
An Improved Framework of GPU Computing for CFD
Applications on Structured Grids using OpenACC

Weicheng Xue1,∗, Charles W. Jackson2, Christoper J. Roy3

Virginia Tech Kevin T. Crofton Department of Aerospace and Ocean Engineering,
215 Randolph Hall, Blacksburg, VA 24061, US

Abstract

This paper is focused on improving multi-GPU performance of a research CFD
code on structured grids. MPI and OpenACC directives are used to scale the
code up to 16 GPUs. This paper shows that using 16 P100 GPUs and 16
V100 GPUs can be 30× and 70× faster than 16 Xeon CPU E5-2680v4 cores for
three different test cases, respectively. A series of performance issues related
to the scaling for the multi-block CFD code are addressed by applying vari-
ous optimizations. Performance optimizations such as the pack/unpack mes-
sage method, removing temporary arrays as arguments to procedure calls, al-
locating global memory for limiters and connected boundary data, reordering
non-blocking MPI I send/I recv and Wait calls, reducing unnecessary implicit
derived type member data movement between the host and the device and the
use of GPUDirect can improve the compute utilization, memory throughput,
and asynchronous progression in the multi-block CFD code using modern pro-
gramming features.

Keywords: MPI, OpenACC, Multi-GPU, CFD, Performance Optimization,
Structured Grid

∗Corresponding author
Email addresses: weich97@vt.edu (Weicheng Xue), cwj5@vt.edu (Charles W.

Jackson), cjroy@vt.edu (Christoper J. Roy)
1Graduate Research Assistant
2Graduate Research Assistant
3Professor

Preprint submitted to Elsevier December 8, 2020

ar
X

iv
:2

01
2.

02
92

5v
1

 [
cs

.D
C

]
 5

 D
ec

 2
02

0

1. Introduction

Computational Fluid Dynamics (CFD) is a method to solve problems related
to fluids numerically. There are numerous studies applying a variety of CFD
solvers to solve different fluid problems. Usually these problems require the
CFD results to be generated quickly as well as precisely. However, due to some
restrictions of the CPU compute capability, system memory size or bandwidth,
highly refined meshes or computationally expensive numerical methods may not
be feasible. For example, it may take thousands of CPU hours to converge a 3D
Navier-Stokes flow case with more than millions of degrees of freedoms. In such
a circumstance, high performance parallel computing [1] enables us to solve the
problem much faster. Also, parallel computing can provide more memory space
(either shared or distributed) so that large problems can be solved.

Parallel computing differs from serial computing in many aspects. On the
hardware side, a parallel system commonly has multi/many-core processors or
even accelerators such as GPUs, which enable programs to run in parallel. Mem-
ory in a parallel system is either shared or distributed [1], with unified mem-
ory address [2] and non-unified memory address usually being used, respec-
tively. On the software side, there are various programming models for parallel
computing including OpenMP [3], MPI [4], CUDA [5], OpenCL [6] and Ope-
nACC [7]. Different parallel applications can utilize different parallel paradigms
based on a pure parallel model or even a hybrid model such as MPI+OpenMP,
MPI+CUDA, MPI+OpenACC, OpenMP+OpenACC, etc.

For multi/many-core computing, OpenMP, MPI and hybrid MPI+OpenMP
have been widely used and their performance has also been frequently analyzed
in various areas, including CFD. Gourdain et al. [8, 9] investigated the effect
of load balancing, mesh partitioning and communication overhead in their MPI
implementation of a CFD code, on both structured and unstructured meshes.
They achieved good speedups for various cases up to thousands of cores. Am-
ritkar et al. [10] pointed out that OpenMP can improve data locality on a shared
memory platform compared to MPI in a fluid-material application. However,
Krpic et al. [11] showed that OpenMP performs worse when running large scale
matrix multiplication even on shared-memory computer system when compared
to MPI. Similarly, Mininni et al. [12] compared the performance of the pure
MPI implementation and the hybrid MPI+OpenMP implementation of an in-
compressible Navier-Stokes solver, and found that the hybrid approach does
not outperform the pure MPI implementation when scaling up to about 20,000
cores, which in their opinion may be caused by cache contention and memory
bandwidth. In summary, it can be concluded that MPI is more suitable for mas-
sively parallel applications as it can help achieve better performance compared
to OpenMP.

In addition to accelerating a code on the CPU, accelerators such as GPU [13]
are becoming popular in the area of scientific computing. CUDA [5], OpenCL [6],
and OpenACC [7] are the three commonly used programming models for the
GPU. CUDA and OpenCL are mainly C/C++ extensions (CUDA has also been
extended to Fortran) while OpenACC is a compiler directive based interface,

2

therefore CUDA and OpenCL are more troublesome in terms of programming,
requiring a lot of user intervention. CUDA is proprietary to NVIDIA and thus
can only run on NVIDIA GPUs. OpenCL supports various architectures but
it is a very low level API, which is not easy for domain scientists to adapt to.
Also, although OpenCL has a good portability across platforms, a code may
not run efficiently on various platforms without specific performance optimiza-
tions and tuning. OpenACC has some advantages over CUDA and OpenCL.
Users only need to add directives in their codes to expose enough parallelisms
to the compiler which determines how to accelerate the code. In such a way,
a lot of low level implementation can be avoided, which provides a relatively
easy way for domain scientists to accelerate their codes on the GPU. Addition-
ally, OpenACC can perform fairly well across different platforms even without
significant performance tuning. However, OpenACC may not reveal some par-
allelisms if there is a lack of performance optimizations. Therefore, OpenACC is
usually assumed to be slower than CUDA and OpenCL, but it is still fairly fast.
Even for some occasions, OpenACC can be the fastest [14], which is surprising.
To program on multiple GPUs, MPI may be needed, i.e., the MPI+OpenACC
hybrid model may be required. CPUs are set as hosts and GPUs are set as
accelerator devices, which is referred to as the offload model, in which the most
computational expensive portion of the code is offloaded to the GPU, while the
CPU handles instructions of controls and file I/O.

A lot of work has been done to leverage GPUs for CFD applications. Ja-
cobsen et al. [15] investigated multi-level parallelisms for the classic incompress-
ible lid driven cavity problem on GPU clusters using MPI+CUDA and hybrid
MPI+OpenMP+CUDA implementations. They found that the MPI+CUDA
implementation performs much better than the pure CPU implementation but
the hybrid performs worse than the MPI+CUDA implementation. Elsen et
al. [16] ported a complex CFD code to a single GPU using BrookGPU [17]
and achieved a speedup of 40× for simple geometries and 20× for complex
geometries. Brandvik et al. [18] applied CUDA to accelerate a 3D Euler prob-
lem using a single GPU and got a speedup of 16×. Luo et al. [19] applied
MPI+OpenACC to port a 2D incompressible Navier-Stokes solver to 32 NVIDIA
C2050 GPUs and achieved a speedup of 4× over 32 CPUs. They mentioned that
OpenACC can increase the re-usability of the code due to OpenACC’s similar-
ity to OpenMP. Xia et al. [20] applied OpenACC to accelerate an unstructured
CFD solver based on a Discontinuous Galerkin method. Their work achieved
a speedup of up to 24× on one GPU compared to one CPU core. They also
pointed out that using OpenACC requires the minimum code intrusion and al-
gorithm alteration to leverage the computational power of GPU. Chandar et
al. [21] developed a hybrid multi-CPU/GPU framework on unstructured over-
set grids using CUDA. Xue et al. [22] applied multiple GPUs for a complicated
CFD code on two different platforms but the speedup was not satisfactory (only
up to 4× on a NVIDIA P100 GPU), even with some performance optimiza-
tions. Also, Xue et al. [23] investigated the multi-GPU performance and its
performance optimization of a 3D buoyancy-driven cavity solver using MPI and
OpenACC directives. They showed that decomposing the total problem in dif-

3

ferent dimensions affects the strong scaling performance significantly when using
multiple GPUs. Xue et al. [24] further applied the heterogeneous computing to
accelerate a complicated CFD code on a CPU/GPU platform using MPI and
OpenACC. They achieved some performance improvements for some of their
test cases, and pointed out the communication and synchronization overhead
between the CPU and GPU may be the performance bottleneck. Both of the
works in Ref [21, 24] showed that the hybrid CPU/GPU framework can out-
perform the pure GPU framework to some degree, but the performance gain
depends on the platform and application.

2. Description of the CFD code: SENSEI

SENSEI (Structured, Euler/Navier-Stokes Explicit-Implicit Solver) is our
in-house 2D/3D flow solver initially developed by Derlaga et al [25], and later
extended to a turbulence modeling code base through an object-oriented pro-
gramming manner by Jackson et al. [26] and Xue et al. [27]. SENSEI is written
in modern Fortran and is a multi-block finite volume CFD code. An important
reason of why SENSEI uses structured grid is that the quality of mesh is better
using a multi-block structured grid than using an unstructured grid. In addi-
tion, memory can be used more efficiently to obtain better performance since
the data are stored in a structured way in memory. The governing equations
can be written in weak form as

∂

∂t

∫
Ω

~QdΩ +

∮
∂Ω

(~Fi,n − ~Fν,n)dA =

∫
Ω

~SdΩ (1)

where ~Q is the vector of conserved variables, ~Fi,n and ~Fν,n are the inviscid and
viscous flux normal components (the dot product of the 2nd order flux tensor
and the unit face normal vector), respectively, given as

~Q =

ρ
ρu
ρv
ρw
ρet

 , ~Fi,n =

ρVn

ρuVn + nxp
ρvVn + nyp
ρwVn + nzp
ρhtVn

 , ~Fν,n =

0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΘx + nyΘy + nzΘz

 (2)

~S is the source term from either body forces, chemistry source terms, or the
method of manufactured solutions [28]. ρ is the density, u, v, w are the
Cartesian velocity components, et is the total energy, ht is the total enthalpy,
Vn = nxu+nyv+nzw and the ni terms are the components of the outward-facing
unit normal vector. τij are the viscous stress components based on Stokes’s hy-
pothesis. Θi represents the heat conduction and work from the viscous stresses.
In this paper, both the Euler and laminar Navier-Stokes solvers of SENSEI
are ported to the GPU, but not for the turbulence models as the turbulence
implementation involves a lot of object-oriented programming features such as
overloading, polymorphism, type-bound procedures, etc. These newer features

4

of the language are not supported well by the PGI compiler used, as they may
require the GPU to jump from an address to a different address in runtime,
which should be avoided when programming on GPUs.

In SENSEI, ghost cells are used for multiple purposes. First, boundary con-
ditions can be enforced in a very straightforward way. There are different kinds
of boundaries in SENSEI, such as slip wall, non-slip wall, supersonic/subsonic
for inflow/outflow, farfield, etc. Second, from the perspective of parallel com-
puting, ghost cells for connected boundaries contain data from the neighboring
block used during a syncing routine so that every block can be solved indepen-
dently. SENSEI uses pointers of a derived type to store the neighboring block
information easily. Unless otherwise noted, all of the results presented here will
be using a second-order accurate scheme. Second order accuracy is achieved
using the MUSCL scheme [29], which calculates the left and right state for the
primitive variables on each face of all cells. Time marching can be accomplished
using an explicit M-step Runge-Kutta scheme [30] and an implicit time step-
ping scheme [31, 32, 33]. In this paper, only the explicit M-step Runge-Kutta
scheme is used as the implicit scheme uses a completely objected-oriented way
of programming which includes overloading of type-bound procedures.

Even though derived types are used frequently in SENSEI, to promote co-
alesced memory access and improve cache reuse, struct-of-array (SOA) instead
of array-of-struct (AOS) is chosen for SENSEI. This means that, for example,
the densities in each cell are stored in contiguous memory locations instead of
all of the degrees of freedom for a cell being stored together. Using SOA pro-
duces a coalesced memory access pattern which performs well on GPUs and is
recommended by NVIDIA [5].

SENSEI has the ability to approximate the inviscid flux with a number
of different inviscid flux functions. Roe’s flux difference splitting [34], Steger-
Warming flux vector splitting [35], and Van Leer’s flux vector splitting [36] are
available. The viscous flux is calculated using a Green’s theorem approach and
requires more cells to be added to the inviscid stencil. For more details on the
theory and background see Derlaga et at. [25], Jackson et al. [26] and Xue et
al. [27].

3. Overview of CPU/GPU Heterogeneous System, MPI and Ope-
nACC

3.1. CPU/GPU Heterogeneous System

As can be seen in Fig. 1, the NVIDIA GPU has more lightweight cores than
the CPU, so the compute capability of the GPU is much higher than the CPU.
Also, the GPU has higher memory bandwidth and lower latency to its memory.
The CPU and the GPU have discrete memories so there are data movements
between them, which can be realized through the PCI-E or NVLink. The offload
model is commonly used for the pure GPU computing, which can be seen in
Fig. 2. In CFD, the CPU deals with the geometry input, domain decomposition
and some general settings. Then, the CPU offloads the intensive computations

5

to the GPU. The boundary data exchange can happen either on the CPU or
the GPU, depending on whether the GPUDirect is used or not. After the GPU
finishes the computation, it moves the solution to the CPU. The CPU finally
outputs the solution to files. To obtain good performance, there should be
enough GPU threads running concurrently. Using CUDA [5] or OpenACC [7],
there are three levels of tasks: grid, thread block and thread. Thread blocks
can be run asynchronously in multiple streaming multiprocessors (SMs) and the
communication between thread blocks is expensive. Each thread block has a
number of threads. There is only lightweighted synchronization overhead for
all threads in a block. All threads in a thread block can run in parallel in the
Single Instruction Multiple Threads (SIMT) mode [37]. A kernel is launched
as a grid of thread blocks. Several thread blocks can share a same SMs but all
the resources need to be shared. Each thread block contains multiple 32 thread
warps. Threads in a warp can be executed concurrently on a multiprocessor. In
comparison to the CPU, which is often optimized for instruction controls and
for low latency access to cached data, the GPU is optimized for data parallel
and high throughput computations.

Figure 1: CPU and GPU

Figure 2: The offload model

6

3.2. MPI

MPI (Message Passing Interface) is a programming model for parallel com-
puting [38] which enables data to be exchanged between processors via messages.
It can be used on both distributed and shared systems. MPI supports point-
to-point communication patterns as well as group communications. MPI also
supports the customization of derived data type so transferring data between
different processors is easier. It should be noted that a customized derived type
may not guarantee fast data transfers. MPI supports the use of C/C++ and
Fortran. There are many implementations of MPI including Open MPI [39] and
MVAPICH2 [40].

3.3. OpenACC

OpenACC is a standard for parallel programming on heterogeneous CPU/GPU
systems [7]. Very similar to OpenMP [3], OpenACC is also directive based, so it
requires less code intrusion to the original code base compared with CUDA [5] or
OpenCL [6]. OpenACC usually does not provide competitive performance com-
pared to CUDA [41, 42, 43], however the performance it provides can still satisfy
many needs. Compilers such as PGI [44] and GCC can support OpenACC in a
way that the compiler detects the directives in a program and decides how to
parallelize loops by default. The compiler also handles moving the data between
discrete memory locations, but it is the users’ duty to inform the compiler to
do so. Users can provide more information through the OpenACC directives to
attempt to optimize performance. These optimizations will be the focus of this
paper.

4. Domain Decomposition

There are many strategies to decompose a domain, such as using Carte-
sian [45, 46] or graph topology [47]. Because SENSEI is a structured multi-block
code, Cartesian block splitting will be used. With Cartesian block splitting,
there is a tradeoff between decomposing the domain in more dimensions (e.g.
3D or 2D domain decomposition) and fewer dimensions (e.g. 1D domain decom-
position). The surface area-volume ratio is larger if decomposing the domain in
fewer dimensions, which means more data needs to be transferred between dif-
ferent processors. Also, decomposing the domain in 1D can generate slices that
are too thin to support the entire stencil when decomposing the domain into
many sub-blocks. However, the fewer number of dimensions being composed
means that each block needs to communicate with a fewer number of neighbors,
reducing the number of transfers and their corresponding latency.

By default, SENSEI uses a general 3D or 2D domain decomposition (de-
pending on whether the problem is 3D or 2D) but can switch to 1D domain
decomposition if specified. An example of the 3D decomposition is shown in
Fig. 3. The whole domain is decomposed into a number of blocks. Each block
connects to 6 neighboring blocks, one on each face. For each sub-iteration step
(as the RK multi-step scheme is used), neighboring decomposed blocks need to

7

exchange data with each other, in order to fill their own connected boundaries.
Since data layout of multi-dimensional arrays in Fortran is column-majored, we
always decompose the domain starting form the most non-contiguous memory
dimension. For example, since the unit stride direction of a three-dimensional
array A(i, j, k) is the first index (i), i is the last decomposed dimension and k
is the first decomposed dimension.

Figure 3: A 3D domain decomposition

The 3D domain decomposition method shown in Fig. 3 is a processor clus-
tered method. This method is designed for the scenarios in which the number
of processors (np) is greater than the number of parent blocks (npb), i.e., the
number of blocks before the domain decomposition. There are several advan-
tages with this decomposition strategy. First, this method is an ”on the fly”
approach, which is convenient to use and requires no manual operation or pre-
processing of the domain decomposition. Second, it is very robust that it can
handle most situations if np is greater than or equal to npb. Third, the com-
munication overhead is small due to the simple connectivity, making the MPI
communication implementation easy. The load can be balanced well if np is
significantly larger than npb. Finally, some domain decomposition work can be
done in parallel, although the degree may vary for various scenarios.

This domain decomposition method may have load imbalance issue if np is
not obviously greater than npb, which can be addressed using a domain aggre-
gation technique, similar to building blocks. A simple 2D example of how the
domain aggregation works is given in Fig. 4. In this example, the first parent
block has twice as many cells as the second parent block. If only two processors
are used, the workload cannot be balanced well without over-decomposition and
aggregation. With over-decomposition, the first parent block is decomposed into
4 blocks, and one of these decomposed blocks is assigned to the second processor
so both processor have the same amount of work to do. It should be noted that
the processor boundary length becomes longer due to the processor boundary

8

deflection increasing the amount of communication required. Using the domain
aggregation approach, any decomposed block is required to exchange data with
its neighbours on the same processor but this does not require MPI communi-
cations. Only the new connected boundaries (e.g. the red solid lines in Fig. 4)
between neighboring processors need to be updated using MPI routines at each
sub-iteration step.

Figure 4: An example showing the domain aggregation

5. Boundary Decomposition in Parallel and Boundary Reordering

Boundaries also need to be decomposed and updated on individual proces-
sors. Initially, only the root processor has all the boundary information for all
parent blocks, since root reads in the grid and boundaries. After domain decom-
position, each parent block is decomposed into a number of child blocks. These
child blocks need to update all the boundaries for themselves. For non-connected
boundaries this update is very straightforward as each processor just needs to
compare their individual block index range with the boundary index range. For
interior boundaries caused by domain decomposition, a family of Cartesian MPI
topology routines are used to setup communicators and make communication
much less troublesome. However, for connected parent block boundaries, the
update (decomposing and re-linking these boundaries) is more difficult, as the
update is completed in parallel on individual processors in SENSEI, instead of
on the root processor. The parallel process can be beneficial if numerous con-
nected boundaries exist. For every parent block connected boundary, the root
processor first broadcasts the boundary to all processors within that parent
block and its neighbour parent block, and then returns to deal with the next
parent block connected boundary. The processors within that parent block or
its neighbour parent block compare the boundary received to their block index
ranges. If a processor does not contain any index range of the parent boundary,
it moves forward to compare the next parent boundary. Processors in the parent

9

block having this boundary or processors in the neighbour parent block match-
ing part of the neighbour index range are colored but differently. These colored
processors will need to update their index range for the connected boundary. To
illustrate how we use MPI topology routines and inter-communicators to setup
connectivity between neighbour blocks, a 2D example having 3 parent blocks
and more than 3 CPUs is given in Fig. 5. Processors which match a parent
connected boundary are included in an inter-communicator. The processor in a
parent block first sends its index ranges to processors residing in the neighbour
communicator. Then a processor in the neighbour communicator matching part
of the index range is a neighbour while others in the neighbour communicator
not matching the index range are not neighbour processors. Through looping
over all the neighbour processors in the neighbour communicator, one processor
sets up connectivity with all its connected neighbours. This process is performed
in parallel as the root processor does not need to participate in this process ex-
cept for broadcasting the parent boundary to all processors in the parent block
and its neighbour parent block at the beginning. There may be special cases.
The first special case is that the root is located at a parent block or its neighbour
parent block. The root needs to participate in the boundary decomposition and
re-linking process, as shown in Fig. 5. The second special case is given in the
lower right square in Fig.5, in which a parent block partly connects to itself,
which may make a decomposed block partially connect to itself.

Figure 5: An example of using MPI inter-communicator

In SENSEI, nonblocking MPI calls instead of blocking calls are used to im-
prove the performance. However, nonblocking MPI calls requires a blocking call
such as MPI WAIT to finish the communication, and it may cause a deadlock
issue for some multi-block cases. An example of the deadlock issue is shown
in Fig. 6. In this example, there are four processors (PA∼PD), each with two
connected boundaries (bc1 and bc2). For every processor, it needs to block a
MPI WAIT call for its bc1 to finish first and then for its bc2. However, the initial
order of boundaries creates a circular dependency issue for all of the processors,
and thus no communication can be completed (deadlock). This deadlock issue

10

may happen for both the parent block connections and the child block con-
nections after decomposition. Fig. 6 shows a solution to the deadlock issue,
i.e. reordering boundaries. Therefore, boundary reordering is implemented in
SENSEI to automatically deal with such deadlock issues.

Figure 6: An example of deadlock due to circular dependency

6. Platforms and Metrics

6.1. Platforms

Thermisto. Thermisto is a workstation in our research lab. It has two NVIDIA
Tesla C2075 GPUs and 32 CPU cores. The peak double precision performance
is 515 GFLOPS. The compilers used on Thermisto are PGI 16.5 and Open MPI
1.10.0. An compiler optimization of -O4 is used. The GPUs on Thermisto are
used mainly for testing and comparison with current generation GPUs.

NewRiver. NewRiver [48] is a cluster at Virginia Tech. Each GPU node on
NewRiver is equipped with two Intel Xeon E5-2680v4 (Broadwell) 2.4GHz CPUs,
512 GB memory, and two NVIDIA P100 GPUs. Each NVIDIA P100 GPU is
capable of up to 4.7 TeraFLOPS of double-precision performance. The NVIDIA
P100 GPU offers much higher GFLOPS compared to the NVIDIA C2075 GPU
on Thermisto. The compilers used on NewRiver are PGI 17.5 and Open MPI
2.0.0 or MVAPICH2-GDR 2.3b. MVAPICH2-GDR 2.3b is a CUDA-aware MPI
wrapper compiler which supports GPUDirect, also available on NewRiver. An
compiler optimization of -O4 is used.

Cascades. Cascades [49] is another cluster at Virginia Tech. Each GPU node on
Cascades is equipped with two Intel Skylake Xeon Gold 3 GHz CPUs, 768 GB
memory, and two NVIDIA V100 GPUs. Each NVIDIA V100 GPU is capable
of up to 7.8 TeraFLOPS of double-precision performance. The NVIDIA V100

11

GPU offers the highest GFLOPS among the GPUs we used. The compilers used
on Cascades are PGI 18.1 and Open MPI 3.0.0. An compiler optimization of
-O4 is used.

6.2. Performance Metrics

To evaluate the performance of the parallel code, weak scaling and strong
scaling are used. Strong scaling measures how the execution time varies when
the number of processors changes for a fixed total problem size, while weak scal-
ability measures how the execution time varies with the number of processors
when the problem size on each processor is fixed. Commonly, these two scalings
are valuable to be investigated together, as we care more about the weak scaling
when we have enough compute resources available to run large problems, while
more about the strong scaling when we only need to run small problems. In
this paper, since our focus is on the acceleration of the computation and data
movement in the iterative solver portion, when measuring productive perfor-
mance, the timing contribution from the I/O portion (reading in grid, writing
out solution) and the one-time domain decomposition is not taken into account.

Two basic metrics used in this paper are parallel speedup and efficiency.
Speedup denotes how much faster the parallel version is compared with the serial
version of the code, while efficiency represents how efficiently the processors are
used. They are defined as follows,

speedup =
tserial
tparallel

(3)

efficiency =
speedup

np
(4)

where np is the number of processors (CPUs or GPUs).
In order for the performance of the code to be compared well on different

platforms and for different problem sizes, the wall clock time per iteration step
is converted to a metric called ssspnt (scaled size steps per np time) which is
defined in Eq.5.

ssspnt = s
size× steps

np× time
(5)

where s is a scaling factor which scales the smallest platform ssspnt to the range
of [0,1]. In this paper, s is set to be 10−6 for all test cases. size is the problem
size, steps is the total iteration steps and time is the program solver wall clock
time for steps iterations.

Using ssspnt has some advantages. First, GFLOPS requires knowing the
number of operations while ssspnt does not. In most codes, especially com-
plicated codes, it is usually difficult to know the total number of operations.
The metric ssspnt is a better way of measuring the performance of a problem
than the variable time as time may change if conditions (such as the number
of iterations, problem size, etc.) change. Second, using ssspnt is clearer in
terms of knowing the relative speed difference under different situations than

12

the metric ”efficiency”. It is easy to know whether the performance is super-
linear or linear or sub-linear, which is shown in Fig. 7(a), as well as know the
relative performance comparison between different scenarios, which is shown in
Fig. 7(b). Using ssspnt, different problems, platforms and different scalings can
be compared more easily.

(a) ssspnt for super-linear/linear/sub-linear
scaling

(b) ssspnt for different cases

Figure 7: An explanation of ssspnt

Similar to Ref [23], every time in this paper is measured consecutively for
at least three instances. The difference for each time point is smaller than 1%
(usually less than 1 s out of more than 120 s). We also selected a handful of
cases to run again to verify the timings were consistent day to day.

7. OpenACC Parallelization and Optimization

There is some general guidance for improving the performance of a program
on a GPU. First, sufficient parallelism should be exposed to saturate the GPU
with enough computational work, that is, the speedup for the parallel portion
should compensate for the overhead of data transfers and the parallel setup.
Second, the memory bandwidth between the host and the device should be im-
proved to reduce the communication cost, which is affected by the message size
and frequency (if using MPI), memory access patterns, etc. It should be noted
that all performance optimizations should guarantee the correctness of the im-
plementation. Therefore, this paper proposes and adopts various modifications
to increase the speed of various CFD kernels and reduce the communication
overhead while always ensuring the correct result is obtained, i.e., the results
do not deviate from the serial implementation.

Load balancing, communication overhead, latency, synchronization overhead
and data locality are important factors which may affect the performance. The
domain decomposition and aggregation methods used in this paper can help
solve the load imbalancing issue well; however, the number of dimensions that
need to be decomposed may require tuning, especially when given a large number

13

of processors. To reduce the communication overhead of data transfers between
the CPU and the GPU, the data should be kept on the GPU as long as possible
without being frequently moved to the CPU. Also, non-contiguous data transfer
between the CPU and the GPU (large stride memory access) should be avoided
to improve the memory bandwidth. To hide latency, kernel execution and data
transfer should be overlapped as much as possible, which may require reordering
of some portions in the program. To reduce the synchronization overhead, the
number of tasks running asynchronously should be maximized. To improve data
locality and increase the use of coalesced fetches, data should be loaded into
cache as chunks before needed, which can make read and write more efficiently.
This paper addresses some of these issues based on profiling outputs.

We should keep in mind that there are some inherent bottlenecks limiting
the actual performance of a CFD code on GPUs. Some CFD codes require data
exchange to communicate between partitions, which incurs some communica-
tion and synchronization overhead. Data fetching in discrete memory may cost
more clock cycles than expected due to low actual memory throughput, system
latency, etc. Therefore, the actual compute utilization is difficult to increase
sometimes and is application dependent. Another limiter of the performance is
the need for branching statements in the code. For instance, certain flux func-
tions might execute different branches depending on the local Mach number.
This causes threads in a warp to diverge reducing the peak performance possi-
ble. The actual speedup after enough performance optimization should still be
smaller than the theoretical compute power the GPU can provide. The relation
of the actual and theoretical speedup the GPU can provide is not covered in
this paper.

7.1. V0: Baseline

The baseline GPU version of SENSEI was implemented by McCall [50], [51].
McCall pointed out that there are some restrictions of the PGI compiler. These
restrictions mean the following features cannot be used.

1. Procedure optional arguments

2. Array-valued functions

3. Multi-dimensional array assignments

4. Temporary arrays as parameters to a procedure call

5. Reduction operations on derived type members

6. Procedure pointers within OpenACC kernels

As can be seen in [50] and [51], the 1st and 3rd restrictions do not have
adverse effects on the performance. The 2nd restriction can be easily resolved
by using Fortran subroutines instead of functions. The 5th restriction can be
resolved by using scalar variables or arrays instead of derived type members,
which has negligible effect on the performance. The 6th restriction can be easily

14

overcome by using the select case or if statements. The 4th restriction
indicates that either the compiler needs to automatically generate the tempo-
rary arrays or the user should manually create them. However, the temporary
arrays deteriorate the code performance significantly. More details about these
restrictions can be found in Ref [50] and [51].

Although the work in Ref [50] and [51] overcame many restrictions to port the
code to the GPU, the GPU performance was not satisfactory. A NVIDIA P100
GPU was only 1.3x∼3.4x faster than a single Intel Xeon E5-2680v4 CPU core.
which indicates that the GPU was not utilized efficiently. Some performance
bottlenecks were fixed in Ref [22]. Profiling-driven optimizations were applied
to overcome some performance bottlenecks. First, loops with small sizes were
not parallelized as the launch overhead is more expensive than the benefits. As
the warp size for NVIDIA GPUs is 32, the compiler may select a thread length
of 128 or 256 to parallelize small loops but the loop iteration number for these
small loops is less than 10. Second, the kernel of extrapolation to ghost cells
was moved from the CPU to the GPU in order to improve the performance,
by passing the whole array with indices as arguments. Finally, the kernel of
updating corners and edges was parallelized. The eventual speedup of using a
single GPU compared to a single CPU was raised to 4.1x for a 3D case on a
NVIDIA P100 GPU, but no multi-GPU performance results were shown as the
parallel efficiency was not satisfactory.

It should be mentioned that the relative solution differences between the
CPU and the GPU code in Ref [50, 51, 22] are much larger than the round-
off error mainly due to an incorrect implementation of connected boundary
condition and its relevant parallelization. The solution bugs have been fixed
in this paper so that the OpenACC framework is extended correctly to multi-
block cases. In fact, solution debugging is troublesome using OpenACC, as
intermediate results are difficult to check directly on the device. If the data on
the GPU side needs to be printed outside of the parallel region, then update
of the data on the host side should be made before printing. If the data needs
to be known in the parallel region (when a kernel is running), a probe routine
which is !$acc routine type should be inserted into the parallel region to
print out the desired data. Keep in mind that both the GPU and CPU have a
copy of the data with the same name but in discrete memories.

In addition, it should be mentioned that there is a caveat when updating
the boundary data between the host and the device using the !$acc update
directive since the ghost cells and interior cells in SENSEI are stored and ad-
dressed together, which means that the boundary data are non-contiguous in
the memory. Much higher memory throughput can be obtained if the whole
piece of data (including the interior cells and boundary cells) instead of ar-
ray slicing is included. A 2D example can be seen in Fig. 8. As Fortran uses
column-major storage, the memory stores the array elements by column first.
However, the interior cell columns split the ghost cells in memory. For 3D or
multi-dimensional arrays, the data layout is more complicated but the principle
is similar. If using the method in Listing 1 to update the boundary data on
the device, OpenACC updates the data slice by slice and there are many more

15

invocations. The memory throughput can be about 1/100 to 1/8 of using the
method in Listing 2, based on the profiling outputs from the NVIDIA visual
profiler. In fact, the only implementation difference between the two methods is
whether slicing is used or not (in Fortran, array slicing is commonly used), but
the performance difference is huge. However, some applications or schemes may
require avoiding updating the ghost cell values (due to concerns for solution
correctness) at some temporal points when iterating the solver, then a manual
data rearrangement, i.e., the pack/unpack optimization, should be applied to
overcome the performance deterioration issue.

Figure 8: An example of showing ghost cells breaking the non-contiguity of the interior cell

Listing 1: Using slicing to update

! IMIN face update
start_indx = 1 - n_ghost_cells(1)
end_indx = 2
!$acc update device(
!$acc soln%sblock(blck)%rho(start_indx:end_indx,1:jmax,1:kmax))
!$acc async(1)

Listing 2: Update including ghost cells

! IMIN face update
start_indx = 1 - n_ghost_cells(1)
end_indx = 2
!$acc update device(
!$acc soln%sblock(blck)%rho(start_indx:end_indx,:,:))
!$acc async(1)

Table 1 shows the performance of some metrics for the V 00 (using Listing 1)
and V 0 (using Listing 2) comparison on the Cascades platform. Using slicing
for the !$acc update directive reduces the memory throughput greatly to
about 1% for the device to host bandwidth and about 8% for the host to device
bandwidth, compared to not using slicing (with ghost cell data included). Also,
the total invocations of using slicing is more than 10 times higher than not using

16

slicing. The last row in Table 1 is a reference (NVIDIA profiler reports different
fractions of low memory throughput data transfers for different code versions)
to show the more serious low memory throughput issue in V 00. We will show
some performance optimizations based on the V 0 version next, even though V 0
has larger solution errors than the round-off errors for some cases.

Table 1: Comparison of V00 and V0 performance metrics

Metrics V00 V0
Device to Host bandwidth, GB/s 0.132 10.43
Host to Device bandwidth, GB/s 0.9 7.21

Total invocations, times 262144 20876
Compute Utilization, % 4.2 29.6

Low memory throughput
124 MB/s for 96.4%

data transfers
83.88 MB/s for 11.1%

data transfers

7.2. GPU Optimization using OpenACC

Although parallelized using the GPU in Ref [50, 51] and optimized in Ref [22],
the speedup for SENSEI is still not satisfactory due to some performance issues.
The NVIDIA Visual Profiler is used to detect various performance bottlenecks.
The bottlenecks include low memory throughput, low GPU occupancy, ineffi-
cient data transfers, etc. Different architectures and problems may show differ-
ent behaviours, which is one of our interests. Second, previously the boundary
data needed to be transferred to the CPU first in order to exchange data. We
will apply GPUDirect to enable data transfers directly between GPUs.

V1: Pack/Unpack. The goal of this optimization is to improve the memory
throughput and reduce the communication cost if the required data are not lo-
cated sequentially in memory [23]. As Fortran is a column-majored language,
the first index i of a matrix A(i, j, k) denotes the fastest change. A decompo-
sition in the i index direction can generate chunks of data (at j − k planes)
which are highly non-contiguous. Decomposing in the j index direction can also
cause non-contiguous data transfers. Therefore, the optimization is targeted
at solving this issue by converting the non-contiguous data into a temporary
contiguous array in parallel using loop for directives and then updating this
temporary array between hosts and devices using update directives. Perfor-
mance gains will be obtained as the threads in a warp can access a contiguous
aligned memory region, that is, coalesced memory access is deployed instead of
strided memory access. The procedure can be summarized as follows:

1. Allocate send/recv buffers for boundary cells on j−k planes on devices and
hosts if decomposition happens in the i dimension, as the non-contiguous
data on i planes make data transfer very slow.

2. Pack the noncontiguous block boundary data to the send buffer, which
can be explicitly parallelized using !$acc loop directives, then update
the send buffer on hosts using !$acc update directives.

17

3. Have hosts transfer the data through nonblocking MPI Isend/MPI Irecv
calls and blocking MPI Wait calls.

4. Update the recv buffer on devices using OpenACC update device direc-
tives and finally unpack the contiguous data stored in recv buffer back to
noncontiguous memory on devices, which can also be parallelized.

We will show that although extra memory is required for buffers, the memory
throughput can be improved to a level similar to that in V 0 (but V 0 has larger
simulation errors due to the incorrect use of !$acc update, especially for
cases having connected boundaries). Using V 1, only the boundary data on the
i boundary faces are packed/unpacked as such data are highly noncontiguous.
The boundary data on the j and k plane are not buffered. The pack/unpack
can be parallelized using !$acc loop directives so that the computational
overhead is very small, which can be seen in Listing 3.

Listing 3: A pseudo code of showing how to pack/unpack

! IMIN face update
start_indx = 1 - n_ghost_cells(1)
end_indx = interior_cells
!$acc parallel present(soln, soln%sblock, &
!$acc soln%sblock(blck)%rho, &
!$acc soln%sblock(blck)%vel, &
!$acc soln%sblock(blck)%p, &
!$acc soln%sblock(blck)%temp, &
!$acc rho_buffer, vel_buffer, &
!$acc p_buffer, temp_buffer)
!$acc loop collapse(3)
do k = k_low, k_high
do j = j_low, j_high
do i = start_indx, end_indx
n = n_old + (i - start_indx) + (j - j_low) * i_count + &

(k - k_low) * j_count * i_count
rho_buffer(n) = soln%sblock(blck)%rho(i,j,k)
vel_buffer(:,n) = soln%sblock(blck)%vel(:,i,j,k)
p_buffer(n) = soln%sblock(blck)%p(i,j,k)
temp_buffer(n) = soln%sblock(blck)%temp(i,j,k)

end do
end do

end do
!$acc end parallel
n = n_old + i_count * j_count * k_count
!$acc update host(rho_buffer(n_old:n-1)) async(1)
!$acc update host(vel_buffer(:,n_old:n-1)) async(2)
!$acc update host(p_buffer(n_old:n-1)) async(3)
!$acc update host(temp_buffer(n_old:n-1)) async(4)

However, when updating the buffer arrays on either side (device or host),
since the host only transfers the derived type arrays such as soln%sblock%array

18

not the buffer arrays array buffer, there is an extra step on the host side to
pack/unpack the buffer to/from the derived type array, which can be seen in
Listing 4. This step may not be needed for some other codes but necessary for
SENSEI, as SENSEI uses derived type arrays to store primitive variables. The
step adds some overhead to the host side, which will be addressed in V 5.

Listing 4: An extra step to pack/unpack data to the derived type array

start_indx = 1 - n_ghost_cells(1)
end_indx = interior_cells
do k = k_low, k_high
do j = j_low, j_high
do i = start_indx, end_indx
soln%sblock(blck)%rho(i,j,k) = rho_buffer(n)
soln%sblock(blck)%vel(:,i,j,k) = vel_buffer(:,n)
soln%sblock(blck)%p(i,j,k) = p_buffer(n)
soln%sblock(blck)%temp(i,j,k) = temp_buffer(n)
n = n + 1

end do
end do

end do

V2: Extrapolating to ghost cells on the GPU. The V 1 version executes the kernel
of extrapolating to ghost cells on the CPU. However, leaving the extrapolation
on the CPU may impede further performance improvement as this portion will
be the performance bottleneck for the GPU code. Therefore, V 2 moves the ker-
nel of extrapolating to ghost cells to the GPU. When passing an intent(out)
reshaped array which is located in non-contiguous memory locations to a pro-
cedure call, the PGI compiler creates a temporary array that can be passed into
the subroutine. The temporary array can reduce the performance significantly
and poses a threat of cache contention if it is shared among CUDA threads. In
fact, whether to support passing slices of array to a procedure call is a discussion
for the NVIDIA PGI compiler group internally. To resolve this issue, manually
created private temporary arrays are used to enable the GPU to parallelize the
extrapolation kernel. An example of how the extrapolation works in SENSEI
can be found in Listing 5. The data present directive notifies the compiler
that the needed data are located in the GPU memory, the data copyin di-
rective copies in the boundary information to the GPU, and the parallel
loop directives parallelize the boundary loop iterations. The subroutine set bc
is a device routine which is called in the parallel region. It is difficult for the
compiler to automatically know whether there are loops inside the routine, and
whether there are dependencies among the loop iterations in the parallel region.
The use of !$acc routine seq directive in set bc informs the compiler such
information. After using the temporary arrays such as rho and vel, each CUDA
thread needs to have a copy of the arrays, which occupies a lot of SM registers
and thus reduces the concurrency. As can been seen, these temporary arrays are
used to store the data in the derived type in the beginning. Then they are used

19

as arguments when invoking the set bc subroutine. Finally the extrapolated
data are copied back to the ghost cells in the original derived type soln.

Listing 5: Using temporary array to do the ghost cell data extrapolation

!$acc data present(soln, soln%rho, soln%vel, soln%p, &
!$acc soln%temp, soln%molecular_weight, &
!$acc grid%grid_vars%volume, &
!$acc grid%grid_vars%xi_n, grid, grid%grid_vars) &
!$acc copyin(bound, bclow, bchigh, n_mmtm)

!$acc parallel
!$acc loop independent
do k = bound%indx_min(3),bound%indx_max(3)
!$acc loop independent vector private(rho, vel, p, temp, vol)
do j = bound%indx_min(2),bound%indx_max(2)
rho(1:length) = soln%rho(high+1:low:order,j,k)
vel(1:n_mmtm,1:length) = soln%vel(:,high+1:low:order,j,k)
p(1:length) = soln%p(high+1:low:order,j,k)
temp(1:length) = soln%temp(high+1:low:order,j,k)

vol = grid%grid_vars%volume(high:low:order,j,k)
call set_bc(bound%bc_label, &

rho, &
vel, &
p, &
temp, &
molweight, &
vol, &
grid%grid_vars%xi_n(:,i,j,k), &
bclow, &
bchigh, &
n_mmtm)

soln%rho(high+1:low:order,j,k) = rho(1:length)
soln%vel(1:n_mmtm,high+1:low:order,j,k) = vel(:,1:length)
soln%p(high+1:low:order,j,k) = p(1:length)
soln%temp(high+1:low:order,j,k) = temp(1:length)

end do
end do
!$acc end parallel
!$acc end data

V3: Removal of Temporary Variables. Either the automatic or the manual use
of temporary arrays in V 2 can greatly deteriorate the GPU performance. In-
stead of passing array slices to a subroutine, the entire array was passed with the
indicies of the desired slice as shown in Listing 6, which avoids the use of tempo-
rary arrays. This method requires many subroutines to be modified in SENSEI.
However, it saves the use of shared resources and improves the concurrency.

20

Listing 6: Passing derived type data and index range

!$acc data present(soln, soln%rho, soln%vel, soln%p, &
!$acc soln%temp, soln%molecular_weight, &
!$acc grid%grid_vars%volume, &
!$acc grid%grid_vars%xi_n, grid, grid%grid_vars) &
!$acc copyin(bound, bclow, bchigh, n_mmtm)

!$acc parallel
!$acc loop independent
do k = bound%indx_min(3),bound%indx_max(3)
!$acc loop independent vector
do j = bound%indx_min(2),bound%indx_max(2)
call set_bc(bound%bc_label, &

grid, &
soln, &
soln%rho, &
soln%vel, &
soln%p, &
soln%temp, &
molweight, &
grid%grid_vars%volume, &
grid%grid_vars%xi_n(:,i,j,k), &
bclow, &
bchigh, &
j, &
k, &
n_mmtm, &
boundary_lbl, &
normal_lbl)

end do
end do
!$acc end parallel
!$acc end data

V4: Splitting flux calculation and limiter calculation. For cases which require
the use of limiters, the CPU calculates the left and right limiters on a face once,
as the next loop iteration can reuse two limiter values without computing them
again, which can be seen in Eq. 6.

~QLi+1/2 = ~Qi +
ε

4
[(1 − κ)Ψ+

i−1/2(~Qi − ~Qi−1) + (1 + κ)Ψ−i+1/2(~Qi+1 − ~Qi)] (6)

~QRi+1/2 = ~Qi+1 −
ε

4
[(1 + κ)Ψ+

i+1/2(~Qi+1 − ~Qi) + (1 − κ)Ψ−i+3/2(~Qi+2 − ~Qi+1)]

(7)

where ε and κ are MUSCL extrapolation parameters, Ψ are limiter function
values. L and R denote the left and right states, respectively.

21

After porting the code to the GPU, since SENSEI calculates the limiters
locally for each solution state (in V 0 through V 3), the limiter cannot be reused
as different CUDA threads have their own copies of four limiter values, otherwise
thread contention may occur. To fix this issue, the total cost of the limiter
calculation on the GPU is twice of that on the CPU. Also, storing the limiter
locally requires the limiter calculation and flux extrapolation to be together,
which is highly compute intensive. V 4 uses global arrays to store these limiters
so that the flux calculation and limiter calculation can be separated, which is
given in listing 7. This approach will leave more room for kernel concurrency
and asynchronization and also avoid thread contention.

Listing 7: Splitting MUSCL extrapolation and limiter calculation

! xi limiter
!$acc parallel
!$acc loop independent collapse(3)
do k = 1, k_cells
do j = 1, j_cells

do i = 1, imax-1
call limiter_subroutine_x(sblock, gblock, i, j, k, &

sblock%limiter_xi%left, &
sblock%limiter_xi%right)

end do
end do

end do
!$acc end parallel

! xi flux
!$acc parallel
!$acc loop independent collapse(3) private(qL, qR)
do k = 1, k_cells
do j = 1, j_cells
do i = 2, imax-1

call muscl_extrapolation_xi(sblock, i, j, k, &
sblock%limiter_xi%left(1:neq,i-1,j,k), &
sblock%limiter_xi%left(1:neq,i,j,k), &
sblock%limiter_xi%right(1:neq,i,j,k), &
sblock%limiter_xi%right(1:neq,i+1,j,k), &
qL, qR)

call flux_function(qL, qR, &
gblock%grid_vars%xi_n(:,i,j,k), &
sblock%xi_flux(1:neq,i,j,k))

end do

end do
end do

22

!$acc end parallel

V5: Derived type for connected boundaries on the GPU. The previous versions
update the connected boundaries between the host and the device through using
local dynamic arrays. Therefore, it is worthwhile to investigate the effect of using
global derived type arrays to store the connected boundary data. It removes the
extra data copies on the host side mentioned in V 1. An example of using the
global derived type is given in Listing 8. If there is no communication required
among different CPU processors, the MPI functions are not called.

Listing 8: Derived type for connected boundary data

!$acc update host(grid%gblock(blck)%bcs_acc(nc)%rho_send(&
!$acc 1:idx_max_nbor(1)-idx_min_nbor(1)+1, &
!$acc 1:idx_max_nbor(2)-idx_min_nbor(2)+1, &
!$acc 1:idx_max_nbor(3)-idx_min_nbor(3)+1))

! SEND and RECV derived type boundary data
call MPI_IRECV(grid%gblock(blck)%bcs_acc(nc)%rho_recv, &

scalar_count, MPI_DOUBLE_PRECISION, &
bound%bound_nbor%process_id, RHO_TAG, &
world_comm, req(req_count+1), ierr)

call MPI_ISEND(grid%gblock(blck)%bcs_acc(nc)%rho_send, &
scalar_count, MPI_DOUBLE_PRECISION, &
bound%bound_nbor%process_id, RHO_TAG, &
world_comm, req(req_count+5), ierr)

call MPI_WAITALL(req_count, req(1:req_count), &
stat(:,1:req_count), ierr)

!$acc update device(grid%gblock(blck)%bcs_acc(nc)%rho_recv(&
!$acc buff_size_self(1)*buff_size_self(2)* &
!$acc buff_size_self(3)))

V6: Change of blocking call locations. Since SENSEI is a multi-block CFD code,
a processor may hold multiple blocks and many connected boundaries. Using
MPI non-blocking routines, there should be a place to execute the blocking call
such as MPI WAIT to complete the communications. Each Isend/Irecv call
needs one MPI WAIT, or multiple MPI WAIT can be wrapped up into one
MPI WAITALL. The previous versions block the MPI WAITALL call for ev-
ery decomposed block. A newer way of achieving the function is moving the
MPI WAITALL calls to a new loop, so that these MPI WAITALL calls are exe-
cuted after all Isend & Irecv are executed. An example is given in Fig. 9. In this
example, there are two blocks, each having two connected boundaries. However,
V 6 only improves the performance when multiple connected boundaries exist.

23

Figure 9: Change of blocking call position

For platforms in which the asynchronous progression is supported completely
(from both the software and hardware sides), this optimization may work much
better. However, for common platforms in which the asynchronous progression
is not supported fully, OpenMP may need to be used to promote the asyn-
chronous progression [52, 53, 54, 55, 56]. Full asynchronous progression is a
very complicated issue and is not covered in this paper. This paper will only
apply MPI+OpenACC to accelerate the CFD code.

V7: Boundary flux optimization. In SENSEI, the fluxes for the wall and farfield
boundaries need to be overwritten to get more accurate estimate for the solution.
These overwritten flux calculations are done after the boundary enforcement.
For these two kinds of fluxes, the previous versions do not compute them very
efficiently. A lot of temporary variables are allocated for each thread, which
deteriorates the concurrency of using OpenACC, as registers are limited. The
principle of this optimization is similar to that in V 3. An example of the
optimization is given in Listing 9.

Listing 9: Optimization of the overwritten boundary flux kernel

! V0 ˜ V6

!$acc parallel copyin(i, bound) async(1)
!$acc loop independent
do k = bound%indx_min(3), bound%indx_max(3)
!$acc loop independent vector private(&
!$acc soln_L2, soln_L1, soln_R1, &
!$acc soln_R2, qL, qR, modf, &
!$acc lim_L2, lim_L1, lim_R1, lim_R2, &
!$acc vel_xi, rho_xi, p_xi, temp_xi)
do j = bound%indx_min(2), bound%indx_max(2)

24

! V7

!$acc parallel copyin(i, bound) async(1)
!$acc loop independent
do k = bound%indx_min(3), bound%indx_max(3)
!$acc loop independent vector private(&
!$acc qL, qR, modf)
do j = bound%indx_min(2), bound%indx_max(2)

V8: Asynchronicity improvement. Kernels from different streams can be over-
lapped so that the performance can be improved. The version is exactly the
same as that in V 7 but the environment variable ”PGI ACC SYNCHRONOUS”
is set to 0 when executing SENSEI, that is, asynchronization among some inde-
pendent kernels is promoted. The !$acc wait directive makes the host wait
until asynchronous accelerator activities finish, i.e., it is the synchronization on
the host side.

V9: Removal of implicit data copies between the host and device. The last per-
formance optimization is essentially manual tuning work. It requires the user to
modify the code through profiling. The compiler sometimes does not know what
variables are to be updated between the host and the device, so for the reason
of safety the compiler may update variables frequently, which may be unneces-
sary. Different architectures and compilers may deal with the update differently,
therefore the user can optimize it based on the profiler outputs. The compiler
may transfer some scalar variables, arrays with small size and even derived type
data in every iteration, but they only need to be copied once. There are multi-
ple places in SENSEI where the PGI compiler makes unnecessary copies. These
extra unnecessary data transfers are usually small in size and deteriorate the
memory throughput. The effect of these copies can be significant for small size
problems. However, for compute-intensive computations, this optimization may
not be very useful. This performance optimization is only applied for the P100
GPU and V100 GPU, with the newer version of PGI compiler. Running with
V 9 on the C2075 returns some linker errors due to the old PGI compiler.

V10: GPUDirect. GPUDirect is an umbrella word for several GPU communica-
tion acceleration technologies. It provides high bandwidth and low latency com-
munication between NVIDIA GPUs. There are three levels of GPUDirect [57].
The first level is GPUDirect Shared Access, introduced with CUDA 3.1. This
feature avoids an unnecessary memory copy within host memory between the
intermediate pinned buffers of the CUDA driver and the network fabric buffer.
The second level is GPUDirect Peer-to-Peer transfer (P2P transfer) and Peer-
to-Peer memory access (P2P memory access), introduced with CUDA 4.0. This
P2P memory access allows buffers to be copied directly between two GPUs on
the same node. The last is GPU RDMA (Remote Direct Memory Access), with
which buffers can be sent from the GPU memory to a network adapter without

25

staging through host memory. The last feature is not supported on NewRiver
as it pertains to specific versions of the drivers (from NVIDIA and Mellanox
for the GPU and the Infiniband, respectively) which are not installed (other
dependencies exist, particularly parallel filesystems). Although GPU RDMA is
not available, the other aspects of GPUDirect can be utilized to further improve
the scaling performance on multiple GPUs.

8. Solution and Scaling Performance

8.1. Supersonic Flow Through a 2D Inlet

The first test case is a simplified 2D 30 degree supersonic inlet, which has only
one parent block without having connected boundaries. The inflow conditions
are given in Table 2. There are multiple levels of grid for strong and weak scaling
analysis, of which the total amount of cells range from 50k to 7 million. The
parallel solution and the serial solution have been compared from the beginning
to the converged state during the iterations, and the relative errors for all the
primitive variables based on the inflow boundary values is within round-off error
range (10−12).

Table 2: Inlet case inflow boundary conditions

Mach number 4.0
Pressure 12270 Pa

Temperature 217 K

A very coarse level of grid for the 2D inlet flow is shown in Fig. 10(a). The de-
composition of using 16 GPUs (which is the highest number of GPUs available)
on a 416x128 grid is shown in Fig. 10(b). The decomposition is 2D, creating
multiple connected boundaries between processors. Ghost cells on the face of
connected boundaries are used to exchange data between neighboring proces-
sors. The device needs to communicate with the host if multiple processors are
used.

26

(a) A coarse (52x16) grid for the 2D inlet
flow

(b) A domain decomposition for the 2D inlet
flow (using 16 GPUs)

Figure 10: 2D Euler supersonic inlet

The relative residual L2 norm history is shown in Fig. 11. It can be seen that
the iterative errors have been driven down small enough for all the primitive
variables when converged. The Mach number and density solutions are shown
in Fig. 12. There are multiple flow deflections when the flow goes through the
reflected oblique shocks.

Figure 11: The relative iterative residual history for the inlet case

27

(a) The Mach number and streamlines for
the 2D inlet Euler flow

(b) The density solution for the 2D inlet Eu-
ler flow

Figure 12: 2D Euler supersonic inlet

Fig. 13 shows the performance comparison of different optimizations using
different flux options on different platforms. The grid size used in Fig. 13 is
416×128. The goal of making such a comparison is to investigate the effect of
using various flux options, time marching schemes and various generation GPUs
when applying the optimizations introduced earlier in this paper. For such a
small problem which does not have any connected boundary conditions, a single
P100 GPU is about 3 times faster than the a single C2075 GPU. We expect that
the speedup would be higher if the problem size was larger. Another observation
is that using the Roe flux is slightly slower than using the van Leer flux, which
is reasonable as the Roe flux is a bit more expensive than the van Leer flux.
It should be kept in mind that the ssspnt metric does not take the number of
double precision operations for each step into account so ssspnt is not equivalent
to GFLOPS. Also, the speed of RK2 and RK4 is comparable, so this paper will
stick to the use of RK2 unless otherwise specified.

If comparing the performance of different versions in Fig. 13, there are two
performance leaps including from V 2 to V 3 and from V 8 to V 9. Since the
extrapolation to ghost cells on the GPU runs inefficiently in V 2 due to the
low compute utilization, removing the use of temporary arrays in the parallel
regions reduces the overhead from CUDA threads. More concurrency in the
code can therefore be utilized by the GPU. From V 8 to V 9, since the problem
size is small (the compute fraction is not very high), removing unnecessary data
movement improves the overall performance by more than 52%. For larger
problems, the performance gain is not that significant, as we will show later. In
the meantime, there is a gradual performance improvement from V 3 to V 4 and
V 6 to V 8. These optimizations should not be overlooked as the issues related
to the optimizations will eventually become bottlenecks. Since this case does
not have connected boundaries, there is no obvious performance change from
V 4 to V 6. It should be mentioned that the performance optimizations proposed
earlier are not for only a specific case, but for general cases with multiple blocks

28

and connected boundaries.

Figure 13: Performance comparison for the 2D inlet Euler flow

Fig. 14(a) and Fig. 14(b) show the strong and weak scaling performance for
the 2D inlet Euler flow, respectively. The CPU scaling performance is also given
for reference. A single P100 GPU is more than 32× faster than a single CPU,
on a grid level of 416x256, which displays the compute power of the GPU. The
strong scaling efficiency decays quickly for small problem sizes but not for the
largest problem size in Fig. 14(a). The parallel efficiency using 16 P100 GPUs on
the 3328×2048 grid is still kept higher than 90%. While for the weak scaling, the
parallel efficiency is higher (95.2% above) than the strong scaling efficiency, as
there is more work to saturate the GPU. The V100 GPU shows higher speedups
but lower efficiency, because the V100 GPU needs more computational work as
it is faster. The boundary connections for this inlet flow case after the domain
decomposition are not complicated, which is one important reason why the
performance is very good.

(a) Strong scaling (b) Weak scaling

Figure 14: The scaling performance for the 2D inlet case

29

8.2. 2D Subsonic Flow past a NACA 0012 Airfoil

The second test case in this paper is the 2D subsonic flow (M∞ = 0.25) past
a NACA 0012 airfoil, at an angle of attack of 5 degrees. The flow field for all the
simulation runs of this case is initialized using the farfield boundary conditions
which are given in Table 3. This case will be solved by both the Euler and
laminar NS solvers in SENSEI.

Table 3: NACA 0012 airfoil farfield boundary conditions

Mach number 0.25
Static pressure 84307 Pa
Temperature 300 K

Angle of attack, α 5 degrees

Although the airfoil case contains only one parent block, the grid is a C-
grid, which means that the only one block connects to itself on a face through
a connected boundary, which makes the airfoil case different from the 2D inlet
flow case. One coarse grid of this airfoil case is shown in Fig. 15(a). For the
scaling analysis, the grid size ranges from 400k to 6 million. Also, the domain
decomposition of using 16 GPUs is shown in Fig. 15(b). Near the airfoil surface,
the grid is refined locally so processors near the wall take smaller blocks, but
the load is balanced.

(a) A coarse (128x48) grid for the flow past
a NACA 0012 airfoil

(b) The domain decomposition for the air-
foil case (using 16 GPUs)

Figure 15: 2D NS NACA 0012 airfoil

Fig. 16(a) shows the relative iterative residual L2 norm history for the lam-
inar NS subsonic flow past a NACA 0012 airfoil. This case requires the most
iteration steps to be converged among all the test cases considered. Leveraging
the compute power of the GPU saves a lot of time. To enable the iterative
residual to further go down instead of oscillation, limiter freezing is adopted
at around 600k steps. After freezing the limiter, the iterative residual norms

30

continue to reduce smoothly. The iterative errors are driven down small enough
to obtain the steady state solution.

The parallel solution and the serial solution have been compared on coarse
levels of grid and the relative errors for all the primitive variables based on the
reference values are within round-off error range (10−12). Fig.16(b) shows the
pressure coefficient solution and the streamlines for the laminar NS subsonic
flow past the NACA 0012 airfoil.

(a) The relative iterative residual L2 norm
history for the laminar NS subsonic flow
past a NACA airfoil

(b) The pressure coefficient contour for the
laminar NS subsonic flow past a NACA air-
foil

Figure 16: 2D laminar NS NACA 0012 airfoil

Fig. 17 shows the comparison of different versions for the flow past a NACA
0012 airfoil using a single P100 GPU. Laminar NS has a smaller ssspnt (about
70%) compared to using the Euler solver. From V 2 to V 3, the speedup is more
than 2 times on different levels of grid, for both the Euler and laminar NS solver.
To use globally allocated derived types to store the connected boundary data
cannot improve the performance, which can be seen from the comparison of
V 4 and V 5, if only using one processor, as there are no MPI communication
calls. Although the airfoil case has a connected boundary, the data in the ghost
cells for that boundary are filled directly through copying. This case only has
one connected boundary, so there is no need to reorder the non-blocking MPI
I send/I recv calls and the MPI Wait call. Similarly to the 2D inlet case, on
coarse levels of grid, there is noticeable performance improvement if applying
the optimization in V 9. On fine levels of grid, the benefit is limited.

31

Figure 17: The performance of different versions for the NACA 0012 airfoil case (P100 GPU)

Since we cannot see any performance gain from V 5 to V 6 using single GPU,
multiple GPUs are used to show the benefits. For all the runs shown in Fig. 18,
V 6 (the red bars) outperforms V 5 (the blue bars) by 4% to 50%, depend-
ing on the solver type, grid level and number of GPUs used. After applying
multiple GPUs, multiple connected boundaries are created, which creates mar-
gin for the reordering of I send/I recv and Wait to work. Intrinsically, this
ordering is to propel more asynchronous progression on the implementation
side. The actual overlap degree still highly depends on the communication sys-
tem, which is out of the scope of this paper. Readers who are interested in
more overlap and better asynchronous progression may try the combination of
MPI+OpenACC+OpenMP.

Figure 18: Performance comparison between V 5 and V 6 for the NACA 0012 airfoil case (P100
GPU)

Fig. 19 and Fig. 20 show the strong and weak scaling performance of this
subsonic flow past a NACA 0012 airfoil solved by the Euler and laminar NS
solver on P100 and V100 GPUs, respectively. They show very similar behaviours

32

with the only difference in the scales. Overall, the laminar ssspnt is about 0.7
of the Euler ssspnt using multiple GPUs. The strong parallel efficiency on
the 4096×1536 grid using 16 P100 GPUs for the Euler and laminar NS solver
is about 87% and 90%, respectively. The weak scaling efficiency is generally
higher as there is more work to do for the GPU. The efficiencies using V100
GPUs are lower than those using P100 GPUs, which indicates that faster GPUs
may need more computational work to hold high efficiency.

(a) Strong scaling (Euler) (b) Weak scaling (Euler)

Figure 19: The scaling performance for the 2D Euler flow past a NACA 0012 airfoil

(a) Strong scaling (laminar NS) (b) Weak scaling (laminar NS)

Figure 20: The scaling performance for the 2D laminar NS flow past a NACA 0012 airfoil

8.3. 3D Transonic Flow Past an ONERA M6 Wing

The final case tested in this paper is the 3D transonic flow (M∞ = 0.839)
past an ONERA M6 wing, at an angle of attack of 3.06 degrees [58]. The
flow field is initialized using the farfield boundary conditions which are given in
Table 4. Both the Euler and laminar NS solvers in SENSEI are used to solve
this problem. Different from the previous two 2D problems, this 3D case has 4

33

parent blocks with various sizes. Under some conditions (when using 2 and 4
processors in this paper), domain aggregation is needed to balance the load on
different processors. This 3D wing case has a total grid size ranging from 300k
to 5 million.

Table 4: ONERA M6 wing farfield boundary conditions

Mach number, M∞ 0.8395
Temperature, T∞ 255.556 K

Pressure, p∞ 315979.763 Pa
Angle of attack, α 3.06 degrees

The parallel solution and the serial solution of the wing case have been com-
pared to each other on a coarse mesh and the relative errors for primitive vari-
ables based on the farfield boundary values is within round-off error (10−12).A
coarse level of grid and the domain decomposition of using 16 GPUs are given in
Fig. 21(a) and Fig. 21(b), respectively. The relative iterative residual L2 norm
history and the pressure coefficient (Cp) contour using the laminar NS solver in
SENSEI are given in Fig. 22(a) and Fig.22(b), respectively. From Fig. 22(a), it
can be seen that the iterative errors have been driven down small enough.

(a) A grid for the ONERA M6 wing (b) The domain decomposition for the ON-
ERA M6 wing case using 16 GPUs

Figure 21: Grid and domain decomposition for ONERA M6 wing

34

(a) The relative residual norm history for
ONERA M6 wing

(b) The laminar NS pressure coefficient con-
tour for ONERA M6 wing

Figure 22: Residual history and solution for ONERA M6 wing

Since this wing case is 3D and has multiple parent blocks, we are interested
in whether the performance optimizations introduced earlier can improve the
performance of this wing case. Fig. 23 shows the performance of different ver-
sions for the ONERA M6 wing case. From the grid level of h5 to h1, the grid
refinement factor is 2 (refined in z, y and x cyclically). V 2 runs slower than
V 1 for all levels of grid, indicating that the extrapolation to ghost cells on the
GPU is not as efficient as that on the CPU, although it is parallelized. With
proper optimization, V 3 is about 3 to 4 times faster than V 2, which is similar
to the previous two 2D cases. From V 3 to V 4, there is a performance drop
for almost all runs, no matter what the grid level and the solver is. Splitting
one kernel into two kernels for this case incurs some overhead and reduces the
compute utilization a bit. There is a slight performance improvement from V 4
to V 5 when using the derived type to buffer the boundary data for connected
boundaries. The data will be allocated in the main memory of the GPU before
needed, which outperforms the use of dynamic data to buffer the boundary data.
For a single GPU, V 5 and V 6 perform equivalently fast. Further performance
optimization on the boundary flux calculation can improve the performance sig-
nificantly, which can be seen from V 6 to V 7. Carefully moving the data between
the host and the device can improve the performance on coarse levels of grid,
but not on very fine levels of grid, as the computation becomes more dominant
when refining the grid.

35

Figure 23: The single P100 GPU performance of different versions for ONERA M6 wing

Although the wing case has multiple parent blocks, there is no MPI commu-
nication if using only a single GPU. Therefore, there is only negligible difference
between V 5 and V 6. Similar to the NACA 0012 airfoil case, multiple GPUs are
used to show the effect of reordering the non-blocking MPI I send/I recv calls
and the MPI Wait calls. Fig. 24 shows that there are some performance gains for
some runs but not all. V 6 accelerates the code by 14% to 18% when np is equal
to 8. If using 16 GPUs, more connected boundaries are created, and it impedes
the performance improvement. A possible reason for this may be that although
the implementation from V 5 to V 6 exposes more asynchronous progression on
the implementation side, the platform communication system does not support
that very well when too many communication calls are invoked. This issue may
be resolved if switching to the MPI+OpenACC+OpenMP model, which is not
covered in this paper. However, it can be seen that the performance degradation
using 16 GPUs is only 0.8% to 3%, which is small.

Figure 24: Performance comparison between V 5 and V 6 for ONERA M6 wing (P100 GPU)

Fig. 25 and Fig. 26 show the strong and weak scaling performance using

36

Euler and laminar NS solvers, respectively. Some different behaviours show as
in this case some processors need to hold multiple blocks, which is different from
the 2D inlet and 2D NACA 0012 case. A single GPU is about 33 times faster
than a single CPU on the h5 level grid. The weak scaling of the GPU keeps
good efficiency over the whole np range shown in Fig. 25(b) and Fig. 26(b).

(a) Strong scaling (Euler) (b) Weak scaling (Euler)

Figure 25: The scaling performance for the 3D Euler ONERA M6 wing case

(a) Strong scaling (laminar NS) (b) Weak scaling (laminar NS)

Figure 26: The scaling performance for the 3D laminar NS ONERA M6 wing case

8.4. GPUDirect

Since GPUDirect is not a general performance optimization, as it requires
some support from both the compiler side and the communication system side,
a comparison of V 9 and V 10 is made at the end to give readers more insights
of the effect of GPUDirect. GPUDirect was applied to the 2D Euler/laminar
flow past the NACA 0012 airfoil and the transonic flow over the 3D ONERA
M6 wing. It should be noted that there is no guarantee that using GPUDirect

37

can improve the performance substantially without the hardware support like
using NVLink (however both the NewRiver and the Cascades cluster does not
have NVLink so the memory bandwidth is still not high enough). It can be
found that the two cases show different behaviours when applying GPUDirect,
seen in Fig. 27. For the NACA 0012 case, generally V 10 is slower than V 9,
which means that GPUDirect makes the code to run slower. However, for the
ONERA wing case, using GPUDirect improves the performance by 4% to 14%.
Whether there is a performance gain or not depends on the problem and number
of communications. Commonly if high memory bandwidth NVLink is available,
GPUDirect should be more beneficial to the performance.

(a) Subsonic flow past a NACA 0012 airfoil (b) Transonic flow past an ONERA M6
wing

Figure 27: Performance comparison between V 9 and V 10

9. Conclusions & Future Work

An improved framework using MPI+OpenACC is developed to accelerate
a CFD code on multi-block structured grids. OpenACC has some advantages
in terms of the ease of programming, the good portability and the fair per-
formance. A processor-clustered domain decomposition and a block-clustered
domain aggregation method are used to balance the workload among processors.
Also, the communication overhead is not high using the domain decomposition
and aggregation methods. A parallel boundary decomposition method is also
proposed with the use of the MPI inter-communicator functions. The boundary
reordering for multi-block cases is addressed to avoid the dead lock issue when
sending and receiving messages. A number of performance optimizations are ex-
amined, such as using the global derived type to buffer the connected boundary
data, removing temporary arrays when making procedure calls, reordering of
blocking calls for non-blocking MPI communications for multi-block cases, us-
ing GPUDirect, etc. These performance optimizations have been demonstrated
to improve single GPU performance more than up to 5 times compared to the
baseline GPU version. More importantly, all the three test cases show good
strong and weak scaling up to 16 GPUs, with a good parallel efficiency if the
problem is large enough.

38

References

[1] B. Barney, Introduction to Parallel Computing, 2020. URL: https://
computing.llnl.gov/tutorials/parallel_comp/, (last accessed
on 07/24/20).

[2] R. Landaverde, T. Zhang, A. K. Coskun, M. Herbordt, An Investigation
of Unified Memory Access Performance in CUDA, in: 2014 IEEE High
Performance Extreme Computing Conference (HPEC), IEEE, Waltham,
MA, US, 2014, pp. 1–6.

[3] B. Barney, OpenMP, 2020. URL: https://computing.llnl.gov/
tutorials/openMP/, (last accessed on 07/24/20).

[4] B. Barney, Message Passing Interface (MPI), 2020. URL: https://
computing.llnl.gov/tutorials/mpi/, (last accessed on 07/24/20).

[5] NVIDIA, CUDA C++ Programming Guide, 2019. URL: https://docs.
nvidia.com/pdf/CUDA_C_Programming_Guide.pdf, (last accessed
on 07/24/20).

[6] Khronos OpenCL Working Group, The OpenCL C 2.0 Specifica-
tion, 2019. URL: https://www.khronos.org/registry/OpenCL/
specs/2.2/pdf/OpenCL_C.pdf, (last accessed on 07/24/20).

[7] OpenACC Programming and Best Practices Guide, 2015. URL: https:
//www.openacc.org/sites/default/files/inline-files/
OpenACC_Programming_Guide_0.pdf, (last accessed on 07/24/20).

[8] N. Gourdain, L. Gicquel, M. Montagnac, O. Vermorel, M. Gazaix,
G. Staffelbach, M. Garcia, J. Boussuge, T. Poinsot, High Performance
Parallel Computing of Flows in Complex Geometries: I. Methods, Com-
putational Science & Discovery 2 (2009) 015003.

[9] N. Gourdain, L. Gicquel, G. Staffelbach, O. Vermorel, F. Duchaine, J. Bous-
suge, T. Poinsot, High Performance Parallel Computing of Flows in Com-
plex Geometries: II. Applications, Computational Science & Discovery 2
(2009) 015004.

[10] A. Amritkar, S. Deb, D. Tafti, Efficient Parallel CFD-DEM Simulations
using OpenMP, Journal of Computational Physics 256 (2014) 501–519.

[11] Z. Krpic, G. Martinovic, I. Crnkovic, Green HPC: MPI vs. OpenMP on
a Shared Memory System, in: 2012 Proceedings of the 35th International
Convention MIPRO, IEEE, Opatija, Croatia, 2012, pp. 246–250.

[12] P. D. Mininni, D. Rosenberg, R. Reddy, A. Pouquet, A Hybrid MPI–
OpenMP Scheme for Scalable Parallel Pseudospectral Computations for
Fluid Turbulence, Parallel Computing 37 (2011) 316–326.

39

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_C.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_C.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

[13] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C. Phillips,
GPU Computing, Proceedings of the IEEE 96 (2008) 879–899.

[14] J. Herdman, W. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beck-
ingsale, A. Mallinson, S. A. Jarvis, Accelerating Hydrocodes with Ope-
nACC, OpenCL and CUDA, in: 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, IEEE, Salt Lake City, UT,
USA, 2012, pp. 465–471.

[15] D. A. Jacobsen, I. Senocak, Multi-level Parallelism for Incompressible Flow
Computations on GPU Clusters, Parallel Computing 39 (2013) 1–20.

[16] E. Elsen, P. LeGresley, E. Darve, Large Calculation of the Flow over a
Hypersonic Vehicle using a GPU, Journal of Computational Physics 227
(2008) 10148–10161.

[17] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
P. Hanrahan, Brook for GPUs: Stream Computing on Graphics Hard-
ware, ACM Transactions on Graphics (TOG) 23 (2004) 777–786.

[18] T. Brandvik, G. Pullan, Acceleration of a 3D Euler Solver using Commod-
ity Graphics Hardware, in: 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, US, 2008, p. 607.

[19] L. Luo, J. R. Edwards, H. Luo, F. Mueller, Performance Assessment of a
Multiblock Incompressible Navier-Stokes Solver using Directive-based GPU
Programming in a Cluster Environment, in: 52nd Aerospace Sciences Meet-
ing, National Harbor, MD, US, 2013.

[20] Y. Xia, J. Lou, H. Luo, J. Edwards, F. Mueller, OpenACC Acceleration
of an Unstructured CFD Solver based on a Reconstructed Discontinuous
Galerkin Method for Compressible Flows, International Journal for Nu-
merical Methods in Fluids 78 (2015) 123–139.

[21] D. D. Chandar, J. Sitaraman, D. J. Mavriplis, A Hybrid Multi-GPU/CPU
Computational Framework for Rotorcraft Flows on Unstructured Overset
Grids, in: 21st AIAA Computational Fluid Dynamics Conference, San
Diego, CA, US, 2013, p. 2855.

[22] W. Xue, C. W. Jackson, C. J. Roy, Multi-CPU/GPU Parallelization, Opti-
mization and Machine Learning based Autotuning of Structured Grid CFD
Codes, in: 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, US,
2018, p. 0362.

[23] W. Xue, C. J. Roy, Multi-GPU Performance Optimization of a Computa-
tional Fluid Dynamics Code using OpenACC, Concurrency and Computa-
tion: Practice and Experience (2020) e6036.

40

[24] W. Xue, C. J. Roy, Heterogeneous Computing of CFD Applications on
CPU-GPU Platforms using OpenACC Directives, in: AIAA Scitech 2020
Forum, Orlando, FL, US, 2020, p. 1046.

[25] J. M. Derlaga, T. Phillips, C. J. Roy, SENSEI Computational Fluid Dy-
namics Code: A Case Study in Modern Fortran Software Development, in:
21st AIAA Computational Fluid Dynamics Conference, San Diego, CA,
US, 2013.

[26] C. W. Jackson, W. C. Tyson, C. J. Roy, Turbulence Model Implementation
and Verification in the SENSEI CFD Code, in: AIAA Scitech 2019 Forum,
San Diego, CA, 2019, p. 2331.

[27] W. Xue, H. Wang, C. J. Roy, Code Verification for 3D Turbulence Modeling
in Parallel SENSEI Accelerated with MPI, in: AIAA Scitech 2020 Forum,
Orlando, FL, US, 2020, p. 0347.

[28] W. L. Oberkampf, C. J. Roy, Verification and validation in scientific com-
puting, Cambridge University Press, 2010.

[29] B. Van Leer, Towards the ultimate conservative difference scheme. v.
a second-order sequel to godunov’s method, Journal of computational
Physics 32 (1979) 101–136.

[30] A. Jameson, W. Schmidt, E. Turkel, Numerical Solution of the Euler
Equations by Finite Volume Methods using Runge Kutta Time Stepping
Schemes, in: 14th fluid and plasma dynamics conference, Palo Alto, CA,
US, 1981, p. 1259.

[31] U. M. Ascher, S. J. Ruuth, R. J. Spiteri, Implicit-explicit runge-kutta meth-
ods for time-dependent partial differential equations, Applied Numerical
Mathematics 25 (1997) 151–167.

[32] C. A. Kennedy, M. H. Carpenter, Diagonally Implicit Runge-Kutta Meth-
ods for Ordinary Differential Equations. A Review (2016).

[33] J. Wu, L. Fan, L. Erickson, Three-Point Backward Finite-Difference
Method for Solving a System of Mixed Hyperbolic—Parabolic Partial Dif-
ferential Equations, Computers & Chemical Engineering 14 (1990) 679–685.

[34] P. L. Roe, Approximate Riemann Solvers, Parameter Vectors, and Differ-
ence Schemes, Journal of Computational Physics 43 (1981) 357–372.

[35] J. L. Steger, R. Warming, Flux Vector Splitting of the Inviscid Gasdy-
namic Equations with Application to Finite-Difference Methods, Journal
of Computational Physics 40 (1981) 263–293.

[36] B. Van Leer, Flux-Vector Splitting for the Euler Equation, in: Upwind
and High-Resolution Schemes, Springer, 1997, pp. 80–89.

41

[37] J. Nickolls, W. J. Dally, The GPU Computing Era, IEEE Micro 30 (2010)
56–69.

[38] MPI: A Message-Passing Interface Standard, 2015. URL: https://www.
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, (last accessed
on 02/20/20).

[39] Open MPI Documentation, 2020. URL: https://www.open-mpi.org/
doc/, (last accessed on 05/10/20).

[40] MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP,
and RoCE, 2020. URL: http://mvapich.cse.ohio-state.edu/
userguide/, (last accessed on 05/10/20).

[41] T. Hoshino, N. Maruyama, S. Matsuoka, R. Takaki, Cuda vs openacc:
Performance case studies with kernel benchmarks and a memory-bound
cfd application, in: 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, IEEE, Delft, Netherlands, 2013, pp.
136–143.

[42] F. Baig, C. Gao, D. Teng, J. Kong, F. Wang, Accelerating spatial cross-
matching on cpu-gpu hybrid platform with cuda and openacc., Frontiers
Big Data 3 (2020) 14.

[43] V. Artigues, K. Kormann, M. Rampp, K. Reuter, Evaluation of perfor-
mance portability frameworks for the implementation of a particle-in-cell
code, Concurrency and Computation: Practice and Experience 32 (2020)
e5640.

[44] PGI Compiler User’s Guide, 2019. URL: https://www.pgroup.com/
resources/docs/19.10/x86/pgi-user-guide/index.htm, (last
accessed on 05/10/20).

[45] G. Hager, G. Wellein, Introduction to High Performance Computing for
Scientists and Engineers, CRC Press, 2010.

[46] R. Farber, Parallel Programming with OpenACC, Newnes, 2016.

[47] B. Hendrickson, T. G. Kolda, Graph partitioning models for parallel com-
puting, Parallel computing 26 (2000) 1519–1534.

[48] Newriver, 2019. URL: https://www.arc.vt.edu/computing/
newriver/, (last accessed on 09/12/20).

[49] Cascades, 2020. URL: https://arc.vt.edu/computing/
cascades/, (last accessed on 09/12/20).

[50] A. J. McCall, Multi-level Parallelism with MPI and OpenACC for CFD
Applications, Master’s thesis, Virginia Tech, 2017.

42

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.open-mpi.org/doc/
https://www.open-mpi.org/doc/
http://mvapich.cse.ohio-state.edu/userguide/
http://mvapich.cse.ohio-state.edu/userguide/
https://www.pgroup.com/resources/docs/19.10/x86/pgi-user-guide/index.htm
https://www.pgroup.com/resources/docs/19.10/x86/pgi-user-guide/index.htm
https://www.arc.vt.edu/computing/newriver/
https://www.arc.vt.edu/computing/newriver/
https://arc.vt.edu/computing/cascades/
https://arc.vt.edu/computing/cascades/

[51] A. J. McCall, C. J. Roy, A Multilevel Parallelism Approach with MPI and
OpenACC for Complex CFD Codes, in: 23rd AIAA Computational Fluid
Dynamics Conference, Denver, CO, USA, 2017, p. 3293.

[52] M. Jiayin, S. Bo, W. Yongwei, Y. Guangwen, Overlapping Communication
and Computation in MPI by Multithreading, in: Proc. of International
Conference on Parallel and Distributed Processing Techniques and Appli-
cations, Las Vegas, NEV, USA, 2006.

[53] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond, P. Bal-
aji, D. Das, J. Park, B. Joó, Improving Concurrency and Asynchrony in
Multithreaded MPI Applications using Software Offloading, in: SC’15:
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, IEEE, Austin, TX, USA, 2015,
pp. 1–12.

[54] H. Lu, S. Seo, P. Balaji, MPI+ULT: Overlapping Communication and
Computation with User-Level Threads, in: 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security,
and 2015 IEEE 12th International Conference on Embedded Software and
Systems, IEEE, New York, NY, USA, 2015, pp. 444–454.

[55] A. Denis, F. Trahay, MPI Overlap: Benchmark and Analysis, in: 2016 45th
International Conference on Parallel Processing (ICPP), IEEE, Philadel-
phia, PA, USA, 2016, pp. 258–267.

[56] E. Castillo, N. Jain, M. Casas, M. Moreto, M. Schulz, R. Beivide, M. Valero,
A. Bhatele, Optimizing Computation-Communication Overlap in Asyn-
chronous Task-based Programs, in: Proceedings of the ACM International
Conference on Supercomputing, Washington, DC, USA, 2019, pp. 380–391.

[57] NVIDIA, NVIDIA GPUDirect, 2019. URL: https://developer.
nvidia.com/gpudirect.

[58] M. Mani, J. Ladd, A. Cain, R. Bush, M. Mani, J. Ladd, A. Cain, R. Bush,
An Assessment of One-and Two-Equation Turbulence Models for Inter-
nal and External Flows, in: 28th Fluid Dynamics Conference, Snowmass
Village, CO, USA, 1997, p. 2010.

43

https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect

	1 Introduction
	2 Description of the CFD code: SENSEI
	3 Overview of CPU/GPU Heterogeneous System, MPI and OpenACC
	3.1 CPU/GPU Heterogeneous System
	3.2 MPI
	3.3 OpenACC

	4 Domain Decomposition
	5 Boundary Decomposition in Parallel and Boundary Reordering
	6 Platforms and Metrics
	6.1 Platforms
	6.2 Performance Metrics

	7 OpenACC Parallelization and Optimization
	7.1 V0: Baseline
	7.2 GPU Optimization using OpenACC

	8 Solution and Scaling Performance
	8.1 Supersonic Flow Through a 2D Inlet
	8.2 2D Subsonic Flow past a NACA 0012 Airfoil
	8.3 3D Transonic Flow Past an ONERA M6 Wing
	8.4 GPUDirect

	9 Conclusions & Future Work

