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Abstract

As a distributed hash table (DHT) routing overlay, Skip Graph is used
in a variety of peer-to-peer (P2P) systems including cloud storage, social
networks, and search engines. The overlay connectivity of P2P systems
is negatively affected by the arrivals and departures of nodes to and from
the system that is known as churn. Preserving connectivity of the over-
lay network (i.e., the reachability of every pair of nodes) under churn is
a performance challenge in every P2P system including the Skip Graph-
based ones. The existing decentralized churn stabilization solutions that
are applicable on Skip Graphs have intensive communication complexi-
ties, which leave them unable to provide a strong overlay connectivity,
especially under high rates of churn.

In this paper, we propose Interlaced, a fully decentralized churn sta-
bilization mechanism for Skip Graphs that provides drastically stronger
overlay connectivity without changing the asymptotic complexity of the
Skip Graph in terms of storage, computation, and communication. We
also propose the Sliding Window De Bruijn Graph (SW-DBG) as a tool
to predict the availability of nodes with high accuracy. Our simulation
results show that in comparison to the best existing DHT-based solutions,
Interlaced improves the overlay connectivity of Skip Graph under churn
with the gain of about 1.81 times. A Skip Graph that benefits from In-
terlaced and SW-DBG is about 2.47 times faster on average in routing
the queries under churn compared to the best existing solutions. We also
present an adaptive extension of Interlaced to be applied on other DHTs,
for example Kademlia.

1 Introduction

Skip Graph [1] is a structured overlay where nodes can efficiently perform
searches for other nodes or their data objects in a fully decentralized man-
ner. To perform the searches, each node needs to know only a few other nodes
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of the system, namely the node’s neighbors. Using the neighboring knowledge,
nodes exploit a Skip Graph overlay as a distributed routing infrastructure to
initiate or route a search message. Each Skip Graph node keeps its neighbors
as {identifier, address} pairs in its lookup table. Neighboring relationships
in Skip Graphs hence resemble the general idea of the distributed hash tables
(DHTs) and yield Skip Graph being known as a DHT-based routing overlay.
Because of fast searching, load balancing, and scalability, the Skip Graph is
considered as a suitably structured DHT overlay for distributed services such as
P2P cloud storage [2–9], and likewise, it can be applied as an alternative overlay
in DHT-based applications.

Nodes in a P2P system switch between offline and online states intermit-
tently. Switching to an offline state is considered as a departure from the sys-
tem. A departed node may come back at a later time and start another online
session or may leave the system permanently. Such behavior of dynamic ar-
rivals and departures of the nodes to and from the P2P system, respectively, is
referred as churn. Churn jeopardizes the connectivity of the overlay network,
which we define as reachability of every pair of nodes through the overlay. The
compromised overlay connectivity results in search failure, inconsistent search
results, and out-dated lookup table entries.

The existing churn stabilization solutions that are applicable on a Skip
Graph aim to augment the overlay network by increasing the communication
complexity of Skip Graph from O(log n) to O(log2 n) [10], distorting the Skip
Graph topology [11] that makes it inapplicable on many scenarios (e.g., locality-
awareness [12]), tweaking the size of lookup tables based on the churn rate of
the underlying system with minimum consideration of nodes’ availability [13],
frequently probing the online status of each neighbor [14–16] that applies a con-
stant communication complexity to the system, or allocating a set of backup
neighbors that are contacted alternatively in the event of an unnoticed depar-
ture of a neighbor (i.e., the neighbor goes offline without informing the others)
[10,17,18]. The common downside of all the existing applicable churn stabiliza-
tion solutions on Skip Graph overlay is that their objective function does not
consider node’s position in the overlay network, query latency, communication
cost, and node’s availability all together, and sacrifices at least one of them in
favor of the rest, which negatively affects the query processing and response
time of the system.

To preserve the structural integrity, as well as the routing functionality of
the Skip Graph-based P2P overlays under churn, we propose Interlaced, a
fully decentralized churn stabilization mechanism for the Skip Graph-
based P2P overlays. Interlaced is a backup-based churn stabilization solu-
tion that utilizes backup neighbors, and provides scoring mechanisms based on
their positioning in the overlay, routing latency, communication cost, as well as
neighbor’s availability probability. Interlaced does not change the asymptotic
complexity of the Skip Graph in terms of communication, computation, and
storage. As an independent contribution, we also propose Sliding Window De
Bruijn Graph (SW-DBG), a fine-grained mechanism to predict the availability
probability of the nodes under churn. Interlaced uses SW-DBG as a tool to
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predict the availability of the nodes. Compared to the existing solutions, by
benefiting from Interlaced and SW-DBG, a node can efficiently route the search
messages in the absence of its online lookup table’s neighbors with the max-
imized average success ratio as well as the minimized average search latency.
We define the average success ratio of the searches as the ratio of successfully
completed searches over all the initiated searches in the system, and define the
average search latency as the time it takes for the searches to be routed to the
search targets or to be declared as failures. Since Skip Graph can be utilized
as a DHT alternative, any DHT-based application can benefit from Interlaced
and SW-DBG.

We consider two main goals in the design of Interlaced ; maintaining both
the connectivity of overlay (i.e., the success ratio of searches) and overlay’s
speed (i.e., search latency) for a Skip Graph that undergoes churn. To increase
the probability of successful searches under churn, our proposed Interlaced em-
ploys backup neighbors that are contacted alternatively upon detection of an
unnoticed departure of an overlay neighbor (i.e., a lookup neighbor). Using
Interlaced, each node keeps its backup neighbors in a memory space, named
backup table, with the same asymptotic space complexity as the lookup table
(i.e., O(log n)). Although larger than O(log n) backup tables seem more suc-
cessful on routing the searches by providing more alternatives, they increase the
communication complexity needed for routing the search queries. The increased
communication complexity increases the overall search time and applies addi-
tional communication overhead for maintenance that is not bandwidth friendly
and congests the system in larger scales. As a general design strategy, Inter-
laced gives more priority on minimizing the overall routing time under churn
than maximizing the overlay connectivity. This is in contrast to the existing
solutions that solely aim to maximize the overlay connectivity with the mini-
mum attention to the routing time. As a supporting example, a system with
the search success ratio of 0.7 but average search latency of 10 seconds is prefer-
able over its counterpart with success ratio of 0.9 but average search latency
of 30 seconds. As a failed search in the former system is highly probable to
be successful at the second trial, resulting the overall average search time of 20
seconds, which is still 1.5 times faster in terms of query processing time than
the latter.

Compared to the existing DHT-based solutions using backup tables [10, 14,
16,17,19], Interlaced offers a more delicate heuristic in terms of the search path
length and search path latency that improves both the overlay connectivity
and response time of the system, respectively. Additionally, Interlaced operates
without any maintenance communication overhead required. To improve the
search latency, Interlaced works on top of an availability prediction scheme that
helps to consider a precedence for backup neighbors based on their availability
probability, and contact the most likely online ones first. Our proposed SW-
DBG executed by each node predicts the node’s availability probability, and
serves Interlaced with this need.

The contributions of this paper are as follows:
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• We propose Interlaced, which is a fully decentralized churn stabilization
protocol for the Skip Graph-based P2P overlays.

• As an independent contribution, we propose the Sliding Window De Bruijn
Graph (SW-DBG) that provides an accurate estimate of the availability
probability of the nodes.

• We provide an analytical model to predict the behavior of Interlaced un-
der uniform failure model, and to estimate the proper backup size that
maximizes the performance of the system.

• We extended the Skip Graph simulator, SkipSim [20], implemented, and
simulated the best known decentralized churn stabilization and availability
prediction mechanisms under churn, and compared with our Interlaced
and SW-DBG.

• Our simulation results show that compared to the best existing solutions
that are applicable to the Skip Graph, Interlaced improves the search suc-
cess ratio of the Skip Graph overlay with the gain of about 1.81 times.
Likewise, SW-DBG improves the availability prediction of the nodes with
the gain of about 1.11. The search process of a Skip Graph-based P2P
system that benefits from Interlaced and SW-DBG is about 2.47 times
faster on average compared to the best existing solutions.

In Section 2 we describe the structure of Skip Graph, its typical search for
numerical ID protocol, and preliminaries such as De Bruijn Graph and churn
model. In Section 3 we state our system model. Our proposed SW-DBG and
Interlaced are presented in Sections 4 and 5, respectively. The related works
are surveyed in Section 6. Our simulation setup followed by analytical and
performance results are presented in Sections 7 and 8. We conclude the paper
in Section 9.

2 Preliminaries

2.1 Skip Graph

Structure: An example Skip Graph [1] with 10 nodes and 4 levels is represented
by Figure 1. In general, a Skip Graph with n nodes has O(log n) levels that
are numbered starting from 0 in a bottom-up manner. Each Skip Graph node
has exactly one element in each level, and is identified with a name ID and a
numerical ID. Name IDs are binary strings of size O(log n) bits, and numerical
IDs are non-negative integers. In Figure 1, elements of a node are represented
by squares, with numerical IDs enclosed and name IDs are located beneath each
element.

Level 0 of a Skip Graph has exactly one distributed list with nodes that are
sorted in ascending order. Distributed list means that there is no central entity
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(e.g., server) that is supposed to keep the list partially or as the whole; instead,
each list’s element keeps the address of its successor and predecessor. In level
i > 0, there exists 2i lists, where nodes in each list have a common prefix of
at least i bits long in their name IDs. For example, in Figure 1 name IDs of
0010, 0110, 0001, 0111, 0000, and 0011, all coexist in the same list at level 1
of the Skip Graph since all their name IDs start with 0 prefix. Likewise, name
IDs of 0010, 0001, 0000, and 0011 are located in the same list at level 2 due to
their 2-bit common prefix of 00. However, there exists no name ID in the Skip
Graph with the prefix of 11, which makes the corresponding list with the prefix
of 11 on level 2 empty. Without loss of generality, in this study, we assume the
uniqueness of name IDs and numerical IDs and hence we identify a node with
either its name ID or numerical ID e.g., by node 43 we mean the node that
holds the numerical ID of 43 and the name ID of 1001.

In a Skip Graph-based P2P overlay, each peer from the real world is repre-
sented by a Skip Graph node. The numerical ID of each node is the hash value of
its corresponding peer’s IP address. We assume the name IDs of nodes are gen-
erated by a locality-aware name ID strategy e.g., LANS [8]. With locality-aware
name IDs, the latency between two nodes in the underlying network is an in-
verse function of the length of their name IDs’ common prefix in the Skip Graph
overlay, i.e., longer common prefix conveys lower latency. In a Skip Graph-based
P2P overlay, a node is supposed to only know its directly connected predeces-
sor and successor at each level, which are called its left and right neighbors on
that level, respectively. A Skip Graph node keeps its neighboring information
locally as (address, numerical ID, name ID) tuples in a table, which is called
the lookup table of that node as its local view of the system. The lookup table
of node 43 from Figure 1 is illustrated in Figure 2 where Axx is the (IP) address
of the node with numerical ID of xx.

Search for numerical ID: Search for numerical ID is a fully decentralized
search protocol of a Skip Graph, where a node named the search initiator starts
the search for a target numerical ID. Considering a Skip Graph-based P2P sys-
tem as a distributed database of (address, numerical ID, name ID) records,
the search for numerical ID is analogous to a distributed get() that retrieves
the address of the node with the closest numerical ID to the target numerical
ID. As a convention, the search for numerical ID always returns the address of
the node with the greatest numerical ID that is less than or equal to the target
numerical ID. In the exceptional case where the target numerical ID is less than
all the numerical IDs of the Skip Graph, the address of the lowest numerical ID
that is greater than the target numerical ID is returned. Nodes route a search
message based on their lookup table information. Although nodes may leverage
their cached information from previous routings to expedite the ongoing rout-
ing tasks, nevertheless, the existence of lookup table guarantees an asymptotic
communication complexity of O(log n) in expectation with high probability for
processing a single search for a numerical ID in a fully decentralized manner
[1]. It is worth mentioning that the lookup table of each node is as big as the
number of Skip Graph’s levels i.e., O(log n).

The thick arrows of Figure 1 show an example search for numerical ID with
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Figure 1: An example Skip Graph with 10 nodes and 4 levels. Nodes are visualized by squares
with numerical IDs enclosed and name IDs beneath. Example search for numerical ID of 2 that is

initiated by node 41 is depicted by the thick arrows.

Figure 2: Lookup table of node 43 from Figure 1.
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node 41 as the search initiator and 2 as the target numerical ID. A search for
numerical ID always starts from the top-most level of the search initiator. In
this example, since the target numerical ID of 2 is less than the search initiator’s
numerical ID (i.e., 41), the search messages are always routed towards the left.
The horizontal thick arrows correspond to the routed search messages to the left
neighbors, while the vertical ones represent the internal computation of nodes
stepping down in their lookup table. On a certain level, the search message is
forwarded repeatedly leftward while the left neighbor’s numerical ID is greater
than or equal the search target. If there is no such neighbor on the left, the
node jumps down one level in its lookup table and checks the eligibility of its
lower level’s neighbor in the search direction. On receiving the search message
at level 0, node 2 realizes that it holds the exact target numerical ID as the
search message and hence introduces itself as the search result to the search
initiator node 41.

2.2 De Bruijn Graph (DBG):

De Bruijn Graph [21] (DBG) is a pattern recognition data structure that is
also used as a tool to detect and extract the availability pattern of a single
node [22, 23]. In this paper we utilize a slightly modified version of DBG as
follows. We identify a DBG by a state size of x bits and 2x vertices that are
labeled by the x-bit binary representation of all integers in [0, 2x − 1] range. A
vertex with the binary label of b1b2...bx has exactly two outgoing edges to the
vertices associated with b2b3...0 and b2b3...1. In representation of the availability
behaviour of a node with a DBG, the time is divided into time slots with fixed
identical size. Each DBG vertex represents the availability history of the node
within the last x time slots, with 1 corresponding to an online state, and 0
corresponding to an offline state. The rightmost and leftmost bits of each state
represent the newest and oldest availability status of the node within a window
of x time slots, respectively. Having the availability history of a node within the
last x time slots as b1b2...bx, the outgoing edges to b2b3...0 and b2b3...1 denote
the availability status of node in the x + 1st slot, which is represented by the
rightmost bit (i.e., the underlined ones). The outgoing edge b1b2...bx → b2b3...1
is associated with p1b1b2...bx i.e., the probability of being online in the x+1th time
slot given the history of b1b2...bx in the last x time slots. Similarly, p0b1b2...bx
relates to the edge b1b2...bx → b2b3...0, and represents the probability of being
offline in the x + 1th time slot given the availability history of b1b2...bx for the
node in the last x time slots. The probabilities are taken over all the time slots
a specific state is visited, which yields p0state + p1state = 1 for every state of a
DBG.

2.3 Churn Model

P2P overlays are dynamic with respect to the time i.e., nodes frequently switch
between online and offline states. Such dynamic aspect of the system is described
by a churn model [24]. A churn model is identified with a session length and
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an inter-arrival time distribution. Session length distribution characterizes the
online duration of the nodes in the system. The inter-arrival time distribution
characterizes time between the start of two consecutive online sessions of nodes
in the system.

3 System Model and Scenario

Model: We consider the Skip Graph as an application layer protocol that is
executed independently by the peers in an honest manner i.e., each peer follows
the exact protocol without deviation and represents a Skip Graph node. The
independent executions of Skip Graph protocol by the participating peers shapes
a P2P overlay that is constructed by joining the first peer to the system and
grows over the time by joining other peers. In particular, peers use the insertion
algorithm of the Skip Graph to join the system as Skip Graph nodes [1]. After
joining the system, nodes frequently perform the search for numerical IDs to find
each other and resources, help other nodes joining the system, or to perform
other P2P tasks e.g., replication [5, 7, 25]. We define the system capacity n as
the number of registered users to the Skip Graph-based P2P system which is
constant despite the churn of nodes. In this paper, we consider the system
capacity as the smallest power of two that is greater than or equal to the total
number of registered nodes in the system. We define the timeout failure as the
situation where a node does not hear from its offline neighbor within a certain
time interval after routing a search message to it. We consider the time interval
duration that can trigger a timeout failure as the function of the round trip time
between the node and its neighbor.

Scenario: Using our proposed SW-DBG (see Section 4), each online node
computes its own availability probability at the end of each time slot and pig-
gybacks it alongside its address, name ID, and numerical ID on all the search
messages it routes or initiates. On receiving a search message to route, the node
updates its backup table with the piggybacked availability information of other
nodes. To do such an update, upon a message reception, the node invokes the
backupUpdate event handler of our proposed Interlaced. As described in Section
2, a node routes a search message by forwarding it to one of the lookup neigh-
bors that is placed in the level and direction of the search. However, due to the
churn, the selected lookup neighbor may be offline, and unable to receive the
search message. We presume an associated timer for every forwarded message
with the expiration time as a function of the round trip time between the node
and its corresponding neighbor. If no (TCP) acknowledgment is received from
the neighbor before the timer expires, that neighbor is considered as offline, and
a timeout failure happens. On timeout failures, the node invokes the backupRe-
solve event handler of Interlaced, which returns back an online candidate node
from the backup table that is consistent with the search path, and the search
message is redirected to this online candidate.
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Figure 3: The general form of Sliding Window De Bruijn Graphs (SW-DBG) with the current
state window adjusted on DBG(x− 1), DBG(x), and DBG(x + 1), which are denoted by Left,

Center, and Right DBGs, respectively.

4 Sliding Window De Bruijn Graph (SW-DBG)

4.1 Overview

Choosing a proper state size for DBG predictors is a challenge as large state sizes
enforce a noise over the DBG that increases the prediction error [22], while small
state sizes fail DBG to completely capture the availability behavior of the nodes.
Furthermore, DBG has exponential asymptotic space and time complexities as a
function of its state size. Therefore, finding the smallest state size that provides
an acceptable level of prediction accuracy lets the nodes to operate efficiently
in both space and time. In order to find the proper state size of DBGs and
predict the availability probability of a node in an adaptive manner, we propose
the Sliding Window De Bruijn Graph (SW-DBG). By adaptive we mean that
in contrast to the existing DBG-based predictors [22, 23], which have a fixed
state size, SW-DBG continuously moves towards the state size that describes
the node’s instantaneous availability status the best. As shown by Figure 3,
SW-DBG is a list of DBGs that are represented by DBG(x) where x is the state
size of the corresponding DBG. The list is started by DBG(1), and the state
size of DBGs increases by one moving from left to the right. Despite this long
list of DBGs, however, an SW-DBG is required to only keep three consecutive
DBG instances on its memory space, and operate on those accordingly. This
set of three consecutive DBGs is called as the current state window that is
represented by a dashed rectangle in Figure 3. Each node updates the current
state window’s DBGs of its SW-DBG once within each time slot, and computes
and piggybacks its stationary online probability on all the search messages it
routes or initiates. We define the stationary online probability of a node
as the probability of the node being online after infinitely many time slots
elapsed (i.e., at the time t→∞). The stationary online probability of a node is
updated frequently (i.e., once every time slot) to reflect the possible changes in
the availability behavior. After each update, SW-DBG may move the current
state window to the left or right if it realizes that a smaller or bigger state size
may describe the availability status of the node with lower prediction error. We
assume that an offline node updates its SW-DBG for all its offline time slots
right at the end of its first new online time slot at the system upon arrival.
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4.2 Stationary Online Probability

We model each DBG(x) of a SW-DBG with a single Markov Chain process [26],
by representing each vertex i of DBG (i.e., i = b1b2...bx) with a Markov Chain
state where x is the state size of DBG. The transition matrix of each DBG is
represented by P , and shown by Equation 1. pi,j is the transition probability
from state i to state j, and is determined by Equation 2. Sx denotes the set
of DBG(x)’s states, and constitute of all x bits binary strings. As presented in
Section 2, for state i = b1b2...bx, p0i and p1i denote the transition probabilities
of b1b2...bx → b2b3...0 and b1b2...bx → b2b3...1, respectively.

P = {pi,j |1 ≤ i, j ≤ x} (1)

pi,j =


p0i , if j = b2...bx0

p1i , if j = b2...bx1

0, Otherwise

(2)

When the Markov Chain analogy of a DBG(x) is Ergodic (i.e., each state is
accessible from every other state), the system that is illustrated by Equation
3 comes to a unique answer in the form of {π1, π2, ..., πx}. πi denotes the
stationary probability of state i, and represents the probability of visiting state
i after infinitely many state transitions independent of the initial state.

1 =
∑
i∈Sx

πi

πi =
∑
j∈Sx

πj × pj,i,∀j ∈ Sx
(3)

We represent the stationary online probability of an Ergodic DBG(x) (x ≥ 1) by
sopx. As shown by Equation 4, sopx corresponds to the aggregated stationary
probabilities of all DBG’s states i that end with 1. Since the rightmost bit of
each state corresponds to the most recent availability status, the states that end
with 1 represent an online status of the node in its availability history. Summing
up the stationary probabilities of all those states results in the stationary online
probability of the node.

sopx =
∑

{i∈Sx|i=b1b2...1}

πi (4)

4.3 Algorithm Description

As shown by Figure 3, at any point in time, the current state window has three
DBGs that are denoted by DBG(x− 1), DBG(x), and DBG(x+ 1), x ≥ 2, and
called the Left, Center, and Right DBGs, respectively. A node initializes its
instance of SW-DBG by adjusting the Left DBG of the current state window
on DBG(1). While the node is online, it updates the current state window

10



with its own availability status, by invoking stateUpdate algorithm at the end
of each time slot. As shown by Algorithm 1, the inputs to stateUpdate are
the current state window cw (i.e., the collection of 3 DBGs; Left, Center, and
Right), as well as the status of the node, which is 1 if the node is online, and
0 otherwise. On receiving the inputs, stateUpdate updates the DBGs inside
the current state window by a call to their update routine that updates the
current state of DBG with the status bit, updates the proper state transitions’
probabilities, and returns the stationary online probability upon existence. If the
modeled Markov Chain of a DBG does not show ergodicity [26], update returns
either 0 or 1 depending on the existence of an offline or online absorbing state,
respectively (Algorithm 1, Lines 1-3). In other words, in our system scenario,
non-ergodicity happens when there exists an absorbing online or offline state,
and hence there exists no stationary distribution for the modeled Markov Chain.
By an absorbing offline or online state, we mean an absorbing state that ends
with 0 or 1, respectively.

updateStatus computes the prediction error of the sliding window’s DBGs
that is determined as the absolute value of the difference between their sop
probability and their availability fraction within a state size window of last time
slots. For example, if one DBG(3) predicts the stationary online probability as
0.2 while the availability status of the node in the window of last 3 time slots
is 101, the prediction error is computed as |0.2 − 2

3 |= 0.44, which is a notice-
able prediction error. The strictly decreasing prediction errors of current state
window’s DBGs towards either the right (i.e., predErrLeft > predErrCenter >
predErrRight), or the left (i.e., predErrLeft < predErrCenter < predErrRight)
implies a prediction accuracy improvement on moving the current state win-
dow towards the right or left direction, respectively. A right movement is done
by dropping the Left DBG out of the current state window and replacing its
pointer with Center DBG. The Center DBG is also replaced by the Right
DBG, and finally the Right DBG’s state size is increased by one bit via per-
forming a call on its enlarge function that does the enlargement by mapping
each state b1b2...bx to the two states b1b2...bx0 and b1b2...bx1 while preserving
the associated probabilities of the states. A left movement is done similar to
the right movement except that the function shrink of the Left DBG is called
that maps each two states b1b2...bx−10 and b1b2...bx−11 to a single b1b2...bx−1
state in the new shrunk Left DBG. We compute the probability of each shrunk
state as the average probability of the states that are mapped to it (Algorithm
1, Lines 4-14). The updateStatus function terminates its task by returning back
the stationary online probability of the current state window that is defined as
the stationary online probability of its DBG with minimum prediction error (Al-
gorithm 1, Line 15). With this approach of shrinking and enlarging the current
state window’s DBGs, our proposed SW-DBG adaptively chooses the DBG size
that best describes the availability behavior of the node, which is in contrast to
the conventional strategy of traditional DBG on having a fixed-size state size
independent of the node’s availability behavior.
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Algorithm 1: stateUpdate

Input: DBG[] cw, bit status
// updating the current state window with input status

1 for i ∈ {Left, Center,Right} do
2 sopi = cw[i].update(status);

3 end
// computing the prediction errors

4 for i ∈ {Left, Center,Right} do
5 predErri = |status− sopi|;
6 end

// checking for the enlarge or shrink
7 while predErrLeft > predErrCenter > predErrRight do
8 Slide the current window to the right;
9 cw[Right] = cw[Right].enlarge();

10 end
11 while predErrLeft < predErrCenter < predErrRight do
12 Slide the current window to the left;
13 cw[Left] = cw[Left].shrink();

14 end
15 return cw[argminpredErr{cw}].sop;

5 Interlaced

5.1 Overview

Interlaced is a fully decentralized application layer churn stabilization protocol
that is executed independently by every node of a Skip Graph-based P2P over-
lay. A node executes Interlaced upon facing a timeout failure (see Section 3) on
routing a search message based on its lookup table. We denote the node that
executes an instance of Interlaced by executor. In other words, any node run-
ning Interlaced is named as an executor, and this does not imply the restriction
to any special node like a super node. The main goal of Interlaced is to recover
a search query from a timeout failure on its current path. Interlaced assumes
an additional O(log n) storage of the neighboring information for the executor
that is called backup table, which is a common trait among the existing solutions
[14,16,17,19]. The executor holds the collected availability information of some
other nodes of Skip Graph on its backup table in a level-wise manner similar
to the lookup table. On referring to the backup table, Interlaced finds the best
routing candidate and redirects the search message to it. Interlaced chooses the
best routing candidate based on the numerical ID distance to the search tar-
get (i.e., number of intermediate nodes on the path), the locality-aware name
ID similarity with the executor (i.e., common prefix) that corresponds to a ex-
pected latency in the underlying network, and the stationary online probability
of the candidate. On redirecting the search message to the best candidate, if no
acknowledgement is received within a certain time interval, the best candidate
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(a) Left lookup table entry at level 0

(b) Left backup table entry set at level 0
Figure 4: A comparison between a lookup table entry of node 43 in the sample Skip Graph of

Figure 1, and its corresponding potential backup table entry set at the same level and direction.

is presumed offline, and Interlaced moves to the next best routing candidate.

5.2 Backup table

The backup table resembles the lookup table in structure, except that instead
of storing a single node information at every entry (i.e., cell), each entry of
a backup table represents a set of nodes’ information. Hence, each level of a
backup table constitutes of two entry sets (i.e., one at the left and one at the
right), each representing a set of nodes’ information.

Interlaced changes the size of each set adaptively with the overall number
of backup neighbors being within the range of [0, b] where b is a system-wide
constant named as the backup size. This implies that backup table has the same
memory complexity of O(log n) as the lookup table. Each entry holds the infor-
mation of a single node in the form of (address, numID, nameID, sop, score)
tuple where address represents the (IP) address of the node in the underlying
network. numID and nameID represent the numerical and name IDs of the
node, respectively. The stationary online probability of the node (see Section
4) is denoted by sop, and score is a real number that is frequently updated
and used by Interlaced to select the best routing candidate. Figure 4 shows
the left lookup table entry of node 43 at level 0 from the sample Skip Graph
of Figure 1, and a potential corresponding backup table entry set to it at the
same level and direction. Note that although backup table entry set of Figure 4
holds two neighbors, nevertheless, these two neighbors are solely for the sake of
clarification, and in practice a backup table entry set is able to hold an arbitrary
number of neighbors limited by the overall size b of the backup table.

5.3 Algorithm Description

Interlaced consists of two event handlers: backupUpdate and backupResolve that
are called by the executor on the events of receiving a search message to route,
and timeout failure, respectively.

5.3.1 Updating backup table (backupUpdate):

Identifying the proper entry set: In our system model, we assume that
while a node is online it computes its stationary online probability by applying
SW-DBG on its availability history, and piggybacks its (IP) address, numerical
ID, name ID, and stationary online probability on the search messages it routes
or initiates (as described in Section 4). On reception of a search message that
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contains the piggybacked information of other nodes, the executor invokes the
backupUpdate event handler of Interlaced on the set of piggybacked information.
On receiving the inputs, backupUpdate inserts each piggybacked element e of the
message that does not correspond to a lookup table neighbor, into a proper entry
set of the executor’s backup table. The proper set is identified by the direction
and level. The direction is determined based on the numerical ID position
of the executor with respect to the piggybacked element’s numerical ID i.e.,
right direction if e.numID > executor.numID, and left direction otherwise.
The level corresponds to the common prefix length between the executor’s and
element e’s name IDs. If an older version of e (i.e., a version with possibly
different stationary online probability) resides in the backup table, backupUpdate
overwrites it with the new element. By an older version, we mean an element e
that exists in the backup table due to the backupUpdate invocation on previous
messages that contained e. Otherwise, it adds the piggybacked element into the
proper backup table’s entry set that is identified by the level and direction.

Scoring-based element replacement: Before inserting a new piggy-
backed element into the proper backup table entry set, backupUpdate evaluates
the size of the backup table against the maximum permissible size b. In con-
trast to the existing solutions that discard the oldest entry in the case that
backup table is full, Interlaced provides a scoring mechanism to distinguish the
backup table neighbors and replaces the element with the minimum score by
the new piggybacked element. The scoring-based element replacement mecha-
nism of backupUpdate is enabled upon a backup table size violation, sorts all
the entries of backup table based on their updated score value as represented
by Equation 5, and drops the element with the minimum score value out of the
backup table. This squeezes the size of backup table down to b − 1 element,
which can accommodate the new piggybacked element.

e.score =
e.sop× commonPrefixLength

|e.numID − numID|
(5)

In Equation 5, e.score denotes the score that backupUpdate assigns to ele-
ment e, which has a direct relation with its stationary online probability (i.e.,
e.sop) as well as the length of common prefix between the name IDs of executor
and element e (i.e., commonPrefixLength). We utilize a locality-aware Skip
Graph [6] where name IDs’ common prefix length reversely reflects the underly-
ing latency between two nodes i.e., a longer common prefix length reflects a lower
latency. Hence, the score of an element is a direct function of its availability
probability that is projected by its latency towards the executor node. More-
over, the score of an element is an inverse function of its numerical ID distance
with respect to the executor. Following the search for numerical ID protocol
(see Section 2), the numerical ID distance to the search target keeps decreasing
as the search message proceeds towards the target. This hints that as the search
path lengthens, the probability that an executor node on the path receives a
search message for a target in its own numerical ID vicinity increases. Conse-
quently, for the routing to be successfully conducted under churn, backupUpdate
aims to keep the backup table elements in the numerical ID proximity of the
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executor node by assigning a higher score to the backup neighbors in shorter
numerical ID distances than the others. This increases the chance of having
routing candidates inline with the search direction and in the proximity of the
executor’s numerical ID. Once the size reduction is done, backupUpdate function
adds the new element to the identified set by the level and direction, and returns
back the updated backup table once all elements in the input search message
were processed.

5.3.2 Using backup table (backupResolve):

As the timeout failure event handler on routing a search message, the executor
invokes backupResolve algorithm that is shown by Algorithm 2. Inputs to back-
upResolve are the backup table and name ID of the executor (i.e., backup and
nameID, respectively), the search target numerical ID (i.e., target), the cur-
rent ongoing level and direction of the search (i.e., level and dir, respectively),
and the search message itself (i.e., msg). The direction dir is either LEFT or
RIGHT. As the output, backupResolve returns an online routing candidate from
the backup table if such online candidate exists. Otherwise, it returns NULL.
If an online candidate is returned by backupResolve, the search message is redi-
rected to that candidate by the executor.

On receiving the inputs, backupResolve iterates over the backup[level][dir]
set, and evaluates the eligibility of each element as a routing candidate. This
is done by invoking candCheck(e, target, dir,msg) that evaluates each element
from two aspects; being on the search direction, and not yet being visited by
this search message (i.e., e /∈ msg). In checking the consistency with the search
direction, candCheck returns false if the direction is RIGHT (or LEFT) but
the e.numID is greater (or less) than the target. Moreover, to avoid looping on
the search path, candCheck returns false if there exists a piggybacked node in-
formation on msg that corresponds to element e (i.e., e ∈ msg). If none of these
violations happen, candCheck returns true. All elements with the candCheck
value of true are evaluated as tentative routing candidates and added to the
candidatesList, which denotes the list of candidates. Before adding each can-
didate e to the list of candidates, backupResolve scores it similar to the scoring
strategy of backupUpdate (Equation 5), except that the numerical ID distance
is evaluated with respect to the target, and not the executor node. In other
words, to compute the score of each backup table element e, backupUpdate fol-
lows Equation 5 by replacing e.sop with the stationary online probability of
element e, commonPrefixLength with the common prefix length between the
name IDs of the executor and element e, and the denominator with the numeri-
cal ID distance of element e to the search target. This scoring is to discriminate
the candidates based on their stationary online probability, search path length
to the target, and latency between them and executor. By the search path
length, we mean the number of nodes on the path between the candidate and
target. A lower numerical ID distance to the search target implies the lower
number of intermediate nodes on the search path (i.e., a shorter search path)
in expectation with high probability, which increases the success probability of
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search under churn as the search is more likely to hit the target in the imme-
diate subsequent steps. Likewise, under the locality-awareness assumption of
the overlay, routing to a more similar name ID with respect to the executor,
decreases the expected routing latency, which compensates the delay caused by
timeout failure, partially. A higher score corresponds to a better candidate in
terms of availability probability, closeness to the target in the overlay network,
and lower latency to the executor on receiving the redirected search message in
the underlying network (Algorithm 2, Lines 1-10).

After creating the list of candidates, backupResolve selects the candidate with
the maximum score as the best routing candidate, checks its online status (e.g.,
by pinging it), and returns its address to the executor in the case that it is online.
If the best candidate is offline, backupResolve removes it from both the backup
table and candidates list and moves to the next best candidate. Removing offline
candidates from the backup table is to address the permanent departure of nodes
that have resided long enough in the system to show a good stationary online
probability, but are no longer available after their departure. candidatesList
running out of candidates implies that there is no other online alternative to
redirect the search message. This makes backupResolve to return NULL, which
hints the termination of the search at that level to the executor (Algorithm 2,
Lines 11-21). Termination at non-zero levels makes the executor to continue
the search at lower levels (see Section 2). However, termination at level zero
corresponds to the termination of the whole search, and executor returns back
its own address as the search result to the search initiator. Moreover, following
the Interlaced ’s preference on fast response under churn than full connectivity,
it only refers the part of the backup table that is consistent with the search.

5.4 Applying on other DHTs

Interlaced is capable of being efficiently applied on other DHTs especially the
prefix-based ones like Kademlia [17], which resembles Skip Graph in prefix-based
binary string identifiers. To apply Interlaced on such DHTs, each node needs
to allocate a backup table and apply some minor modifications to the event
handlers of Interlaced i.e., backupUpdate and backupResolve. For backupUpdate,
determining the level and direction of a new element to be inserted in the backup
table needs to be changed based on the architecture of the DHT. For example,
in Kademlia where the search messages are routed based on the XOR distance
between the executor’s and the target’s identifiers, identifying the proper backup
set is done by the XOR distances, and without the need to determine any
direction. As each backup set is identified by an identifier prefix, the proper
backup set for a new element is the one with the minimum XOR distance to
its identifier. Also, the scoring-based element replacement part of backupUpdate
is modified as shown by Equation 6 where e.id and id are the identifiers of
the piggybacked element e and executor, respectively, and ⊕ denotes the XOR
operation. Nodes in Kademlia are solely identified by a single binary string.
Hence, the common prefix length concern of backupUpdate is addressed by the
XOR distance. Upon the locality-awareness of the Kademlia’s identifiers, the
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Algorithm 2: backupResolve

Input: backup table backup, executor name ID nameID, search target numerical
ID target, level of search level, direction of search dir, Message msg

// initializing the list of candidates to contact
1 candidatesList = Ø;
2 for element e ∈ backup[level][dir] do
3 if e.numID == target then

// the search target has been found
4 return e.address;

5 end
6 if candCheck(e, target, dir,msg) then

// assigning the score to the candidate

7 e.score =
e.sop× commonPrefixLength

|e.numID − target| ;

// adding the candidate to the list
8 candidatesList.add(e);

9 end

10 end
11 while ! candidatesList.isEmpty() do

// picking the best candidate from list
12 bestCandidate = argmaxscore{candidatesList};

// redirecting the search message to the best routing candidate
13 send(msg, bestCandidate.address;
14 if bestCandidate.isonline() then
15 break;
16 else

// removing the offline best candidate from the candidates list and
backup table

17 candidatesList.remove(bestCandidate);
18 backup.remove(bestCandidate);

19 end

20 end
21 return NULL;
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scoring-based element replacement of backupUpdate also considers the latency
constraint i.e., a lower XOR distance implies higher common prefix, and hence
a lower underlying latency, which results in a higher score.

e.score =
e.sop

e.id⊕ id
(6)

For backupResolve event handler, the node needs to change the candCheck
implementation (Algorithm 2, Line 6) based on the architecture of DHT. For
example, in Kademlia a (backup) neighbor is eligible to be contacted by the
search protocol upon a lower XOR distance with the target identifier than the
executor’s one. Likewise, the DHT node needs to change the scoring mechanism
of backupResolve event handler based on the identifiers’ distance metric of the
DHT overlay. In Kademlia’s case that operates on XOR distances, the scoring
mechanism needs to consider the XOR distance of each node to the search target
as shown by Equation 7, which is the updated scoring formula of backupResolve
where target is the search target’s identifier, and commonPrefixLength is the
length of common prefix between the identifiers of element e and executor.

e.score =
e.sop× commonPrefixLength

e.id⊕ target
(7)

6 Related Works

6.1 Churn Stabilization

As a broad taxonomy, the P2P churn stabilization mechanisms for structured
overlays are divided into static and dynamic approaches as described next.

Static Churn Stabilization: The aim of static approaches is to enrich the
structural connectivity of the P2P overlay. D1HT [27], Skip+ [10], and Epi-
Chord [28] augment the overlay connectivity by providing larger routing tables.
These approaches need high maintenance overhead in terms of the number of up-
date rounds and exchanged messages e.g., O(log2 n) communication complexity
for Skip+ [10], which makes these approaches inefficient under continuous high
churn rates where the overlay connectivity changes faster than the update rate
of the nodes [29]. As another example, D1HT needs O(n) lookup table memory
complexity, and epidemic dissemination of queries for the sake of maintenance.
Hierarchical overlays [30, 31] cause unbalanced load on the upper tier nodes,
and direct the P2P system towards centralization. Rainbow Skip Graph [11]
and Tiara [32] follow the virtual nodes approach where two or more physical
peers are coupled into one single node of the P2P overlay to reduce the negative
effect of individual departures on the overlay connectivity [33]. Virtual nodes,
however, distort the structure of overlay and make it inappropriate for many
applications including locality-aware replication [7] that requires the nodes to be
orchestrated based on their locality information [6] rather than the availability.

Dynamic Churn Stabilization: In contrast to the static approaches that
reinforce the structured overlay uniformly regardless of the churn, the dynamic
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churn stabilization approaches aim to maintain the connectivity based on the
local knowledge of nodes about the underlying churn. The knowledge varies
from a rigid assumption to intermittent perception from the underlying churn.
The dynamic churn stabilization approaches are further classified into proactive,
reactive, and predictive. In proactive dynamic stabilization, nodes frequently
check their neighbors’ availability by either pinging them, or conducting a search
for them [14–16, 34–37]. The main disadvantage of proactive approaches is
their dependency on active exploration of the overlay network, which leads a
persistent communication overhead.

In reactive churn stabilization approaches, the maintenance of routing ta-
bles is done only upon the detection of an entry’s failure [38]. The threshold of
failure at which the reactive stabilization starts is a function of the underlying
churn rate. Reactive churn stabilization approaches are not bandwidth friendly.
They congest the underlying network in the events where the churn rate is not
well-predicted, or the threshold is not well-chosen. DKS [38] provides a struc-
tured P2P overlay construction that is in compliance with circular DHTs like
Chord [39] as well as those based on XOR distances e.g., Kademlia [17]. To
handle churn, each DKS node holds a fixed number of pointers to the nodes
that immediately follow it in the identifier space. The list is updated upon fail-
ure detection of any of the successors in a ”correction-on-used” manner i.e., the
failed node is replaced by a new successor. DKS’s success on maintaining con-
nectivity is correlated with the failure pattern of the successors i.e., concurrent
failiures of the successors keep a node away from finding new successors and
recovering a search from failure. 1-backtracking [40] is another reactive solution
where a message is back-tracked one step upon detection of a failure on the
path, and re-routed again. In systems with high churn rate or low availability,
it is very likely for the alternative backtracked neighbors to be offline, which
causes the entire search to be dropped but at a longer response time compared
to no backtracking scenario. Also, increasing the degree of backtracking (e.g.,
2-backtracking) results in high search delay due to the exponential growth of
the alternatives that are contacted blindly without any availability perception.
In contrast to Interlaced, both DKS and backtracking approaches do not con-
sider the search latency, search path length, and availability of the alternative
neighbors for recovering a search message from failure.

Predictive churn stabilization is another dynamic approach where nodes aim
to predict the failure of their neighbors ahead in time and redirect the search
queries to the highly likely online neighbors. The general idea of predictive
approaches is similar to our proposed Interlaced. For example, Kademlia [17]
resembles Interlaced in holding backup neighbors. However, in contrast to the
Interlaced, the backup neighbors in Kademlia are solely scored based on their
last-seen time [16, 18, 41]. Kademlia’s approach on replacing the oldest entry
with the newest piggybacked element increases the lack of routing candidates es-
pecially under high churn rates where the buckets are updated more frequently,
which degenerates the connectivity of the system. Also, scoring the backup
neighbors solely on a least-recently-seen basis increases the expected number of
trials takes to find an online routing candidate, which increases the communica-
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tion overhead as well as the query processing time, and exposes the underlying
network to congestion in larger scales. Moreover, in contrast to Interlaced,
Kademlia does consider the latency and search path length in its scoring mech-
anism.

6.2 Availability Prediction

For availability prediction, regularity-based solutions [42–44] aim to extract the
long-term regular behavior of nodes, and do not exploit irregular nodes, which
constitute a large chunk of the system. Despite not showing a regular availabil-
ity pattern, irregular nodes maybe online for a long enough while to participate
in a churn stabilization protocol. Vector-based solutions [5, 25, 45] predict the
availability probability of the nodes within the slots of a fixed-periodic time in-
terval e.g., availability probability in each hour of a day. Hidden Markov Model
(HMM) [46] approaches predict the availability of a node qualitatively within
the four states of born, young, aged, and offline. Both the vector-based and
HMM-based approaches are long-term solutions that necessitate long learning
phases, and are not applicable to instantaneous prediction cases like churn sta-
bilization. Accordion [37] utilizes a variation of Lifetime predictor [47], where
the availability probability of a node is computed as a function of its accumu-
lative sessions’ lengths. LUDP [48] predicts the availability of nodes based on
their number of incoming connections where a higher number of incoming con-
nections as well as age corresponds to a higher availability probability. The age
of a node is determined by its accumulative online sessions’ lengths.

6.3 Algorithms used for comparison:

We selected Kademlia [17] and DKS [38] for the sake of implementation and com-
parison with our proposed Interlaced as they are the only ones that resemble
Interlaced in keeping the communication complexity of Skip Graph intact, and
being needless of frequent probing. Among the availability prediction solutions,
we selected DBG [22], Lifetime [47], and LUDP [48] for the sake of implementa-
tion and comparison with our proposed SW-DBG as they are the only ones that
resemble SW-DBG in providing an instantaneous and fine-grained availability
prediction. The implementation details of these algorithms are described next.

6.3.1 Churn Stabilization

Kademlia [17]: We follow the same implementation as Interlaced, except, we re-
place the backup table’s sets with double linked-lists. We distribute the backup
size, b, uniformly among the buckets at every level and direction. In case the
total number of levels is not a divisor of b, the remainder is equally distributed
at each level by a value of two (i.e., one extra pointer at each direction) starting
from level zero. The bottom-up distribution of the surplus backup is due to the
importance of the bottom-most levels on the success of the search. Essentially,
the level zero of Skip Graph is where an unsuccessful search terminates. Hence
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having a bigger backup size at this level increases the chance of the search being
rescued from failure. We modify the backupUpdate to simply insert the piggy-
backed elements to the head of the proper linked-list, and remove linked-list’s
tail if the size goes beyond the permissible, b. We modify the backupResolve
such that after identifying the proper bucket, it checks the online status of the
routing candidates inside the bucket starting from the head until it finds an
online routing candidate to return. Similar to Interlaced, backupResolve returns
NULL if the list runs out of routing candidate.

DKS [38]: In our implementation of DKS, we distribute the backup size, b,
among the levels similar to the Kademlia’s case. Each Skip Graph node then
continuously holds a list of pointers to its immediate neighbors at each level and
direction. DKS does not piggyback any availability information on the search
messages. Rather, upon joining the system, each node contacts its immediate
neighbors and initializes its pointers list by invoking the backupUpdate. Also,
in our implementation of the backupResolve a node selects the proper routing
candidate from its pointer list that is identified by the level and direction of the
search. If the selected routing candidate is offline, it is removed from the pointer
list and the list’s tail is updated by appending the immediate neighbor of the
current tail. The backupResolve is invoked repeatedly in this manner until an
online routing candidate is found, or no more immediate neighbor of the tail is
available to be alternatively appended to the list of pointers.

6.3.2 Availability Prediction

DBG [22] : We implement DGB in similar way as SW-DBG with the current
state window is being removed and only one DBG with fixed state size is em-
ployed.

Lifetime [47] : We compute the availability probability of each node at each
time slot as the fraction of its accumulative session lengths to the total number
of elapsed time slots since the beginning of the simulation.

LUDP [48] : We quantified the availability probability of each node as a
function of its age (i.e., the overall number of time slots it has been online) as
well as its total number of incoming connections as shown by Equation 8 where
opt is the online probability of the node at the tth time slot, To is the age of
the node, and Numin denotes the total number of incoming connections of the
node.

opt =
To ×Numin

t× n
(8)

7 Simulation Setup

To simulate and evaluate the churn stabilization solutions, we extended the Skip
Graph simulator SkipSim [20] by enabling arrival, searching, and departure un-
der the crash-failure model where nodes depart the system without notifying
their overlay neighbors. Among the existing churn models of P2P systems,
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we found the BitTorrent-based models in [24] stronger, more realistic, reliable,
parametrically clearer than the others. Therefore, we applied the same Debian
churn distribution as [24] on SkipSim. Debian churn model follows a Weibull
distribution with the average session length of 2.71 hours, and the average in-
terarrival time of 39.86 seconds. We implemented Interlaced, SW-DBG as well
as the best existing churn stabilization and availability prediction approaches
that are applicable to our system model, and simulated all approaches under the
specified Debian churn model. The average downtime of the nodes (i.e., average
offline time) is correlated with the size of the system. We provide analysis over
downtime in Section 8.

We consider the time as discrete with fixed time slots of one hour. The Skip
Graph is initially empty of nodes. At the beginning of each time slot, some
nodes arrive the system, join the Skip Graph overlay, and start interacting with
others via the search for numerical ID protocol. Such interaction is the basic
operation of our system model that is required for example by the replication
[5, 7, 8], or aggregation [49] protocols. The number of arrivals to the system is
determined by the interarrival time distribution. Likewise, in each time slot,
SkipSim selects the number initiated searches uniformly between [0,

(
no

2

)
] where

no denotes the number of online nodes in that time slot. The initiator and target
numerical IDs of each search are uniformly selected from the set of online nodes
in that time slot. Each node is only available for a limited number of time slots
that follows the session length distribution of the churn model and leaves the
system once its session length is over. In SkipSim a node departs the system at
the end of the time slot that its session length terminates, and becomes offline.

We simulated each algorithm for 100 randomly generated topologies, each
with the system capacity of 1024 nodes. Each topology was simulated for one
week (i.e., 168 time slots). In order to simulate pinging, each time during
a search a node checks the online status of another node, SkipSim adds the
corresponding round trip time (RTT) to the total search time.

8 Analytical and Performance Results

8.1 Analytical Framework

We present a framework that analyzes the success probability of Interlaced as
a function of the backup size b on routing search messages under uniform churn
model. In the uniform churn model, at any time, the probability that a given
node goes offline is a constant denoted by q, which is independent of the failure
of other nodes. With this framework, we provide a conservative estimation of
backup size to achieve the maximum success ratio of searches, and support it
with experimental results that are presented in Section 8. In our framework, we
assume a P2P system of size n i.e., n nodes with unique numerical IDs from 1 to
n. For each node, we model the sample space for choosing a random neighbor
as the set of all piggybacked identifiers of other nodes that the node receives
upon routing search requests. Moreover, to generalize the sample space for
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every chosen node, we assume that the node routes enough search requests for
the sample space size to converge to n. Let X be a random variable denoting a
uniformly chosen numerical ID from the set [1, n]. The probability of X has a
certain numerical ID of x is denoted by Equation 9.

Pr(X = x) =
1

n
(9)

Let T be another random variable denoting a uniformly chosen search for
numerical ID target from the set of numerical IDs of all the nodes in system.
Once node x is determined, the probability that a search for a randomly chosen
numerical ID of t in the right direction reaches x is denoted by Equation 10.
Right direction of the search corresponds to x ≤ t in the conditional probability
of Equation 10. The probability is taken over the set of all numerical IDs that
are greater than x and less than t. The right search direction is assumed without
loss of generality, and a similar analysis is applicable to the left direction.

Pr(T = t ∧ x ≤ t|X = x) =
1

n− x+ 1
(10)

We start by the simplest scenario where a node x holds only one right neigh-
bor address. Let Y be another random variable that corresponds to the numer-
ical ID of the sole right neighbor of node x. We define px,t that is shown by
Equation 11 as the probability of node Y taking a numerical ID value in (x, t],
and hence being a proper routing candidate for node x to forward the search
for numerical ID of t to it. In other words, px,t is the probability of the search
successfully passing x and proceeding on right direction towards t via node Y .

px,t = Pr(x ≤ Y ≤ t|X = x, T = t, x ≤ t) =
t− x
n

(11)

We define p as the marginal probability of px,t with respect to both x and t
i.e., the probability of a uniformly chosen node as the right neighbor of a node
on a search path for a target numerical ID being a proper routing candidate.
By being a routing candidate, we mean that the numerical ID of the chosen
neighbor lays between the node’s and the target’s numerical IDs. As shown by
Equations 12-14, p is directly derived by taking the sum of products of Equations
9, 10, and 11 over all possible values of x and t. As x moves over the numerical
ID domain of [1, n], t varies between [x, n], which implies that the search target
t should be greater than or equal to x.

p =

n∑
x=0

n∑
t=x

px,t × Pr(T = t|X = x, x ≤ t)× Pr(X = x) (12)

=

n∑
x=0

n∑
t=x

t− x
n
× 1

n− x+ 1
× 1

n
(13)

=
1

n2

n∑
x=0

n∑
t=x

t− x
n− x+ 1

(14)

23



We skip the intermediate computations of summation for the sake of space,
which yields that the probability p converges to 1

4 as the system size approaches
infinity. This conveys that each node of the system choosing only one of the
other nodes uniformly as its right neighbor, the probability that the chosen
right neighbor is a routing candidate for a randomized search target is about 1

4 .
Assuming the uniform churn model with the failure probability of q turns the
probability p to the more realistic p′ = p × (1 − q) ≈ 1−q

4 i.e., the probability
in which a uniformly chosen right neighbor for a uniformly chosen node on a
search path for a uniformly chosen target is an online routing candidate.

Let random variable Z denotes the number of online routing candidates for
a uniformly chosen node on the search path of a uniformly chosen numerical ID
among the b many backup neighbors that are chosen uniformly. The uniformly
chosen backup neighbors is the weakened version of Interlaced that we utilize as
a conservative analytical baseline. Z is a Binomial random variable with success
probability of p′ [26]. We define the failure probability pf as the probability of
having no online routing candidate for a node on a search path of a search for
numerical ID as shown by Equation 15.

pf =

(
b

0

)
× (p′)0 × (1− p′)b = (1− p′)b (15)

Treating pf as a Bernoulli probability, we denote the expected path length
of a search for a uniformly chosen numerical ID that leads to failure with Ef

as shown by Equation 16. In other words, Ef corresponds to the expected
number of nodes that a search message should traverse to face a failure with
high probability.

Ef =
1

pf
=

1

(1− p′)b
=

1

(1− 1−q
4 )b

(16)

Considering the failure probability of nodes (i.e., q) as a system-wide con-
stant bound, Ef is tweakable with the size of backup table i.e., b. Equation 16
implies that in order to achieve no failure in expectation with high probability,
b should be chosen large enough that Ef stays beyond the average search path
length of the system.

For example, in the specified Debian churn model (see Section 7), each node
has an average session length of about 2.71 hours and then goes offline. Having
an average inter-arrival time of 39.86 seconds results in an average of 90 hourly
arrivals, which causes an offline node to return back to the system in about
12 hours in expectation. Modeling this behavior with a uniform churn model
results in a uniform failure probability of about 0.82 that is analogous to q in
our proposed framework. In a system with n = 1024 nodes under this uniform
churn model, the expected number of online nodes at each time slot is about
184 that is obtained from Equation 17, and is denoted by Eonline. During the
simulation, we consider a node as online within a (one hour) time slot, if it
arrives at the system at that time slot.
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Prediction Strategy SW-DBG DBG(1) DBG(2) DBG(3) DBG(4) LUDP Lifetime
Average Prediction Error 0.18 0.28 0.26 0.23 0.21 0.51 0.34

Table 1: Average prediction error of availability prediction strategies under Debian churn model.

Eonline = (1− q)× n = 0.18× 1024 ≈ 184 (17)

The search path length in Skip Graph is asymptotically logarithmic in the num-
ber of nodes i.e., a Skip Graph with n nodes experiences search paths’ length of
O(log n) nodes. Having an average of about 184 online nodes in the Skip Graph
at every time slot, we approximate the lower bound on the average search path
length as dlog 184e = 8 nodes. Assuming Ef = 8 and q = 0.82, we obtain b ≈ 40
from Equation 16 as an estimate on the backup size that maximizes the average
success ratio of searches under the specified Debian churn model.

8.2 Performance Results

Availability Prediction: Table 1 represents a comparison between the av-
erage prediction error of our proposed SW-DBG and the existing availability
prediction solutions. For the sake of comparison, we measure the availability
prediction error as the average difference between the nodes’ predicted avail-
ability probability, and their availability status. When a node is offline, its
availability status is equal to 0, and when it becomes online, its availability
status is 1. The average is taken over all the simulation’s time slots. DBG(x)
denotes the DBG implementation with the state size of x. Compared to DBG(4)
that performs as the best existing availability predictor, SW-DBG predicts
the availability of nodes with about 1.11 times more accuracy under the
Debian churn model. Growing the state size of DBGs beyond 4-bits increases
their state update running time exponentially in their state size, and is not ap-
plicable to our simulation scale.

Average Success Ratio: Consistent with existing churn stabilization
studies like [13], we consider the average success ratio of searches as the connec-
tivity performance of Skip Graph overlay under churn. Figure 5.a shows con-
nectivity performance of churn stabilization approaches in the specified Debian
churn model as the backup size (i.e., the b parameter) increases. Interlaced -x
represents the setup with Interlaced as the churn stabilization approach, and the
availability prediction strategy denoted by x. As illustrated in Figure 5.a, there
is a similar connectivity performance pattern among almost all the Interlaced -
x approaches i.e., the success ratios start by a fast growth for smaller backup
sizes up to a common breakpoint in which the growth rate slows down and
gets steady. For example, Interlaced -SW-DBG experiences a drastic increase of
success ratio in moving from the backup size of 10 to 20 (nodes) followed by a
narrow increase after passing the breakpoint of 20, and converges to a steady
state value of success ratio of about 0.9. As detailed earlier, we obtain b ≈ 40
from our analytical framework as an estimate on the backup size that maximizes
the average success ratio of searches under the specified Debian churn model.
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Figure 5: (a) Average success ratio of searches vs the backup size. X-axis corresponds to the
backup size (i.e., b), and Y-axis corresponds to the average success ratio of the searches. The
desired data points are the ones towards the top right corner, which correspond to a higher

connectivity of overlay under churn, compared to the rest. (b) Average search latency vs average
success ratio of the searches. X-axis corresponds to the average success ratio, and Y-axis
corresponds to the average search latency in seconds. The desired data points are the ones

towards the bottom right corner, which correspond to a higher connectivity of overlay under churn
at a lower latency, compared to the rest.

As shown in Figure 5.a, for almost all of the Interlaced -x approaches, backup
size of 40 yields a success ratio in the steady-state part of the graph that con-
verges to the maximum value. b = 40 is a conservative estimate on backup size,
and similar connectivity performance is obtainable with even lower backup sizes
(e.g., b = 20). However, it is yet a proper estimator to maximize the connectiv-
ity performance of the Interlaced -x approaches under the characterized churn
model.

The scoring strategy of Interlaced on the backup neighbors is directly af-
fected by the underlying availability prediction accuracy. Supported by Table
1, the prediction error of DBGs narrows down as their state size increases,
which results in a direct relationship between the average success ratio of In-
terlaced -DBG approaches and the state size of DBG. Interlaced -Lifetime fol-
lows the breakpoint pattern but at a lower success ratio rate compared to the
DBG-based approaches. This follows from the Lifetime prediction mechanism’s
inferiority compared to the DBG-based approaches in predicting the availabil-
ity of nodes. Interlaced -LUDP is the only Interlaced -x approach that does not
follow the breakpoint pattern. This is due to the 0.51 prediction error margin
of LUDP, which provides a completely randomized prediction of availability,
and results in Interlaced -LUDP to perform as the weakest compared to the
rest. DKS acts closely to LUDP as the second weakest, which is due to failure
on recovering from the concurrent departures of consecutive neighbors. Higher
backup sizes increase the success ratio of Kademlia with more routing candi-
dates provided. However, the coarse-grained approach of Kademlia on replacing
the oldest entry with the new candidate as well as keeping fixed size backup list
at each level results in the lack of routing candidates within proximity of the
nodes in the identifier space. This makes Kademlia perform less efficiently in
the lower backup sizes, and converge to Interlaced -DBG(1) in the higher backup
sizes. Benefiting from SW-DBG that adaptively chooses the best state size for
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each node, as well as scoring the backup table elements based on both their
numerical ID distances and availability behavior features Interlaced -SW-DBG
the best among the others. Compared to the Kademlia that acts as the best
existing solution applicable on Skip Graph, Interlaced-SW-DBG improves
the average success ratio of the searches with the gain of about 1.81
times on average.

Average Search Latency: Figure 5.b shows the the average search la-
tency of Skip Graph under churn versus the average success ratio of the search
for different churn stabilization approaches. A point (x, y) on this figure is
interpreted as y is the best average search latency that is provided by the cor-
responding churn stabilization approach to maintain the average search success
ratio of x. The desired data points in Figure 5.b are the ones towards the
bottom right corner, which correspond to a higher connectivity of overlay un-
der churn at a lower latency, compared to the rest. There exists a correlation
between the prediction error of the availability predictors (Table 1) and the
average search latency (Figure 5.b). A higher accuracy of availability predic-
tion yields in maintaining a higher number of likely available backup neighbors.
This lowers the expected number of timeouts that contribute to the overall
search latency, which reduces the average search latency. Ignoring the availabil-
ity of neighbors in DKS significantly increases its search latency as the backup
size grows (i.e., larger success rations of search). A similar pattern occurs for
Kademlia with loosened availability constraint on the selection of routing can-
didates. Affected by the immense availability prediction error of LUDP, the
Interlaced -LUDP approach initially keeps likely unavailable backup neighbors
that are later dropped by Interlaced due to their timeout failures. Therefore,
as the time goes on, the majority of nodes are with depleted back up tables,
which conclude the search faster but with the wrong result. This is why Inter-
laced -LUDP seems faster than the rest but at a miserably lower average success
ratio of the search. Similar to the connectivity performance, our proposed In-
terlaced-SW-DBG outperforms Kademlia by performing the searches
1.81 times more successful, and 2.47 times faster on average, and acts
as the best among all the existing counterparts.

8.3 Space, Time, and Communication Complexities

SW-DBG : As DBGs are sorted in ascending order based on their state size in
the current state window, the size of SW-DBG is bound by the Right DBG’s
size. Having the state size of k for the Right DBG in the current state window,
the asymptotic time and memory complexity of statusUpdate (Algorithm 1) is
O(2k). Despite this exponential asymptotic upper bound, based on our simu-
lation, the average state size of the Right DBG is about 3.6 bits and does not
cross the 5 bits. The standard deviation of average Right DBG state size of
SW-DBG is about 0.2. Representing each vertex by a k-bit state string and an
integer probability value between 0 and 100 applies an average and maximum
memory overhead of about 64 and 256 bytes on each node that utilizes SW-
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DBG. Running on Intel i5 2.60 GHz CPU and 8 GB of RAM, a single execution
of statusUpdate takes the average running time of 1.45 milliseconds. SW-DBG
does not impose any communication overhead on the system.

Interlaced : The only memory overhead of Interlaced on a node is a backup
table size of O(b) where b is a system wide constant that denotes the maximum
backup size. As each of the Interlaced event handlers iterates over the backup
table either partially (i.e., one entry set) or entirely, the worst-case asymptotic
running time of Interlaced is O(b). The worst-case communication complexity of
backupUpdate and backupResolve are O(1) and O(b), respectively. The asymp-
totic O(b) worst case communication complexity of backupResolve occurs when
all the backup neighbors are placed in a single entry set, and are contacted one
by one on resolving a failure. However, the expected number of backup neigh-
bors for each level of a node is b

logn , which applies the expected communication

complexity of O( b
logn ). As long as b = O(log2 n), Interlaced does not change the

communication complexity of the Skip Graph overlay. Based on the simulation
results, for the backup size of b = 50, the average number of backup neighbors
for each level of Skip Graph remains close to its expected value (i.e., an aver-
age of about 3.32), that imposes the average communication complexity of 1.55
messages per invocation of backupResolve by each node on a search path.

9 Conclusion

To maximize the connectivity of Skip Graph-based DHT overlays under churn
we proposed Interlaced, a fully decentralized predictive churn stabilization algo-
rithm that provides fine-grained scoring mechanisms based on the distribution of
nodes in both the overlay and identifier space, as well as their availability prob-
ability. Interlaced does not change the asymptotic communication complexity.
As an independent contribution, we proposed SW-DBG, a tool to predict the
availability probability of the nodes.

We extended the Skip Graph simulator, SkipSim [20], implemented and sim-
ulated the state-of-the-art availability prediction methods as well as churn stabi-
lization approaches that are applicable on a Skip Graph overlay. Our simulation
results show that compared to the best existing solutions that are applicable on
a Skip Graph overlay, Interlaced improves the connectivity of the Skip Graph
overlay under churn with the gain of about 1.81 times. Likewise, compared
to the existing availability prediction approaches for P2P systems, SW-DBG is
about 1.11 times more accurate. A Skip Graph that benefits from Interlaced
and SW-DBG is about 2.47 times faster on average in processing the search
queries under churn compared to the best existing solutions.
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