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Abstract

A parallel scheme for a multi-domain truly incompressible smoothed particle
hydrodynamics approach is presented. The proposed method is developed for
distributed-memory architectures through the Message Passing Interface (MPI)
paradigm as communication between partitions.

The proposal aims to overcome one of the main drawbacks of the SPH
method, which is the high computational cost with respect to mesh-based meth-
ods, by coupling a multi-resolution approach with parallel computing tech-
niques.

The multi-domain approach aims to employ different resolutions by subdi-
viding the computational domain into non-overlapping blocks separated by block
interfaces. The particles belonging to different blocks are efficiently distributed
among processors ensuring well balanced loads.

The parallelization procedure handles particle exchanges both throughout
the blocks and the competence domains of the processors. The matching of the
velocity values between neighbouring blocks is obtained solving a system of in-
terpolation equations at each block interfaces through a parallelized BiCGSTAB
algorithm. Otherwise, a whole pseudo-pressure system is solved in parallel con-
sidering the Pressure Poisson equations of the fluid particles of all the blocks
and the interpolation equations of all the block interfaces.

The employed test cases show the strong reduction of the computational
efforts of the SPH method thanks to the interaction of the employed multi-
resolution approach and the proposed parallel algorithms.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is a mesh-less Lagrangian particle
method originally developed by Gingold and Monaghan (1977) and Lucy (1977)
to deal with astrophysical problems. Thanks to its remarkable flexibility, the
SPH method is nowadays widely applied in many engineering applications to
solve situations where grid-based methods have difficulties such as geometri-
cally complex domains, moving boundaries, multi-phase flows (Liu and Liu,
2010; Monaghan, 2012) and fluid-structure interaction problems (Antoci et al.,
2007; Liu and Zhang, 2019; Monteleone et al., 2022). However, it is commonly
recognized that SPH is computationally more expensive than Eulerian methods.
A very promising approach is to leverage the advantages of both methods by
coupling the larger computational efficiency of grid-based approaches with the
flexibility of SPH (Napoli et al., 2016; Chiron et al., 2018; Wang et al., 2021;
Huang et al., 2022). To this aim, Eulerian methods (such as Finite Volumes or
Finite Elements) can be applied in some portions of the computational domain,
limiting the use SPH in regions where deeper weaknesses are found in grid-based
methods.

Differently, this work aims to overcome the high computational cost of SPH
by combining refinement strategies with parallel computing techniques on Cen-
tral Processor Units (CPUs). In order to avoid prohibitive computational times,
the use of multiple CPU and/or Graphical Processor Unit (GPU) architectures is
a suitable and widespread strategy. In the field of parallel computing on CPUs,
the Message Passing Interface (MPI) paradigm is widely used as communicator
between partitions in distributed-memory architectures. The subdivision of the
load-work among the CPUs (the so-called domain distribution process) is usu-
ally based on a spatial decomposition of the computational domain (De Marchis
and Milici, 2016; Milici and De Marchis, 2016). Due to the Lagrangian mesh-less
feature of the SPH method, with particles moving with the fluid velocity, the
domain distribution is not trivial. Moreover, parallelization algorithms must
dynamically handle particles leaving or entering the portion of the domain as-
signed to each processor. In order to obtain a well-balanced load, the total
number of fluid particles should be thus distributed fairly among the processors
and the CPU inter-communications should be minimized.

These difficulties in the parallelization of SPH codes are common for the
two schemes employable to solve the governing equations for incompressible
fluid flows with SPH: the weakly compressible (WCSPH) (Monaghan, 1992)
and the truly incompressible (ISPH) (Lind et al., 2012) approaches.

With reference to the WCSPH scheme, where the governing equations are
solved introducing a thermodynamic equation of state to relate pressure and
density, some CPU-based parallelizing strategies have been proposed in the
past. Ferrari et al. (2009) presented a parallelized SPH scheme using the
MPI paradigm with a dynamic load balancing procedure for simulating three-
dimensional non-hydrostatic free-surface flows. Marrone et al. (2012) developed
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a hybrid MPI-OpenMP programming SPH model to analyse 3D wave patterns
generated by a ship. Specifically, they adopted a parallelization scheme which
combines a domain decomposition, performed on distributed-memory architec-
tures through MPI, and a data decomposition, implemented on shared-memory
architectures through OpenMP directives. Oger et al. (2016) proposed a dy-
namic load balancing algorithm helpful to simulate fragmented fluid domains
(e.g. drops and jet breakup), following a modified Orthogonal Recursive Bi-
section (ORB) method based on a sampled distribution of the particles in each
direction. Moreover, there have been successful parallelization schemes of WC-
SPH on the emerging GPU-based parallelization, such as the open-source Du-
alSPHysics code (Crespo et al., 2015; Domı́nguez et al., 2013). In this context,
unconventional algorithms were proposed and integrated in the parallelized ver-
sion of the code, related to the treatment of open boundary conditions (Tafuni
et al., 2018) and neighbour list searching (Winkler et al., 2018). Zhan et al.
(2019) developed a GPU-accelerated coupled total Lagrangian and WCSPH ap-
proach for the modelling of fluid-structure interaction problems.

When the ISPH approach is considered, the parallel computing implemen-
tation is even more challenging, due to the difficulty in parallelizing the Pres-
sure Poisson Equations (PPEs). The parallelization procedure of PPE should
be carefully and efficiently implemented, as the PPE system solution absorbs
most of the computational time. Furthermore, since the particle connectiv-
ity is constantly changing with the evolution of the flow, the sparse coefficient
matrix of the PPE system changes at each time step, increasing the computa-
tional complexity and execution time. In the framework of the ISPH approach,
Guo et al. (2018) proposed a massively parallel scheme to simulate free-surface
flows, involving more than 100 million particles, based on MPI libraries. A
very promising ISPH parallelization using GPU threads was proposed by Chow
et al. (2018) within the DualSPHysics code. Recently, O’connor et al. (2021)
proposed a parallelized strategy of the incompressible Eulerian SPH on multi-
GPU. In this approach, the PPE is treated implicitly and, as a results of the
Eulerian formulation, the particles are fixed within the domain.

The complexity in the parallelization of SPH is increased when variable
refinement strategies are employed to save computational costs. These strategies
are mostly based on the use of variable particle mass in different regions of
the domain, adapting their dimension (and, accordingly, their mutual distance
and number) to the local requirements. In this way, large numbers of smaller
particles are employed where a higher refinement is required, while maintaining
an acceptably lower number of particles elsewhere. In these approaches, splitting
and coalescing techniques are required for the particles, due to their dimensional
changes as they move towards regions with different refinement (Vacondio et al.,
2013; Spreng et al., 2014; Barcarolo et al., 2014; Vacondio et al., 2016; Hu et al.,
2017). A preliminary multi-GPU implementation of adaptive particle splitting
and merging to adjust local resolution was proposed by Xiong et al. (2013).

A very different refinement procedure, based on a multi-domain approach,
was proposed by Monteleone et al. (2018). In this approach, the domain is
partitioned into non-overlapping blocks (or subdomains), each characterised by
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a different refinement. The blocks are separated by interfaces (named block
interfaces), where suitable procedures allow to obtain the matching of the so-
lution between neighbouring blocks, thus satisfying the continuity constraint
while particles transfer from one block to another. The classical SPH method
is thus maintained in each block, without the need of splitting and coalescing
methods to take into account the different mass of the particles going through
the interfaces. The multi-domain technique, developed in the framework of the
ISPH scheme, has been implemented in the open-source PANORMUS (PAr-
allel Numerical Open-souRce Model for Unsteady flow Simulations) package,
distributed under the terms of the GNU General Public License. In such multi-
domain approach, the implementation of parallel computing techniques becomes
extremely complex, due to the difficulty to balance among the processors the
distribution of particles belonging to different blocks, and to handle the relative
data exchanges. Further difficulties arise when the block interfaces are shared
among different partitions.

The afore-mentioned issues are addressed in this paper, where a parallel
multi-domain ISPH scheme on multiple CPUs is proposed by exploiting of the
MPI libraries. The proposed parallelization procedure is implemented in the
PANORMUS code. Although the technique is implemented in the framework
of the multi-domain SPH approach of Monteleone et al. (2018), it can be directly
applied with no modification for the ”classical” ISPH method with constant res-
olution, where only a single-domain is considered.

2. The numerical method

2.1. Fundamentals of the SPH method

The SPH method is based on the approximation of a function f at point x
using the convolution product of f with a kernel function W

⟨f(x)⟩ =
∫
D

f(x′)W (x− x′, h)dx′ (1)

where D is the computational domain and h is a characteristic width of W ,
called smoothing length. The employed kernel functions have compact support,
assuming null values for distances |x−x′| larger than kh, where k is a constant
depending on the shape of the specified kernel function. In this paper theWend-
land function (Wendland, 1995) is used, where the proportionality constant k
is equal to 2.

In the particle approximation, the fluid domain is represented by a finite
number of effective particles which, while moving in compliance with the Navier-
Stokes equations, carry fluid properties such as position, mass, velocity, pressure,
etc.. Each particle i is associated with a support domain Ωi, defined by a sphere
of radius kh with center at the particle position xi. In the discretized form,
the convolution integral in eqn. (1) for particle i can be approximated as the
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summation over the Ni particles belonging to the domain Ωi

fi =

Ni∑
j=1

mj

ρj
f(xj) Wij (2)

where fi ≈ ⟨f(xi)⟩, mj and ρj are the mass and density, respectively, of the
neighbouring particle j, and Wij = W (xi − xj , h) depends on the distance dij
between particles i and j.

A reference isotropic initial particle distance ∆x is commonly assigned as
proportional to kh; in this paper ∆x is set equal to kh/2.

The first derivatives of f can be obtained with the derivative of the kernel
function, and the Laplacian operator can be expressed by the Morris’ formula
(Morris et al., 1997).

In order to identify the list of neighbouring particles, a Cartesian virtual grid
made of cubic cells of side length equal to kh is employed, which simplifies the
particle search.

Several modifications of the above formulae are commonly used to improve
the accuracy of computation, in order to overcome problems related to irreg-
ularity in the particles distribution (see among others Oger et al. (2007); Xu
et al. (2009); Napoli et al. (2015)).

2.2. Boundary treatment

In order to account for the truncation of the support domain occurring at
the solid walls and to impose suitable boundary conditions, the mirror particle
technique was used. This procedure, which is described in detail among others
by Napoli et al. (2015), relies on the generation of virtual particles through the
mirroring, with respect to the solid walls, of the effective particles located at
distances not larger than kh from the boundaries.

A similar procedure is employed at the inlet and outlet sections, where ad-
ditional particles are introduced to impose the required pressure and velocity
boundary conditions. The procedure is described in detail in Monteleone et al.
(2017).

2.3. Truly incompressible SPH (ISPH) methodology

In order to solve the momentum and continuity equations for incompress-
ible flows using an ISPH algorithm, a fractional-step procedure (Kim and Moin,
1985; Chorin, 1968) is used, which estimates the updated velocity as the sum
of the non-solenoidal intermediate velocity and the corrective velocity. In the
predictor-step, the intermediate velocity is calculated by removing the pressure
gradient term from the momentum equations. This velocity is not divergence-
free, since the continuity equation is not solved. In order to obtain the cor-
rective velocity field, which is irrotational (with potential ψ∆t), the Pressure
Poisson equations (PPE) are then solved obtaining the pseudo-pressure ψ. In
the corrector-step, the corrective velocity can be obtained as ∇ψ∆t. Particles
are thus moved at the end of each time step, using the calculated velocity field.
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For a detailed description of the ISPH procedure used in the PANORMUS code,
see (Napoli et al., 2015; Monteleone et al., 2017).

In this paper, in order to overcome the well-known tensile instability problem
(Swegle et al., 1995), the algorithm proposed by Xu et al. (2009) is adopted.
This involves shifting slightly the particles across streamlines, in order to avoid
their stretching and bunching.

2.4. The Multi-domain procedure

In this section, a brief description about the multi-domain procedure is pro-
vided. For more details see Monteleone et al. (2018).

2.4.1. Domain decomposition

In the multi-domain approach proposed by Monteleone et al. (2018), the
computational domain is partitioned into a set of confining blocks which are
adjacent to each other, without overlapping regions. The surfaces of separation,
named block interfaces, can be plane or curved and are discretized into triangles,
in order to easily identify the interface normal directions.

Each block Bn has a smoothing length hn which is maintained constant, thus
allowing to employ the classical SPH formulation, whilst the smoothing length
can vary from one block to another.

The total number of effective particles of the whole computational domain,
Ne,tot, is the sum of the numbers Ne,Bn

of the effective particles of each block
Bn

Ne,tot =

NB∑
n=1

Ne,Bn

where NB is the total number of blocks.
Virtual particles, named interface particles (IP ), are added at the block

interfaces to match the solution between neighbouring blocks and to restore the
continuity of the support domains truncated by the interfaces. Specifically, each
effective particle belonging to the generic block Bn which has distance shorter
than the starting particle distance of the block, ∆xn, from one block interface
generates a number of m interface particles at distances ∆xn, ...,m∆xn in the
direction normal to the interface. The number m of interface particles to be
generated is selected in order to reach the contour of the support domain of
the generating effective particle. As a consequence, when employing the ratio
kh/∆x = 2, only two IPs are generated (thus m = 2). The IPs generated by
one block are contained in the domain of the neighbouring block.

The block interfaces are treated as inflow and/or outflow sections for the
particles going through them: when an effective particle leaves its own subdo-
main crossing a block interface, it is simply deactivated and thus removed from
further calculations (outflow); on the other hand, a specific procedure based on
the search of void spaces is employed to release new particles when the block
interface acts as an inflow (see Fig. 6 of Monteleone et al. (2018)).
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2.4.2. Solution matching

Considering two blocks, indicated as block 1 (with smoothing length h1) and
block 2 (with h2), the hydrodynamic variables of the IP particles generated by
block 1 are obtained through interpolation procedures starting from the effective
particles of the neighbouring block 2 in which the IP particles are contained.
Specifically, the generic f hydrodynamic variable for a IP particle generated by
block 1 is obtained using a Taylor series expansion around the closest effective
particle of the neighbouring block 2. Vice versa, when considering the IP
generated by block 2, the Taylor series expansion is performed around the closest
effective particle of the neighbouring block 1. Therefore, a system for each
variable must be solved at each block interface, containing one interpolation
equation for each IP particle generated by the two neighbouring blocks through
the interface. In the ISPH approach, the system must be solved for both the
intermediate and corrected velocities. In these systems, the effective particle
velocities are known and only the IP are unknown. For vectorial variables such
as velocity, the same coefficient matrix is considered for each component, while
updating the equation right-hand-side only. The velocity system is solved after
calculating the effective particle values.

In the case of the ψ values, due to the elliptic nature of the Poisson’s equa-
tions, the IP interpolation equations need to be solved simultaneously with the
PPEs. A unique equation system is thus solved obtained by associating the sin-
gle PPE sub-systems of each block (made of Ne,Bn equations, for a total value
of Ne,tot equations) and the NIP,tot interpolation equations of the whole set of
existing interfaces.

As the coefficient matrices are sparse, only the non-null terms of the velocity
and PPE systems are saved, using the Compressed Row Storage (CRS) format
(Bisseling, 2004). The nonsymmetric linear systems of equations are solved
through the iterative BiConjugate Gradient STABilized (BiCGSTAB) method
(Van der Vorst, 1992), using a preconditioning algorithm (Saad, 2003).

The BiCGSTAB method for the linear system Ax = b is described in Algo-
rithm 1. The method relies on matrix-vector multiplications in the initializing
step (line 2 of Algorithm 1) and at each BiCGSTAB j iteration (lines 11, 12,
15, 16 and 19). Moreover, several scalar products are performed during the
iterative solution, to calculate the coefficients ρj (line 8), αj (line 13), ωj (line
17) and the residual RSQ (line 20). The cycle at line 7 is performed until the
relative residual for the computed solution approximation xj reduces below an
upper bound tolerance (RSQ < tol), or the number of iterations exceeds an
imposed maximum bound (j > itermax). In lines 11 and 15, K is a precondi-
tioning matrix obtained by using the incomplete LU factorization discussed in
Saad (2003) (K = LU, with L and U the lower and upper triangular matrices,
respectively).
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Algorithm 1 Algorithmic description of the preconditioned BiCGSTAB

1: x0 = 0 or any other initial guess
2: r0 = b−Ax0 initial residual
3: Choose r∗0 such that (r∗0, r0) ̸= 0, e.g. r∗0 = r0
4: ρ0 = α0 = ω0 = 1
5: v0 = p0 = 0
6: j = 1
7: while (RSQ > tol and j < itermax) do
8: ρj = (r∗0, rj−1)

9: β =
(

ρj

ρj−1

)(
αj−1

ωj−1

)
10: pj = rj−1 + β (ρj−1 − ωj−1 vj−1)

11: y = K−1pj (through y′ = L−1pj and y = U−1y′)
12: vj = Ay
13: αj =

ρj

(r∗0 ,vj)
14: s = rj−1 − αjvj

15: z = K−1s (through z′ = L−1s and z = U−1z′)
16: t = Az
17: ωj =

(t,s)
(t,t)

18: xj = xj−1 + αj y+ ωj z
19: res = b−Axj

20: RSQ = (res, res)
21: rj = s− ωj t
22: j = j + 1
23: end while

3. Parallelization scheme

3.1. Domain distribution

In order to speed up the SPH simulations, in the parallel computation, the
particles are distributed among the available processors. Since the particles
move throughout the domain, the list of neighbor particles must be updated at
each time step, using the Cartesian virtual grid discussed in §2.1.

The same virtual grid is used in the single-domain approach to suitably
subdivide the domain among processors in the initialization step of parallel
computation. Specifically, the grid cells are distributed among the Nprocs pro-
cessors, to allot to each of them a number of effective particles close to the
theoretical value Nt = Ne/Nprocs. All the particles in one cell of the grid are
assigned to the same processor. This distribution algorithm allows to limit the
difference between the number of particles assigned to the id processor and the
theoretical value of Nt below the average number of particles inside one cell (in
3D approximations, when using the ratio kh/∆x = 2, Nt is equal to 8 ).

In the multi-domain approach, the total number of particles Ne,tot must be
distributed among different processors. Due to the variable smoothing length,
a different virtual grid is used for each block Bn, and then the grid cells of
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the different blocks are distributed among the processors. As a result, each
block can be entirely assigned to one processor, or shared between one or more
of them. Therefore, the block interfaces can be internal to one processor, or
divided between two or more processors. For clarity, the different cases which
may occur are explicatively summarised in Fig. 1. In particular, four blocks
(with their own khn) with three block interfaces (indicated as bold black lines)
are considered for the description of the distribution among three processors
(with indices between 0 and 2). In this case, processor 0 takes part of block
1, processor 1 takes the remaining part of block 1 and a portion of block 2,
processor 2 takes the remaining fraction of block 2 and the whole blocks 3
and 4. Thus, the interface between blocks 1 and 2 coincides with the domain
separation surfaces (parallel interfaces) between processors 0 and 1 (line AB in
the figure), processors 0 and 2 (line BC), processors 1 and 2 (line CD). Hence,
this interface is shared between three different processors. The interface between
blocks 2 and 3 partly coincides with the parallel interface between processors 1
and 2 (line EF ) and partly is internal to processor 2 (line FG). The interface
between blocks 3 and 4 is entirely contained in the domain of competence of
processor 2.

Correspondingly, the parallel interface between processors 0 and 1 is partially
internal to block 1 (line CH), while the remaining part (AB) coincides with the
interface between blocks 1 and 2, as described above. A similar condition occurs
for the parallel interface between processors 1 and 2, which is partially internal
to block 2 (line BF ) and partially separating blocks 1 and 2 (line CD) and
blocks 2 and 3 (line EF ).

Notice that, the domain of the generic processor id can neighbor the domain
of any other processor whose parallel interface coincides with the block interface
of one block of the processor id itself (e.g., processor 0 neighbors to processor 2,
through the parallel interface BC separating blocks 1 and 2). On the other hand,
when the parallel interface is internal to one block (e.g., line CH), the domain
of processor id only neighbors that of id − 1 or id + 1 (in the considered case,
the domain of processor 0 neighbors that of processor 1), which in the reminder
of this paper will be indicated as left and right processors, respectively.

Since the virtual grid does not change during the simulations, the spatial
domain assigned to each processor is fixed in time, although the particles inside
them continuously change, switching from one processor to another. As it will
be discussed in §3.3, specific procedures have been implemented to address the
moving particles to the appropriate processor.

The procedure for balancing the load between processors is automatic and
already implemented in the PANORMUS code.

3.2. Particle data sharing within one block

When one block is shared between two or more processors (e.g. block 1
shared between processors 0 and 1 in Fig. 1), the communication of data rel-
ative to the particles neighbouring the processor parallel interface (line CH in
Fig. 1) must be handled. The same situation, obviously, occurs in parallel
single-domain computation, where only one block exists, distributed among the
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Figure 1: NB = 4, Nprocs = 3. Red lines: parallel interfaces; bold black lines: block interfaces.
Light gray: domain of the processor 0; gray: domain of the processor 1; dark gray: domain of
the processor 2.

available processors. Specifically, each MPI process needs to receive from the
left and/or right processors the data of the particles falling within the interac-
tion distance khn from the parallel interface. In the example considered in Fig.
1, the block 1 with smoothing length h1 is partitioned between processors 0 and
1, through the parallel interface CH (this is entirely contained inside block 1).
Therefore, processor 0 needs to receive the data of the particles belonging to the
domain of processor 1 and having a distance less than kh1 from the interface
CH. Similarly, processor 1 needs to receive the data about the neighbouring
particles in processor 0.

Fig. 2 shows an enlargement of the block 1 virtual grid (having cells of length
kh1) and the particle distribution of processor 0 near the CH parallel interface.
Referring to the case represented in the figure, processor 0 receives from the right
processor (processor 1) the data relative to the particles inside a layer of cells
neighbouring its own competence domain (red particles in Fig. 2), which are
required to complete the support domain of the effective particles of processor
0, close to the parallel interface (e.g., the particle A, whose support domain is
highlighted in the figure). At the same time, processor 0 feeds processor 1 the
data relative to the particles falling into the cells of its own domain, neighbouring
to the parallel interface (full black circles in the figure). The data are thus shared
between the processors 0 and 1 using the MPI function MPI SENDRECEIVE.

At each time step, the required information relative to a parallel interface
contained within one block to be shared between the processors, include:
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ΩA

A
kh1

kh1 C

H

Figure 2: 2D Sketch of the domain competence of processor 0 in the vicinity of parallel
interface CH. Bold red line: parallel interface; empty black circles: particles of processor 0
far away from the parallel interface; full black circles: particles of processor 0 to be sent to the
right processor; full red circles: particles of processor 1, required by processor 0 to complete
the support domain of its own particles; dotted circle: support domain of particle A.

• particle positions and velocities before the predictor-step;

• particle intermediate velocities after the predictor-step;

• pseudo-pressure ψ values during the PPE system solution;

• particle corrected velocities after the corrector-step.

3.3. Management of the particle leaving/entering one processor domain

As discussed above, due to the Lagrangian nature of the SPH method, par-
ticles transit through the processor domains. Thus, the leaving and entering
of particles from and to the processor domain of competence have to be dealt
with.

To this aim, at the end of each time step, the processors check if some
particles have left their own domain by crossing the parallel interfaces. If the
exit parallel interface is also a block interface (e.g., lineAB in Fig. 1), the leaving
particle is simply deactivated as in the serial case described in §2.4. Otherwise,
if the particle leaves the processor domain remaining in the current block (when
this is shared between two or more processors), the information relative to
the particle (position, velocity, acceleration, pseudo-pressure, etc.) are fed to
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Figure 3: 2D Sketch of the particle leaving/entering the domain competence of one processor.
Bold red line: parallel interface; full black circles: particles belonging to the domain of com-
petence of the processor; full blue circles: new particles received from the neighbor processor.
The particles deactivated at the (r + 1)-th time step are indicated with a cross.

the processor owning the cell occupied by the particle after its displacement.
Then, the particle is deactivated from the list of those of the processor releasing
the particle and added to the list of the receiving processor. This process is
represented in Fig. 3, where a portion of the domain of competence of the
generic processor id, in the proximity of the parallel interface (bold red line)
internal to one block, is shown at time instants r (Fig. 3a) and r + 1 (Fig.
3b). The particles A, B and C, which at time r belong to the processor id, at
r + 1 cross the interface and enter the domain of the neighbouring processor,
designated as id+1. Processor id, thus, deactivates these particles, after having
sent their values to the processor id + 1. Correspondingly, particles P and Q
(blue circles in the figure), which enter the domain of processor id from processor
id+ 1, are deactivated by processor id+ 1, after having been sent to id.

3.4. Parallel treatment of block interfaces

The matching of the hydrodynamic variables, velocities and pressure fields,
at the block interfaces (discussed in §2.4.2) requires specific attention in the
parallelization procedure. The treatment of the velocities at the block interfaces
is different from that of the pressure.

When considering velocities, in fact, the system of the interpolation equa-
tions is solved independently at each interface, while for the pseudo-pressure ψ
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the interpolation equations for all block interfaces must be introduced in one
single system, to be solved together with the PPEs.

For the velocities, thus, when one block interface is entirely within the com-
petence domain of one processor (indicated as case 1 in the following), that
processor can directly apply the procedure described in §2.4.2. An example of
case 1 is the interface between blocks 3 and 4 in Fig. 1. On the other hand,
when the block interface is (entirely or partially) shared between two or more
processors, and therefore the parallel interface coincides with the block interface
(case 2), the information required to solve the velocity field matching system
must be exchanged among the involved processors.

For the pseudo-pressure, since all the block interfaces are treated simultane-
ously, case 1 never occurs and data exchanges between the processors are always
necessary during the solution (case 2).

It is useful to highlight that when one block interface is also a parallel inter-
face, in order to identify the data to be shared in case 2, the interface particles
generated by one processor are handled by this even if they are included in the
competence domain of the neighbouring processor. Nevertheless, the interpola-
tion equations to obtain the variables relative to these particles can be written
and solved only by the neighbouring processor, which contains the effective par-
ticles of the neighbouring block. The scheme shown in Fig. 4 is used to clarify
this point, where blocks 1 and 2 are represented and the interface particle P is
highlighted. For the sake of representation, only four layers of effective parti-
cles are represented for block 1 (small black circles) and three layers of effective
particle are represented for block 2 (large black circles). As discussed in §2.4.1,
the number of layers of virtual particles (indicated as large and small empty
circles for block 1 and 2, respectively) account for the truncation of the support
domain at the interface and, for the selected values of k, h and ∆x, is equal to
2.

Specifically, the interface particle P lies in the right processor, although it
was generated by the effective particle A of block 1 of the left processor. Obvi-
ously, the P particle is surrounded by particles of block 2. These surrounding
particles, due to the coincidence between the block interface and the parallel in-
terface, are effective particles of the right processor domain (large full circles in
Fig. 4) and interface particles lying in the left processor domain (large empty
circles). The interpolation equation for P is written by the right processor,
which is able to identify the closest effective particle (indicated as R in Fig. 4)
of block 2 and to perform the summation relative to the surrounding effective
particles (particles inside the dashed circles with radius kh2) in the Taylor series
expansion. The right processor, nevertheless, must receive from the left proces-
sor the data relative to the P particle position (which depends on the position
of the generating particle A) and to the velocities of the interface particles gen-
erated by block 2 (belonging to the left processor domain and indicated with
large empty gray circles in Fig. 4). Simultaneously, the left processor receives
from the right one the corresponding data.

Since each processor could, in principle, be sharing block interfaces with all
the other processors, the data indicated before are scattered to all processors
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1Δx 2Δx

Block 1 Block 2

P

R kh2 

right processorleft processor

block/parallel
interface

A

Figure 4: 2D Sketch of neighbouring blocks distributed between two processors. Bold black
line: block interface; red lines: parallel interface; smaller full and empty circles: effective and
interface particles of block 1; larger full and empty circles: effective and interface particles of
block 2; black circles: particles belonging to the domain of competence of the left processor;
gray circles: particles belonging to the domain of competence of the right processor.

using the function MPI ALLTOALLV, which allows a varying count of data
from each process. As a consequence, the data part of the message referring to
processor pairs not sharing any block interface would remain empty.

The velocity system for each block interface, as in the serial case, is made of a
number of equations equal to the total number of interface particles generated by
the blocks that are separated by the interface. These equations are distributed
among the processors sharing the interface. Each of these processors, in fact,
after having received the above information thorough the MPI ALLTOALLV
function, is able to write n1 equations relative to the velocities of the interface
particles generated inside its competence domain (e.g. particle P Fig. 4). In
these equations, the unknowns are n1 velocity values of the interface particles
for which the equations are written, plus the NIP velocities of the interface par-
ticles generated by effective particles lying in the processor competence domain.
The system coefficient matrix is thus distributed among the processors, each of
which containing n1 rows relative to the interface particles generated inside its
competence domain. The length of the vector of unknowns x in each processor
is equal to n2, which is the sum of n1 and NIP .

The system is solved through the parallelized BiCGSTAB Algorithm 2, re-
quiring, during the iterative solution, several data exchanges among the proces-
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Algorithm 2 Algorithmic description of the Parallel BiCGSTAB

1: call MPI ALLTOALLV : Send x0 (1:n1) / Receive x0 (n1+1:n2)

2: r0 (1:n1) = b(1:n1) −Ax0(1:n2)

3: Choose r∗0 such that (r∗0, r0) ̸= 0, e.g. r∗0 = r0
4: ρ0 = α0 = ω0 = 1
5: v0 = p0 = 0
6: j = 1
7: while (RSQ > tol and j < itermax) do
8: ρj,proc = (r∗0 (1:n1)

, rj−1 (1:n1))

9: call MPI ALLREDUCE : ρj =
∑Nprocs

proc=1 ρj,proc

10: β =
(

ρj

ρj−1

)(
αj−1

ωj−1

)
11: pj (1:n1) = rj−1 (1:n1) + β

[
(ρj−1 − ωj−1 vj−1 (1:n1)

]
12: y(1:n1) = K−1pj (1:n1) (through y′ = L−1pj and y = U−1y′)
13: call MPI ALLTOALLV : Send y(1:n1) / Receive y(n1+1:n2)

14: vj (1:n1) = Ay(1:n2)

15: α∗
j,proc = (r∗0 (1:n1)

,vj (1:n1))

16: call MPI ALLREDUCE : α∗
j =

∑Nprocs

proc=1 α
∗
j,proc

17: αj =
ρj

(α∗
j )

18: s(1:n1) = rj−1 (1:n1) − αjvj (1:n1)

19: z(1:n1) = K−1s(1:n1) (solving z′ = L−1s and z = U−1z′)
20: call MPI ALLTOALLV : Send z(1:n1) / Receive z(n1+1:n2)

21: t(1:n1) = Az(1:n2)

22: ω∗
j,proc = (t(1:n1), s(1:n1))

23: call MPI ALLREDUCE : ω∗
j =

∑Nprocs

proc=1 ω
∗
j,proc

24: ω∗∗
j,proc = (t(1:n1), t(1:n1))

25: call MPI ALLREDUCE : ω∗∗
j =

∑Nprocs

proc=1 ω
∗∗
j,proc

26: ωj =
ω∗

j

ω∗∗
j

27: xj (1:n2) = xj−1 (1:n2) + αj y(1:n2) + ωj z(1:n2)

28: res(1:n1) = b(1:n1) −Axj (1:n2)

29: RSQproc = (res(1:n1), res(1:n1))

30: call MPI ALLREDUCE : RSQ =
∑Nprocs

proc=1RSQproc

31: call MPI ALLTOALLV : Send x(1:n1) / Receive x(n1+1:n2)

32: rj (1:n1) = s(1:n1) − ωj t(1:n1)

33: j = j + 1
34: end while

sors sharing the block interface. Specifically, the matrix-vector multiplications at
lines 2, 14 and 21 of Algorithm 2 are performed after having received the values
relative to the interface particles generated by the effective particles belonging
to the domain of the processor. To this aim, the function MPI ALLTOALLV is
employed (lines 1, 13 and 20 of Algorithm 2), allowing each processor to store
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these information in the corresponding vectors (x0, y and z for lines 1, 13 and
20, respectively) from the position n1 + 1 up to n2. On the other hand, the
values of the interface particles for which the equations are written (data stored
in the vectors from the position 1 up to n1) must be sent to the processors
whose effective particles have generated them. In order to calculate the coeffi-
cients ρ, α, ω and the residual RSQ, each processor firstly performs the scalar
products relative to its portion of the system (lines 8 for ρ, 15 for α, 22 and
24 for ω and 29 for RSQ). The overall values are, consequently, obtained after
having summed the results of the single scalar products performed by all the
involved processors, using the function MPI ALLREDUCE (lines 9, 16, 23, 25
and 30). After solving the system, each processor sends the obtained velocities
of the interface particles to the processors from which these particles have been
generated.

As discussed before, the solution of the PPEs is partially different. In order
to obtain the pseudo-pressure ψ values, in fact, each processor writes a portion of
the unique global system made of the PPEs relative to its effective particles plus
the interpolation equations for the interface particles lying into its competence
domain. In this case, differently from the velocity system, the interface particles
generated through any block interface in the processor domain are considered.
In these equations the unknowns are the ψ values of: a) the effective and inter-

effective particles 
of the processor

interface particles 
lying in the processor 

domain

interface particles 
generated by effective 

particles of the processor

effective particles of the 
neighboring processors 

to be received

Figure 5: Sketch of the storing management of the variables in the vectors employed in the
BiCGSTAB algorithm.
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face particles in the processor domain for which the equations are written; b)
the interface particles generated by the effective particles of the processor and
belonging to other processor domains; c) the effective particles received from
the right and left processor through parallel interfaces not coinciding with block
interfaces. The (b) terms are required to complete the support domain for the
PPEs and interpolation equations of the particles of term (a), while the (c)
terms enter in the PPEs of the effective particles of the processor close to the
parallel interfaces, as explained in §3.2. A sketch of the storing management of
the variables in the vectors employed in the BiCGSTAB algorithm is shown in
Fig. 5.

As for solution of the velocity system, the parallel BiCGSTAB algorithm em-
ployed to solve the PPE system is made of matrix-vector multiplications which
are performed after having exchanged some information. Specifically, each pro-
cessor employs the function MPI ALLTOALLV to send the calculated values
of the interface particles lying into its domain of competence to the processors
owning the generating effective particles. Simultaneously, the processor receives
from other processors the values of the interface particles generated by its ef-
fective particles. Moreover, employing the function MPI SENDRECEIVE, each
processor sends and receives to/from the left and right processors the values
of the effective particles close to the parallel interfaces. As discussed for the
velocity system, the results of the scalar products performed by each processor
are then summed to the corresponding values calculated by the other processors
to obtain the parameters ρ, α and ω of the global system.

3.5. Flow chart of the parallelized code

An overall summary of the proposed parallelization scheme is shown in the
flow chart of Fig. 6. The actions, which are performed by each processor
with reference to the particles in the relative competence domain, are briefly
explained as follows:

• Action 1: The domain is decomposed into non-overlapping blocks (§2.4.1);

• Action 2: The domain is subdivided among the available processors and
the corresponding particles are distributed accordingly (§3.1);

• Action 3: The mirror and interface particles are generated (see §2.2 and
§2.4.1, respectively);

• Action 4: The positions of the interface particles are shared among the
involved processors (§3.4);

• Action 5: The positions and velocities of the effective particles close to
the parallel interfaces are sent to the neighbor (right and left) processors
(see §3.2);

• Action 6: The list of neighbor particles in the support domain of each
effective particle is built;
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• Action 7: The predictor-step is performed to calculate the intermediate
velocities;

• Action 8: The system of interpolation equations is solved at each block in-
terface by the involved processors employing the parallelized BiCGSTAB
method (Algorithm 2) to obtain the intermediate velocities of the interface
particles;

• Action 9: The intermediate velocities of the effective particles close to the
parallel interfaces are sent to the neighbor processors (similar to Action
5);

• Action 10: A global system is solved to obtain the pseudo-pressure val-
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Figure 6: Flow chart of the parallelized code.
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ues. For each processor the number of equations is equal to the sum of
the number of effective and interface particles lying into its competence
domain;

• Action 11: The pseudo-pressure values of the effective particles are shared
with the right and left processors;

• Action 12: The corrector-step is performed to obtain the updated veloc-
ities;

• Action 13: The positions of the effective particles are updated;

• Action 14: The effective particles leaving the processor competence do-
main through block interfaces are deactivated;

• Action 15: At the block interfaces new effective particles are generated
whenever required to maintain mass conservation;

• Action 16: The variables (position, velocity, pseudo-pressure, etc.) rela-
tive to the effective particles entering or leaving the domain of competence
of each processor through parallel interfaces are shared;

• Action 17: As in action 3, the mirror and interface particles are gener-
ated;

• Action 18: As in action 4, the updated positions of the interface particles
are shared among the involved processors;

• Action 19: As in action 5, the updated positions and velocities of the
effective particles are shared;

• Action 20: As in action 6, the list of neighbor particles in the support
domain of each effective particle is built;

• Action 21: Action 8 is repeated with reference to the corrected velocities
of the interface particles;

• Action 22: The shifting procedure of Xu et al. (2009) is performed.

After shifting the effective particle positions, the actions from 16 to 21 are
repeated. The time-marching procedure is then restarted from the predictor-
step (action 7).

4. Performance analysis and results

All the presented simulations were carried out on an AMD EPYC 7402 −
2.8 GHz processor with 2 sockets and 24 cores per sockets. Therefore, timing
analysis was performed up to 48 cores.

Moreover, Open MPI Fortran 90 wrapper compiler (mpif90 ) was used to
compile the code.
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Figure 7: Test case 1. Computational domain. L1 = L2 = 6 · 10−3 m, D = 1 · 10−3 m;
h1 = h2 = 2.5 · 10−5 m; N1 = N2 = 303 360.

4.1. Test case 1

The implemented parallel computing scheme was validated considering the
simple test case of steady-state flow in a circular pipe. The pipe, having diameter
D = 1 ·10−3 m and total length L = 12 ·10−3 m, was partitioned into 2 identical
blocks, as shown in Fig. 7. While the multi-domain procedure is based on the
employment of different values of the smoothing length, in this test case, the
same value was used (h1 = h2 = 2.5 · 10−5 m, corresponding to 20 particles
along the pipe radius) in order to make the scalability test independent on the
refinement level. The total number of effective and interface particles was equal
to Ne,tot = 606 720 and 5 625, respectively.

A stationary flow rate of 3.93 · 10−7 m3/s, corresponding to a mean velocity
of 0.5 m/s, was imposed at the inflow section of the first block, with Poiseuille
velocity profile. The resulting Reynolds number was Re = 500 (ν = 1.0 ·
10−6 m2/s) which is well within the laminar regime. Dirichlet and Neumann
boundary conditions for the pressure and velocity, respectively, were imposed at
the outflow section of the second block. Specifically, the pressure was set to zero
and null value was assigned to the velocity derivative as well. The multi-domain
interpolation procedure was applied at the block interface, which corresponds
to the outflow and inflow sections for the first and second blocks, respectively.

The computational time spent to advance the solution in time (actions from
7 to 22 of the flow chart represented in Fig. 6) was quantified employing different
numbers of processors, from Nprocs = 1 (serial mode) to the available number
of processors (Nprocs = 48). The results are shown in Fig. 8a, where the ideal
line corresponding to a linear scalability (dashed black line with −1 slope) is
plotted too, for comparison. As it can be observed, CPU wall-clock time (red
stars) is close to the ideal time (dashed black line) up to 8 processors. Further
increase in the number of processors determines a rise in the relative weight
of the communication time among processors, resulting in a loss of parallel
efficiency ε, calculated as

ε =
1

Nprocs

Ts
Tp

(3)

where Ts is the CPU wall-clock time of the code in serial mode, and Tp is the
CPU wall-clock time of the code in parallel mode executed by the number of
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Figure 8: Test case 1. a) Scalability test: time versus Nprocs. Dashed black line: ideal
scalability; red stars: CPU wall-clock time for each Nprocs value. Double logarithmic scale;
b) Parallel efficiency (ϵ) versus Nprocs. Dashed black line: ideal parallel efficiency.
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processors Nprocs. The diagram of in Fig. 8b indicates a progressive decay in
the parallel efficiency, that for 48 processors reduces to 43%.

A detailed evaluation of the CPU wall-clock time is provided in Fig. 9a where
sub-steps internal to one time step executed by the code are analysed individ-
ually. The greatest computational weight is associated with the solution of the
Pressure Poisson Equation (empty circles), which contains a number of equa-
tions equal to the sum of the effective (Ne,tot) and interface particles (NIP,tot).
This is followed by the step including neighbouring search, release/deactivate
particles, sharing effective and interface particle positions/velocities and shifting
procedure (full circles), the corrector step and particle positions update (empty
squares), the predictor step (full squares) and, finally, the velocity systems for
the interface particles (crosses).

It is interesting to highlight that, in this simple test case, the block interface
corresponds to a parallel interface (whatever the number of employed proces-
sors). Hence, only two processors solve the interface equations, in addition to
the Navier-Stokes equations relative to the effective particles. This is evident in
Fig. 9b where the time spent to solve the interpolation for the interface particle
velocities (cross markers) is halved going from 1 to 2 processors and it remains
constant when the number of processors growth. For example, for Nprocs = 4,
each processor is assigned 606 720/4 = 151680 particles and, in addition, the
second and third processors are also assigned 2 528 additional interface particles.
On the other hand, for Nprocs = 48, the number of effective particles of each
processor reduces to 606 720/48 = 12 640, while the number of interface parti-
cles (assigned to processors 23 and 24 which are neighbors to the block/parallel
interface) is again equal to 2 528, with a clear increase of the relative weight.
Obviously, the uneven distribution of interface particles negative effects both
the time for the solution of the systems for the velocities and pseudo-pressure
and for the generation and the sharing of the value of the interface particles.
This effect is partially responsible for the efficiency reduction observed in Fig.
8, which is also caused by the obvious increase in the relative weight of the
communication time among processors. Fig. 9b shows the parallel efficiency of
each step. Confirming the above, ε tends to zero when considering the veloc-
ity systems for the interface particles, while the global efficiency (red stars) is
heavily dependent on the global solution for pseudo-pressure (empty circles).

Further, an analysis of the parallel efficiency with the single-domain ap-
proach (Napoli et al., 2015) was performed and compared to that of the multi-
domain approach. The results, shown in Fig. 10, confirm that in the single-
domain (blue starts in Fig. 10) the parallel efficiency is higher than in the
multi-domain approach (red starts in Fig. 10). In fact, when only one domain
is considered no extra equations must be solved for the matching of the results
at the block-interfaces and the computational loads are uniformly distributed
among processors. On the contrary, in the multi-domain scheme, the load unbal-
ance resulting to the uneven distribution of the interface particles reduces the
parallel efficiency. However, in both cases, the parallel efficiency is affected by
the increase in the relative weight of the communication time among processors
occurring as the number of processors increases.
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Figure 9: Test case 1. Full squares: predictor step (action 7 of Fig. 6); crosses: system
for intermediate and corrected velocities at each block interface (actions 8 and 21); empty
circles: global system for pseudo-pressure (actions 10 and 11); empty squares: corrector step
and particle positions update (actions 12 and 13); full circles: creation of support domain,
release/deactivate particles and sharing effective/interface particle information (actions 14−
20) and shifting procedure (action 22); red stars: total time. a) Time versus Nprocs; b)
Parallel efficiency versus Nprocs.
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Figure 10: Test case 1. Parallel efficiency (ϵ) versus Nprocs. Dashed black line: ideal parallel
efficiency; red stars: multi-domain approach; blue stars: single-domain approach.

Velocity profiles did match the theoretical predictions.

4.2. Test case 2

In order to investigate the performance of the implemented parallel scheme
with the subdivision of the domains into blocks, the pipe of Test case 1 (having
diameter D = 1 · 10−3 m and total length L = 12 · 10−3 m) was considered
again. As shown in Fig. 11, here the pipe was partitioned in two coaxial blocks:
block 1 is a cylinder with diameter D1 = 0.6 · 10−3 m, block 2 is a hollow
cylinder with external and internal diameters equal to D and D1, respectively.
Therefore, the block interface coincides with the external lateral surface of block
1 and the internal lateral surface of block 2. The smoothing lengths imposed
at the two blocks are equal to that of §4.1 (h1 = h2 = 2.5 · 10−5 m) and thus
the total number of effective particles remains unchanged with respect to Test
case 1 (Ne,tot = 606 720). The total number of interface particles are equal to
NIP,tot = 144 960 corresponding to 24 % of the effective particles, fraction much
higher than that of Test case 2 where NIP,tot/Ne,tot = 0.4 %.

Boundary conditions and fluid properties are the same of §4.1.
Fig. 12a shows the scalability test. Although the number of particles is

the same of Test case 1, here the time spent is higher due to the larger ratio
interface/effective particles. However, the global parallel efficiency shown in Fig.
8b is quite similar to that of Test case 1 (Fig. 8b). Considering the maximum
number of processors employed (Nprocs = 48), ε = 46% for the present test case
and ε = 43% for Test case 1. In fact, due to the different domain subdivision,
the interface particles, albeit in greater numbers, are distributed between all the
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Figure 11: Test case 2. Computational domain. L = 12 · 10−3 m; D = 1 · 10−3 m; D1 =
0.6 · 10−3 m; s = 0.2 · 10−3 m; h1 = h2 = 2.5 · 10−5 m; N1 = 391 680; N2 = 215 040;
Ne,tot = 606 720.

processors. For example, employing Nprocs = 48, all the processors have 12 640
effective particles, the least loaded has 2 400 interface particles, whilst the most
loaded processor has 4 400 interface particles. Therefore, the non-uniformity in
loads is similar to that found in Test case 1 where only 2 processors handle the
interface particles.

A detailed analysis of the time spent for each step of the code is shown in Fig.
13. Differently from Test case 1, the time spent to solve the velocity systems
for the interface particles (cross markers in the figure) is not the lowest (in fact
it is higher than the time associated to the predictor step indicated with full
squares). Moreover, this time has a similar trend to that associated with the
other steps (on the contrary of Test case 1 where this time remained unchanged
with the increase of Nprocs, see Fig. 9).

4.3. Test case 3

A more complex test case, already presented in Monteleone et al. (2018),
was considered to show the performance of the proposed multi-domain parallel
computing scheme in a more relevant context. The domain, representing a
system of cerebral vessels with a giant aneurysm, was subdivided into 6 blocks
(see Fig. 14). The largest smoothing length of h4 = 1.25 · 10−4 m was imposed
for the aneurysm sac (block 4), which is 5 times larger than the minimum value
used for the smallest branch (block 6, with h6 = 0.25 · 10−4 m). At the inlet
section A, a pulsatile flow rate with Womersley velocity profile (Womersley,
1955) was imposed. A constant, uniformly distributed, pressure was set at the
three outflow sections (B, C and D in Fig. 14), and the multi-domain procedure
was applied at the five block interfaces. The employment of the multi-domain
procedure with the values of h indicated above allows to solve the problem
using 902 576 effective particles. A significant load reduction is thus obtained
with respect to the use of a single-domain approach with the smaller value of
h = 0.25 · 10−4 m, which would have resulted in a number of particles about 50
times larger.

25



1 2 4 8 16 32 48
1

5

10

20

50

100

(a)

12 4 8 16 32 48
0

0.25

0.5

0.75

1

(b)

Figure 12: Test case 2. a) Scalability test: time versus Nprocs. Dashed black line: ideal
scalability; red stars: CPU wall-clock time for each Nprocs value. Double logarithmic scale;
b) Parallel efficiency (ϵ) versus Nprocs. Dashed black line: ideal parallel efficiency.
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Figure 13: Test case 2. Time versus Nprocs. Full squares: predictor step (action 7 of Fig.
6); crosses: system for intermediate and corrected velocities at each block interface (actions 8
and 21); empty circles: global system for pseudo-pressure (actions 10 and 11); empty squares:
corrector step and update particle positions (actions 12 and 13); full circles: creation of sup-
port domain, release/deactivate particles and sharing effective/interface particle information
(actions 14− 20) and shifting procedure (action 22); red stars: total time.
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Outflow
section D

Figure 14: Test case 3. Multi-domain decomposition. h1 = 0.625 ·10−4 m, h2 = 0.75 ·10−4 m,
h3 = 0.375 ·10−4 m, h4 = 1.25 ·10−4 m, h5 = 0.5 ·10−4 m, h6 = 0.25 ·10−4 m. Bold red lines:
block interface contours.

An example of domain distribution with 8 MPI partitions is shown in Fig.
15, where the particles belonging to the domain competence of each processor
are highlighted with different colors. In order to show the different cases that
can occur in the multi-domain approach with several processors, the obtained
domain distribution is discussed in detail for the first three processors. The
first processor is allocated a portion of block 1 and, due to the distance from
the block interfaces, it does not handle any interface particle (Fig. 15.b). The
second processor is allocated the remaining portion of block 1, a fraction of
block 2, the whole first block interface, one side of the second block interface
separating blocks 2 and 3, and a portion of the third block interface separating
blocks 2 and 4 (Fig. 15.c). The third processor is allocated the remaining
portion of block 2, the whole block 3, a portion of block 4, one side of the
second block interface between blocks 2 and 3, and a portion of the third block
interface separating blocks 2 and 4 (Fig. 15.d). Similar conditions occur to the
remaining processors.

Table 1 shows the number of particles belonging to the domain competence
of each processor with reference to each block. The last two rows of the table
summarize the distribution of the total number of effective and interface par-
ticles (Ne,tot and NIP,tot, respectively). As it can be seen, a fair distribution
of the effective particles (Ne,tot/Nprocs = 902 576/8 ≈ 112 822) is employed,
resulting in an efficient load balancing among processors. The number of inter-
face particles changes according to the variable distance of the effective particles
from the block interfaces handled by each processor. The uneven distribution
of the interface particles, obviously, results in a relative loss of efficiency in the
parallelization algorithm when their number is a large fraction of that of the
effective particles. In this test case, where the number of interface particles
NIP,tot is about 3.3% of Ne,tot, the most loaded processor is the fourth (proces-
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Figure 15: Test case 3. a) Domain distribution. From b) to i): domain competence of the
processors, indicated with different colors. Bold black lines: block interfaces.

sor 3 in Table 1), having 9 158 interface particles. This is substantially larger
than the average number of 30 079/8 = 3 760. Summing this number to the
number of effective particles, a total of 112 823 + 9 158 = 121 981 is obtained,
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Block/Proc Proc 0 Proc 1 Proc 2 Proc 3

B1 : Ne = 145 375 112 825 32 550 − −
B2 : Ne = 140 376 − 80 273 60 103 −
B3 : Ne = 46 144 − − 46 144 −
B4 : Ne = 241 888 − − 6 571 112 823
B5 : Ne = 256 404 − − − −
B6 : Ne = 72 389 − − − −
Ne,tot = 902 576 112 825 112 823 112 818 112 823
NIP,Tot = 30 079 − 5 837 8 186 9 158

Block/Proc Proc 4 Proc 5 Proc 6 Proc 7

B1 : Ne = 145 375 − − − −
B2 : Ne = 140 376 − − − −
B3 : Ne = 46 144 − − − −
B4 : Ne = 241 888 112 826 9 668 − −
B5 : Ne = 256 404 − 103 153 112 823 40 428
B6 : Ne = 72 389 − − − 72 389

Ne,tot = 902 576 112 826 112 821 112 823 112 817
NIP,Tot = 30 079 531 1 496 3 886 985

Table 1: Test case 3. Number of particles for each processor with Nprocs = 8.

which is 4.6% larger than the number corresponding to the ideal distribution of
112 822 + 3 760.

Fig. 16 shows a comparison of the parallel simulation results (8 processors)
with the serial simulation so as confirm that the domain distribution does not
affect the estimated hydrodynamic fields. Specifically, the cross-section averaged
pressure determined at points P1 to P4 of the vessel centerline (Fig. 16.a) was
calculated. Point P1, belonging to the competence domain of processor 0, is close
to the parallel interface between processors 0 and 1, point P2 (inside the domain
competence of processor 2) is close to the block/parallel interface separating the
domain competence of processors 1 and 2, while point P2 of processor 5 and point
P4 of processor 7 are close to the fourth and fifth block interfaces, respectively.
As it can be seen from the Figs. 16.b-e, the results of the parallel simulation
are identical to those of the serial simulation.

The results of the performed scalability test are shown in Fig. 17. As dis-
cussed with reference to Test case 1 (§4.1) and 2 (§4.2), the load unbalance
related to the uneven distribution of the interface particles contributes to a
progressive decay of the efficiency of the parallelization procedure with the in-
crease of the number of processors. Moreover, in this complex test case, the
efficiency is also reduced due to the presence of five block interfaces whose inter-
polation equations for the velocities are solved separately for each interface, as
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Figure 16: Test case 3. Cross-section averaged pressure at points P1, P2, P3, P4 of the
vessel centerline. Bold red line: parallel simulation with Nprocs = 8; dashed black line: serial
simulation.

discussed in §3.4. Therefore, in order to improve the efficiency of the paralleliza-
tion scheme, the interface particle computational weight could be considered in
the domain distribution procedure. Nonetheless, the implemented paralleliza-
tion technique is quite satisfactory results in a major improvement of the overall
computational efficiency.
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Figure 17: Test case 3. a) Scalability test: time versus Nprocs. Dashed black line: ideal
scalability; red stars: CPU wall-clock time for each Nprocs value. Double logarithmic scale;
b) Parallel efficiency (ϵ) versus Nprocs. Dashed black line: ideal parallel efficiency.
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5. Conclusions

A parallel computing scheme for a multi-domain ISPH approach was im-
plemented. The combination of variable resolution and parallel computing ap-
proaches allows to greatly improve the computational efficiency of the SPH
method. The domain is firstly subdivided into non-overlapping blocks having
their own smoothing length values. Interface particles are then introduced, to
ensure seamless flow transition through block interfaces separating neighbour-
ing blocks. An automatic procedure for the domain distribution, based on the
assignment of the cells of a virtual grid, allows to efficiently distribute the compu-
tational load among the processors. The domain competence of each processor
is fixed in time, whilst the corresponding leaving/entering of particles is handled
at each time step. The processors can be assigned one or more whole blocks
and/or a portion of a block, as well as entire and/or portions of block interfaces.

A system is solved at each block interface for the intermediate and corrected
velocities, employing an efficient parallelized BiCGSTAB algorithm. On the
other hand, a whole system is built for the pseudo-pressure values, solving si-
multaneously the PPEs for the effective particles and the interpolation equations
for the interface particles.

The scalability tests, performed up to 48 processors, have confirmed the
good efficiency of the proposed parallel scheme. Moreover, future improvement
of the procedure should take into account the weight of the interface particles
while distributing the domain among the processors.

The proposed parallel scheme is general and applicable even when a single-
domain approach, consisting of a single block with a constant resolution, is
considered.

The approach is well suited for confined flows where the number of particles
in each cell of the virtual grid is, in the average, constant in time, due to
the continuity constraint. When considering free-surface flows, the number of
particles can change, as some cells which are empty in one time step could be
full in the next one. Consequently, for unconfined flows, the assignment of the
cells of the virtual grid should be dynamically updated to maintain a constant
in time workload among the involved processors. To this purpose, the balancing
algorithm could be set off whenever the most loaded processor has a number of
particles that exceeds the average per processor by a fixed threshold.
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