
Efficiency and Scalability of
Multi-Lane Capsule Networks (MLCN)

Vanderson M. do Rosario
Institute of Computing

Unicamp
Campinas, Brasil

vanderson.rosario@ic.unicamp.br

Mauricio Breternitz Jr.
ISTAR-IUL

Lisbon University Institute ISCTE-IUL
Lisbon, Portugal
mbjrz@iscte-iul.pt

Edson Borin
Institute of Computing

Unicamp
Campinas, Brasil

edson@ic.unicamp.br

Abstract—Some Deep Neural Networks (DNN) have what we
call lanes, or they can be reorganized as such. Lanes are paths
in the network which are data-independent and typically learn
different features or add resilience to the network. Given their
data-independence, lanes are amenable for parallel processing.
The Multi-lane CapsNet (MLCN) is a proposed reorganization
of the Capsule Network which is shown to achieve better accuracy
while bringing highly-parallel lanes. However, the efficiency and
scalability of MLCN had not been systematically examined.
In this work, we study the MLCN network with multiple
GPUs finding that it is 2x more efficient than the original
CapsNet when using model-parallelism. Further, we present the
load balancing problem of distributing heterogeneous lanes in
homogeneous or heterogeneous accelerators and show that a
simple greedy heuristic can be almost 50% faster than a naı̈ve
random approach.

Index Terms—deep learning capsule network multi-lane

I. INTRODUCTION

Several approaches to the distributed model parallelization
of Deep Neural Networks (DNN) have concentrated in their
depth [1]–[3], but DNNs can also be organized in a way
to be parallelized in their width [4]. The DNN architecture
may be organized into distinct neural network lanes [5].
This creates separable and resource efficient data-independent
paths in the network that can be used to learn different
features or add resilience to the network. Examples of neu-
ral networks with lanes are the Google Inception [6], [7]
and the Multi-lane Capsule Network (MLCN) [5]. As these
lanes are data-independent they can be (1) processed in
parallel and (2) specialized for distinct computational tar-
gets (CPUs, GPU, FPGAs, and cloud), as well as resource-
constrained mobile and IoT targets, leading to opportunities
and challenges. Recently, our research focus was on Multi-
Lane Capsule Networks (MLCN), which are a separable and
resource efficient organization of Capsule Networks (CapsNet)

This work was supported in part by CAPES/Brasil (Finance Code 001),
by CNPq (313012/2017-2), and by Fapesp (CCES 2013/08293-7). We would
like to thank Google Cloud Platform for a grant to run our experiments.

V. M. do Rosario, is a Ph.D. Candidate at Institute of Computing, Unicamp,
Brazil. (e-mail: vanderson.rosario@ic.unicamp.br).

E. Borin, is an Associate Professor at Institute of Computing, Unicamp,
Brazil. (e-mail: edson@ic.unicamp.br).

M. Breternitz, Jr., is an Invited Associate Professor and Principal Inves-
tigator at Lisbon University Institute ISCTE-IUL and ISTAR-IUL, Portugal.
(e-mail: mbjrz@iscte-iul.pt).

that allows parallel processing while achieving high accuracy
at a reduced cost. Table I shows results from MLCN in
comparison with the baseline CapsNet. With a similar number
of parameters, MLCN achieves similar accuracy but with a
significant speedup stemming from the lane organization. Ini-
tial experiments were performed in single GPU environments
but, with highly-parallel lanes it is interesting to explore
how MLCN scales with more GPUs. Here we present a
first comprehensive study of the scalability and efficiency of
MLCN for multi-GPU systems.

TABLE I: Comparison between Baseline CapsNet and MLCN.

Network/set # of
lanes

lane’s
Width Params. Train Time

(sec./epoch) Accuracy

Cifar10:
Baseline - - 11k 240 66.36%
Mlcn2 4 4 5k 53 69.05%
Mlcn2 32 2 14k 204 75.18%

Fashion-MNIST:
Baseline - - 8k 220 91.30%
Mlcn2 2 4 3.6k 20 91.01%
Mlcn2 8 4 10.6k 92 92.63%

Moreover, the lanes do not necessarily need to have the
same sizes or shapes and may perhaps even learn different
features of the given task. This implies that each distinct
lane may be better suitable for a distinct HW substrate.
Further, each lane may tolerate different impacts from various
optimizations (such as quantization). Thus, given a set of
lanes, L, and a set of hardware (HW), H , there is an optimal
pair (l, h) for l ∈ L and h ∈ H and an optimal sequence of
lane optimizations for each pair (l, d) of lane and HW.

In this work, we describe and present this lane-hardware
matching problem for homogeneous or heterogeneous accel-
erator scenarios. We also show that a simple greedy heuristic
can be almost 50% faster than a random naı̈ve approach.

The main contributions of this work are:
• We present a first comprehensive analysis of the effi-

ciency and scalability of MLCN showing its advantages
over the data-parallelism-limited approach of the original
CapsNet.

ar
X

iv
:1

90
8.

03
93

5v
1

 [
cs

.C
V

]
 1

1
A

ug
 2

01
9

• We define the load balancing problem of distributing
heterogeneous lanes in heterogeneous hardware.

• We present a greedy heuristic to solve the lane-hardware
match problem showing that it is superior to a naı̈ve
approach.

This paper is organized as follows: Section II presents
the state-of-art in Capsule Networks and DNN paralleliza-
tion; Section III describes the Multi-Lane Capsule Network
(MLCN) and discusses how it can be parallelized; Section IV
further discusses the heterogeneous distribution problem and
presents a heuristic approach to it; finally, Section V and VI
shows the experimental setup and the experimental results, and
Section VII presents our conclusions.

II. RELATED WORK

A. Capsule Network

The Convolutional Neural Network (CNN) is a class of
DNN which is commonly used when working with images.
CNNs have already achieved state of art results in tasks such as
image and video recognition, image classification and medical
image analysis. However, these networks have difficulties
with location invariance and loss of location information,
e.g., one CNN which is able to recognize faces could also
mistakenly recognize an image with eyes, mouth, and nose
at random positions as a face, not understanding that there
is an important spatial relationship between the composing
elements. To address this problem, many different new DNN
approaches were proposed, including the notion of capsules
proposed by Hiton, Krizhevsky, and Wang in 2011 [8].

To encode spatial relationship, Capsule Networks also
known as CapsNets, do not work/represent neurons as simple
scalars (as in regular CNNs), but as vectors. Later in 2017
an efficient and realistic training algorithm for such networks
was proposed [9]. The algorithm, named Dynamic Routing,
dynamically chooses activation paths between capsules from
one layer to another, calculating the vectors from the next layer
based on a mean from dynamically selected vectors from all
previous layers.

CapsNet [9] produces a set of N Primary Capsules (PCs)
by applying two convolutional steps to the original image and
splitting it in vectors. Each of these PCs (vectors), identified
as ui, is multiplied by a weight matrix Wi and finally, a
final set of capsules, the digit capsules, is created using the
dynamic routing algorithm. Each of these digit capsule vectors
represents one of the classes in the classification problem and
the vector’s length encodes the probability of the class. The
digit capsule can also be used to reconstruct the image like an
auto-encoder.

This network with the Dynamic Routing algorithm was
shown to have some advantages such as a smaller neces-
sary training set and location invariance. It also has some
drawbacks such as slower execution and lower accuracy than
CNNs. Since the initial publication, however, multiple im-
provements were proposed and the concept has been evolving.
Shahroudnejad, Mohammadi, and Plataniotis [10] presented an

analysis of the explainability of CapsNet, showing that it has
properties to help understand and explain its behavior. Jaiswal
et al. [11] used the CapsNet in a Generative Adversarial
Network (GAN) and showed that it can achieve lower error
rates than the simple CNN. Ren and Lu [12] showed that
CapsNet can be used for text classification and showed how
to adapt the compositional coding mechanism to the CapsNet
architecture. Jimenez-Sanchez, Albarqouni, and Mateus [13]
tested CapsNet for Medical Imaging Data Challenges showing
that it can achieve good performance even when having
less trainable parameters than the tested counterpart CNNs.
Mobiny and Nguyen [14] tested the performance of CapsNet
for lung cancer screening and showed that it could outperform
CNNs mainly when the training set was small. A similar result
was achieved by Kim et al. in traffic speed prediction [15]
with CapsNet outperforming traditional CNNs approaches.
Mukhometzianov and Carrillo [16] used CapsNet with mul-
tiple image datasets and found that, although achieving good
results, CapsNet still requires higher training times compared
to other CNNs. Canqun et al. [17] proposed the Multi-Scale
CapsNet (MS-CapsNet). They introduced a fixed division of
the CapsNet network limited to three “lanes” (they did neither
name or explore the division concept), each with a different
number of convolutions. Also, recently developed, the Path
Capsule Networks by Amer and Maul [18] (Path-Capsnet)
explore the parallelism of CapsNets by splitting the network
such that each path or lane is responsible for computing each
digitcaps or a primary capsule entirely, unlike the computation
of different dimensions/features in MLCN.

III. MULTI-LANE CAPSNETS (MLCN)

In 2019, we introduced a novel organization for the Cap-
sNet named Multi-Lane CapsNet (MLCN) with improved
explainabily, performance and parallelization without decreas-
ing accuracy or generalization power [5]. However, beyond
just encoding the probability of a class, each vector also
contains information to reconstruct the original image, with
distinct dimensions of the vector representing different features
of the image. With this in mind, we propose to split the
original CapsNet architecture1 (Figure 1), dividing the PCs
into independent sets called lanes. Each of these sets of PCs,
a lane, is responsible for one of the dimensions in the final
digit capsules.

The number of PCs per lane may vary, as well as the
way they are computed. In the original CapsNet, two 2D
convolutions are applied to the input image and then reshaped
to produce the PCs. More convolutions may be applied, what
we call the depth of a lane, or more filters can be used per
convolution generating more capsules, what we call the width
of a lane. Further, distinct dimensions of a final digit capsule
can be generated by lanes with different configurations (and
thus distinct computational requirements).

There are two key advantages of this organization over the
original CapsNet architecture. First, it allows parallelism of

1source code in https://github.com/vandersonmr/lanes-capsnet

.

.

.

. . . a nb ...

a ...
b ...

n ...

...

.

.

Digit
Capsule

Depth

W
idth

of

la
ne

s
Lane

Conv2d

Conv2d

Conv2d

Primary
Capsules

Primary
Capsules

Primary
Capsules

dynamic routing

Fig. 1: MLCN architecture.

the execution, as each set of PCs is constructed independently,
improving performance and allowing training and deployment
on distributed environments. Second, it improves the explain-
ability of the network by associating different features of the
image to each lane.

A. CapsNet Parallelization

A DNN can be paralyzed in different ways and normally
finding the best way for a given network is a complex and
hard task. The three most common are data parallelism, model
parallelism and pipelining.

The first, data parallelism, splits the data which is going to
be computed. Basically, it divides the input batch into smaller
batches for each computer unit and synchronizes it at the end
of the batch. Although being very simple and straightforward,
it can only scale increasing the batch size as dividing too much
a small batch can result in small computation and frequent
synchronization. And varying the batch size impacts in the
accuracy, what can mean a trade-off between accuracy and
speedup.

Another possibility is by splitting the network operations
itself. However, it is not always trivial to find a good place
to split the operations. Normally, if two operations which
are data-dependent are split into two computation units, it
will involve lots of communication. Moreover, implementing
this kind of network division and communication in current
frameworks is not trivial.

Lastly, but not less important, pipelining split the network
into levels which can compute different data at the same time
in a pipeline approach. It is normally the approach used in
high-performance scenarios.

These are not the only techniques to distribute the training
and inference of DNNs and they are not mutually exclusive
and can be used together [4]. Related to MLCN, we tested its
capability of allowing easy model parallelism and compare it
to the common approach that is data parallelism. Of course,
for huge MLCN networks pipeline could also be used, but
we focus on showing how being able to facilitate the use
of model parallelism can bring many advantages mainly over
when only using data parallelism. This same advantage can
be easily extended by adding pipelining per lane, but it will
remains for future work.

IV. HETEROGENEOUS DISTRIBUTION PROBLEM

One of the main advantages of having data-independent
lanes is that these lanes can be deployed separately in multi-
ple accelerators. If we have multiple equal lanes and multiple
equal accelerators, deployment is as basic as dividing the
lanes equally over the HW resources, only being concerned
with the communication cost involved. If in other cases we
have lanes with different shapes, characteristics and compu-
tational intensity or/and we have multiple accelerators with
different characteristics or computational power, deployment
becomes more involved. First, because it now involves load
balancing the computational intensity of the lanes and the
computational power of the lane and, second, because now
there is also the chance to apply different optimizations for
different pairs of HW and lane. This scenario can be seen in
Figure 2, which shows how multiple lanes can be deployed
for different accelerators with different compilation stacks.

Deciding where to execute each lane or what optimizations
to apply to each lane/hardware pair is not trivial. In this work,
we present an approach to address the first problem using a
deployment heuristic. We will address the second problem in
future work.

A. Heuristic Execution Cost for MLCN Lanes

Finding, statically, the optimal solution to deploy a lane
given a set of HW resources is a complex task. For example,
aspects such as the version of the compiler being used or
what other lanes (and their characteristics) are being executed
concurrently on the same HW can have a significant impact
on the final performance. These are only two of the many
aspects that can affect performance. However, we observed in
our experiments that, at least for MLCN, we do not need to
have the exact final performance to make a good deployment
decision. Our experiments have shown that simple predictors
can provide fair results.

We experiment running and taking the average execution
time of 10 executions of MLCN lanes with different width,
size, and types, using three different NVIDIA GPUs (K80,
P100, and V100). For the same number of parameters, inde-
pendently of the GPU used, the performance displays a well-
behaved pattern. It varies linearly when increasing the depth,
quadratically when varying the width, and it was multiplied
by a factor when changing the GPU.

Thus, for MLCN lanes with NVIDIA GPUs and compilers,
predicting the performance on a given HW substrate can be
approximated by Equation 1, which achieves a 0.901 Pearson
correlation with our experimental data.

lanecost = (lanewidth)
2 × lanedepth ×GPUspeed (1)

The GPUSpeed in equation 1 is the speed factor of the GPU
being used. It only has any significance when deploying to a
heterogeneous set of GPUs and the GPUSpeed constant for
each GPU can be inferred by simply measuring the execution

Lane 1

Lane 2

Lane 3

.

.

.

Deployment
Heuristic

Target and Metric Specific
Lane Optimization

Target and Metric Specific
Lane Optimization

Target and Metric Specific
Lane Optimization FPGAs

GPUs

CPUs

.

.

.

Compilation Stack

Data-
independent
Paths in the

Neural
Network

.

.

.

Target and Metric Specific
Lane Optimization

New or Co-
designed
Hardware

Fig. 2: Multiple Neural Network lanes can be trained in parallel using multiple HW even in heterogeneous scenarios..

time of a tiny lane in each GPU and normalizing it. This can
be done before the execution and it has an insignificant cost
in the final execution time. In the case of our experiments, we
collect the GPUSpeed by executing a 512x512 fully connected
network with a small set of data. Normalized by K80, we used
the following GPUSpeeds for M40, P100 and V100: 3.1, 4.2
and 6.

B. Load Balancing Algorithm

We showed that we can make good execution cost predic-
tions for NVIDIA GPUs and MLCN lanes. However, there is
still the problem of how to deploy a set of lanes with different
sizes and widths to a set of GPUs with different speeds. We
can model this problem as a numerical set partition with N
bins, each bin corresponding to a target GPU. The cost of
each lane being deployed (inserted into the bin) is equal to
the lane cost (Equation 1) multiplied by previous execution
speed prediction on host HW via execution of a tiny lane
(GPUSpeed).

The numerical set partition problem is NP-Hard, but very
good results can be achieved using heuristic/approximative
algorithms and it can even be solved in pseudo-polynomial
time using dynamic programming making it one of “The
Easiest Hard Problem” [19], [20]. One of such heuristics that
achieved good results and is very simple to implement is the
greedy partition which always inserts the remaining lane with
the largest cost in the emptiest bin. Algorithm 1 shows this
greedy algorithm including the pre-execution used to calculate
the GPUSpeed.

V. EXPERIMENTAL SETUP

In our experiments, we used machines from Google Cloud.
All virtual machines instantiated had 24 vCPUs with 50GB of
RAM and a default network interface. We used different GPU
setups, including NVIDIA Tesla M40, K80, P100 and V100
all with CUDA 10.0, Intel MKL-DNN and Tensorflow 1.13.1.

The results and experiments that we explore did not show
sensitivity to the input data set (tested with MNIST, CIFAR10,
and others) and we chose to use the MNIST data set. Execution

Algorithm 1 Greedy Parition Algorithm

i f u s i n g h e t e r o g e n e o u s HW:
f o r each HW:

e x e c u t e a t i n y l a n e
GPUSpeed [i] = r u n t i m e of t h e t i n y l a n e
GPUSpeed [i] = GPUSpeed [i] / s m a l l e s t (GPUSpeed)

def G r e e d y P a r t i t i o n (l a n e s , NumGPUs , GPUSpeed) :
GPUTasks = [[] f o r i in range (NumGPUs)]
f o r l a n e in r e v e r s e s o r t e d l a n e s :

s o r t GPUTasks by GPUTasks [i] [j]* GPUSpeed [i]
GPUTasks [0] . append (l a n e)

re turn GPUTasks

time was measured by executing 10 MNIST epochs, excluding
the first, and using the average time for the others. All results
had a very small variation. The execution time between epochs
had always a very similar value. Thus, for simplicity, we
present averages.

Thus, in this work we tested four configurations for the
CapsNet parallelization, as follow:

• Original with Data Parallelism (baseline or base): we
simply used the original concept of CapsNet for the
MNIST dataset parallelized using Keras data parallelism
support.

• MLCN with Data Parallelism (mlcn-data): we used the
same approach as in the baseline (Keras data parallelism),
but with the MLCN organization.

• MLCN with Model Parallelism (mlcn-model): we paral-
lelize the execution by executing each lane on different
GPUs. When using multiple machines, we used Horovod
MPI framework to do handle the communication.

VI. EXPERIMENTAL RESULTS

A. MLCN Scalability

To understand how each approach to the parallelization of
CapsNet scales, we studied their performance with 1, 2, 4 and
8 NVIDIA Tesla K80 GPUs.

The graph in Figure 3 shows the performance compari-
son between the base (baseline), mlcn-data and mlcn-model.
MLCN is faster than the baseline even in a single GPU,
as reported earlier. However, it is interesting to notice that
the advantage does not increase when scaling to more GPUs
with data parallelization, as the speedup difference between
mlcn-data and baseline remained constant. This suggests that
the reorganization proposed by MLCN does not improve
scaling via data parallelism. However, the same is not true
for model-parallelism. In this case Mlcn-model has a visible
advantage, scaling with higher efficiency and achieving a near
7.18 speedup with 8 GPUs over the single GPU baseline.
Thus, MLCN not only is faster than the original CapsNet
(baseline) but, because it allows model-parallelism, it scales
more efficiently.

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

2 4 6 8
GPUs

Sp
ee
du
p

Model
●

●

●

base
mlcn−data
mlcn−model

Fig. 3: speedup of the three parallelization approaches: base-
line with data parallelism (base), MLCN with data parallelism
(mlcn-data) and MLCN with model parallelism (mlcn-model).
All speedup are relative to the baseline with one GPU.

B. Impact of Batch Size

The size of the minibatch, or batch size, has a significant
impact on the performance of a DNN as more computation/-
communication is available, enabling a more efficient use of
the HW. The batch size has a significant impact on data
parallelism performance as more data/computation is available
to be divided among the GPUs. To study the advantage
of MLCN over the data parallelism method we tested both
approaches with 100, 150, 300 and 600 batch sizes. The graphs
in Figures 4a and 4b show the speedup versus a single GPU
with a 100-sized batch size. In both cases we observe similar
efficiency as batch size grows. So, for different batch sizes
the relative advantage of MLCN with model parallelism stays
the same, as increasing the batch size equally increases the
efficiency of data and model parallelism approaches.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Batch Size
●

●

●

●

100
150
300
600

(a) Baseline using data-parallelism for different mini batch sizes

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Batch Size
●

●

●

●

100
150
300
600

(b) MLCN using model-parallelism for different mini batch sizes

Fig. 4: MLCN and baseline scalability for 1, 2, 4 and 8
NVIDIA K80 GPUs using Google Cloud VM with 24 vCPUs
and 90GB of RAM.

We also studied the impact of batch size on both baseline
and MLCN accuracy, shown in Figure 5. Increasing batch sizes
have a significant impact on the accuracy in both cases. The
magnitude of this impact is related to the dataset as shown by
the differences between MNIST and Cifar10 results. Thus, as
model parallelism has better performance and scalability with
smaller batch sizes (Figures 4a and 4b), model parallelism has
the advantage of scaling without the need to trade accuracy
for efficiency.

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

0.25

0.50

0.75

200 400 600
Batch Size

A
cc

ur
ac

y
Dataset

Cifar10
MNIST

Model
●

●

base
MLCN

Fig. 5: validation accuracy impact when increasing the training
batch size for the baseline and MLCN in the Cifar10 and
MNIST datasets.

C. Impact of Lanes Characteristics

The previous results explored the suitability of MLCN
and its model parallelization. We also explore also how the
characteristics of the MLCN lanes can affect performance
and scalability by varying the three main hyperparameters in
MLCN lanes: their width, depth and the quantity. The results
are shown, respectively, in Figures 6a, 6b and 6c.

The width and depth of lanes has a direct impact on the
number of parameters per lane and, consequently, the amount
of computation per lane. With more computation per lane, the
efficient use of multiple GPUs becomes advantageous. This is
shown in Figures 6a and 6b as larger lanes increase efficiency.
However, increasing the width had a much more significant
increase in efficiency, at similar increase in number of param-
eters. This indicates that, besides the number of parameters,
the type of computation affects performance. In the case of
MLCN lanes wider lanes result in better performance than
deeper lanes with the same number of parameters.

Another interesting point was the fact that increasing the
number of lanes did not significantly increase performance,
as shown in Figure 6c. Even though increasing the number
of lanes also increases the amount of computation available
between batches, there is an overhead of having these com-
putations separable. So, having several lanes in one GPU is
less efficient than having a single extremely large lane.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

2 4 6 8
GPUs

Sp
ee

du
p

Lane Width
●

●

●

●

1
2
3
4

Model
mlcn−data
mlcn−model

(a) MLCN using model-parallelism with mini batch width of 150
and varying the width of the lanes.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Model

mlcn−data
mlcn−model

Lane Depth
●

●

●

●

1
2
3
4

(b) MLCN using model-parallelism with mini batch width of
150 and varying the size of the lanes.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Model

mlcn−data
mlcn−model

Lanes
●

●

●

●

8
16
24
32

(c) MLCN using model-parallelism with batch size of 150 and
varying the number of lanes.

Fig. 6: scalability variance with different lanes configurations.

D. Heterogeneous Lanes and GPUs

One interesting observation about MLCN is that having
lanes with different characteristics, such as lanes with differ-
ent sizes and depths, increases the generality of the network.
A similar result was reported by Canqun et al. [17] with the
MS-CapsNet organization. However, as discussed in Section
IV, deploying lanes in multiple GPUs when the lanes have
different computational footprint can be challenging. To study
a proposed heuristic to deploy lanes with different widths
and depths, we tested 4 MLCN networks with 6, 9, 12 and 24
lanes. Each lane may have pairs of depth and width values
ranging from 1 to 5. As shown in Figure 7, we obtain a smaller
execution time with our heuristic than when naı̈vely randomly
distributing the lanes between the GPUs. The advantage
increases with the number of lanes, showing that, the larger
the number of lanes the harder it is to randomly find a good
distribution. Notice that the time accounted for the greedy
heuristic includes the (almost insignificant) time to run the
heuristic.

0

50

100

150

200

250

6 9 12 24
Number of Lanes

T
im

e
(s

)

Algorithm

Greedy
Random

Fig. 7: average execution time (executed 10 times) of hetero-
geneous lanes running on four K80 NVIDIA GPUs with a
random and a greedy partition of lanes execution distribution.
All lanes varying on width and depth.

E. Heterogeneous Lanes with Heterogeneous GPU

More than having heterogeneous lanes we also tested
a scenario with heterogeneous accelerators. Rather than 4
NVIDIA Tesla K80, we deployed four systems each with a
different GPU: one M40, one K80, one P100, and one V100.
The results are in Figure 8. For total execution time, there
was a significant increase because of network communica-
tion between the systems. Moreover, the difference between
random deployment and our greedy heuristic becomes larger,
showing that for more complex the scenarios with many lanes
or heterogeneous HW, it is key to deploy the computation
carefully.

0

50

100

150

200

6 9 12 24
Number of Lanes

T
im

e
(s

)

Algorithm

Greedy
Random

Fig. 8: average execution time (executed 10 times) of hetero-
geneous lanes running on one K80, one P100, one V100, and
one M40 NVIDIA GPU in multiple machines communicating
using MPI with a random and a greedy partition of lanes
execution distribution. All lanes varying on width and depth.

VII. CONCLUSION

The Multi-lane CapsNet (MLCN) is a novel organization
for the CapsNet network which is shown to achieve better
accuracy with more efficient HW utilization. Further, MLCN
allows model parallelization by running the lanes in parallel.
In this work, we analyze and measure the advantages of this
new parallelization scheme of the CapsNet when compared to
the usual data parallelism.

We find that MLCN is faster than the original CapsNet and
it scales better with model parallelism being almost 2x more
efficient, even with small batch sizes. We also explored the
impact of different lane configurations on performance and
scalability, showing that wider lanes usually achieve higher
HW efficiency.

Finally, we found that when parallelizing MLCN with lanes
with different characteristics (or when deploying in machines
with different accelerators), load balance is a key factor to
reaching good performance. We proposed a greedy algorithm
to deploy lanes in these scenarios and we found that it can be
up to 50% more efficient than the naı̈ve random deployment.

REFERENCES

[1] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[2] R. Mehta, Y. Huang, M. Cheng, S. Bagga, N. Mathur, J. Li, J. Draper,
and S. Nazarian, “High performance training of deep neural networks
using pipelined hardware acceleration and distributed memory,” in 2018
19th International Symposium on Quality Electronic Design (ISQED).
IEEE, 2018, pp. 383–388.

[3] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” arXiv preprint
arXiv:1802.09941, 2018.

[4] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” arXiv preprint arXiv:1807.05358, 2018.

[5] V. M. do Rosario ; Edson Borin ; Mauricio Breternitz, “The multi-lane
capsule network,” IEEE Signal processing letters, vol. 26, pp. 1006–
1010, 2019.

[6] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[8] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in International Conference on Artificial Neural Networks.
Springer, 2011, pp. 44–51.

[9] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in neural information processing systems, 2017,
pp. 3856–3866.

[10] A. Shahroudnejad, A. Mohammadi, and K. N. Plataniotis, “Improved
explainability of capsule networks: Relevance path by agreement,” arXiv
preprint arXiv:1802.10204, 2018.

[11] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan, “Capsulegan:
Generative adversarial capsule network,” in European Conference on
Computer Vision. Springer, 2018, pp. 526–535.

[12] H. Ren and H. Lu, “Compositional coding capsule network with k-means
routing for text classification,” arXiv preprint arXiv:1810.09177, 2018.

[13] A. Jiménez-Sánchez, S. Albarqouni, and D. Mateus, “Capsule networks
against medical imaging data challenges,” in Intravascular Imaging and
Computer Assisted Stenting and Large-Scale Annotation of Biomedical
Data and Expert Label Synthesis. Springer, 2018, pp. 150–160.

[14] A. Mobiny and H. Van Nguyen, “Fast capsnet for lung cancer screening,”
arXiv preprint arXiv:1806.07416, 2018.

[15] Y. Kim, P. Wang, Y. Zhu, and L. Mihaylova, “A capsule network for
traffic speed prediction in complex road networks,” in 2018 Sensor Data
Fusion: Trends, Solutions, Applications (SDF). IEEE, 2018, pp. 1–6.

[16] R. Mukhometzianov and J. Carrillo, “Capsnet comparative performance
evaluation for image classification,” arXiv preprint arXiv:1805.11195,
2018.

[17] C. Xiang, L. Zhang, Y. Tang, W. Zou, and C. Xu, “Ms-capsnet: A novel
multi-scale capsule network,” IEEE Signal Processing Letters, vol. 25,
no. 12, pp. 1850–1854, 2018.

[18] M. Amer and T. Maul, “Path capsule networks,” in preprint, arxiv., 2019.
[19] B. Hayes, “Computing science: The easiest hard problem,” American

Scientist, vol. 90, no. 2, pp. 113–117, 2002.
[20] R. E. Korf, “Multi-way number partitioning,” in Twenty-First Interna-

tional Joint Conference on Artificial Intelligence, 2009.

	I Introduction
	II Related Work
	II-A Capsule Network

	III Multi-lane CapsNets (MLCN)
	III-A CapsNet Parallelization

	IV Heterogeneous Distribution Problem
	IV-A Heuristic Execution Cost for MLCN Lanes
	IV-B Load Balancing Algorithm

	V Experimental Setup
	VI Experimental Results
	VI-A MLCN Scalability
	VI-B Impact of Batch Size
	VI-C Impact of Lanes Characteristics
	VI-D Heterogeneous Lanes and GPUs
	VI-E Heterogeneous Lanes with Heterogeneous GPU

	VII Conclusion
	References

