
Please cite the Published Version

Rjaibi, W and Hammoudeh, M (2020) Enhancing and simplifying data security and privacy for
multitiered applications. Journal of Parallel and Distributed Computing, 139. pp. 53-64. ISSN
0743-7315

DOI: https://doi.org/10.1016/j.jpdc.2020.01.006

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/625561/

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publica-
tion in Journal of Parallel and Distributed Computing, published by and copyright Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-1058-0996
https://doi.org/10.1016/j.jpdc.2020.01.006
https://e-space.mmu.ac.uk/625561/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Preprint submitted to Journal of Parallel and Distributed Computing

Enhancing and Simplifying Data Security and Privacy
for Multitiered Applications

Walid Rjaibi1

IBM Canada Laboratory, 8200 Warden Avenue, Markham Ontario L6G 1C7 &
5 Department of Computing and Mathematics, Manchester Metropolitan University,

Manchester M15 6BH

Mohammad Hammoudeh2

Department of Computing and Mathematics, Manchester Metropolitan University,
10 Manchester M15 6BH

1 Corresponding author’s e-mail: wrjaibi@ca.ibm.com.
2 Author’s e-mail: M.Hammoudeh@mmu.ac.uk

Abstract
While databases provide capabilities to enforce security and privacy policies, two

15 major issues still prevent applications from safely delegating such policies to the

database. The first one is the loss of user identity in multitiered environments which

renders the database security features of little to no value. The second issue is the unsafe

coexistence between the security capabilities and fundamental database tenets which

creates data leakage vulnerabilities. This paper proposes extensions to database systems

20 to allow applications, such as those used in managing the operations of energy clouds,

to safely delegate the security and privacy policies to the database. This delegation

reduces complexity for applications and improves overall data security and privacy.

Our performance evaluation shows that almost all the TPC-H queries perform the same

or better when the security policy is enforced by the database. For the set of queries that

25 performed better, the improvement observed ranges from 8 to 68%.

Keywords: Applications, Security, Privacy, Databases, Energy Cloud

1. Introduction

30 Transitioning to an energy cloud is a significant challenge. This network of networks

needs to be optimized to reduce cost and ensure overall security. This would also

include reducing the complexity of building applications to manage the operations of

energy cloud such as those related to customer relationship management. This type of

applications has traditionally become quite complex partly due to the cost of

35 implementing data security and privacy rules within the application logic itself. Fig. 1

shows the architecture of a classical 3-tier application, where the end user browsers, the

application server and the database server represent the first, second and third tier

respectively.

40

45

50

Fig. 1. Classical 3-tier application architecture and related security issues.

Under this model, end users access the application to perform tasks related to their

job. The application authenticates such users to ensure they are authorized to use the

55 application. To meet the needs of the end users, the application makes a connection to

the database using a generic user ID identifying that application to the database. To

ensure that the right content of the database is returned to the right users, the application

logic typically includes a fine-grained authorization layer to do the appropriate level of

User 1

User 2 Application Database
 System

User devices Data

Application Server

Database Server

User N

Application bypass

data filtering. This layer is usually implemented in one or a combination of these two

60 options:

� The application builds the SQL queries in such a way that they include the

appropriate predicates and functions to filter out and mask the table data as

appropriate.

� The application builds a set of database views which perform the

65 appropriate level of data filtering and routes the SQL queries to the

appropriate views based on user identities.

Besides burdening the application with the task of implementing fine-grained

authorization, this model also suffers from other security drawbacks including:

� The approach is not data centric. This means that the intended security

70 policy is not enforced when the application is bypassed. An example of

such bypass is when the application administrator chooses to abuse the

application’s database user ID to access the database directly. This is

particularly important in today's world where internal threats are as

concerning as external threats [1], [2].

75 � Over granting of database privileges. The application’s database user ID is

typically granted the privileges of a database administrator so that it can be

used to do all things on behalf of all users. This means that when such user

ID is abused, the consequences to the organization can be severe.

� Loss of end user identity at the database level. This is a consequence of the

80 application doing all database accesses on behalf of all users using a single

user ID. This makes it impossible to leverage database auditing to hold end

users accountable for their actions. It also prevents the application from

delegating the fine-grained authorization policy to the database as the user

ID is lost at that level.

85 � Unnecessary exposure of the security policy to application developers.

We contend that applications complexity can be reduced by delegating the fine-

grained authorization task to the database system. We also contend that this delegation

will additionally address the security concerns raised above and enable applications to

better adhere to compliance mandates such as the European General Data Protection

90 Regulation (GDPR) [3] and the Payment Card Industry Data Security Standard (PCI

DSS) [4].

The crux of our contribution is the design of a holistic fine-grained database

authorization approach which allows organizations to reduce the complexity of their

applications and improve overall database security. We have also implemented the

95 solution in a commercial database system (IBM DB2) [5]. Our approach improves over

the state of the art as follows:

� Fine-grained authorization coexists in harmony with fundamental database

tenets such as performance and integrity so that organizations are not forced

to make compromises either on the security side or on the database side.

100 � Applications can safely delegate the security policy to the database system by

leveraging the trusted context concept to propagate user identities to the

database system, thus extending the value of fine-grained database

authorization to multitiered applications.

� Organizations can leverage the trusted context concept to ensure that the

105 application’s database user ID cannot be abused by malicious entities who

may want to leverage that user ID for accessing the database outside the scope

of the application (i.e., application bypass).

The rest of this paper is organized as follows. Section 2 reviews the related work.

Section 3 describes our fine-grained database authorization model. Section 4 introduces

110 our trusted context concept which addresses the loss of user identity problem in

multitiered environments. In section 5, we discuss how the new concepts introduced

safely coexist with core database tenets. Section 6 describes the performance evaluation

of our fine-grained database authorization model. In Section 7, we discuss a banking

use case and show how our solution meets its requirements. Lastly, Section 8

115 summarizes our approach and outlines our future work.

2. Related work

Traditionally, fine-grained authorization in database systems has been implemented

using the concept of database views [6]. Like database views, our approach is an

extension to SQL and is declarative in nature. Administrators are not expected to write

120 any code to implement the fine-grained authorization rules. However, our solution

improves over database views in two main ways. First, our approach defines the row

and column controls directly on the database tables themselves. This means that the

row and column authorization is always enforced regardless of whether the table is

accessed directly or indirectly through a database view. In contrast, when implementing

125 fine-grained authorization using views, the row and column authorization is enforced

only when the access is made through those views. In other words, views do not provide

any protection when the underlying tables are accessed directly. Additionally, our

approach introduced the notion of trusted context to enable user identity propagation in

multitiered environments so that applications can safely delegate fine-grained

130 authorization to the database system.

Oracle Virtual Private Database (VPD) was, to the best of our knowledge, the first

database system to introduce a fine-grained authorization model that improves over

traditional database views [7] and is the closest to our work. There are however some

important differences between Oracle VPD and our approach. First, the Oracle VPD

135 approach is not declarative. It requires the administrator to code a PL/SQL program

which computes a predicate string that is appended to any SQL statement accessing the

table with which the PL/SQL program was associated. This also limits the benefits of

SQL statements caching only to situations where the PL/SQL program is guaranteed to

return the same results for all users. Our approach does not limit the benefits of SQL

140 statements caching because it does not change the SQL statement text itself. Oracle

VPD also includes the notion of an Application Context which can be used by

applications to pass information to the database system such as a user ID in a multitiered

environment. An Application Context is a set of name-value pairs the Oracle database

systems stores in memory. Our trusted context concept provides a more robust

145 framework for propagating user identities in multitiered environments as it first requires

the establishment of a trusted relationship between the database system and the

application before propagating a user ID is allowed. It also provides more control on

which specific user IDs are allowed for propagation as well as the ability to associate

the application’s privileges with the trusted context only so they cannot be abused

150 elsewhere.

The Row Level Security (RLS) and Dynamic Data Masking (DDM) capabilities in

Microsoft SQL Server are conceptually similar to our row permission and column mask

concepts [8]. But there are some important differences between the two approaches.

First, the SQL Server DDM is static in the sense that the user either has access to the

155 actual value in the column or a masked value thereof. The column mask concept in our

approach is dynamic in the sense that the decision of whether the user sees the actual

value, or a masked value is determined dynamically based on the conditions expressed

in the column mask definition. Additionally, the SQL Server RLS requires the

administrator to go through a two-step process: They first need to create a function

160 which returns a filtering predicate, and then create a policy on the table to apply that

predicate. In our approach, this is all done in a single step using the row permission

concept. The user identity propagation in multitiered environments is supported through

an application context concept similar to the Oracle VPD one discussed above.

The Vertica Row Access Policy (RAP) and Column Access Policy (CAP) concepts

165 enable administrators to enforce access to table data at the row and column level

respectively. The Vertica SQL syntax is very similar to ours. However, and to the best

of our knowledge, the Vertica solution does not discuss how it enables user identity

propagation in multitiered environments. Additionally, the Vertica solution does not

show any performance evaluation to contrast implementing the fine-grained

170 authorization rules within the database versus within the application.

The Sybase Row Level Access Control (RLAC) enables administrators to restrict

access to data rows in a table by defining an access rule and binding it to a specific

column of the table [9]. When a table is accessed, the access rules in place are

automatically enforced by incorporating them into the query at compilation time. Our

175 approach differs from the Sybase RLAC capability in several ways. First, RLAC is

limited to row level access control only while our approach covers both the row and

column level. Also, to the best our knowledge, the Sybase RLAC does not discuss how

it enables user identity propagation in multitiered environments.

The fine-grained authorization model presented in [10] is also a declarative SQL

180 model like ours. But there are some differences between the two approaches. The first

difference is fairly minor. They have extended the GRANT SQL statement to give

administrators the tools to define row and column authorization rules while our

approach introduced these constructs independently of the GRANT statement.

However, the work presented in [10] did not cover user identity propagation in

185 multitiered environments. It assumed it was taken care of through a method similar to

the application context concept in Oracle VPD. Lastly, their work did not include any

performance evaluation to contrast implementing the fine-grained authorization rules

within the database versus within the application.

The fine-grained authorization approach discussed in [11] is also a declarative SQL

190 model but there are some key differences with our approach. First, the focus of the work

in [11] is on privacy policies. They introduced row and column restriction concepts for

the purpose of being able to map privacy policies to them so the database system can

automatically enforce privacy policies. It did not cover user identity propagation in

multitiered environment. Also, the model described in [11] did not include any

195 performance evaluation to contrast enforcing the privacy policy within the database

versus within the application.

The model described in [12] can be regarded as a special form of fine-grained

authorization. The focus of this work is more around introducing a flexible mandatory

access control model which addresses some of the shortcoming of classical Multilevel

200 Security [13]. It is a declarative SQL model and also ensures the security predicates are

executed before any potentially unsafe predicates to prevent data leakage. However, it

did not introduce the concept of secure functions as we did in this paper, so security

predicates are always executed first even if that does not make sense from a

performance perspective. Lastly, the approach discussed in [12] did not cover user

205 identity propagation in multitiered environments.

Besides security built into database systems themselves, the importance of protecting

databases has also led to the emergence of external database security tools. The leading

tools in this context are Guardium and Imperva [14]. These tools can be thought of as

complementary to our solution as they focus more on database auditing, compliance

210 reporting and analytics on auditing data as opposed to fine-grained database

authorization.

3. Fine-grained database authorization model

We extend the SQL table privileges model with two new concepts: Row permissions

and column masks. Row permissions and column masks implement a second layer of

215 security on top of table privileges. When a table is accessed, the privileges layer

determines whether or not the table can be accessed. Next, row permissions are applied

to decide what specific set of the table rows the user is authorized to access. Lastly,

column masks are applied to figure out whether the user is allowed to see the actual

value in a column or a masked value thereof. For example, row permissions ensure that

220 when a doctor queries the patients table, they only see rows that represent patients under

their care. On the other hand, a column mask on the phone number column ensures that

the doctor sees only phone numbers for patients who consented to share their phone

numbers with them. Fig. 2 shows our model as an extension to the SQL compiler.

225

230

235

Fig. 2. Fine-grained authorization implemented in the SQL compiler.

An SQL statement first goes through the parser component where it is analyzed for

syntactic correctness and a query graph is generated. Next, it goes into the query rewrite

240 component where the graph is modified to inject additional objects such as integrity

constraints and triggers. We have modified this component to inject the new row

permission and a column mask concepts we have introduced. The modified graph then

System Catalogs

- Row permissions

- Column masks

- Integrity constraints

- …

Parser

SQL Query

Query
 Rewrite

 Query
 Optimizer

 Query Execution Plan
 (security embedded)

goes into the query optimizer component where several execution options are

examined, and the optimal plan is selected based on a cost function. We have also

245 modified this component to protect against potential data leakage should an unsafe

predicate be evaluated before the security rules expressed by the row permissions are

evaluated.

Unlike database views [6] where the security policy is enforced only when the views

themselves are accessed, row permissions and column masks are table centric. This

250 ensures that the security policy is enforced consistently regardless of how the table is

accessed. Row permissions and column masks are also applied uniformly across all

users, including DBAs, which helps organizations better adhere to zero-trust security

[15], [16], [17] and in particular ensuring that access control is based on “need-to-

know”. Additionally, row permissions and column masks are application transparent.

255 Database applications can immediately benefit from these concepts without having to

incur any code changes. The SQL syntax for row permissions and column masks is

given below.

create permission permission-name on table-x

260 for rows where predicate-clause

 enforced for all access [disable | enable]

create mask mask-name on table-x

 for column column-name

265 return case-expression [disable | enable]

Example 1

The following row permission creates a rule that grants access to rows in the

PAYROLL table only to users who are members of the HR role.

270 create permission rpayroll on payroll

 for rows where verify_role_for_user (USER, ‘HR’) = 1

 enforced for all access enable;

Example 2

275 The following column mask creates a rule that grants access to the salary column in

the PAYROLL table only to users who are members of the SM role. Other users will

see NULL when they query the salary column.

create mask msalary on payroll

280 for column salary

 return case when verify_role_for_user (USER, ‘SM’) = 1

 then salary

 else null

 end

285 enable;

Some applications may not desire receiving a NULL value. Instead, they may want

to receive an alternate and format preserving data value [18]. Our model can easily

support this use case. All that is needed is to register a User Defined Function (UDF)

290 in the database and modify the CREATE MASK SQL statement above such that instead

of returning NULL, call the UDF to return the desired output.

A table can have zero or more row permissions. When more than a single row

permission is defined on a table, the predicates from each one of them are combined

together by applying the logical OR operator. In other words, if a row permission R1

295 gives user U1 access to a set of rows S1, and another row permission R2 on the same

table gives that same user access to another set of rows S2, then both row permissions

would give that user access to the union of S1 and S2. A column can have zero or one

mask. We extended the SQL compiler so that during query compilation, row

permissions and column masks are dynamically injected into the query graph. This

300 ensures that the query execution plan generated automatically enforces the rules

expressed by the row permissions and column masks.

3.1 Row permissions enforcement

Row permissions defined on a given table are automatically applied when that table

is accessed through any table level SQL statements: SELECT, INSERT, UPDATE,

305 DELETE, and MERGE.

For SELECT statements, the predicates from all the row permissions defined on the

table are combined together through the logical OR operator to derive a master

predicate. This master predicate acts as a filter to limit the set of rows returned. We

extended the query optimizer component of the SQL compiler to ensure that this master

310 predicate is evaluated before any other unsafe user predicates. This is important to guard

against potential data leakage through such unsafe user predicates. For example,

suppose there is a UDF which emails the table rows retrieved to some external party. If

such UDF appears in a user predicate and that predicate is executed before the master

predicate, then by the time the master predicate is applied it will already be too late as

315 the row would have already been sent out

For INSERT statements, the rules specified in the row permissions defined on that

table are used to determine whether or not the row can be inserted into the table. To

qualify, the user attempting to insert the row must be able to retrieve it back through a

SELECT statement. This semantic is analogous to how symmetric database views

320 behave. More specifically, a user is not allowed to insert a row they cannot retrieve

back.

For UPDATE statements, the rules specified in the row permissions defined on that

table are used to determine whether or not the row can be updated. This is a two-step

process. First, the row permissions are used to filter out the set of rows that can be

325 updated. In other words, a user cannot update rows they are not allowed to see. Next,

the updated rows (if any) must conform to the same semantic as for INSERT processing

to ensure that the user does not inject rows they cannot retrieve back.

For DELETE statements, the rules specified in the row permissions defined on that

table are used to filter the set of rows that can be deleted in order to ensure that the user

330 can only delete rows they can see.

A MERGE statement can be thought of as a combination of an INSERT and an

UPDATE statements. Therefore, a MERGE statement is processed as an INSERT when

dealing with new rows and as an UPDATE when dealing with existing rows in the table.

3.2 Column masks enforcement

335 The goal of a column mask defined on a given column C1 is to ensure that when C1

appears in the final results set of a query, C1 values are masked out if the user is not

authorized to see them. This has two important implications. First, the SQL compiler

will enforce the column mask for SELECT statements only. INSERT, UPDATE,

DELETE, and MERGE statements do not return a result set to the user, so the column

340 mask does not apply in these cases. Secondly, the SQL compiler must ensure that the

enforcement of a column mask does not break database applications as this can have

severe business impact. For example, suppose that a column mask is applied when the

column appears in a predicate. This may totally change the final results set and the

database application may end up processing a different set of rows (e.g. giving a raise

345 to the wrong employees). Consequently, we have extended the SQL compiler such that

column masks do not interfere with the computation of the final results set and the order

or grouping thereof. More specifically, column masks are not applied when the column

appears in any of these situations: WHERE clauses, GROUP BY clauses, HAVING

clauses, SELECT DISTINCT, and ORDER BY clauses. One consequence of this

350 approach is that it may create opportunities for inferences. But as discussed in our threat

model section, we focus on application access as opposed to free direct SQL access to

the database. Furthermore, the trusted context concept introduced in this paper enables

establishing a trusted relationship between the application and the database server as

well as protecting against abuse of the application’s database user ID.

355 4. User identity propagation in multitiered environments

In multitiered environments, the middle tier application serves the needs of several

users over a pooled database connection. Under this model, the database server only

sees a generic user ID which identifies the middle tier application, not the actual users

of that application. Despite being a very popular application model, the fact that the

360 database server only sees a generic user ID for all accesses poses several challenges.

First, the middle tier application cannot benefit from fine-grained database

authorization because the database server does not see the identity of the application

user. Thus, instead of delegating the authorization burden to the database server where

it can be enforced more effectively, the middle tier application is forced to implement

365 that fine-grained authorization in the application itself. This renders the application

more complex, exposes the security policy to application programmers, and forces

unnecessary patching of the application each time the security policy needs to be

updated.

Additionally, using a single user ID for all database accesses diminishes user

370 accountability. For example, one of the very first tasks in a forensic investigation is to

check the database audit logs for gaining insight into user activities. However, if all

accesses by all users are made using a single user ID, the database audit log would

unfortunately provide little to no value.

The naïve approach to address this issue is to have the middle tier application

375 establish a separate database connection for each user. Unfortunately, this approach

may not be always feasible as the middle tier application may not have access to the

end user database credentials. Additionally, even if this were feasible, this approach

would not be desirable as establishing a large set of database connections would

introduce a database performance overhead. This is the overhead associated with user

380 authentication and the setting of the actual connection structures on the database server

side.

Clearly, a better approach is needed for relieving the middle tier application from the

burden of enforcing fine-grained authorization, and for holding users accountable for

their actions.

385 4.1 Trusted contexts

We extend database systems by introducing a new concept called trusted context. A

trusted context is a database object which defines a trust relationship between the

database server and an external entity such as a middle tier application server. The trust

relationship allows the database security administrator (DBSECADM) to specify a set

390 of conditions which, when satisfied by a database connection request, instructs the

database server to internally mark that database connection as trusted. A trusted

connection gives the entity that established such connection a set of privileges that are

not available outside the scope of that trusted connection. One example of such

privileges is the ability to reuse an existing database connection for a different user

395 without having to re-authenticate that user at the database server. Reusing an existing

database connection avoids incurring a performance overhead by eliminating the need

to establish a new database connection. Therefore, a middle tier application server can

take advantage of the trusted context concept to establish an initial trusted connection,

and then reuse that trusted connection to propagate an end user identity to the database

400 server before submitting database requests on behalf of that end user.

The DBSECADM can choose from a variety of attributes to set the conditions for a

trusted relationship such as a user ID, an IP address, a domain name, a digital certificate,

and the type of encryption used to protect the communication channel between the

database server and the middle tier application (e.g., SSL). The SQL language syntax

405 for our trusted context concept is given below.

create trusted context context-name

 based upon connection using system authid authorization-id

 attributes key-value-pair-list

410 default role role-name

 with use for user | role | group name [without authentication |

 with authentication] [role role-name]

 [disable | enable]

415

Example 3

The following trusted context establishes a trusted relationship between the database

server and a middle tier application. The attributes upon which this trusted relationship

is based are the user ID identifying the middle tier application itself, the IP address of

420 the server where that application is hosted, and the type of communication encryption

used to protect the communication channel between the database server and the middle

tier application.

create trusted context ctx1

425 based upon connection using system authid midtierApp1

 attributes (address ‘174.94.142.56’ encryption ‘SSL’)

 with use for role midtierApp1Users

 without authentication

 enable;

430

In our implementation of trusted contexts in IBM DB2, we have extended the

database server connection processing as follows. When a database connection request

is received, we go through the authentication process as usual, but we also compare the

attributes of that request with the attributes of the trusted context objects defined at that

435 database server. If there is a match, we mark that connection as trusted. We have also

extended the DB2 Command Level Interface (CLI) with a new command to give

applications the option to request switching the current user ID on a trusted database

connection. On the database server side, when such request is received, we first verify

this is within the scope of a trusted connection, and then ensure that the user ID to

440 switch to is authorized as per the trusted context object definition. For example, the

trusted context definition above states that it is only permitted to switch to users who

are members of the role midtierApp1Users. Lastly, we also check whether the trusted

context definition authorizes switching users without authentication or requires

authentication. If authentication is not required as in example 3 above, then no further

445 processing is required. Otherwise, the switch user request must provide a valid

authentication credential. Once the checks above are completed and the switch user

request is authorized, we reset the user environment over the current physical

connection to match the new user, and the application is now ready to start sending

database commands under the scope of this new user.

450 Also, in order to ensure database integrity is not compromised, we extended the

database server processing such that switching users over a trusted connection is

permitted only on transaction boundary. If such a request is made outside of a

transaction boundary, the current transaction is rolled back, and the connection is put

in an unconnected state, thus giving the middle tier application the opportunity to

455 recover.

4.2 Trusted context-based authorization

Traditionally, database security models are such that the privileges granted to a user are

universally applicable irrespective of any context. For example, if a user is granted SELECT

privilege on the payroll database table, that user could exercise that privilege regardless of

460 how they gain access to the database. The lack of control on when a privilege is available to

a user can weaken overall security since the privilege may be abused. For example, an

application administrator may choose to use the application’s database credentials to

connect to the database directly and make changes that are contrary to the application

business logic.

465 To provide control over when privileges may be exercised, we extend the trusted

context concept so that a DBSECADM can associate one or more roles with a trusted

context. Roles that are associated with a trusted context are only exercisable when the

user is acting within the scope of a trusted connection based upon that trusted context.

This enables organizations to better adhere to zero-trust security, and in particular the

470 “verify and never trust” tenet as the database system verifies more security attributes

before granting a role to user [15], [16].

Example 4

The definition of the following trusted context is similar to example 3, but it specifies

475 two database roles. The first role is DBCONNECT which the DBSECADM decided not

to grant to the user ID midtierApp1. Instead, they assigned it to this trusted context. This

means that if the application administrator were to abuse this user ID by attempting to

connect to the database from a server other than what is stated in the trusted context

definition, that connection will be refused by the database server. The second role is

480 HR, which is the role that grants access to the content of the payroll table as per the row

authorization in example 1. This in turn means that members of the HR role will have

access to the payroll table only within the scope of the trusted connection based upon

this trusted context. In other words, they will only have access when they are using the

application and not otherwise.

485

create trusted context ctx1

 based upon connection using system authid midtierApp1

 attributes (address ‘srv.dep.org.com’ encryption ‘SSL’)

 default role DBCONNECT

490 with use for role midtierApp1Users

 without authentication HR

 enable;

In our implementation of trusted context-based authorization in IBM DB2, we have

495 extended the database server authorization model as follows. When a database

connection request is matched with a trusted context object, we check if there are any

default roles assigned to that trusted context and add them to the user’s roles list so they

are used when deciding whether or not the user is authorized to connect to the database.

Similarly, when a request to switch the current user on a trusted connection is received,

500 we check if the trusted context definition grants any roles to the user to switch to and

add any such roles to the new user’s roles list accordingly.

5. Safe coexistence with fundamental database tenets

Database security needs to safely coexist with fundamental database tenets. Failure

to do so may create database vulnerabilities and limit adoption of the solution.

505 5.1 User defined functions

A User Defined Function (UDF) is an important database concept which applications

depend upon to delegate certain tasks to the database system. We extended the database

system such that, by default, the row permission predicates are evaluated first to avoid

potential data leakage through UDFs that may also appear in the set of predicates to

510 apply on the table. The following experiment illustrates this extension and can be

consistently repeated on any recent IBM DB2 system. The experiment creates a table

T1 with 2 integer columns A and B. It inserts 3 rows into this table (1,1), (2,2) and (3,3).

Then, we create a UDF which replaces any value in column A that is greater than 1 by

1. When we run the simple SQL query SELECT A, B FROM T1 WHERE F1(A) = 1,

515 we expectedly obtain 3 rows because the values 2 and 3 in column A are changed to 1

by the UDF F1. Then we create a row permission with the predicate “A = 1”. Now,

when we run the SELECT query above any number of times, we consistently get back

a single row. This is because our design ensures that the row permission predicates are

executed before any unsafe UDF predicate. This is how data leakage is prevented

520 because the UDF could have done anything with the data rows such as modifying them

to alter the results set (as F1 does). But our design ensures that the UDF only sees the

rows which are authorized for the user running the SELECT query. Below are the exact

steps.

525 create table T1 (A int, B int);

insert into T1 values (1,1), (2,2), (3,3);

create function F1 (A int) returns int

 language SQL contains SQL no external action deterministic

 return (case when A > 1 then 1 else A end);

530 select A, B from T1 where F1(A) = 1;

create permission P1 on T1

 for rows where A = 1

 enforced for all access

enable;

535 select A, B from T1 where F1(A) = 1;

While executing the UDF predicate last is good from a security perspective, it may

not be necessarily good from a performance perspective, particularly if the UDF is a

trusted function. Therefore, we extended the database system with the concept of secure

UDF. By default, a UDF is not secure, but the administrator can alter the definition of

540 a UDF to mark it secure. This means that the administrator confirms that the UDF is

trusted. When a UDF is secure, the database system can order the evaluation of

predicates based on such UDF anywhere the SQL compiler sees fit. Secure UDF enable

performance and database security to coexist in harmony.

5.2 Materialized query tables

545 A Materialized Query Table (MQT) is a special type of database table which contains

the results set of an SQL query. It is a critical database concept DBAs depend upon to

maintain high performance for complex SQL queries. So, why does the design of

database security need to pay attention to MQT? Suppose that the DBA creates an MQT

M1 based on an SQL query affecting two tables T1 and T2. Further, suppose that table

550 T1 is protected through a set of row permissions and column masks. If such row

permissions and column masks are applied during the creation of MQT M1, the content

of that MQT becomes dependent on what its creator can or cannot see in base table T1.

This would negatively affect the accuracy of the database system’s answers. For

example, if the database system decides to use M1 to answer a query from a user U1,

555 that user may get more data or less data than what they are authorized depending on

whether they have access to more data or less data in base table T1 than the creator of

MQT M1. A better approach is therefore to not enforce the row permissions and column

masks on T1 during the creation of MQT M1 (or subsequent automatic refresh of its

content). But we need to make sure that security is not compromised when doing so. In

560 this context, we have extended the database system such that:

� Upon the creation of an MQT, the database system automatically generates

and applies a default row permission with the false predicate “1 = 0”. This

ensures that direct SQL access to the MQT is blocked (i.e., “1 = 0” always

evaluates to false). If certain users have a business need to access the MQT

565 directly, the administrator can create the appropriate row permissions on

the MQT to give them access. Any such row permissions or column masks

are enforced only during direct access to the MQT.

� When the database system decides to answer a user query from an MQT, it

always ensures that any row permissions and column masks on any base

570 table upon which the MQT is defined are automatically carried over and

applied on the MQT itself. This ensures that users do not inadvertently get

access to data in the base tables for which they are not authorized.

 The following experiment illustrates how direct access to an MQT is automatically

blocked when its underlying base table is protected by a row permission. This

575 experiment can be consistently repeated on any recent IBM DB2 system. First, we

create a table T1 with 2 integer columns A and B. We then insert 3 rows into this table,

namely (1,1), (2,2) and (3,3). Next, we create an MQT M1 based on table T1. When we

run the statement SELECT A FROM M1, we get the exact same data in base table T1.

On the other hand, if we protect T1 with a row permission and retry that exact same

580 statement, we now get zero rows returned. This is because our design automatically

protects the MQT M1 to guard against data leakage. Below are the exact steps.

create table T1 (A int, B int);

insert into T1 values (1,1), (2,2), (3,3);

585 create table M1 (a, b) as (select A, avg(B) from T1 group by A)

 data initially deferred refresh deferred maintained by system;

refresh table M1;

select A from M1;

create permission P1 on T1

590 for rows where A = 1

 enforced for all access

enable;

select A from M1;

595 5.3 Database triggers

A database trigger is a critical database concept which applications depend upon to

preserve data integrity. For example, a banking application may decide to use a trigger

to ensure that each time a client’s balance is updated in the clients table, a row is inserted

into the statements table to record that particular withdrawal or deposit transaction. So,

600 why does the design of database security need to pay attention to database triggers?

Consider the banking application example above. Suppose that the clients table is

protected with a set of row permissions and column masks. If such row permissions and

column masks are blindly applied, then it may not be possible to update the statements

table as the required input data could have been filtered out or masked. Clearly, this

605 approach would negatively impact data integrity.

A better approach is therefore to not enforce the row permissions or column masks

on the clients table. However, not doing so may affect security as the data in the clients

table now becomes visible to any triggers defined on such table and may be abused. In

this context, we have extended the database system by introducing the notion of a

610 secure trigger. By default, a database trigger is not secure, but the administrator can

alter the trigger’s definition to mark it secure. This means that the administrator vouches

for the trigger as trusted and can be applied on a table protected with row permission or

column mask constructs. Secure triggers enable database security and triggers to coexist

in harmony.

615 6. Performance evaluation

We have conducted 4 different assessments during our performance evaluation. The

assessments were conducted using IBM DB2, extended with our fine-grained

authorization model, deployed on a dedicated AIX system with 8 processors @ 1452

GHz and 32GB of RAM. This is a fully dedicated system (CPU, memory, networking

620 and storage) running only our experiment to ensure performance data stability. The time

elapsed for a given query is measured from the time the query is submitted to the time

the results are returned. Before a query is run, the database system is activated to ensure

a fresh database set up. The query is run several times. The first run is discarded from

the statistics as the database bufferpool (i.e., database cache) is cold.

625 � Assessment 1: The goal of this assessment is to measure the impact to

performance when an application chooses to delegate fine-grained

authorization to the database. One of the key advantages of our fine-grained

authorization model is that it relieves applications from the burden of

enforcing fine-grained authorization by delegating such task to the

630 database. But it is important that this reduction in application complexity

does not result in any significant performance drawbacks for the

application. This assessment confirmed that applications can safely

delegate the enforcement of fine-grained database authorization to the

database with no performance concerns.

635 � Assessment 2: The objective of this assessment is to measure the

scalability of column masks. Linear scalability has been confirmed by this

assessment.

� Assessment 3: The goal of this assessment is to verify the independence of

column masks. This assessment has shown that the impact of all column

640 masks defined on a table is never higher than the sum of the impact of each

column mask defined individually.

� Assessment 4: The objective of this assessment is to measure the impact

of row permissions. This test confirmed that the impact of row permissions

is minimum.

645 6.1 Delegating fine-grained authorization enforcement to the database
system

Methodology
We have selected TPC-H [19] as the application with which to conduct our

assessment. TPC-H is an industry standard benchmark for measuring database

650 performance. It consists of 22 queries representative of decision support systems that

examine large volumes of data. The performance metric reported by TPC-H is called

the TPC-H Composite Query-per-Hour Performance Metric (QphH) and reflects

multiple aspects of the capability of the database system to process queries.

We focused on two scenarios in our assessment. In the first scenario, we created a

655 set of column masks and row permissions on the TPC-H database schema to specify a

fine-grained authorization policy. Then, we ran the TPC-H benchmark and measured

the QphH. In the second scenario, we created no column masks or row permissions in

the database. Instead, we modified the SQL queries, so the same fine-grained

authorization is enforced by the application.

660 Table 1 summarizes our findings. The ratio column represents the QphH of the fine-

grained authorization policy delegated to the database divided by the QphH when that

policy is enforced by the application itself and is plotted in Fig. 3. The numbers on the

x-axis of this figure represent the 22 TPC-H queries referred to in Table 1. That is, 1

represents query Q1, 2 represents query Q2 and so on.

665

Discussion

Fig. 3 shows that almost all the TPC-H queries perform the same or better when the

policy is enforced by the database than by the application. More specifically, 13 queries

performed fairly the same in both scenarios. 8 queries performed better when the fine-

670 grained authorization policy is enforced by the database system (i.e., the ones where

the ratio column is coloured in green in table 1). The improvement observed ranges

from 8 to 68%. Lastly, for query Q19, we observed a performance degradation of 15%

when the fine-grained authorization policy is enforced by the database.

1 2 3 4 5 6 7 8 9 10111213141516171819202122
0

0.2

0.4

0.6

0.8

1

1.2

1.4

675 Fig. 3. Ratio of database vs application enforcement for TPC-H queries.

TABLE 1: Application vs Database Enforcement for TPC-H Queries.

TPC-

H Query

QphH Application

Enforcement (a)

QphH Database

Enforcement (b)

Ratio

(b/a)

Q1 1158.8 370 0.3193

Q2 19.7 12 0.6091

Q3 2350.6 2321.6 0.9877

Q4 6105.6 6103.4 0.9996

Q5 7352.6 6371.5 0.8666

Q6 27.8 25.6 0.9209

Q7 16654.1 16657.5 1.0002

Q8 884.2 882.5 0.9981

Q9 9653.8 9475.7 0.9816

Q10 8376.5 8367.3 0.9989

Q11 138.7 127.5 0.9193

Q12 112.6 113.6 1.0089

Q13 103.5 105.7 1.0213

Q14 22.8 14.4 0.6316

Q15 26.7 18.3 0.6854

Q16 24.3 24 0.9877

Q17 336.3 336.2 0.9997

Q18 288.5 291.9 1.0118

Q19 93.6 107.6 1.1496

Q20 73.9 70.8 0.9581

Q21 9655.1 9644.6 0.9989

Q22 90.9 32.9 0.3619

There are two main reasons for the results observed. First, the order in which

predicates are evaluated is important, particularly for table joins. For example, consider

680 the following query where tables T1 and T2 are joined on column C1: “SELECT *

FROM T1 INNER JOIN T2 on T1.C1 = T2.C1”. When a row permission is enforced

by an application, the application will modify the query above by adding the row

permission predicates to the SQL text directly as follows: “SELECT * FROM T1

INNER JOIN T2 on T1.C1 = T2.C1 AND <row permission predicate>”. Recall from

685 section 3 that we extended the SQL compiler so that, by default, the row permissions

predicates are evaluated first on the table to guard against potential data leakage by any

unsafe predicates in the query. So, when the database enforces the fine-grained

authorization policy, the query would actually look as follows within the SQL compiler

“SELECT * FROM (SELECT * FROM T1 WHERE <row permission predicate>)

690 INNER JOIN T1 on T1.C1 = T2.C1”. However, when there are no unsafe predicates in

the query, we do not restrict the SQL compiler optimizer component from moving the

row permission predicates higher or lower in the query graph if it leads to a better query

execution plan. This was the case in our testing as we had no unsafe predicates. The

only situation where the SQL compiler optimizer component did not move the predicate

695 was for query Q19. This is because the row permission defined on the table did not refer

to any data in the table itself as it was a simple rule to check whether or not the user

issuing the query were a member of a given role. Consequently, the optimizer selected

a merge-join instead of a hash-join [20] [21]. Normally, the merge-join would have

performed better but because the row permission did not actually filter any rows, the

700 merge-join ended up being more expensive, thus the observed degradation in query

Q19.

The second reason for the results observed is how column masks are processed.

When the database system enforces a column mask, it does so internally within the

actual query graph built by the SQL compiler. So, when the same column appears

705 multiple times within a query the SQL compiler does not need to duplicate the column

masks. However, when the fine-grained authorization policy is enforced by the

application, the rules representing the column mask end up being duplicated in the SQL

query text as the application can only work with SQL. This explains the performance

gain observed when the fine-grained authorization policy is enforced by the database.

710 Our tests have shown that enforcing the fine-grained database authorization policy

by the database has not resulted in any significant performance drawbacks for the

application. This means that the gains in security and the reduction in application

complexity do not come at the expense of application SQL workload performance.

6.2 Scalability of column masks

715 Methodology
We have created a table T1 with 10 columns, all of the same type. We have populated

the table with random data. No indices of any type were created on this table. We have

run a “SELECT * FROM T1” as our baseline. Then, we created a column mask on the

first column, ran the same query above and measured its performance. We have

720 repeated this process for each of the remaining columns. The column mask created is

exactly the same for each column. We have run the experiment twice: One where T1

contains one million rows and another one where it contains ten million rows. Table 2

summarizes our findings.

725 TABLE 2: Time elapsed (in seconds).

Test 1,000,000 rows 10,000,000 rows

Baseline (No Masks) 4.58 44.26

1 Mask 4.73 45.97

2 Masks 4.74 46.45

3 Masks 4.83 46.85

4 Masks 4.82 47.06

5 Masks 4.87 47.48

6 Masks 5 48.28

7 Masks 4.97 48.8

8 Masks 5.02 49.01

9 Masks 5.08 49.96

10 Masks 5.10 50

Discussion

Fig. 4 shows that for both the one million and ten million rows cases, the execution

time of our query scales almost in a linear manner as the number of masks increases.

730 This confirms our expectation as our design and implementation of column masks did

not introduce any additional logic for coordinating the execution of multiple masks

when they are present on a given table. Essentially, the overhead introduced is only the

one associated with the execution of the actual rule expressed in the column mask

definition itself. In our experimentation, the rule was checking user membership in a

735 role to decide whether they see the actual column value or a masked version thereof. It

used the built-in SQL function VERIFY_ROLE_FOR_USER. This function is highly

optimized. It keeps an in-memory list of users to roles mappings, making it very fast to

decide whether or not a user is a member in a given role. We introduced this function

to support the adoption of our row permissions and column masks as security best

740 practices advocate for simplifying the management of authorization by assigning

privileges to roles and assigning users to roles. Authorization then simply becomes

checking user membership in roles.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

1,000,000 Rows 10,000,000 Rows

745 Fig. 4. Scalability of column masks.

6.3 Independence of column masks

Methodology
We have created three column masks on the CUSTOMER table in the TPC-H

database schema: A simple column mask, an intermediate column mask, and complex

750 column mask. The simple column mask is similar to the column mask shown in

Example 2. It makes use of a single call to function VERIFY_ROLE_FOR_USER to

check whether the user is a member of the given role. The intermediate column mask

has four calls to the VERIFY_ROLE_FOR_USER function. Lastly, the complex

column mask is similar to the intermediate one but has a sub-select statement on top of

755 that.

Our base line is a “SELECT * FROM CUSTOMER” query with no column masks

defined on the CUSTOMER table. We ran this query, measured the elapsed time, and

then performed the following tests:

� Run the same query with only the simple column mask enabled.

760 � Run the same query with only the intermediate column mask enabled.

� Run the same query with only the complex column mask enabled.

� Run the same query with all three column masks enabled.

Table 3 shows the time elapsed for each test when the CUSTOMER table contains

one million rows, and ten million rows respectively. Table 4 shows the difference

765 compared to the baseline for each of the tests conducted.

TABLE 3: Time elapsed (in seconds).

Test 1,000,000 rows 10,000,000 rows

Baseline (No Masks) 37.464 371.791

Simple Mask 38.812 387.457

Intermediate Mask 40.356 404.619

Complex Mask 58.592 556.439

All Masks 61.855 589.25

TABLE 4: Difference with the baseline.

Test 1,000,000 rows 10,000,000 rows

Simple Mask 1.348 15.666

Intermediate Mask 2.892 32.828

Complex Mask 21.128 184.648

Sum of all Masks 25.368 233.142

All Masks 24.391 217.459

770

Discussion

Fig. 5 contrasts the sum of the differences to the baseline for each of the simple,

775 intermediate, and complex mask tests with the difference to the baseline for the test

where all masks are enabled at the same time for both the one million rows and ten

million rows cases. For both cases, we can observe that the difference with the baseline

when all masks are enabled at the same time is never higher than the sum of the

differences to the baseline for each individual mask. This confirms our expectation as

780 our column masks design and implementation did not require introducing any

coordination when multiple masks are enabled at the same time. The masks are in fact

totally independent from each other.

1,000,000 Rows 10,000,000 Rows
0

50

100

150

200

250

Sum of All Masks All Masks

785 Fig. 5. Independence of column masks.

6.4 Row permissions impact

Methodology
We have created three row permissions on the CUSTOMER table in the TPC-H

database schema: One row permission that returns zero rows, one permission that

790 returns 50% of the rows, and another row permission that returns all rows. We have run

“SELECT * FROM CUSTOMERS” as our baseline. Then, we run the same query with

each of the row permissions above enabled individually (i.e. one row permission at a

time). Table 5 shows the time elapsed for each test when the CUSTOMER table

contains one million rows and ten million rows respectively.

795

TABLE 5: Time elapsed (in seconds).

Test 1,000,000 rows 10,000,000 rows

Baseline (No Permissions) 38.163 380.118

Permission (0 rows) 0.11 3.173

Permission (50% rows) 19.679 169.154

Permission (All rows) 38.679 383.93

Discussion

Fig. 6 and Fig. 7 contrast the performance for each of the 3 tests with our baseline

800 for the one million rows and ten million rows respectively. The results are similar for

each case and show that the overhead of row permissions is very minimal. For instance,

when the row permission returns all rows, the performance is almost identical to the

baseline. This is expected as the rule expressed in the row permission is internally

implemented as a predicate. In our case, the predicate includes the built-in

805 VERIFY_ROLE_FOR_USER SQL function. If a DBA decides to deploy their own

UDF for use in a row permission definition, the performance implications may be

different depending on several factors such as how optimized that UDF is and whether

or not it is declared as trusted.

810

Baseline Permission (0
rows

returned)

Permission
(50% rows
returned)

Permission
(All rows
returned)

0
5

10
15
20
25
30
35
40
45

Fig. 6. Row permissions impact (1,000,000 rows).

Baseline Permission (0
rows

returned)

Permission
(50% rows
returned)

Permission
(All rows
returned)

0
50

100
150
200
250
300
350
400
450

Fig. 7. Row permissions impact (10,000,000 rows).

7. Use case scenario

815 We describe how our row permissions and column masks can be applied to meet the

needs of a banking application. All the SQL statements and outputs below have been

fully verified with our implementation on IBM DB2. These requirements can be

summarized as follows:

� Customer service representatives and telemarketers can see all data.

820 � Tellers can see only the data for their own branch customers.

� The customer account number is accessible only by customer service

representatives. All other users can only see the last 4 digits.

Customer information is stored in a table called CUSTOMER and bank employee

information is stored in a table called EMPLOYEE_INFO. The SQL statements for

825 creating these two tables are given below.

create table customer (account varchar (9),

 name varchar (20),

 income int,

830 branch char (1));

create table employee_info (branch char (1),

 emp_id varchar (10));

We assume that tables CUSTOMER and EMPLOYEE_INFO are already populated.

Their content is given by tables 6 and 7 respectively.

835

TABLE 6: CUSTOMER table.

ACCOUNT NAME INCOME BRANCH

1234-5678 Alice 22,000 A

2345-6754 Bob 71,000 B

3456-1298 Carl 123,000 B

4672-8901 David 172,000 C

TABLE 7: EMPLOYEE_INFO table.

EMP_ID BRANCH

Amy A

Pat B

Haytham C

840 Tellers, customer service representatives, and telemarketers are members of database

roles TELLER, CSR, and TELEMARKETER respectively. SELECT privilege to the

CUSTOMER table is granted to these three roles. Users Amy, Pat and Haytham are a

teller, a customer service representative and a telemarketer respectively. The SQL

statements for setting up these roles are given below.

845

create role teller;

grant select on customer to role teller;

grant role teller to user amy;

create role csr;

850 grant select on customer to role csr;

grant role csr to user pat;

create role telemarketer;

grant select on customer to role telemarketer;

grant role telemarketer to user haytham;

855 To implement the first rule which states that customer service representatives and

telemarketers can see all customers, the following row permission must be created.

create permission csr_row_access on customer

 for rows where verify_role_for_user (USER, ‘csr’) = 1 or

860 verify_role_for_user (USER, ‘telemarketer’) = 1

 enforced for all access

 enable;

To implement the second rule which states that tellers can only see customers of their

865 own branch, the following row permissions must be created. The sub-select in the

permission definition ensures that the customer’s branch and the teller’s branch match.

create permission teller_row_access on customer

 for rows where verify_role_for_user (USER, ‘teller’) = 1 and

870 branch = (select branch from employee_info

 where emp_id = USER)

 enforced for all access

 enable;

875 To implement the third rule, the following column mask is created. The mask ensures

that when the user is not a member of the CSR role, they see only the last 4 digits of the

account number. The rest of the digits are replaced by “X”s for them (masked out).

create mask csr_column_access on customer

880 for column account

 return case when verify_role_for_user (USER, ‘csr’) = 1

 then account

 else 'XXXX-‘ || SUBSTR(ACCOUNT,5,4)

 end

885 enable;

Now that the row permissions and column masks have been defined, any future

access to the CUSTOMER table will see the database system automatically enforce the

security policy. Table 8 contrasts the output when the application issues the query

“SELECT * FROM CUSTOMER” for users Amy, Haytham and Pat respectively.

890 When the application issues that query on behalf of user Amy, the database only

returns the rows for customers from branch A, which is where Amy works. Note that

the account number is masked out because Amy is not a member of the CSR role.

On the other hand, when the application issues the exact same query on behalf of

user Haytham, the database returns all the rows in the table which is in accordance with

895 the first rule because Haytham is a telemarketer. Note that the account number is still

masked out because Haytham is not a member of the CSR role.

Lastly, when the same query is issued on behalf of user Pat, all the rows in the table

are returned and the account number is not masked out because Pat is a member of the

CSR role.

900

TABLE 8: Output for users Amy, Haytham and Pat.

USER ACCOUNT NAME INCOME BRANCH

Amy XXXX-5678 Alice 22,000 A

Haytham XXXX-5678 Alice 22,000 A

XXXX-6754 Bob 71,000 B

XXXX-1298 Carl 123,000 B

XXXX-8901 David 172,000 C

Pat 1234-5678 Alice 22,000 A

2345-6754 Bob 71,000 B

3456-1298 Carl 123,000 B

4672-8901 David 172,000 C

This example has shown how the application logic can remain very simple. In all 3

user situations, the application simply issues the simple “SELECT * FROM

905 CUSTOMERS” SQL query. The database system automatically applies the fine-

grained authorization rules, relieving the application from this burden, which in turn

contributes to reducing the complexity of the application.

8. Conclusion

The rise of data breaches has driven many organizations nowadays to implement

910 zero-trust security in order to reduce the risk of incurring a data breach. Like identity

systems and networks, database systems also need to evolve to help organizations

effectively adhere to zero-trust security. This is particularly important as database

systems store an enterprise’s most critical data and are often the primary target of

attacks by both insiders and outsiders. This paper has introduced three new concepts to

915 enable database systems for zero-trust security. Row permissions and column masks

provide data-centric security so the security policy cannot be bypassed as with database

views for example. They also coexist in harmony with the rest of the database core

tenets so that enterprises are not forced to compromise neither security nor database

functionality. Trusted contexts provide applications in multitiered environments with a

920 secure and controlled manner to propagate end user identities to the database and

therefore enable such applications to delegate the security policy to the database system

where it is enforced more effectively. They also protect against application bypass so

the application credentials cannot be abused to make database changes outside the

scope of the application’s business logic.

925 In our future work, we plan to focus on facilitating the adoption of our fine-grained

database authorization model. For example, defining a column mask is a very easy task

once you know which column to define it on. But in some situations, this knowledge

may not be available (e.g., a database inherited through a merger or an acquisition).

This is where data classification would be useful. The main challenges in this context

930 would be to investigate how to do the data classification on the database efficiently and

accurately. Additionally, we want to explore machine learning for automatically

generating the appropriate row permissions and column masks. Machine learning has

been explored for detecting threats [22], [23], [24], but here we would like to explore it

for fine-grained authorization policy recommendation.

935 Lastly, Fig. 8 gives a visual summary for how our row permissions, column masks

and trust contexts contrast with the prior art. Multilevel Security (MLS) provides high

security but is the least flexible because its authorization rules are rigid and cannot be

changed. Database views and application-based fine-grained authorization provide high

flexibility but the protection they offer can be bypassed by accessing the base tables

940 directly. Oracle VPD, Microsoft RLS/DDM, Sybase RLAC and Vertica RAP/CAP

improve over database views and application-based fine-grained authorization. Our

approach provides an additional improvement by addressing the loss of user identity

problem in multitiered environments and by coexisting safely with the rest of the

database core tenets.

945

Fig. 8. Row permissions, column masks, trusted contexts and prior art.

950

References

[1] A. Zaytsev, A. Malyuk, N. Miloslavskaya, “Critical Analysis in the Research

Area of Insider Threats”, Proceedings of the IEEE 5th International

955 Conference on Future Internet of Things and Cloud (FiCloud), 2017.

[2] I. Ghafir, J. Saleem, M. Hammoudeh, H. Faour, V. Prenosil, S. Jaf, S. Jabbar,

T. Baker, “Security threats to critical infrastructure: the human factor”, The

Journal of Supercomputing, Volume 74, Issue 10, Springer US, 2018.

[3] P. Voigt, A. von dem Bussche, The EU General Data Protection Regulation

960 (GDPR): A Practical Guide, Springer, 2017.

[4] A. Chuvakin, B. Williams, PCI Compliance: Understand and Implement

Effective PCI Data Security Standard Compliance. Elsevier, 2009.

[5] P. Zikopoulos, G. Baklarz, M. Huras, W. Rjaibi, D. McInnis, M. Nicola, L.

Katsnelson, DB2 10 for Linux, Unix and Windows New Features, McGraw-

965 Hill, 2012.

[6] R. Elmasri, S. Navathe, Fundamentals of Database Systems 6th. Addison-

Wesley, 2010.

[7] S. Gaetjen, D. Knox, W. Maroulis, Oracle Database 12c Security, McGraw-

Hill Education, 2015.

970 [8] P. Carter, Securing SQL Server: DBAs defensing the database, Apress, 2018.

[9] J. Garbus, SAP ASE 16 / Sybase ASE Administration, SAP Press, 2015.

[10] S. Chaudhuri, T. Dutta, S. Sudarshan, “Fine Grained Authorization Through

Predicated Grants”, Proceeding of the International Conference on Data

Engineering, 2007.

975 [11] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, W. Rjaibi,

“Extending relational database systems to automatically enforce privacy

policies”, Proceedings of the International Conference on Data Engineering,

2005.

[12] W. Rjaibi, P. Bird, “A Multi-Purpose Implementation of Mandatory Access

980 Control in Relational Database Management Systems”, Proceedings of the

International Conference on Very Large Data Bases, 2004.

[13] W. Rjaibi, “An introduction to multilevel secure relational database

management systems”, Proceedings of the conference of the Centre for

Advanced Studies on Collaborative research (CASCON), 2004.

985 [14] W. Chen, B. Barkai, J. DiPietro, V. Langman, D. Perlov, R. Riah, Y.

Rozenblit, A. Santos, Deployment Guide for Infosphere Guardium, IBM

Redbooks, 2014.

[15] E. Gilman, D. Barth, Zero Trust Networks: Building Secure Systems in

Untrusted Networks. O’Reilly Media, 2017.

990 [16] S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, “A Systematic

Review of the Availability and Efficacy of Countermeasures to Internal

Threats in Healthcare Critical Infrastructure”, IEEE Access, Volume 6,

pp.25167-25177, 2018.

[17] S. Walker-Roberts, M. Hammoudeh, “Artificial Intelligent Agents as

995 Mediators of Trustless Security Systems and Distributed Computing

Application”. In: Parkinson S., Crampton A., Hill R. (eds) Guide to

Vulnerability Analysis for Computer Networks and Systems. Computer

Communications and Networks. Springer, Cham, 2018.

[18] A. Goldsteen, K. Kveler, T. Domany, I. Gokhman, B. Rozenberg, A. Farkash,

1000 “Application-Screen Masking: A Hybrid Approach”, IEEE Software, Volume

32, Issue 4, 2015.

[19] A. Thanopoulou, P. Carreira, H. Galhardas, “Benchmarking with TPC-H on

Off-the-Shelf Hardware: An Experiments Report”, Proceedings of the

International Conference on Enterprise Information Systems, 2012.

1005 [20] N. Bruno, Y. Kwon, M. Wu, “Advanced Join Strategies for Large-Scale

Distributed Computation”, Proceedings of the VLDB Endowment, Vol. 7, No.

13, 2014.

[21] C. Balkesen, G. Alonso, J. Teubner, M. Ozsu, “Multi-Core, Main-Memory

Joins: Sort vs. Hash Revisited”, Proceedings of the VLDB Endowment, Vol.

1010 7, No. 1, 2013.

[22] M. Alloghani, D. Al-Jumeily, A. Hussain, J. Mustafina, T. Baker, A. Aljaaf,

“Implementation of Machine Learning and Data Mining to Improve

Cybersecurity and Limit Vulnerability to Cyber Attacks”. In: Nature-Inspired

Computation in Data Mining and Machine Learning. Springer, Cham, 2020.

1015 [23] S. Aljawarneh, M. Aldwairi, M. Bani Yassein, “Anomaly-based intrusion

detection system through feature selection analysis and building hybrid

efficient model”, Journal of Computational Science, Volume 25, Elsevier,

2018.

[24] M. Aldwairi, R. Alsalman, “Malurls: a lightweight malicious website

1020 classification based on url features”, Journal of Emerging Technologies in

Web Intelligence, Volume, Issue 2, Academy Publisher, 2012.

Walid Rjaibi is Distinguished Engineer and Chief Technology Officer (CTO) for
Data Security with IBM in Toronto, Canada. Prior to his current role, Walid was Research Staff
Member in network security and cryptography with IBM Research in Zurich, Switzerland. Walid’s
work on Data Security has resulted 26 granted patents and several publications in journals and
conference proceedings such as the IDUG solutions journal, the international conference on
security and cryptography (SECRYPT), the international conference on data engineering (ICDE),
and the international conference on Very Large Databases (VLDB).

Mohammad Hammoudeh is the Head of the CfACS IoT Laboratory and a Reader
in Future Networks and Security with the Department of Computing and Mathematics, Manchester
Metropolitan University. He has been a researcher and publisher in the field of big sensory data
mining and visualization. He is a highly proficient, experienced, and professionally certified
cybersecurity professional, specializing in threat analysis, and information and network security
management. His research interests include highly decentralized algorithms, communication, and
cross-layered solutions to Internet of Things, and wireless sensor networks.

