ronment, since scientific applications typically require a wide variety of libraries;

iv) limited ephemeral storage, since 512 MB of disk space is insufficient to host

the execution of applications with large dependencies and v) inability to access

GPU resources within the function invocation for intensive workloads.

To this aim, a myriad of open-source serverless frameworks supporting the

Functions as a Service (FaaS) [7] computing paradigm have surged in the last

2

years, such as OpenFaaS [8] and Knative [9]. They execute functions, coded in

certain programming languages, in response to HTTP events and other sources

of events and typically rely on pre-provisioned computing platforms based on

Container Orchestration Platforms (COP) such as Kubernetes [10] and Apache

Mesos [11, 12]. These platforms are typically oriented to the execution of bursts

of short HTTP-based requests, since they intend to mimic the functionality

offeblack by their public Cloud providers counterparts.

However, serverless computing for data-processing scientific applications typ-

ically exhibit the following unique requirements: i) execution of long resource-

intensive jobs; ii) ability to profit from accelerated computing supported by

GPUs; iii) ability to support data-storage back-ends as sources of events and

destination of data output and iv) ability to scale the underlying computing

infrastructure to support incoming workloads without a major impact on the

level of service.

We base our developments on our previous work in the field: OSCAR1 [13],

an open-source platform that builds on top of Kubernetes and OpenFaaS to

support serverless computing for data-processing applications. Virtualization

already plays a key role in this platform to isolate workloads and provide aggre-

gated computing on top of the hardware. In this paper we investigate the inte-

gration of GPU virtualization into OSCAR in order to facilitate access to GPU

computing for scientific workloads. Multiple approaches to GPU virtualization

are assessed, from remotely accessing GPU devices using the rCUDA frame-

work [14], to enabling direct access to the GPU devices via PCI passthrough

by the Virtual Machine to be accessed by the container-based workloads being

executed as a result of triggering a serverless function. Therefore, the main

contribution to the state of the art of this paper is to analyse the integration of

GPU computing and serverless computing through container-based workloads

managed via Kubernetes.

After the introduction, the remainder of the paper is structublack as fol-

1OSCAR - https://github.com/grycap/oscar

3

https://github.com/grycap/oscar

lows. First, section 2 introduces the related work in the area and points out

the unique features of the proposed platform. Second, section 3 describes the

architecture of the proposed platform, its components and the integration of

the GPU virtualization support. Third, section 4 assesses the benefits of the

platform by means of a case study that integrates a deep learning application

for transtoracic echocardiography imaging. Fourth, section 5 shows the results

for the experiments performed comparing the use of CPUs, native GPUs and

virtualized GPUs. Finally, section 6 summarises the main achievements of the

paper and points to future work.

2. Related Work

This section describes the related work in the area of serverless computing,

with a focus on the Functions as a Service (FaaS) model and, then, covers the

state of the art of using GPUs in Cloud Computing. It is precisely at the

intersection of these technologies that lies the main contribution of this work.

2.1. Serverless Computing and FaaS

Serverless computing has surged in the last years due, in part, to the dynamic

allocation of computing resources managed by the Cloud provider together with

the fine-grained pay-per-use billing model. Although some authors use the term

interchangeably with FaaS, the latter stands for a computing model that allow

application developers to execute functions without having to explicitly manage

and scale the infrastructure needed to run such code. Public cloud providers

such as AWS Lambda [3], Google Cloud Functions [15], Microsoft Azure Func-

tions [16], Alibaba Cloud Function Compute [17], and IBM Cloud functions [18]

offer the FaaS model as part as their serveless infrastructure package. Further-

more, to provide an on-premises open-source alternative to the offerings by the

public Cloud providers, several frameworks that follow the FaaS model have

appeablack in recent years. Some of the most widely used are: OpenFaaS [8],

Knative [9], Fission [19], Nuclio [20], Apache OpenWhisk [21], Oracle Cloud Fn

[22] and Riff [23], to name a few.

4

The work by Spillner et al. [24] presents the benefits of adopting the FaaS

model for multiple scientific domains (e.g. computer graphics, cryptology, math-

ematics, and meteorology). However, due to some of the intrinsic characteristics

of the FaaS model (e.g. pblackefined function environments, short-lived execu-

tions), there are not many scientific applications that can benefit from migrating

to such model. Adapting established scientific applications to this new paradigm

is not a trivial task and sometimes implies an application refactorization that it

is outside of the knowledge scope of the developers of such applications. Never-

theless, there are works in the literature that successfully use this paradigm like

the PyWren framework introduced by Jonas et al. [25]. The PyWren execution

framework, in combination with LAmbdaPACK (i.e. a domain-specific language

to implement linear algebra algorithms that are highly parallel), provides the

base to the numpywren scientific computing framework by Shankar et al. [26].

Numpywren takes advantage of the function as a service model offeblack by

AWS Lambda to solve linear algebra problems like large matrix multiplications

and decomposition.

The SCAR2 framework [27] also used AWS Lambda as a platform to exe-

cute general scientific applications based on Docker containers, to create highly-

parallel event-driven file-processing serverless applications that execute on cus-

tomized runtime environments provided by Docker images out of which con-

tainers are run on AWS Lambda. Another framework able to take advantage

of AWS Lambda for intensive computing is MARLA3 [28]. MARLA is able

to execute Mapblackuce jobs as coordinated Lambda functions in response to

file uploads to Amazon S3, achieving significant levels of performance without

pre-provisioning infrastructure. These approaches can be applied to certain ap-

plication use cases to achieve unprecedented levels of scalability (in the order of

thousands of parallel invocations), when compablack to using virtual machines

(in the order of tenths of virtual machines).

2SCAR - https://github.com/grycap/scar
3MARLA - https://github.com/grycap/marla

5

https://github.com/grycap/scar
https://github.com/grycap/marla

The research done by Kim et al. [29] also addresses the definition of a

serverless platform with GPU support. However, it employs the NVIDIA-Docker

runtime environment to allow function containers to have access to GPUs. This

approach has the disadvantage that each GPU can only be accessed by one

function invocation simultaneously. In contrast, our main contribution is the

evolution of the OSCAR platform with rCUDA in order to allow the effective

sharing of GPUs among functions to support a multitenant environment.

In addition, the rise of the artificial intelligence frameworks (e.g. TensorFlow

[30], Microsoft Cognitive Toolkit [31] or Keras [32]) can profit from the usage

of accelerated hardware (i.e. GPUs) not easily accessible from the function as a

service architecture due to the many layers of virtualization employed. The work

by Ishakian et al. [33] concluded that artificial intelligence workloads benefit

from GPU support, specially for training neural networks. Thus, the inability to

access GPU devices from existing serverless platforms may hinder its adoption

for these workloads.

2.2. GPUs in the Cloud

Exploiting computing resources in the Cloud typically involves using Virtual

Machines (VMs). While common hardware is well virtualized (i.e. CPU, Hard

Disk, etc.), specific devices, especially those related with high performance, have

not the same level of support and performance. This is the case of some network

devices, FPGAs or GPUs. The work by Yu et al. [34] indicates that there are

different approaches to exploit the physical GPUs using a VM: API remoting

(or API forwarding), PCI-passthrough, and virtualizing the access to the GPU.

One of the first studies in this field was conducted by Lan Vu et al. [35] where

a GPGPU virtualization solution named vmCUDA is proposed, which provides

high-speed access of multiple virtual machines to shablack physical GPUs in

VMware’s ESX in order to offload general-purpose computing workloads.

In the case of API forwarding, rCUDA [14], vCUDA [36], GViM [37] and

gVirtuS [38] are existing solutions that achieve good performance under certain

circumstances. This approach is of special interest when the GPU resources

6

are detached from the virtualization platform since it provides access to GPU

devices from a virtualization platform that does not have direct access to them

(i.e. the communication between the GPU and the VM is made using a network).

Regarding the performance, the access to the GPU device is a competitive task

between all the VMs that intend to use the GPUs, and the specific software

is responsible for sharing the usage of the devices between the different client

VMs.

The case of PCI passthrough has been used in production to obtain a high

rate of efficiency in VMs, close to native performance using most of the hypervi-

sors [39]. In the end, PCI passthrough is a technique that provides single VMs

with exclusive access to a PCI device. While it obtains better performance, such

exclusive and native access has several security implications that must be taken

into account in a shablack virtualization platform (e.g. changing parameters of

the physical device). Moreover, allocating one GPU for one VM results in an

exclusive usage of that GPU, thus blackucing the efficiency.

The underlying idea in virtualizing the access to the GPU is to create virtual

hardware that accesses the physical one, as it is done with the other components

such as CPU or network devices. Examples of this approach are described in the

work by Suzuki et al. [40] and Tan et al. [41]. Recently, vendors started provid-

ing support for virtualizing the access to the GPU. In particular, NVIDIA has

introduced the vGPU support for some of its devices [42]. Using this approach,

the access to the GPU is competitive such as when different processes access a

physical GPU in a physical server, achieving near bare-metal performance [43].

This approach overcomes the problem of 1 to 1 allocation ratio that intro-

duces the PCI-passthrough mechanism between VMs and GPUs. However, it

may need additional software licenses to be used (e.g. NVIDIA Grid). Most

public cloud providers (AWS, Microsoft Azure, Google Cloud Platform, Alibaba

Cloud, etc.) support this kind of virtualization.

In order to address the open issue of supporting virtualized GPU-based

computing in on-premises serverless computing frameworks, this paper presents

the integration of GPU virtualization techniques into the open-source OSCAR

7

platform in order to combine the benefits of the function as a service model with

the high processing throughput offeblack by GPUs for the efficient execution of

scientific applications.

3. Components and Architecture Design

This section introduces the main components and underlying technology

employed before describing the general architecture of OSCAR with especial

emphasis on the virtualization strategies of GPUs adopted.

3.1. rCUDA

rCUDA4 is a framework developed at the Universitat Politècnica de València

that allows the use of remote devices compatible with CUDA (Compute Unified

Device Architecture) [44]. rCUDA creates virtual GPU devices which represent

physical GPUs in remote machines that offer GPGPU (General Purpose Com-

puting on Graphics Processing Units) services [45] for machines that do not

have physically attached these devices.

The virtualization technique of GPUs represents a significant advantage in

HPC clusters and datacenter environments since it increases the flexibility of

the use of GPUs in the cluster. rCUDA allows sharing the same GPU among

multiple applications, which encourages the development of a multitenant en-

vironment. The client/server architecture of rCUDA requires the server appli-

cation to run on the machine where the GPUs are physically available. The

clients use a library of wrappers to the CUDA Runtime API in order to access

virtualized devices. Different communication protocols can be used in rCUDA

such as Infiniband [46], RoCE (RDMA over Converged Ethernet) to optimize

data exchange [47] and, finally, the TCP/IP protocol.

4rCUDA - http://www.rcuda.net

8

http://www.rcuda.net

3.2. NVIDIA Container Runtime for Docker

NVIDIA-Docker5 is a runtime developed by NVIDIA that allows the exe-

cution of Docker containers compatible with GPUs. This simplifies the usage

of GPUs for applications that run inside a Docker container. NVIDIA-Docker

includes driver-agnostic CUDA images and offers a wrapper that provides the

containers with the necessary components to run the code on the GPU. The

most recent evolution of this component is the NVIDIA Container Runtime,

compatible with the Open Containers Initiative (OCI) specification [48].

3.3. Architecture

Figure 1 shows the architecture proposed to exploit remote GPU resources

from an on-premises serverless computing platform.

VM

Hardware

CLUESKube
FrontEnd

Kube
WN

VM

Kubernetes cluster

OSCAR
UI

Minio

OpenFaaS

OSCAR Framework

Init / Invoke
Functions

Upload / Download
Files

Create / Launch
Functions

Kubernetes
Job

OSCAR
Worker

Create
Job

Send file
events

Read job
queue

Scalable
WNs

Remote Cluster

Access GPU
resources

Put / Get
files Store file

results

rC
U

D
A

C
lie

nt

VM

rCUDA
Server

NVIDIA-Docker

Figure 1: OSCAR architecture to access external GPU resources.

5NVIDIA-Docker - https://github.com/NVIDIA/nvidia-docker

9

https://github.com/NVIDIA/nvidia-docker

The architecture is based on the OSCAR framework which allows application

developers to execute Docker packaged applications as functions triggeblack in

response to certain events, such as a file upload to a storage back-end.

The event-driven architecture that OSCAR offers simplifies the data and the

infrastructure management abstracting all the configurations away from the end

user. The application developers only need to define the execution environment

(Docker image) and the script to be executed to perform the file processing in

order to create a new function. Once the function is created, the invocation is

triggeblack by uploading a file to the storage provider defined. For this, we use

MinIO [49], an Amazon S3 compatible object storage system that provides both

data persistence and the ability to trigger events. After the function invocation

finishes, the results can be downloaded from the output storage provider used by

the function. OSCAR has been designed to cope with long-running applications

which makes it more suitable to execute scientific applications than traditional

FaaS frameworks, which are typically oriented to processing bursts of HTTP-

based stateless requests. For this, the function invocations are translated into

Kubernetes jobs.

OSCAR services are deployed in an horizontally elastic Kubernetes cluster,

whose nodes can be automatically added and removed on demand thanks to the

CLUES6 [50] elasticity manager and provisioned from multi-Clouds by means

of the Infrastructure Manager (IM)7 [51].

Figure 2 shows the integration of rCUDA in the architecture of OSCAR.

In a remote cluster with physically attached GPUs runs the rCUDA server

deployed inside a Docker container. For this it was necessary to use the NVIDIA-

Docker runtime that allows virtualizing the GPUs inside the container where the

rCUDA server is running. Notice that the rCUDA server can also be installed

directly on the underlying operating system, instead of using Docker. The

rCUDA client is run in the Kubernetes jobs and communication with the server

6CLUES - https://github.com/grycap/clues
7IM - https://github.com/grycap/im

10

https://github.com/grycap/clues
https://github.com/grycap/im

is achieved via the network.

Builds
(Kaniko)

OSCAR
Manager

Create
Function

Runs as

OSCAR Function
Container

User Container

Application

OpenFaaS Watchdog

rCUDA Client

FaaS Supervisor

OSCAR Framework

OSCAR
UI

Kubernetes
Job

User Container

Application

CUDA API

Physical GPU

Network

Kubernetes Cluster

Remote Cluster

Runs on

Docker Container

rCUDA Server

CUDA Libraries

Docker

NVIDIA Docker
Runtime

Figure 2: Integration of rCUDA into the OSCAR architecture.

Serverless functions are needed to be executed quickly and resources provi-

sioned immediately. Therefore the integration of GPUs as back-end resources

is key. However, GPU resources are expensive and may be shablack among

multiple deployments for budget reasons. Usage of poweblack-on resources with

GPUs should be maximized, so GPU virtualization comes into play. The article

extends OSCAR with the support of mixed workloads that include standard

CPU and GPU requirements. The integration of rCUDA brings addressing ex-

ternal network connectivity, overheads on loading additional dynamic libraries,

resource contention and additional configuration issues at the level of OSCAR

components.

While all the components used in the design of the architecture exist inde-

pendently, the main contribution of this paper is to achieve their integration into

a single open-source platform (OSCAR) that allows users to deploy serverless

applications with seamless access to both native and virtualized GPUs.

11

4. Use case: Echocardiography classification on GPUs

In order to assess the benefits of the proposed platform, several scenar-

ios have been designed to cover different GPU virtualization strategies. These

scenarios have been applied to a real use case for the classification of echocar-

diography movies into pathological, borderline, and sound cases.

This classification use case applies an image classification model for echocar-

diography movies developed by QUIBIM8 [52] [53] to classify an echocardiogra-

phy movie frame according to the acquisition view into three categories (four-

chamber, long-axis, short-axis). This classification is needed before applying

other feature extraction technique, as they strongly depend on the acquisition

view.

The echocardiography movies are obtained from the PROVAR study [54].

These movies have been obtained from a screening program where thousands of

patients are exploblack yearly. Between 10 and 20 movies are acquiblack from

each patient, using different techniques (morphological and Doppler) and from

three different view angles. The acquiblack movie sequences last for around 2

to 4 seconds, comprising up to a few tens of frames. The size of each frame is

240 by 320 pixels.

All the frames in a movie are acquiblack from the same angle and modality.

However, some frames are too noisy to infer the view. Therefore, it is important

to extract all the frames, perform the classification of the individual frames and

compute a consensus. The model has been developed using Keras9 and leverages

GPUs when available to speed up the training, validation and estimation phases.

Figure 3 shows the processing pipeline.

In order to evaluate the best way to analyze the videos, different scenarios

are proposed that include the execution of the classification code in CPUs and in

local and remote GPUs. To compare such scenarios, 6 videos from the PROVAR

study are used. Each video is divided into a number of frames determined

8QUIBIM - http://quibim.com/
9Keras - https://keras.io/

12

http://quibim.com/
https://keras.io/

Figure 3: Processing pipeline for the use case.

according to the duration (60, 120, 180, 240, 300 and 360 frames), which allows

us to test the performance when the workload increases.

In this particular use case, the model had already been previously trained.

Therefore, we focused on classifying the segmented images of the videos accord-

ing to the views. However, it is also possible to use the architecture in order

to perform the training of the models using the GPUs, since it supports the

execution of long-running jobs.

4.1. Requirements

Despite the fact that the most computationally intensive part is training

the model using Deep Learning techniques, the cost of using the model for

the classification, i.e. the inference phase, is not negligible. The possibility of

parallelisation and the usage of accelerated devices can be the key to efficiently

use the models in production. Indeed, the event-driven computing offeblack by

serverless platforms is appropriate to compute the estimation of pblackictive

models and the classification of complex data. The processing is triggeblack by

uploading a set of movies corresponding to a specific patient which triggers the

execution pipeline to perform the simultaneous processing of the files.

Therefore, the following requirements for this use case are defined:

• To exploit the inherent parallelism at the level of a video frame when pro-

cessing the videos. Once extracted, individual frames can be processed

concurrently. The developer of the application should not need to explic-

itly implement the parallel distribution of the frames along the processing

13

nodes.

• To be able to use GPU acceleration from user-defined functions in the

serverless platform. Functions should be able to transparently use GPU

devices if they are available in the underlying computing node.

• To maximise the usage of GPU resources, potentially sharing them among

different concurrent processes, in order to avoid locking a GPU device to

a single CPU instance.

• To blackuce the gap between the development and the production envi-

ronment, so applications validated in the development environment can

be easily deployed in production with minimal risks.

These requirements come from a typical use case of unsupervised classi-

fication models. The creation of unsupervised classifiers require an intensive

computing model building phase, where models are trained and validated, an

error evaluation phase and, finally, the production phase for the use of the model

to classify new data objects. In a scenario where data is continuously updated,

models need to be retrained and, therefore, the use of GPU-enabled functions

can ease the continuous training problem. If the complexity of the problem

requires distributed training, other programming models should be exploblack.

However, the scenario of using trained unsupervised classifiers for the estima-

tion of the category of a new data, fits perfectly with the function as a service

model. Since even the computing time of the estimation phase may is high, the

use of GPUs appears to be highly convenient.

4.2. Computing Platform

The computing platform employed to execute the use case is composed of

two nodes. The first one features two Skylake Gold 6130 at 2.1 GHz, 16 cores

each, 768 GB RAM DDR4@2666, 10 GbE and includes an FPGA Arria 10

GX115 8GB, a RADEON Instinct MI25, 16GB, a Tesla P40 24GB and a Tesla

V100 32GB. The second node features the same processor and memory together

with 4 Tesla V100 32GB.

14

4.3. Scenarios

The following scenarios have been defined in order to evaluate different ap-

proaches to integrate GPU virtualization in an on-premises serverless platform:

1. Execution from Python console. The code that segments the video and

classifies the images is executed from the Python console in a Docker

container that has access to a single Tesla V100 GPU through NVIDIA-

Docker. The main disadvantage of this approach is the manual configu-

ration for each of the inputs and outputs of the code, far from being an

automated process. This scenario determines the baseline execution time

when accessing a GPU natively, to be more precise, using a lightweight

virtualization approach.

2. OSCAR+CPU. This executes the image classification process in a con-

tainer, through the OSCAR serverless platform, exclusively on the avail-

able CPU. This configuration allows to determine the improvement in the

classification time of the image when moving from a CPU to a GPU.

3. OSCAR+Remote GPU (rCUDA). This approach provides serverless func-

tions with access to remote GPUs from the containers of a Kubernetes

cluster in which these functions are executed. The possibility of using

these GPUs by multiple applications at the same time allows the imple-

mentation of a multi-tenant scenario in the use of GPUs. This is possible

thanks to the functionality offeblack by rCUDA.

4. OSCAR+Native GPU. In this case the OSCAR platform was deployed on

machines where the physical GPUs are available. To enable GPU support

within the Kubernetes cluster it is first necessary to configure the working

nodes with NVIDIA-Docker and then deploy the NVIDIA device plugin

for Kubernetes10 in the cluster. Once this is done, the NVIDIA GPUs can

be consumed via container level resource requirements.

It is important to point out that all the scenarios that involve a GPU are

10NVIDIA device plugin for Kubernetes - https://github.com/NVIDIA/k8s-device-plugin

15

https://github.com/NVIDIA/k8s-device-plugin

based on virtualization techniques. We discarded carrying out native executions

on the physical nodes with GPU access since the platform is configublack as a

multi-tenant on-premises Cloud and, therefore, users are not expected to run

their code natively on these nodes.

OSCAR-UI

Store video
images

Split
Function

Upload video
to Minio Bucket

Download
Results

Trigger
Split Function

Store classified
images

OSCAR

Classify
image
Function

Classify
image
Function

Classify
image
Function

Classify
image
Function

Classify
image
Function

Classify
image
Function

rCUDA
Client

Trigger multiple
Classify image

Functions

Execution on GPU
through rCUDA

Figure 4: Workflow of the selected use case on the OSCAR platform using remote GPUs with

two different functions.

Scenarios 2, 3 and 4 included two variants due to the fact that the code em-

ployed to classify an image needs to import the Tensorflow and Keras libraries.

In the first variant, shown in Figure 4, the Keras and Tensorflow libraries are

imported each time the segmentation function generates an image to be clas-

sified. This variant allows the execution of multiple classification functions in

parallel, but increases the execution time by having to import the libraries when

an image to be classified is generated. In the second variant (see Figure 5), these

libraries are imported only once and then all the images from a single video are

classified. A performance analysis of the processing time of both variants proved

that performing all the image classifications in the same function was more ef-

ficient than carrying them out in separate functions. Therefore, the tests were

made under these second variant. This means that a video will trigger the exe-

16

cution of a single function responsible for splitting it into images and performing

the classification process for each image. Thus, parallelism can be achieved by

processing multiple videos.

In scenario number three, where remote GPUs are used, this may have a

significant impact since these libraries are imported through rCUDA and there

is a non negligible time for the rCUDA server and client to establish this com-

munication.

Upload video
to Minio Bucket

Download
Results

OSCAR-UI

Trigger Function
(Split the video and
classified images
all in one function)

Store classified
images

Execution on GPU
through rCUDA

OSCAR

Split video and
Classify image

Function

rCUDA
Client

Figure 5: Workflow of the selected use case on the OSCAR platform using remote GPUs with

all the code in one function.

In order to evaluate the elasticity of the architecture, the deployment of a

new working node in the OSCAR cluster was triggeblack to compute the time

taken to provision and configure it on the on-premises Cloud. This time was ap-

proximately 9 minutes, which can be significantly blackuced if pre-configublack

Virtual Machine Images are used. It is important to point that this time was

not taken into account when measuring the execution time of use cases since

the focus of the paper is not on the elasticity of the platform but rather on the

ability to introduce GPU support for the execution of the functions.

By defining these four scenarios we aim to compare the execution time of the

image analysis resulting from the case study and, thus, determine the advantages

and limitations for each scenario.

17

5. Results and Discussion

For each of the aforementioned scenarios, the processing time of the videos

was measublack, taking into account the segmentation of the video into images

and their classification using the pre-trained model based on Tensorflow and

Keras.

0 1,000 2,000 3,000 4,000

Load pre-
trained
model

Import
Tensorflow
and Keras
modules

199

418

210

618

630

3,465

175

524

Time (miliseconds)

Python console (Native GPU)
OSCAR+CPU

OSCAR+Remote GPU (rCUDA)
OSCAR+Native GPU

Figure 6: Average time importing the requiblack modules and loading the pre-trained model

in the analysed scenarios.

Figure 6 shows the average time it takes to load the training model and the

Tensorflow and Keras libraries. As can be seen in the graph, when virtualizing

the GPUs within the cluster through rCUDA the time increases considerably

since libraries need to be loaded by the rCUDA server. Indeed, this component

runs in a virtual machine where it has access to a Tesla V100 32GB GPU. The

rCUDA client runs in the Kubernetes jobs on a virtual machine in which GPUs

are not accessible. The connection between the client and the server is through

the 10GbE network card of the physical machine. It was precisely in order to

minimize this overhead that we decided to adopt variant 2, i.e. have a single

function invocation to process a single video, in all the subsequent tests.

Several executions were carried out to process a set of videos using the on-

premises Cloud platform and a negligible time difference was observed among

them. Therefore, Figure 7 show the total processing time including the segmen-

18

60 120 180 240 300 360

0

20

40

60

80

100

120

140

160

180

7
11

15 18
22

27
34

63

84

109

136

169

26

40

52

69

84

95

15
19

24
28

32
36

Video frames

T
im

e
(s
ec
on

d
s)

Python console (Native GPU)
OSCAR+CPU
OSCAR+Remote GPU
OSCAR+Native GPU

Figure 7: Comparison classifying different length videos in the analysed scenarios.

tation time of the video into images, loading the libraries (as shown in Figure

5) and the classification of the images. The graphs reveal that the use of the

CPU results is the slowest procedure, compablack to using GPUs, especially in

cases where the videos generate a large number of frames.

Concerning the usage of GPUs, scenario 1, i.e. Python console (Native

GPU), which provides lightweight access to a Tesla V100 GPU via NVIDIA-

Docker results, is the fastest approach. The disadvantage of this approach is

that it is necessary to manually run the code for each of the videos, or via

scripts, and does not have the possibilities offeblack by a serverless platform

in terms of parallel processing of multiple executions coupled with automated

elasticity based on the numbers of virtual machines of the Kubernetes cluster.

19

60 120 180 240 300 360
0

20

40

60

80

100

26

40

52

69

84

95

Video frames

T
im

e
(s
ec
o
n
d
s)

OSCAR + Remote GPU (rCUDA)

60 120 180 240 300 360
0

20

40

60

80

100

15
19

24
28

32
36

Video frames

T
im

e
(s
ec
o
n
d
s)

OSCAR + Native GPU

Initialize container

Input/Output
Import modules
Load pre-trained model
Processing

Figure 8: Time segmentation according to the main execution phases in scenarios 3 and 4.

With the use of CPUs (scenario 2), image processing times are higher than

with the use of GPUs, mainly in videos that are divided into more frames what

increases the computing requirements.

In the case of scenarios 1 and 4, where GPUs are used natively, a difference

in execution time is noticed. The execution time using the Python console is less

than when using OSCAR + Native GPU. The reason is that when using OSCAR

the classification code is executed through the invocation of the function, start-

ing from the fragmentation of the video into images, until their classification.

However, in the case of the Python console, the classification code is executed

manually. Hence, the fundamental execution time difference lies in the creation

of the environment for the execution of the functions in the OSCAR platform

which, of course, does not appear when using the Python console.

Scenario 3 (OSCAR + Remote GPU) virtualizes the access to remote GPUs,

via rCUDA, from the functions executed inside the Docker containers that are

run in the Kubernetes cluster. This enables multiple classification functions

to be executed while simultaneously accessing the same GPU, enabling the

development of a multi-tenant environment.

With the results obtained in scenario 4 (OSCAR + Native GPU), it is evident

that with the use of native GPUs in a Kubernetes cluster the processing is faster

20

since the access to the GPUs is local. Figure 8 shows the time distribution among

the main phases requiblack for the execution of the function. The Initialize

container and Input/Output phases are executed by the OSCAR framework

and depend on the start-up of the execution environment and the upload and

download time of the input and output files. Therefore, the larger the video to

process, the longer it takes.

In the OSCAR + Remote GPU (rCUDA) scenario the processing is signif-

icantly slower than when using native GPUs, since rCUDA is a client-server

application that makes extensive use of the network. Consequently , it is rec-

ommended to use InfiniBand networks to achieve better performance. In this

case, the phases Import modules, Load pre-trained model and Processing are due

to the GPU virtualization overhead and depend fundamentally on the network

speed.

1 video 2 videos 3 videos 4 videos

20

30

40

50

60

70

80

90

100

52

67

74

86

24

49

73

98

Number of videos simultaneously processed

T
im

e
(s
ec
on

d
s)

OSCAR+Remote GPU (rCUDA)
OSCAR+Native GPU

Figure 9: Execution times for processing up to 4 videos (180 frames) in scenario 3 and 4.

When using native GPUs, the NVIDIA complement for Kubernetes does

not currently allow simultaneous access to GPU resources. To this aim, the

21

use of rCUDA allows the development of a multitenant environment where sev-

eral applications simultaneously access the same GPU, thus obtaining better

performance.

Figure 9 shows the execution times of up to 4 videos processed simultane-

ously in the cases of OSCAR + Remote GPU and OSCAR + Native GPU. It

is observed that as the workload increases, in the case of using a native GPU

a bottleneck is created due to the NVIDIA Kubernetes plugin that only allows

the use of one GPU per pod. In the case of rCUDA, when the amount of videos

to be processed increases, better results are obtained due to the possibility of

sharing the GPU between applications simultaneously.

6. Conclusions and Future Work

This paper has focused on the integration of GPU virtualization techniques

in on-premises serverless computing platforms based on containers. In par-

ticular, we addressed both remote GPU virtualization, through rCUDA, and

lightweight virtualization through NVIDIA-Docker.

Based on the OSCAR serverless platform, which provides event-driven com-

puting for function invocations that are run as jobs in a Kubernetes cluster,

we assessed the integration of both GPUs and serverless computing to provide

accelerated support for functions.

A use case on transtoracic echocardiography imaging that uses machine

learning techniques to perform segmentation and classification of images was

integrated to achieve video processing on dynamically deployed Kubernetes clus-

ters in an on-premises Clouds with both GPU-enabled and CPU-only nodes.

The results indicated that function reorganization in order to minimize the

loading time of deep learning libraries is important to minimize the execution

time. Direct access to GPUs provides the most efficient approach. Using

rCUDA, which provides GPU virtualization over the network achieved good

performance when compablack to using CPUs but, obviously, not close to the

one achieved with direct access. Still, rCUDA’s ability to support multi-tenant

22

access to a single GPU revealed to be a powerful capability in order to sup-

port enhanced parallelism for serverless platforms. The integration of rCUDA

into the OSCAR architecture constitutes an important advance in serverless

computing and in the shablack access of a GPU by multiple applications in a

Kubernetes cluster.

Future work involves the integration of a plugin of Kubernetes with the

aim of eliminating the bottleneck introduced in the processing of several videos

simultaneously and thus sharing a GPU among multiple pods. In addition,

the integration of OSCAR with SCAR is intended to achieve hybrid workloads

based in on-premises and public Clouds.

7. Acknowledgement

The work presented in this article has been partially funded by a research

grant from the regional government of the Comunitat Valenciana (Spain), co-

funded by the European Union ERDF funds (European Regional Development

Fund) of the Comunitat Valenciana 2014-2020, with reference IDIFEDER/2018/

032 (High-Performance Algorithms for the Modelling, Simulation and early

Detection of diseases in Personalized Medicine). The authors would also like

to thank the Spanish “Ministerio de Economa, Industria y Competitividad”

for the project “BigCLOE” with reference number TIN2016-79951-R and the

project ATMOSPHERE, funded jointly by the European Commission under

the Cooperation Programme, Horizon 2020 grant agreement No 777154 and

the Brazilian Ministério de Ciência, Tecnologia e Inovação (MCTI), number

51119. D.M.N would like to thank the “Generalitat Valenciana” for the grant

GrisoĺıaP/2017/071.

References

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,

Q. Pu, V. Shankar, J. M. Carreira, K. Krauth, N. Yadwadkar, J. Gon-

zalez, R. A. Popa, D. A. Patterson, J. Carreira, J. E. Gonzalez, Cloud

23

http://arxiv.org/abs/1902.03383 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://arxiv.org/abs/1902.03383 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

Programming Simplified: A Berkeley View on Serverless Computing, Tech.

rep. (feb 2019). arXiv:1902.03383, doi:arXiv:1902.03383v1.

URL http://arxiv.org/abs/1902.03383http://www2.eecs.berkeley.

edu/Pubs/TechRpts/2019/EECS-2019-3.html

[2] Amazon, Amazon Web Services (AWS).

URL http://aws.amazon.com

[3] Amazon Web Services, AWS Lambda.

URL https://aws.amazon.com/lambda

[4] A. W. Services, API Gateway.

URL https://aws.amazon.com/api-gateway

[5] Amazon, Amazon Simple Storage Service (Amazon S3).

URL http://aws.amazon.com/s3/

[6] T. Lynn, P. Rosati, A. Lejeune, V. Emeakaroha, A Preliminary Review of

Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms,

in: Proceedings of the International Conference on Cloud Computing Tech-

nology and Science, CloudCom, Vol. 2017-Decem, IEEE, 2017, pp. 162–169.

doi:10.1109/CloudCom.2017.15.

URL http://ieeexplore.ieee.org/document/8241104/

[7] E. van Eyk, A. Iosup, S. Seif, M. Thömmes, The SPEC cloud group’s

research vision on FaaS and serverless architectures, Proceedings of the

2nd International Workshop on Serverless Computing - WoSC ’17 (2017)

1–4doi:10.1145/3154847.3154848.

URL http://dl.acm.org/citation.cfm?doid=3154847.3154848

[8] A. Ellis, OpenFaaS.

URL https://www.openfaas.com/

[9] Google, Knative.

URL https://github.com/knative/

24

http://arxiv.org/abs/1902.03383 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://arxiv.org/abs/1902.03383 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://arxiv.org/abs/1902.03383
http://dx.doi.org/arXiv:1902.03383v1
http://arxiv.org/abs/1902.03383 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://arxiv.org/abs/1902.03383 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://aws.amazon.com
http://aws.amazon.com
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://ieeexplore.ieee.org/document/8241104/
http://ieeexplore.ieee.org/document/8241104/
http://dx.doi.org/10.1109/CloudCom.2017.15
http://ieeexplore.ieee.org/document/8241104/
http://dl.acm.org/citation.cfm?doid=3154847.3154848
http://dl.acm.org/citation.cfm?doid=3154847.3154848
http://dx.doi.org/10.1145/3154847.3154848
http://dl.acm.org/citation.cfm?doid=3154847.3154848
https://www.openfaas.com/
https://www.openfaas.com/
https://github.com/knative/
https://github.com/knative/

[10] Kubernetes, Kubernetes.

URL https://kubernetes.io/

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, I. Stoica, Mesos: a platform for fine-grained resource sharing

in the data center (2011) 295–308.

URL http://dl.acm.org/citation.cfm?id=1972457.1972488

[12] Apache Mesos.

URL http://mesos.apache.org/

[13] A. Pérez, S. Risco, D. M. Naranjo, M. Caballer, G. Moltó, Serverless Com-

puting for Event-Driven Data Processing Applications, in: 2019 IEEE In-

ternational Conference on Cloud Computing (CLOUD 2019), 2019.

[14] J. Duato, A. J. Pena, F. Silla, R. Mayo, E. S. Quintana-Orti, rCUDA:

Reducing the number of GPU-based accelerators in high performance clus-

ters, in: 2010 International Conference on High Performance Computing &

Simulation, IEEE, 2010, pp. 224–231. doi:10.1109/HPCS.2010.5547126.

URL http://ieeexplore.ieee.org/document/5547126/

[15] Google, Google Cloud Functions.

URL https://cloud.google.com/functions/

[16] Microsoft, Microsoft Azure Functions.

URL https://azure.microsoft.com/en-us/services/functions/

[17] Alibaba, Alibaba Cloud Function Compute.

URL https://www.alibabacloud.com/products/function-compute

[18] IBM, IBM Cloud Functions.

URL https://www.ibm.com/cloud/functions

[19] Fission.

URL https://fission.io/

25

https://kubernetes.io/
https://kubernetes.io/
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://mesos.apache.org/
http://mesos.apache.org/
http://ieeexplore.ieee.org/document/5547126/
http://ieeexplore.ieee.org/document/5547126/
http://ieeexplore.ieee.org/document/5547126/
http://dx.doi.org/10.1109/HPCS.2010.5547126
http://ieeexplore.ieee.org/document/5547126/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.alibabacloud.com/products/function-compute
https://www.alibabacloud.com/products/function-compute
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://fission.io/
https://fission.io/

[20] Nuclio.

URL https://nuclio.io/

[21] Apache, OpenWhisk.

URL https://openwhisk.apache.org/

[22] Oracle, Fn Project.

URL https://fnproject.io/

[23] Pivotal, Project riff.

URL https://projectriff.io/

[24] J. Spillner, C. Mateos, D. A. Monge, Faaster, better, cheaper: the prospect

of serverless scientific computing and HPC, in: Communications in Com-

puter and Information Science, Vol. 796, Springer, Cham, 2018, pp. 154–

168. doi:10.1007/978-3-319-73353-1_11.

URL http://link.springer.com/10.1007/978-3-319-73353-1{_}11

[25] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht, Occupy the cloud:

distributed computing for the 99%, in: Proceedings of the 2017 Symposium

on Cloud Computing - SoCC ’17, ACM Press, New York, New York, USA,

2017, pp. 445–451. arXiv:1702.04024, doi:10.1145/3127479.3128601.

URL http://dl.acm.org/citation.cfm?doid=3127479.3128601

[26] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica,

B. Recht, J. Ragan-Kelley, numpywren: serverless linear algebraarXiv:

1810.09679.

URL https://arxiv.org/abs/1810.09679

[27] A. Pérez, G. Moltó, M. Caballer, A. Calatrava, Serverless computing for

container-based architectures, Future Generation Computer Systems 83

(2018) 50–59. doi:10.1016/j.future.2018.01.022.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0167739X17316485

26

https://nuclio.io/
https://nuclio.io/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://fnproject.io/
https://fnproject.io/
https://projectriff.io/
https://projectriff.io/
http://link.springer.com/10.1007/978-3-319-73353-1{_}11
http://link.springer.com/10.1007/978-3-319-73353-1{_}11
http://dx.doi.org/10.1007/978-3-319-73353-1_11
http://link.springer.com/10.1007/978-3-319-73353-1{_}11
http://dl.acm.org/citation.cfm?doid=3127479.3128601
http://dl.acm.org/citation.cfm?doid=3127479.3128601
http://arxiv.org/abs/1702.04024
http://dx.doi.org/10.1145/3127479.3128601
http://dl.acm.org/citation.cfm?doid=3127479.3128601
https://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679
https://arxiv.org/abs/1810.09679
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://dx.doi.org/10.1016/j.future.2018.01.022
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485

[28] V. Giménez-Alventosa, G. Moltó, M. Caballer, A framework and a per-

formance assessment for serverless MapReduce on AWS Lambda, Future

Generation Computer Systemsdoi:10.1016/j.future.2019.02.057.

URL https://linkinghub.elsevier.com/retrieve/pii/

S0167739X18325172

[29] J. Kim, T. J. Jun, D. Kang, D. Kim, D. Kim, Gpu enabled serverless

computing framework, in: 2018 26th Euromicro International Conference

on Parallel, Distributed and Network-based Processing (PDP), 2018, pp.

533–540. doi:10.1109/PDP2018.2018.00090.

[30] Google, Tensorflow.

URL https://www.tensorflow.org/

[31] Microsoft, Microsoft Cognitive Toolkit.

URL https://www.microsoft.com/en-us/cognitive-toolkit/

[32] Keras, Keras.

URL https://keras.io/

[33] V. Ishakian, V. Muthusamy, A. Slominski, Serving deep learning models

in a serverless platform, in: 2018 IEEE International Conference on Cloud

Engineering (IC2E), 2018, pp. 257–262. doi:10.1109/IC2E.2018.00052.

[34] H. Yu, C. J. Rossbach, Full virtualization for gpus reconsidered, 2017.

[35] L. Vu, H. Sivaraman, R. Bidarkar, Gpu virtualization for high performance

general purpose computing on the esx hypervisor, Vol. 46, 2014.

[36] L. Shi, H. Chen, J. Sun, K. Li, vcuda: Gpu-accelerated high-performance

computing in virtual machines, IEEE Transactions on Computers 61 (6)

(2012) 804–816. doi:10.1109/TC.2011.112.

[37] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,

P. Ranganathan, Gvim: Gpu-accelerated virtual machines, in: Proceedings

27

https://linkinghub.elsevier.com/retrieve/pii/S0167739X18325172
https://linkinghub.elsevier.com/retrieve/pii/S0167739X18325172
http://dx.doi.org/10.1016/j.future.2019.02.057
https://linkinghub.elsevier.com/retrieve/pii/S0167739X18325172
https://linkinghub.elsevier.com/retrieve/pii/S0167739X18325172
http://dx.doi.org/10.1109/PDP2018.2018.00090
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://keras.io/
https://keras.io/
http://dx.doi.org/10.1109/IC2E.2018.00052
http://dx.doi.org/10.1109/TC.2011.112
http://doi.acm.org/10.1145/1519138.1519141

of the 3rd ACM Workshop on System-level Virtualization for High Perfor-

mance Computing, HPCVirt ’09, ACM, New York, NY, USA, 2009, pp.

17–24. doi:10.1145/1519138.1519141.

URL http://doi.acm.org/10.1145/1519138.1519141

[38] G. Giunta, R. Montella, G. Agrillo, G. Coviello, A gpgpu transpar-

ent virtualization component for high performance computing clouds, in:

P. D’Ambra, M. Guarracino, D. Talia (Eds.), Euro-Par 2010 - Parallel Pro-

cessing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 379–391.

[39] J. P. Walters, A. J. Younge, D. I. Kang, K. T. Yao, M. Kang, S. P. Crago,

G. C. Fox, Gpu passthrough performance: A comparison of kvm, xen,

vmware esxi, and lxc for cuda and opencl applications, in: 2014 IEEE 7th

International Conference on Cloud Computing, 2014, pp. 636–643. doi:

10.1109/CLOUD.2014.90.

[40] Y. Suzuki, S. Kato, H. Yamada, K. Kono, Gpuvm: Gpu virtualization at

the hypervisor, IEEE Transactions on Computers 65 (9) (2016) 2752–2766.

doi:10.1109/TC.2015.2506582.

[41] H. Tan, Y. Tan, X. He, K. Li, K. Li, A virtual multi-channel gpu fair

scheduling method for virtual machines, IEEE Transactions on Parallel

and Distributed Systems 30 (2) (2019) 257–270. doi:10.1109/TPDS.2018.

2865341.

[42] NVIDIA, What is a virtual gpu (2018).

URL https://blogs.nvidia.com/blog/2018/06/11/what-is-a-

virtual-gpu/

[43] U. Kurkure, Episode 3: Performance comparison of native gpu to virtual-

ized gpu and scalability of virtualized gpus for machine learning (2017).

URL https://blogs.vmware.com/performance/2017/10/episode-

3-performance-comparison-native-gpu-virtualized-gpu-

scalability-virtualized-gpus-machine-learning.html

28

http://dx.doi.org/10.1145/1519138.1519141
http://doi.acm.org/10.1145/1519138.1519141
http://dx.doi.org/10.1109/CLOUD.2014.90
http://dx.doi.org/10.1109/CLOUD.2014.90
http://dx.doi.org/10.1109/TC.2015.2506582
http://dx.doi.org/10.1109/TPDS.2018.2865341
http://dx.doi.org/10.1109/TPDS.2018.2865341
https://blogs.nvidia.com/blog/2018/06/11/what-is-a-virtual-gpu/
https://blogs.nvidia.com/blog/2018/06/11/what-is-a-virtual-gpu/
https://blogs.nvidia.com/blog/2018/06/11/what-is-a-virtual-gpu/
https://blogs.vmware.com/performance/2017/10/episode-3-performance-comparison-native-gpu-virtualized-gpu-scalability-virtualized-gpus-machine-learning.html
https://blogs.vmware.com/performance/2017/10/episode-3-performance-comparison-native-gpu-virtualized-gpu-scalability-virtualized-gpus-machine-learning.html
https://blogs.vmware.com/performance/2017/10/episode-3-performance-comparison-native-gpu-virtualized-gpu-scalability-virtualized-gpus-machine-learning.html
https://blogs.vmware.com/performance/2017/10/episode-3-performance-comparison-native-gpu-virtualized-gpu-scalability-virtualized-gpus-machine-learning.html
https://blogs.vmware.com/performance/2017/10/episode-3-performance-comparison-native-gpu-virtualized-gpu-scalability-virtualized-gpus-machine-learning.html

[44] M. Ujaldón, CUDA achievements and GPU challenges ahead, in: Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Vol. 9756, 2016, pp.

207–217. doi:10.1007/978-3-319-41778-3_20.

URL https://link.springer.com/chapter/10.1007/978-3-319-

41778-3{_}20

[45] C. Reano, F. Silla, A Performance Comparison of CUDA Remote GPU

Virtualization Frameworks, in: 2015 IEEE International Conference on

Cluster Computing, IEEE, 2015, pp. 488–489. doi:10.1109/CLUSTER.

2015.76.

URL http://ieeexplore.ieee.org/document/7307623/

[46] F. Pérez, C. Reaño, F. Silla, Providing CUDA acceleration to KVM

virtual machines in InfiniBand clusters with rCUDA, in: Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Vol. 9687, 2016, pp.

82–95. doi:10.1007/978-3-319-39577-7_7.

URL https://link.springer.com/chapter/10.1007/978-3-319-

39577-7{_}7

[47] C. Reaño, F. Silla, G. Shainer, S. Schultz, Local and Remote GPUs Per-

form Similar with EDR 100G InfiniBand, in: Proceedings of the Industrial

Track of the 16th International Middleware Conference on ZZZ - Middle-

ware Industry ’15, ACM Press, New York, New York, USA, 2015, pp. 1–7.

doi:10.1145/2830013.2830015.

URL http://dl.acm.org/citation.cfm?doid=2830013.2830015http:

//dx.doi.org/10.1145/2830013.2830015

[48] Open Container Initiative.

URL https://www.opencontainers.org/

[49] MinIO.

URL https://min.io

29

https://link.springer.com/chapter/10.1007/978-3-319-41778-3{_}20
http://dx.doi.org/10.1007/978-3-319-41778-3_20
https://link.springer.com/chapter/10.1007/978-3-319-41778-3{_}20
https://link.springer.com/chapter/10.1007/978-3-319-41778-3{_}20
http://ieeexplore.ieee.org/document/7307623/
http://ieeexplore.ieee.org/document/7307623/
http://dx.doi.org/10.1109/CLUSTER.2015.76
http://dx.doi.org/10.1109/CLUSTER.2015.76
http://ieeexplore.ieee.org/document/7307623/
https://link.springer.com/chapter/10.1007/978-3-319-39577-7{_}7
https://link.springer.com/chapter/10.1007/978-3-319-39577-7{_}7
http://dx.doi.org/10.1007/978-3-319-39577-7_7
https://link.springer.com/chapter/10.1007/978-3-319-39577-7{_}7
https://link.springer.com/chapter/10.1007/978-3-319-39577-7{_}7
http://dl.acm.org/citation.cfm?doid=2830013.2830015 http://dx.doi.org/10.1145/2830013.2830015
http://dl.acm.org/citation.cfm?doid=2830013.2830015 http://dx.doi.org/10.1145/2830013.2830015
http://dx.doi.org/10.1145/2830013.2830015
http://dl.acm.org/citation.cfm?doid=2830013.2830015 http://dx.doi.org/10.1145/2830013.2830015
http://dl.acm.org/citation.cfm?doid=2830013.2830015 http://dx.doi.org/10.1145/2830013.2830015
https://www.opencontainers.org/
https://www.opencontainers.org/
https://min.io
https://min.io

[50] C. de Alfonso, M. Caballer, F. Alvarruiz, V. Hernández, An energy

management system for cluster infrastructures, Computers & Electrical

Engineering 39 (8) (2013) 2579–2590.

URL http://www.sciencedirect.com/science/article/pii/

S0045790613001365

[51] M. Caballer, I. Blanquer, G. Moltó, C. de Alfonso, Dynamic Management

of Virtual Infrastructures, Journal of Grid Computing 13 (1) (2015) 53–70.

doi:10.1007/s10723-014-9296-5.

URL http://link.springer.com/article/10.1007/s10723-014-9296-

5http://link.springer.com/10.1007/s10723-014-9296-5

[52] A. Jimenez-Pastor, A. Alberich-Bayarri, F. Garcia-Castro, L. Marti-

Bonmati, Automatic visceral fat characterisation on ct scans through deep

learning and cnn for the assessment of metabolic syndrome., in: ECR 2019:

Book of Abstracts. Insights into Imaging., Vol. 10(S1), 2019.

[53] E. Camacho-Ramos, A. Jimenez-Pastor, I. Blanquer, F. Garca-Castro,

A. Alberich-Bayarri, Computer aided diagnosis for Rheumatic Heart Dis-

ease by AI applied to features extraction from echocardiography.

[54] B. R. Nascimento, A. Z. Beaton, M. C. P. Nunes, A. C. Diamantino, G. A.

Carmo, K. K. Oliveira, C. M. Oliveira, Z. M. A. Meira, S. R. T. Castilho,

E. L. Lopes, I. M. Castro, V. M. Rezende, G. Chequer, T. Landay,

A. Tompsett, A. L. P. Ribeiro, C. Sable, Echocardiographic prevalence

of rheumatic heart disease in brazilian schoolchildren: Data from the

provar study, International Journal of Cardiology 219 (2016) 439 – 445.

doi:https://doi.org/10.1016/j.ijcard.2016.06.088.

URL http://www.sciencedirect.com/science/article/pii/

S0167527316310907

30

http://www.sciencedirect.com/science/article/pii/S0045790613001365
http://www.sciencedirect.com/science/article/pii/S0045790613001365
http://www.sciencedirect.com/science/article/pii/S0045790613001365
http://www.sciencedirect.com/science/article/pii/S0045790613001365
http://link.springer.com/article/10.1007/s10723-014-9296-5 http://link.springer.com/10.1007/s10723-014-9296-5
http://link.springer.com/article/10.1007/s10723-014-9296-5 http://link.springer.com/10.1007/s10723-014-9296-5
http://dx.doi.org/10.1007/s10723-014-9296-5
http://link.springer.com/article/10.1007/s10723-014-9296-5 http://link.springer.com/10.1007/s10723-014-9296-5
http://link.springer.com/article/10.1007/s10723-014-9296-5 http://link.springer.com/10.1007/s10723-014-9296-5
http://www.sciencedirect.com/science/article/pii/S0167527316310907
http://www.sciencedirect.com/science/article/pii/S0167527316310907
http://www.sciencedirect.com/science/article/pii/S0167527316310907
http://dx.doi.org/https://doi.org/10.1016/j.ijcard.2016.06.088
http://www.sciencedirect.com/science/article/pii/S0167527316310907
http://www.sciencedirect.com/science/article/pii/S0167527316310907

