
Performance Analysis and Optimization
Opportunities for NVIDIA Automotive GPUs
Hamid Tabani∗, Fabio Mazzocchetti∗†, Pedro Benedicte∗†, Jaume Abella∗ and Francisco J. Cazorla∗

∗ Barcelona Supercomputing Center † Universitat Politècnica de Catalunya

Abstract—Advanced Driver Assistance Systems (ADAS) and
Autonomous Driving (AD) bring unprecedented performance
requirements for automotive systems. Graphic Processing Unit
(GPU) based platforms have been deployed with the aim of
meeting these requirements, being NVIDIA Jetson TX2 and
its high-performance successor, NVIDIA AGX Xavier, relevant
representatives. However, to what extent high-performance GPU
configurations are appropriate for ADAS and AD workloads
remains as an open question.

This paper analyzes this concern and provides valuable
insights on this question by modeling two recent automotive
NVIDIA GPU-based platforms, namely TX2 and AGX Xavier. In
particular, our work assesses their microarchitectural parameters
against relevant benchmarks, identifying GPU setups delivering
increased performance within a similar cost envelope, or decreas-
ing hardware costs while preserving original performance levels.
Overall, our analysis identifies opportunities for the optimization
of automotive GPUs to further increase system efficiency.

I. INTRODUCTION

Critical real-time embedded systems (CRTES), such as
those managing safety-related functionalities in avionics,
space, automotive and railway, have built during decades on
simple and low-performance microcontrollers. The increasing
software complexity, inherent to the increase in the number
and sophistication of delivered functionalities in those sys-
tems, has lead towards a slow adoption of multicore mi-
crocontrollers. For instance, the Infineon AURIX processor
family [23] in the automotive domain, or Gaisler’s LEON4
family [13] in the space domain deliver few cores (i.e. in
the range 3 to 6) with the aim of providing a moderate
performance scale up. 1

Such designs have already found difficulties to match the
increasing complexity of software in those systems, which
has increased at a rate of 10x every 10 years and, for the
automotive domain reached up to 100 million lines of code
for some cars in 2009 [11]. Moreover, as pointed out by
ARM prospects, the advent of driver assistance systems and
autonomous driving in the automotive domain will lead to a
performance demand increase of 100x in the timeframe 2016-
2024 [6], thus further exacerbating the performance needs for
CRTES.

The answer to this performance demand has been the
deployment of accelerators along with the microcontrollers,
being Graphic Processing Units (GPUs) the main representa-
tive of those [19], [37], [33] despite the existing challenges
using GPUs in this domain [39], [5]. In particular, several

1https://doi.org/10.1016/j.jpdc.2021.02.008

products such as Renesas R-Car H3 [1], NVIDIA Jetson
TX2 [20] and NVIDIA Jetson Xavier [35], [27] have already
reached the market building upon GPU technology inherited
from the high-performance domain. Automotive GPUs have
inherited designs devised for the high-performance domain
with the aim of reducing costs in the design, verification and
validation process for chip manufacturers.

Unfortunately, reusability of high-performance hardware
does not consider GPUs efficiency in the automotive domain
and, to the best of our knowledge, the design space for GPUs,
where resources are sized with the aim of optimizing specific
goals such as performance, has not been yet thoroughly
performed for the automotive domain.

This paper aims at covering this gap by providing a GPU
design exploration for the automotive domain by analyzing the
influence that different microarchitectural hardware parame-
ters, such as cache sizes, number of streaming multiprocessors
(SMs), and the like have on performance for an automotive
SoC representative, the NVIDIA Jetson TX2 platform [20] and
AGX Xavier [27]. In particular, the main contributions of this
work are as follows:

1) An adaptation of a cycle-level CPU-GPU simulator,
gem5-gpu [32], to model both NVIDIA Jetson TX2 and
AGX Xavier configurations as close as possible to the
specs provided by NVIDIA. This is the basis of our
exploratory study.

2) A systematic performance analysis for the main hard-
ware parameters, assessing to what extent they influence
performance for a relevant set of benchmarks. We first
analyze the effect of each parameter individually, and
then the effect of two or more parameters coordinately.

3) Finally, we propose two configurations which deliver: a)
similar performance to the baseline design at a decreased
hardware costs, and b) higher performance than the
baseline design with comparable hardware costs.

Overall, our analysis shows that opportunities for optimization
exist and can be exploited in two different axes depending on
the needs of end-users.

The rest of the paper is organized as follows. Section II pro-
vides some background on automotive systems needing GPUs
and on GPU architecture. Section III presents our methodology
to model the NVIDIA Jetson TX2 GPU, NVIDIA AGX
Xavier and the benchmarks we use to evaluate our proposals.
Section IV provides the design space exploration for the
Jetson TX2 GPU and AGX Xavier. Section V identifies and
evaluates our two improved setups. Section VI reviews some

© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

related work, and Finally, Section VII summarizes the main
conclusions of this paper.

II. BACKGROUND

This section describes some background on the need for
GPUs in automotive systems, as well as the basic organization
of latest GPU architectures.

A. GPU-based Automotive Systems

The advent of Advanced Driver Assistance Systems and
Autonomous Driving (AD) imposes a higher level of system
autonomy to take decisions on behalf of the driver, or even
to fully replace the driver, as expected for the systems with
Autonomy Level 5 – the highest autonomy level according to
SAE International [34]. To make these systems real, a number
of processes related to Perception and Prediction modules
of autonomous driving systems need to be automated to
process large amounts of data from sensors (camera, LiDAR,
radar) in real-time to deliver system responses timely [4],
[3], [2]. Therefore, object detection, trajectory prediction, and
collision avoidance algorithms, among others, use complex
deep learning models, which are extremely compute-intensive
and require very high-performance hardware to take driving
decisions in very short timeframes.

Current trends in the sophisticated AD systems show that
the number of concurrent deep learning instances can easily
reach dozens. The main reasons for such an increase are the
following:

• More input sensors. Moving towards fully autonomous
driving (Level 5 [24]) naturally requires increasing the
number of sensors to cover the car’s surrounding more
accurately. Today, some of the AD systems, which are
still far from a Level 5 system, use more than 8 cam-
eras and radars (e.g., Telsa [14] uses 8 cameras and
12 ultrasonic sensors, and NVIDIA autopilot [29] uses
8 high-resolution cameras, 8 radars and optionally up
to 3 LiDARs). Therefore, more DNN-based workloads
have to be processed, increasing the computation demand
significantly.

• More sophisticated algorithms. Perception submodules
tend to use more sophisticated DNNs, with a larger num-
ber of layers and higher computational needs for further
improvements in the accuracy of object and obstacle
detection, especially in conditions with reduced visibility
such as fog, dusk, night, rain, and snow. The Prediction
module already uses 3 different neural networks, either to
achieve higher accuracy or to cover more complex scenar-
ios. Indeed, this type of module usually uses sophisticated
neural network architectures [41], [42].

• More functionalities. Besides the main functions of an
AD system, extra features are introduced to improve driv-
ing quality and safety: from gesture detection and speech-
based command and control, up to driver-monitoring to
predict take-over readiness [15].

Fig. 1: Schematic of the architecture of a GPU.

B. GPU Architecture

While different GPUs from different vendors may have
significant differences, and differences may also be relevant
across different GPU generations for the same vendor, some
elements are mostly common to all GPUs. Therefore, we
describe those, as they are the basis of the study provided
later on.

Figure 1 depicts the main elements of the architecture
of the GPU. As the Figure shows, the GPU has a global
scheduler that dispatches work to the different Streaming
Multiprocessors (SMs) of the GPU. Each SM, to some extent,
is a cluster of computing resources orchestrated coordinately,
whereas different SMs may lack any coordination and work
highly independently. Each SM has a set of storage resources
that include a first level (L1) instruction cache and an L1 data
cache, as well as some shared memory to manage shared data.
Each SM also includes a warp scheduler, where warp refers, in
NVIDIA terminology, to the set of identical computations that
are dispatched to the parallel computing elements atomically.
Thus, it is the smallest scheduling unit.

Computing elements include CUDA2 cores (indicated with
black squares in the figure), able to process a warp entirely,
as long as the particular operation requested is part of the
CUDA cores, which typically include most integer and single-
precision floating-point arithmetic operations. Along with the
CUDA cores, some other units (indicated with different gray
squares) perform other types of operations, typically with

2Compute Unified Device Architecture (CUDA) is a parallel computing
platform and application programming interface model created by NVIDIA.
It allows software developers and software engineers to use a CUDA-enabled
graphics processing unit for general purpose processing.

lower bandwidth than CUDA cores, such as load/store opera-
tions of data, and some area-costly operations whose hardware
cannot be replicated as many times as CUDA cores (e.g.,
double precision or highly-complex floating point operations).

SMs also share one or more levels of cache (e.g., L2), thus
competing for cache space across SMs, as well as the memory
interface. Note, however, that different GPU architectures may
be different. For instance, it is not uncommon having clusters
of SMs, so that each cluster shares a cluster-local shared cache,
and then all clusters share a global L2 cache. Still, the concept
of highly parallel computing resources and hierarchical storage
organization holds in the general case for GPUs.

NVIDIA TX2 GPU is based on Pascal Architecture [31].
The GPU in AGX Xavier is designed based on the Volta [28]
architecture, the successor of Pascal architecture, with new
design features and new computing elements such as Tensor
cores [30] for accelerating deep learning-based kernels as Fig-
ure 2 shows. Tensor cores accelerate large matrix operations,
which are at the heart of many AI functions [38]. While each
regular core can perform up to one single-precision multiply-
accumulate operation per 1 GPU clock, each Tensor core
can perform one matrix multiply-accumulate operation per
1 GPU clock. The Tensor core can multiply two FP16 4x4
matrices and adds the multiplication product FP32 matrix to
the accumulator, which is also a FP32 4x4 matrix. In each SM,
threads can use either the regular cores or the Tensor cores.
Hence, at most, 512 regular or 64 Tensor cores can be used
in parallel.

III. METHODOLOGY

A. Simulation Infrastructure

In this paper, we have used an in-house version of the
gem5-gpu simulator [32]. Gem5-gpu is a cycle-accurate and
heterogeneous CPU-GPU simulator incorporating gem5 [8]
and gpgpu-sim [7] simulators. These are the most accurate
and widely-used cycle-level simulators in the computer archi-
tecture community. In our version of gem5-gpu, we applied
major modifications to include latest versions of gem5 and
gpgpu-sim. This was a fundamental requirement before being
able to model latest GPU architectures such as Pascal and
Volta since in the baseline simulator only Fermi, an earlier
NVIDIA architecture, was supported.

B. Modeling NVIDIA Tegra X2

We have modeled an SoC, similar to NVIDIA TX2, in our
simulator. We have done a comprehensive study to extract the
available and public architectural parameters of TX2 in order
to tune the simulator to closely model the chosen platform. We
have extracted as much information as we could from public
sources about our NVIDIA GPU and we included them in
the configuration of the gpgpu-sim. However, we still do not
have access to part of the detailed parameters since they are
not provided by the manufacturer. Alternatively, we have tried
to estimate the missing parameters according to the available
information and also by fine-tuning those parameters with the
help of synthetic experiments. Table II shows the detailed

Fig. 2: Schematic of the SM architecture of a Volta-based
GPU [28].

parameters that we have employed in our simulator to model
the NVIDIA TX2.

To out knowledge, the latest gpgpu-sim version (released in
late 2018) is the most accurate and open-source simulator to
model a Pascal architecture, which is the architecture used in
the TX2 GPU. In addition, we have designed several synthetic
benchmarks to validate our configuration against the real GPU.

NVIDIA TX2 is based on the 16nm NVIDIA Tegra Parker
system on chip (SoC). The TX2 has a Pascal GPU with 2
SMs, each of them with 4 SM Blocks (SMBs). Each SMB
comprises of 32 cores and in total the GPU has 256 cores.
The TX2 SoC also comprises of two different clusters of dual-
and quad-core CPUs, whose L2 cache is shared inside each
cluster. The first CPU cluster, Denver2, has 2 cores each with
its own private first level instruction and data caches (referred
to as iL1 and dL1 respectively). The other CPU cluster has 4
ARM Cortex-A57 cores also with private iL1 and dL1 caches.
Table I presents the architectural parameters of both CPUs
and the GPU in NVIDIA TX2. In this work, we focus on the
development board of the TX2 processor (Jetson), which has
one SoC. It is worth pointing out that commercial versions of
the TX2 can have up to 2 SoCs like the one described and
even one discrete GPU.

C. Modelling NVIDIA AGX Xavier

We have also modeled an SoC, similar to NVIDIA AGX
Xavier, in our simulator. Analogously to the case of the

Configuration
GPU NVIDIA Pascal: 256 CUDA cores

2 SMs with 4 SMBs each.
32 CUDA cores per SMB

CPU 2-core Denver2
(128KB 4-way IL1, 64KB, 4way dL1)
4-core ARM A57
(48KB 3-way IL1, 32KB 2-way dL1)
2MB 16-way L2 per cluster

DRAM 8 GB, 256-bit LPDDR4x, 59.7 GB/s

TABLE I: System Configurations of NVIDIA TX2 SoC.

CPU Configuration
Core ARMv8 ISA, 2.0 GHz, 128-entry ROB

40-entry Issue Queue, Full Out-of-Order
3-Width Decoder, 3-Width Instruction Dispatch
48 KB, 3-Way TLB
48-Entry Fully-Associative L1 TLB

Caches 32 KB L1-D Cache, 2-Way, 1 Cycle
48 KB L1-I Cache, 3-Way, 1 Cycle
2 MB L2 Cache, 16-Way, 12 Cycles
64 Bytes Cache Line Size

Prefetcher Stride Prefetcher (Degree 1)
2K Branch Target Buffer (BTB)
32-Instruction Fetch Queue
15 Cycles Misprediction Penalty

DRAM DDR4 1866 MHz, 2 Ranks/Channel
8 Banks/Rank, 8 KB Row Size.
tCAS = tRCD = tRP = CL = 13.75ns
tREFI = 7.8 us
GPU Configuration

SMs 1.1 GHz, 32 Warps, 65536 shader registers
32 Thread blocks, 2048 threads per core
4 scheduler per core

Memory 48KB 4-way, 512 KB 4-way L2
64KB shared memory, 8 GB total memory size
16 sub-partition per memory channel

TABLE II: System Configurations employed in the gem5-gpu
simulator to model the NVIDIA TX2.

NVIDIA TX2, we have reviewed public information to extract
the available and public architectural parameters of the AGX
Xavier in order to tune the simulator to closely model the
chosen platform through the configuration of the gpgpu-sim
simulator. However, similarly to the TX2 case, as explained
before, we lack access to part of the detailed parameters
since they are not publicly provided by the manufacturer.
Alternatively, we have tried to estimate the missing parameters
according to the available information and also by reverse-
engineering those parameters with the help of synthetic ex-
periments on the actual board. Table IV shows the detailed
parameters that we have employed in our simulator to model
the AGX Xavier SoC.

To our knowledge, the latest gpgpu-sim version (released in
late 2018), which we use in our work, is the most accurate
open-source simulator to model a Volta architecture, which is
the architecture used in the Xavier GPU.

NVIDIA Xavier SoC is based on the 12 nm FinFET system
on chip (SoC). The Xavier GPU has a Volta GPU with 8 SMs,

Configuration
GPU NVIDIA Volta: 512 CUDA cores

8 SMs with 4 SMBs each.
16 CUDA cores per SMB

CPU 8-core ARMv8
(128KB 4-way IL1, 64KB, 4way dL1)
2MB 16-way L2 per cluster
4MB 16-way L3 shared between all clusters

DRAM 32 GB, 256-bit LPDDR4x, 137 GB/s

TABLE III: System Configurations of NVIDIA AGX Xavier
SoC.

CPU Configuration
Core ARMv8 ISA, 2.0 GHz, 128-entry ROB

40-entry Issue Queue, Full Out-of-Order
3-Width Decoder, 3-Width Instruction Dispatch
48 KB, 3-Way TLB
48-Entry Fully-Associative L1 TLB

Caches 64 KB L1-D Cache, 4-Way, 1 Cycle
128 KB L1-I Cache, 4-Way, 1 Cycle
2 MB L2 Cache, 16-Way, 12 Cycles
4 MB L3 Cache 16-way, 16 Cycles
64 Bytes Cache Line Size

Prefetcher Stride Prefetcher (Degree 1)
2K Branch Target Buffer (BTB)
32-Instruction Fetch Queue
15 Cycles Misprediction Penalty

DRAM DDR4 1866 MHz, 2 Ranks/Channel
8 Banks/Rank, 8 KB Row Size.
tCAS = tRCD = tRP = CL = 13.75ns
tREFI = 7.8 us
GPU Configuration

SMs 1.37 GHz, 32 Warps, 65536 shader registers
32 Thread blocks, 2048 threads per core
4 scheduler per core

Memory 64KB 4-way, 512 KB 4-way L2
32 GB total memory size
16 sub-partition per memory channel

TABLE IV: System Configurations employed in the gem5-gpu
simulator to model the NVIDIA AGX Xavier.

each of them with 4 SM Blocks (SMBs). Each SMB comprises
of 16 cores and in total the GPU has 512 cores. The Xavier
SoC comprises of four clusters of dual-core CPUs, 8 cores
overall, whose L2 cache is shared inside each cluster and an
L3 cache shared among the clusters. Each CPU cluster has 2
cores each with its own private first-level instruction and data
caches (referred to as iL1 and dL1 respectively). Table III
presents the architectural parameters of both the CPU and the
GPU in NVIDIA AGX Xavier. In this work, we focus on
the development board of the Xavier (Jetson AGX Xavier),
which has one single Xavier SoC. It is worth pointing out
that commercial versions of the Xavier, similar to TX2, are
designed with up to 2 Xavier SoCs in the same board.

D. Benchmarks

In this paper, we use Rodinia [12] benchmark suite for our
experiments. Rodinia benchmark suite is targeting heteroge-
neous computing and in order to study emerging platforms

such as GPUs, Rodinia suite includes applications and kernels
that target multi-core CPU and GPU platforms.

The EEMBC (Embedded Microprocessor Benchmarks Con-
sortium) recently released ADASMark [16], an ADAS Bench-
mark suite that would be highly relevant for our study. How-
ever, in the moment of writing this paper we still have not been
able to access this benchmark suite. Therefore, we used some
of the most suitable benchmarks for GPU microarchitecture
such as Rodinia. In fact, Rodinia includes some key kernels
in autonomous driving systems that have similarities with
ADASMark such as image processing and pattern recognition.

IV. DESIGN SPACE EXPLORATION

The objective of the design space exploration is to know
which parameters of the processor design could be in-
creased/decreased and what would be their impact on perfor-
mance. Since there are many parameters that can influence
performance, making all the possible combinations is unfeasi-
ble. Thus, for each of the SoCs, we first change one parameter
at a time, and then changing more than one parameter together
(for instance, size and way of caches).

A. TX2: Changing a single parameter

In Figure 3, we see the results for the design space explo-
ration when changing only one parameter. Please note that the
plots have 2 different scales: 0-2 (a, b, d, e, h) and 0-5 (c, f,
g, i, j, k). Y-axis shows the slowdown in comparison with the
baseline configuration. In the first row, we show the results for
the variation in L1 and L2 associativity and L2 size. Increasing
the L1 size provides a small performance improvement, while
reducing the size degrades the performance. When reducing
the L2 cache size, we observe performance degradation, how-
ever, further increasing the L2 cache size does not provide
further performance improvement.

Regarding the associativity, neither changes in L1 nor in L2
result in significant changes when increasing or decreasing it
moderately (1 to 8 ways). This parameters are again tested in
the next part since changing both size and associativity at the
same time may have different effects that are not seen when
changing them one at a time.

Figure 3 e) shows that doubling the number of CUDA
cores does not increase performance, but reducing it can result
in significant performance degradation, specially in compute-
intensive applications like hotspot or particlefilter naive. In the
next two Figures, f) and g), we show the effects on changing
the sizes of the register file and the shared memory. Both
components do not show significant differences when reducing
its size by half or increasing it to double. Figure 3 h) changes
the number of warp schedulers in each SM. While increasing
(from 4 to 8 or 16) it does not show any performance benefits,
and reducing it to just 1 incurs in significant penalty (10%
more execution time), reducing it by half (from 4 to 2) results
in the same average performance, with almost no variability
in the different benchmarks.

In Figures 3 i), 3 j), and 3 k), we show the results for
the number of SMB per SM, the number of SM per cluster,
and the number of clusters with just 1 SM, respectively. Since

the simulator does not support more than 4 SMB per SM (the
standard in Pascal), we just focus on reducing it to 1 and
2. We observe that this reduction would incur in significant
performance penalties. The last two (SM per cluster and
number of clusters) show a similar trend, since in the end both
of them are increasing the total amount of SMs. We observe
that increasing the total number of SMs has positive effects
in performance, but just up to a certain point. The increase
in SMs has to be tailored to the application implementation
and behavior, so some applications may not be able to use all
these SMs while others could if they were implemented with
more granularity. These two components are the ones that vary
most depending on the benchmark, with several improving
performance and others decreasing it.

B. TX2: Changing two or more parameters

Some parameters that changed on their own have a specific
impact on performance, can behave differently if changed
together with other parameters. This is because how one
parameter performs depends also on how other parameters
perform. This is obvious in caches. Changing the associativity
of a small cache may have bigger impact on performance than
changing the associativity of a big cache, since sets may be
big enough anyway to notice any degradation.

The first two parameters that we have changed together
are cache size and associativity, both for L1 (Figure 4a) and
L2 (Figure 4b). For both we have changed the associativity
(first element in the x-axis) and the size (second element)
together. Although for the L1 we do not see significant
performance changes, for the L2 we see that reducing the size
and associativity to small enough numbers we have significant
performance degradation. This degradation is bigger than the
one observed in the previous experiments when only changing
the associativity or the size separately.

In the next experiments, we change the size of both caches
at the same time (Figure 4c), and we see similar results to the
previous experiment, with a lot of degradation when the L2
size is small. We also changed both L1 and L2 associativities
at the same time (Figure 4d) and as in previous experiments we
see that it has no noticeable effect. In the last experiment with
multiple cache components, we change both L1 and L2 sizes
and associativities. The results are similar to b) and c), with big
performance penalties in the small setup and no improvement
in the big one.

Finally, in Figure 4f, we change both the number of SM
as well as the number of CUDA cores per SM, changed
from 128 to just 32. Comparing with the previous experiment,
Figure 3k, we see that the trends are similar, with small
variations depending on the benchmark.

C. AGX Xavier: Changing a single parameter

In Figure 5, we see the results for the design space ex-
ploration when changing only one parameter. Y-axis shows
the slowdown with respect to the baseline configuration. The
first 4 plots show the results for the variation in L1 size,
L1 associativity, L2 size, and L2 associativity. Increasing
the L1 size provides a small performance improvement for

Name Short name Problem type Domain
Back Propagation backprop Unstructured Grid Pattern Recognition
Breadth-First Search bfs Graph Traversal Graph Algorithms
3D Stencil cell Structured Grid Cellular Automation
Gaussian Elimination gaussian Dense Linear Algebra Linear Algebra
Hotspot3D hotspot Structured Grid Physics Simulation
Myocyte myocyte Structured Grid Biological Simulation
Needleman-Wunsch needle Dynamic Programming Bioinformatics
k-Nearest Neighbors nn Dense Linear Algebra Data Mining
Particle Filter pf float Structured Grid Medical Imaging
Particle Filter pf naive Structured Grid Medical Imaging
SRAD srad Structured Grid Image Processing

TABLE V: Rodinia benchmarks used in the experiments.

some of the benchmarks, while reducing the size degrades
performance. As shown, one of the benchmarks (myocyte) is
the most sensitive one to the L1 size. When reducing the
L2 cache size, we observe performance degradation, however,
further increasing the L2 cache size does not provide further
performance improvement, similar to the case of TX2.

Regarding the associativity, neither changes in L1 nor in L2
result in significant changes when increasing or decreasing it
moderately (1 to 64 ways). These parameters are again tested
in the next section since changing both size and associativity
at the same time may have different effects that are not seen
when changing them one at a time.

Figure 5 e) shows that doubling the number of CUDA
cores does not increase performance, however, unlike the TX2,
reducing it does not cause significant performance degradation.
In Figure 5 f), we show the effects of changing the size of the
register file. As shown, some benchmarks are sensitive when
reducing the register file size, however, the rest show very low
sensitivity. Figure 5 g) changes the number of warp schedulers
in each SM. Again, unlike the TX2, benchmarks show very
low sensitivity to the change of number of warp schedulers.
As it shows, increasing the number of warp schedulers from
1 to 16 has almost no impact.

In Figures 5 h), 5 i), and 5 j), we show the results for
the number of SMB per SM, the number of SM per cluster,
and the number of clusters with just 1 SM, respectively. As
explained earlier, the simulator does not support more than
4 SMB per SM (the standard in Pascal). Therefore, we just
focus on reducing it to 1 and 2. We observe that this reduction
would incur in very small performance loss unlike the case of
TX2. The last two (SM per cluster and number of clusters)
show a similar trend, since, in the end, both of them are
increasing the total amount of SMs. We observe that increasing
the total number of SMs has positive effects in performance.
Some benchmarks, such as myocyte, can benefit the most from
increasing the number of SMs and also the number of SMs
per cluster. As discussed earlier, the increase in SMs has to
be tailored to the application implementation and behavior, so
some applications may not be able to use all these SMs while
others could if they were implemented with more granularity.
These two components are the ones that vary most depending
on the benchmark, with several improving performance and

others decreasing it.

D. AGX Xavier: Changing two or more parameters
Similar to the analysis that we have shown for the TX2,

some parameters that changed on their own have a specific
impact on performance, can behave differently if changed
together with other parameters. This is because how one
parameter performs depends also on how other parameters
perform. This is obvious in caches. Changing the associativity
of a small cache may have bigger impact on performance than
changing the associativity of a big cache, since the number of
sets may be large enough to mitigate cache conflicts.

The first two parameters that we have changed together are
cache size and associativity, both for L1 (Figure 6a) and L2
(Figure 6b). For both, we have changed the associativity (first
element in the x-axis) and the size (second element) together.
Although for the L2 we do not see significant performance
changes, for the L1 we see that, by reducing the size and
associativity to small enough numbers, we have performance
degradation for one of the sensitive benchmarks.

In the next experiments, we change the size of both caches
at the same time (Figure 6c), and we see that increasing both
cache sizes together can improve performance in some bench-
marks. However, performance gains due to increasing L1 and
L2 sizes simultaneously are similar to those of increasing L1
size only, which indicates that there is no particular combined
effect when increasing L1 and L2 sizes simultaneously. We
also changed both L1 and L2 associativities at the same time
(Figure 6d) and, as in previous experiments, we see that it
has no noticeable effect. In the last experiment with multiple
cache components, we change both L1 and L2 sizes and
associativities. The results are similar to b) and c), with small
performance penalties for one of the benchmarks in the small
setup and also significant performance improvement in the big
one.

Finally, in Figure 6f, we change both the number of SM as
well as the number of CUDA cores per SM, changed from 128
to just 32. Comparing with the previous experiment, Figure 5j,
we see that the trends are similar, with small variations de-
pending on the benchmark. The myocyte benchmark, however,
is highly impacted as expected, but performance degradation
does not differ significantly from that when using 128 instead
of 32 CUDA cores per SM.

3 6 12 24 48 96
182

364
728

1456
0.0

0.5

1.0

1.5

2.0

(a) L1 size

1 2 4 8 16 32
0.0

0.5

1.0

1.5

2.0

(b) L1 associativity

8 16 32 64
128

256
512

1024
2048

0.0

1.0

2.0

3.0

4.0

5.0

(c) L2 size

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

2.0

(d) L2 associativity

32 64
128

256
512

0.0

0.5

1.0

1.5

2.0

(e) Number of CUDA cores

1 2 4 8 16 32 64
128

256
0.0

1.0

2.0

3.0

4.0

5.0

(f) Register file size

0.5 1 2 4 8 16 32 64
128

256
0.0

1.0

2.0

3.0

4.0

5.0

(g) Shared memory size

1 2 4 8 16
0.0

0.5

1.0

1.5

2.0

(h) Number of warp schedulers

1 2 4 8 16
0.0

1.0

2.0

3.0

4.0

5.0

(i) Number of SMB per SM

1 2 4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

(j) SM per cluster

1 2 4 8 16 32 64
128

0.0

1.0

2.0

3.0

4.0

5.0

(k) Number of SMs

1248163264
128
256

0.01.02.03.04.05.06.07.0

backprop

bfs

cell

gaussian

hotspot

myocyte

needle

nn

pf_float

pf_naive

srad

mean

(l) Legend

Fig. 3: Design Space Exploration results for one parameter changes in the TX2 (all sizes are in KB).

E. Changing the software

The changes in performance that we observe when modify-
ing different hardware parameters not only depend on the type
of application we are running (compute-intensive, memory-
intensive, etc.) but also on the specific CUDA/OpenCL imple-

mentation of each application. Usually, when parallelizing an
application for GPUs, the computation is divided into grids
and thread blocks (using NVIDIA’s terminology). A specific
grid and thread block division of a program could be optimal
for a configuration (number of SM, sizes of caches etc) while
being suboptimal for others.

3-1
48-4

364-16
0.0

0.5

1.0

1.5

2.0

(a) L1 size and associativity

8-1
512-4

2048-64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

(b) L2 size and associativity

3-8
48-512

364-2048
0.0

1.0

2.0

3.0

4.0

5.0

6.0

(c) L1 and L2 size

1-1 4-4 8-8
16-16

32-32
64-64

0.0

0.5

1.0

1.5

2.0

(d) L1 and L2 associativity

3-1 8-1
48-4 512-4

364-16 2048-64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

(e) L1 and L2 size and associativity

1-32
2-32

4-32
8-32

16-32
32-32

64-32
128-32

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(f) SM with 32 CUDA cores

Fig. 4: Design Space Exploration results for several parameter changes in the TX2 (all sizes in KB). The legend is the same
used in Figure 3.

Because of this, we have modified the implementation of
the programs to change its granularity, to see the impact that
these can have with different hardware setups. As a proof of
concept, we changed the grid and thread block distribution
of 3 benchmarks: cell, needle and nn. Since sometimes this
distribution is tightly related with the specific implementation,
changing the code to accommodate the new distribution can
be challenging.

In order to test whether this new software distribution with
more potential parallelism is utilizing the added hardware, we
test two configurations. Both these configurations have bigger
L1 and L2 caches (364KB and 2048KB respectively), and they
differ in the distribution of SM and CUDA cores. The first one
has 16 SMs and 128 CUDA cores per SM and the second one
16 SMs and 32 CUDA cores per SM. The reference one has
2 SMs with 128 CUDA cores per SM.

F. Parameter classification
Depending on the results obtained in the design space

exploration, we classify the parameters into two categories:
1) Parameters that (based on Rodinia) are not worth to

increase beyond a given point since they produce no
gains.

2) Parameters that require SW to be modified (e.g. block-
/grid) to make it worth to change them.

In the following table (Table VI) for the TX2, we show a
classification of the parameters into the two different types,
and the last column shows the limit where an increase of the
parameter does not provide significant performance benefits.

Parameter Category Limit
L1 size 1 48KB
L1 associativity 1 4
L2 size 1 256KB
L2 associativity 1 2
Number of CUDA cores 1 128
Register file size 1 64KB
Shared memory size 1 16KB
Number of warp schedulers 1 2
Number of SMB per SM 2 -
SM per cluster 2 -
Number of SMs 2 -

TABLE VI: TX2 GPU parameters classified depending on the
potential improvement on hardware or software.

V. IMPROVED SETUPS

Based on the knowledge obtained from the design space
exploration, we want to propose modified hardware designs
with some improvement, either in terms of performance or in
terms of die area. The two setups that we propose are:

• The same performance with less cost.
• More performance with the same cost.
These setups would be optimized for the Rodinia bench-

marks used in the design space exploration and will be based
on the TX2 and AGX Xavier basic design.

A. Proposed setups

The two proposed setups and its objectives are:
• Decrease the hardware keeping the same performance.

32 64 128 256 5120.0

0.5

1.0

1.5

2.0

(a) L1 size

1 2 4 8 16 320.0

0.5

1.0

1.5

2.0

(b) L1 associativity

64 128 256 512
1024

2048
40960.0

0.5

1.0

1.5

2.0

(c) L2 size

1 2 4 8 16 32 640.0

0.5

1.0

1.5

2.0

(d) L2 associativity

32 64 128 256 5120.0

0.5

1.0

1.5

2.0

(e) Number of CUDA cores

1 2 4 8 16 32 64 128 2560.0

0.5

1.0

1.5

2.0

(f) Register file size

1 2 4 8 160.0

0.5

1.0

1.5

2.0

(g) Number of warp schedulers

2 4 8 160.0

0.5

1.0

1.5

2.0

(h) Number of SMB per SM

1 2 4 8 16 32 640.0

0.5

1.0

1.5

2.0

(i) SM per cluster

1 2 4 8 16 32 64 1280.0

0.5

1.0

1.5

2.0

(j) Number of SMs

1248163264
128
256

0.01.02.03.04.05.06.07.0

backprop

bfs

cell

gaussian

hotspot

myocyte

needle

nn

pf_float

pf_naive

srad

mean

(k) Legend

Fig. 5: Design Space Exploration results for one parameter changes in the AGX Xavier (all sizes are in KB).

The first improved setup proposed aims to reduce the
amount of die space used while roughly keeping the same
performance (within 5% of performance degradation).
For the case of TX2, looking at the results of the design
space exploration, the features that are susceptible to
being reduced without too much performance degradation
are: register size, warp schedulers per SM and shared
memory. In all of these features, the number of units or
size can be divided by half without having a significant
impact in performance.

Thus, our proposal is to use the same configuration but
reducing the register size from 64KB to 32KB (12), the
warp schedulers per SM from 4 to 2 (12) and the shared
memory from 64KB to 16KB (14).
In the case of the AGX Xavier, following analogous
reasoning, we propose to halve the number of warp
schedulers (from 4 to 2), as well as the size of the register
file (from 64K to 32K).

• Increase performance using the same hardware.
Again, in the case of TX2, in order to increase the

64-2
128-4

256-8
0.0

0.5

1.0

1.5

2.0

(a) L1 size and associativity

256-8
512-16

1024-320.0

0.5

1.0

1.5

2.0

(b) L2 size and associativity

64-256
128-512

256-10240.0

0.5

1.0

1.5

2.0

(c) L1 and L2 size

2-8 4-16 8-320.0

0.5

1.0

1.5

2.0

(d) L1 and L2 associativity

32-2 256-8
64-4 512-16

128-8 1024-320.0

0.5

1.0

1.5

2.0

(e) L1 and L2 size and associativity

1-32 2-32 4-32 8-32
16-32

32-32
64-32

128-320.0

0.5

1.0

1.5

2.0

(f) SM with 32 CUDA cores

Fig. 6: Design Space Exploration results for several parameter changes in the AGX Xavier (all sizes in KB). The legend is
the same used in Figure 5.

performance using the same amount of die space, we
need to increase some resources, which will increase
performance and area and decrease others, which will
decrease performance but decrease area. The trade-off
between the resources increased and decreased needs to
be positively balanced to improve the performance per
die area.
Based on the design space exploration, our proposal for
this setup is to increase the number of SMs and L1 cache
sizes, while decreasing the size of the L2. The difference
in die space between the new SMs and larger L1 should
be similar to the decrease in L2 size. Furthermore, we will
provide two variations of this setup. In one we will double
the size of the L1 and the number of SMs, while reducing
the L2 size by half, as Table VII shows. Furthermore, in
a more area limited setup, we will also double the L1
and number of SMs, while reducing the L2 to one fourth
of its size.
Regarding the AGX Xavier, following analogous reason-
ing, we propose increasing the number of SMs (from 8
to 16), at the expense of decreasing L2 cache size down
to 256KB or 128KB.

Justifying that the hardware cost of our proposed setups
is challenging without having information about the actual
space occupied by each resource in the real hardware im-
plementation. Since there is no available information about
the TX2 die, instead we use, as a reference, the GTX 1080’s
die information. The GTX 1080 is a discrete graphics card
developed by NVIDIA with the same architectural generation
(Pascal) and manufacturing process (16nm).

Parameter Base Reduced Increased Increased
changed setup die space perf. a) perf. b)

Number of SM 2 2 4 4
Warp sched 4 2 4 4
Register file 64KB 32KB 64KB 64KB
Shared mem 64KB 16KB 64KB 64KB
L1 size 48KB 48KB 96KB 96KB
L2 size 512KB 512KB 256KB 128KB

TABLE VII: Changes made in the improved setups for the
TX2.

Parameter Base Reduced Increased Increased
changed setup die space perf. a) perf. b)

Number of SM 8 8 16 16
Warp sched 4 2 4 4
Register file 64KB 32KB 64KB 64KB
L1 size 128KB 128KB 256KB 256KB
L2 size 512KB 512KB 256KB 128KB

TABLE VIII: Changes made in the improved setups for the
AGX Xavier.

In the GTX 1080 die, we see the area dedicated to the SMs
to the per SM caches (including L1 and shared memory), to the
shared L2 and the rest to I/O and other features (debugging,
performance counters etc). Although these are estimates, they
give us a good idea of the overall die space used to each
processor part.

We have proposed similar changes to be studied on the
parameters of the AGX Xavier, as discussed before. Table VIII
shows the changes made in different parameters in the im-
proved setups for the AGX Xavier.

Fig. 7: NVIDIA GTX 1080 die. Same architecture (Pascal)
and manufacturing process (16nm) as the TX2.

B. Evaluation

Regarding the TX2, in the first setup, the improvement is
in the die space used. Specifically, we use half the register
size, half the schedulers and a quarter of the shared memory.
Of the three, the shared memory is the one that has a bigger
impact in die area reduced. An advantage of reducing these
components is that they are private to each SM, so we could
increase the number of SMs in combination with those SM-
local component reductions without increasing overall area. In
contrast, by decreasing shared resources such as the L2 cache,
the effect is not multiplicative as for intra-SM components.

From the 11 Rodinia benchmarks that we analyzed, 8
of them have the same performance (within less than 1%
of variation). Based on our previous analysis, from the 3
benchmarks that show a significant increase in execution time,
one (hotspot) is mainly due to the decrease in register file size
and the other 2 (needle and srad) are due to the decrease in
shared memory size. On average, less than 5% of performance
degradation is shown when making these changes as Figure 8
shows.

In the second setup, we want to improve performance while
increasing some resources and decreasing others to maintain
die area. Since knowing the exact area gained or lost with
each change is challenging, we propose two setups. In both,
we double the number of SMs and the L1 size, but in one, we
reduce the L2 size by half and in the other, by one quarter.

For both variations, the results change significantly depend-
ing on the benchmark. Of the 11 benchmarks, in 4 of them, we
observe a performance improvement, in 4 of them we observe
a slowdown, and the rest stay roughly the same. Overall, the
setup that halves the L2 shows a 15% reduction in execution
time while the setup that divides it by 4 shows a 9%.

Between the two setups, some benchmarks (bfs, cell, gaus-
sian, hotspot, particlefiler naive) show no difference at all. Of

Fig. 8: Execution time of the proposed setups normalized to
the baseline for the TX2.

Fig. 9: Execution time of the proposed setups normalized to
the baseline for the AGX Xavier.

the ones that show difference, all perform better in the 256KB
L2 than in the 128KB.

Regarding the Xavier, as Figure 9 shows, the benchmarks
are less affected by modifying the parameters. Our conclusion
is that most of the benchmarks are less sensitive to some
key parameters. However, few benchmarks, such as myocyte,
highly benefit from the improved setups as the Figure shows.

VI. RELATED WORK

GPU performance analysis for general purpose applications
has been a research topic for many years. Two main research
lines exist on this topic. The first one focuses on the analysis
of Commercial Off-The-Shelf (COTS) GPUs by means of
the execution of different types of parallel applications [40],
[36], [26]. These studies have allowed determining what
the most convenient way is to deploy and run software on
those GPUs and, at most, it has been guessed how hardware
should be modified to improve performance. However, since
COTS GPUs cannot be modified, hypotheses raised cannot
be verified. The second research line on this topic considers
the use of GPU performance simulators in order to determine
how to tune high-performance GPUs for general purpose high-
performance applications [21], [22]. However, those GPUs
are significantly different from automotive ones since they

are not subject to strict power constraints such as those in
the automotive domain, which are intended to operate under
much lower power envelops. Thus, conclusions cannot be
extrapolated across both market segments.

Several works have analyzed the performance of COTS
automotive GPUs to optimize the behavior of applications
running atop [18]. While conclusions reached by those works
are highly valuable for an efficient use of hardware, they do
not provide any insight on how to optimize hardware design.
Finally, some works target task scheduling on GPUs for an
efficient use of hardware resources, minimizing their timespan
while respecting their deadlines [17], [10], [9].

In [25], we performed an extensive analysis and design
space exploration of the key GPU parameters for the NVIDIA
TX2 GPU. In this paper, we complement such work by
performing a similar study for a more recent and widely-
used automotive GPU, the NVIDIA AGX Xavier. In addition,
we discuss the differences among these two architectures and
explain why in some case we observe different behavior while
modifying similar parameter(s).

VII. CONCLUSIONS

Performance requirements of future automotive systems
have increased significantly with the promise of Autonomous
Driving. GPUs are commonly used to reach the required
performance levels. In this work, we focus on two of the latest
automotive SoCs NVIDIA Jetson TX2 and NVIDIA AGX
Xavier which are widely-used and well-known platforms.

First, we modeled both the TX2 and the AGX Xavier
in our full-system CPU-GPU simulator. Then, using Rodinia
benchmark suite that focuses on several heterogeneous com-
puting (CPU+GPU) applications, we analyzed how different
parameters of the GPU in the TX2 and AGX Xavier are
affecting performance. This is done with isolated changes (just
changing a single parameter at the same time) as well as with
combined changes (changing several parameters at the same
time).

Building on the conclusions of this experimentation, we
propose three different improved setups for each of the GPUs:
one that reduces die space significantly with less than 5%
performance impact, and two that maintain approximately the
same die space but reduce execution time between 5% and
15%.

Some hardware improvements could only be fully exploited
by modifying the software (mainly the block and thread
distribution). We leave this tuning of software as future work to
continue improving GPU-based systems to meet the demands
of the automotive industry.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) un-
der grant TIN2015-65316-P, the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 772773) and the
HiPEAC Network of Excellence.

REFERENCES

[1] RENESAS R-Car H3. https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

[2] Autoware. An open autonomous driving platform. https://github.com/
CPFL/Autoware/, 2016.

[3] Udacity. An Open Source Self-Driving Car. https://github.com/udacity/
self-driving-car/, 2017.

[4] Apollo, an open autonomous driving platform. http://apollo.auto/, 2018.
[5] Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez,

Jaume Abella, and Francisco J Cazorla. Safety-related challenges and
opportunities for gpus in the automotive domain. IEEE Micro, 38(6):46–
55, 2018.

[6] ARM. ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade. https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.
php, ARM Press Release, April 2015.

[7] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M
Aamodt. Analyzing cuda workloads using a detailed gpu simulator.
In 2009 IEEE International Symposium on Performance Analysis of
Systems and Software, pages 163–174. IEEE, 2009.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[9] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru.
Deadline-based scheduling for GPU with preemption support. In 2018
IEEE Real-Time Systems Symposium (RTSS), pages 119–130, Dec 2018.

[10] Nicola Capodieci, Roberto Cavicchioli, and Marko Bertogna. NVIDIA
GPU scheduling details in virtualized environments: Work-in-progress.
In Proceedings of the International Conference on Embedded Software,
EMSOFT ’18, pages 12:1–12:3, Piscataway, NJ, USA, 2018. IEEE
Press.

[11] R.N. Charette. This car runs on code. In IEEE Spectrum online, 2009.
[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In IEEE International Symposium
on Workload Characterization, 2009.

[13] Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-
NGMP-DRAFT - Data Sheet and Users Manual, 2011.

[14] Tesla Corp. Tesla Autopilot. https://www.tesla.com/autopilot, 2018.
[15] Nachiket Deo and Mohan M. Trivedi. Looking at the driver/rider in

autonomous vehicles to predict take-over readiness. IEEE Trans. Intell.
Veh., 5(1):41–52, 2020.

[16] EEMBC. ADASMark.
[17] Glenn A. Elliott. Scheduling of GPUs, with applications in advanced

automotive systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2015.

[18] J. Fickenscher, O. Reiche, J. Schlumberger, F. Hannig, and J. Teich.
Modeling, programming and performance analysis of automotive envi-
ronment map representations on embedded GPUs. In 2016 IEEE In-
ternational High Level Design Validation and Test Workshop (HLDVT),
pages 70–77, Oct 2016.

[19] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[20] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[21] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU ar-
chitecture with memory-level and thread-level parallelism awareness. In
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009.
ACM.

[22] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and
performance model. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pages 280–289, New
York, NY, USA, 2010. ACM.

[23] Infineon. AURIX Multicore 32-bit Microcontroller Family to
Meet Safety and Powertrain Requirements of Upcoming Vehi-
cle Generations. http://www.infineon.com/cms/en/about-infineon/press/
press-releases/2012/INFATV201205-040.html.

[24] SAE International. AUTOMATED DRIVING, Levels of driving au-
tomation are deined in new SAE International standard J3016. https:
//www.sae.org/standards/content/j3016 201806/, 2018.

https://github.com/CPFL/Autoware/
https://github.com/CPFL/Autoware/
https://github.com/udacity/self-driving-car/
https://github.com/udacity/self-driving-car/
http://apollo.auto/
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.tesla.com/autopilot
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/

[25] Fabio Mazzocchetti, Pedro Benedicte, Hamid Tabani, Leonidas Kos-
midis, Jaume Abella, and Francisco J Cazorla. Performance analysis and
optimization of automotive gpus. In 2019 31st International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), pages 96–103. IEEE, 2019.

[26] Paulius Micikevicius. GPU performance analysis and optimization. In
Proceedings of the 3rd GPU Technology Conference, GTC ’12, 2012.

[27] Nvidia. Nvidia Jetson AGX Xavier, 2017. https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/.

[28] NVIDIA. Nvidia tesla v100 gpu architecture. Volta Architecture White
Paper, 2017.

[29] NVIDIA. Self-driving Safety Report. https://www.nvidia.com/en-us/
self-driving-cars/safety-report/, 2018.

[30] NVIDIA. Tensor Core, The Next Generation of Deep Learning. https:
//www.nvidia.com/en-us/data-center/tensorcore/, 2018.

[31] Tesla NVIDIA. P100 gpu. Pascal Architecture White Paper, 2016.
[32] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A

Wood. gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer
Architecture Letters, 14(1):34–36, 2015.

[33] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella, and Francisco J Cazorla. Generating and exploiting deep learning
variants to increase heterogeneous resource utilization in the nvidia
xavier. In 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[34] SAE International. J3016: Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems, 2014.

[35] Danny Shapiro. Introducing xavier, the nvidia ai supercomputer for the
future of autonomous transportation. NVIDIA blog, 2016.

[36] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc.
A performance analysis framework for identifying potential benefits
in GPGPU applications. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’12, pages 11–22, New York, NY, USA, 2012. ACM.

[37] K. Suleman. Intel paves the road for bmw’s inext autonomous cars in
2021. 2017.

[38] H. Tabani, R. Pujol, J. Abella, and F. J. Cazorla. A cross-layer review
of deep learning frameworks to ease their optimization and reuse. In
2020 IEEE 23rd International Symposium on Real-Time Distributed
Computing (ISORC), pages 144–145, 2020.

[39] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco J Cazorla,
and Guillem Bernat. Assessing the adherence of an industrial au-
tonomous driving framework to iso 26262 software guidelines. In
Proceedings of the 56th Annual Design Automation Conference 2019,
page 9. ACM, 2019.

[40] Y. Zhang and J. D. Owens. A quantitative performance analysis model
for GPU architectures. In 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, pages 382–393, Feb 2011.

[41] Alex Zyner, Stewart Worrall, and Eduardo M. Nebot. A recurrent
neural network solution for predicting driver intention at unsignalized
intersections. IEEE Robotics Autom. Lett., 3(3):1759–1764, 2018.

[42] Alex Zyner, Stewart Worrall, and Eduardo M. Nebot. Naturalistic driver
intention and path prediction using recurrent neural networks. IEEE
Trans. Intell. Transp. Syst., 21(4):1584–1594, 2020.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/self-driving-cars/safety-report/
https://www.nvidia.com/en-us/self-driving-cars/safety-report/
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.nvidia.com/en-us/data-center/tensorcore/

	I Introduction
	II Background
	II-A GPU-based Automotive Systems
	II-B GPU Architecture

	III Methodology
	III-A Simulation Infrastructure
	III-B Modeling NVIDIA Tegra X2
	III-C Modelling NVIDIA AGX Xavier
	III-D Benchmarks

	IV Design Space Exploration
	IV-A TX2: Changing a single parameter
	IV-B TX2: Changing two or more parameters
	IV-C AGX Xavier: Changing a single parameter
	IV-D AGX Xavier: Changing two or more parameters
	IV-E Changing the software
	IV-F Parameter classification

	V Improved setups
	V-A Proposed setups
	V-B Evaluation

	VI Related work
	VII Conclusions
	References

