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Abstract
We study algorithms in the distributed message-passing model that produce secured output, for an
input graph G. Specifically, each vertex computes its part in the output, the entire output is correct,
but each vertex cannot discover the output of other vertices, with a certain probability. This is
motivated by high-performance processors that are embedded nowadays in a large variety of devices.
Furthermore, sensor networks were established to monitor physical areas for scientific research,
smart-cities control, and other purposes. In such situations, it no longer makes sense, and in many
cases it is not feasible, to leave the whole processing task to a single computer or even a group of
central computers. As the extensive research in the distributed algorithms field yielded efficient
decentralized algorithms for many classic problems, the discussion about the security of distributed
algorithms was somewhat neglected. Nevertheless, many protocols and algorithms were devised in
the research area of secure multi-party computation problem (MPC or SMC). However, the notions
and terminology of these protocols are quite different than in classic distributed algorithms. As
a consequence, the focus in those protocols was to work for every function f at the expense of
increasing the round complexity, or the necessity of several computational assumptions. In this
work, we present a novel approach, which rather than turning existing algorithms into secure ones,
identifies and develops those algorithms that are inherently secure (which means they do not require
any further constructions). This approach yields efficient secure algorithms for various locality
problems, such as coloring, network decomposition, forest decomposition, and a variety of additional
labeling problems. Remarkably, our approach does not require any hardness assumption, but only a
private randomness generator in each vertex. This is in contrast to previously known techniques in
this setting that are based on public-key encryption schemes.
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1 Introduction

Over the last few decades, computational devices get smaller and are embedded in a wide
variety of products. High-performance processors are embedded in smart phones, wearable
devices and smart home devices. Furthermore, sensor networks were established to monitor
physical areas for scientific research, smart-cities control and other purposes. In such
situations, it no longer makes sense, and in many cases it is not feasible, to leave the whole
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processing task to a single computer or even a group of central computers. In the distributed
algorithms research field, all the processors are employed to solve a problem together. The
basic assumption is that all the processors run the same program simultaneously. The
network topology is represented by a graph G = (V,E) where each processor (also referred
as node) is represented by a vertex, v ∈ V . Each communication line between a pair of
processors v, u ∈ V in the network is represented by an edge (v, u) ∈ E.

The time complexity of a distributed algorithm is measured by rounds. Each round
consists of three steps: (1) Each processor receives the messages that were sent by its
neighbors on the previous round. (2) Each processor performs a local computation. (3)
Each processor may send messages to its neighbors. The time complexity of distributed
algorithms is measured by the number of rounds necessary to complete an algorithm. Local
computations (that is, computations performed inside the nodes) are not taken into account
in the running time analysis in this model.

Despite the extensive research in the distributed algorithms field in the last decades, the
discussion about the security of distributed algorithms was somewhat neglected. Nevertheless,
many protocols and algorithms were devised in the research area of cryptography and network
security. The secure multi-party computation problem (MPC or SMC) is one of the main
problems in the cryptography research. However, the notions and terminology of these
protocols is quite different than in classic distributed algorithms. Moreover, most of these
protocols assume the network forms a complete graph. Additionally, the protocols have no
restriction on the amount of communication between the nodes.

In this work we devise secure distributed algorithms, in the sense that the output of
each processor is not revealed to others, even though the overall solution expressed by all
outputs is correct. Our notion of security is the following. Consider a problem where the
goal is assigning a label to each vertex or edge of the graph G = (V,E), out of a range
[t], for some positive t. A secure algorithm is required to compute a proper labeling, such
that for any vertex v ∈ V , (respectively edge e ∈ E) the other vertices in V (resp. edges in
E) are not aware of the label of v (resp. e). Moreover, other vertices or edges can guess
the label with probability at most 1/λ, for an appropriate parameter λ ≤ t. Note that this
requirement can be achieved if each participant v (resp. e) in the network computes a set of
labels {l1, l2, ..., lλ} (li ∈ [t]), such that any selection from its set forms a proper solution, no
matter which selections are made in the sets of other participants. For example, in a proper
coloring problem, if each vertex computes a set of colors (rather than just one color), and
the set is disjoint from the sets of all its neighbors, the goal is achieved. In this case each
participant draws a solution from its set of labels uniformly at random. The result is kept
secret by the participant, and thus others can guess it with probability at most 1/λ. Thus, if
the number of labels is small, the possibility of guessing a result of a vertex becomes quite
large, inevitably. As we will demonstrate later, one can artificially increase the amount of
labels to achieve smaller probabilities. However, when it is impossible to use a large number
of labels, other techniques can be taken into account (such as Parter and Yogev’s compiler
[20]). Nevertheless, our method is applicable to various distributed problems. Moreover,
the overhead caused by the privacy preserving is negligible as the round complexity of our
algorithms is similar to the best known (non privacy preserving) algorithms. A summary is
found in Table 1. The parameter λ is referred to as the solution domain in Table 1. The
ratio between t and λ is referred to as the contingency factor. These terms will be discussed
later in Chapter 3.
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Table 1 List of inherently secure algorithms and their privacy attributes.

Problem Type of Graph Rounds Complexity Solution Domain Size Contingency Factor

3∆-Coloring Oriented trees O(log∗ n) ∆ 3
2c ·∆ logn-Coloring General O(1) c · logn/2 O(∆)
O(∆2)-Coloring General log∗ n+O(1) ∆ O(∆)
p-Defective O

((
∆
p

)2)-Coloring General O(log∗ n) O
(

∆
p

)
O
(

∆
p

)
2a · c · logn-Coloring Bounded Arboricity a O(logn) O(logn)/2 O(a)

(O(logn), O(c · logn))- General O(log2 n) c > 1 O(logn)
Network Decomposition

∆-Forest Decomposition General O(1)
( ∆
|E(v)|

)
1

(2 + ε) · a-Forest Decomposition Bounded Arboricity a O(logn)
(((2+ε)·a)
|E(v)|

)
1

O(∆ logn)-Edge Coloring General O(1) c · logn O(∆)
O(∆2)-Edge Coloring General log∗ (n) +O(1) (2∆− 1) O(∆)
p-Defective O

((
∆
p

)2)-Edge Coloring General O(1) O
((

∆
p

)2) 1

(t ·
√

∆)-Edge Coloring of a General Õ(log ∆ + log3 logn) t
√

∆
Dominating Set

2 Background

2.1 Distributed Algorithms

Given a network of n processors (or nodes), consider a graph G = (V,E) such that V =
v1, v2, ..., vn is a set of vertices, each represents a processor. For each two vertices u, v ∈ V ,
there is an edge (u, v) ∈ E if and only if the two processors corresponding to the vertices
u, v have a communication link between them. A communication link may be unidirectional
or bidirectional, resulting in an undirected or a directed graph (respectively). Unless stated
otherwise, the graphs in this work are simple, undirected and unweighted.

Two vertices u, v ∈ V are independent if and only if (u, v) /∈ E. The neighbors set of
a vertex v ∈ V , Γ(v) consists of all the vertices in V that share a mutual edge with v in
E. Formally, Γ(v) = {u ∈ V |(u, v) ∈ E}. The degree of a vertex v ∈ V , deg(v) = |Γ(v)|.
Note that 0 ≤ deg(v) ≤ n− 1. The maximum degree of graph G, ∆(G), is the degree of the
vertex v ∈ V which has the maximum number of neighbors. If the graph G is directed, the
out (respectively, in) degree of vertex v ∈ V (degout(v) and resp. degin(v)) is the number of
edges (u, v) ∈ E (u ∈ V ) with orientation that goes out from (respectively, in to) vertex v.

Throughout this paper, LOCAL model will be used as the message-passing model. In
this model, each communication line can send at each round an unrestricted amount of bits.
It means that the primary measure is the number of rounds each node needs to “consult”
its neighborhood by sending messages. This is in contrast to CONGEST model, where the
bandwidth on each communication line on each cycle is bounded by O(logn).

A single bit can pass from one endpoint of the graph to the other endpoint in D(G)
rounds (where D(G) is the diameter of graph G). Thus, in the LOCAL model we usually
look for time complexity lower than O(D(G)) and even sub-logarithmic (in terms of |V |),
since all the nodes can learn the entire topology of the graph in O(D(G)) rounds and then
perform any computation on the entire graph. Consequently, the research in local distributed
algorithms is focused on solving those graph theory problems which have solutions that
depend on the local neighborhood of each vertex rather than the entire graph topology.

Most of the problems in graph theory may be classified into two types. The first type
is a bipartition of the graph (whether the vertices, the edges, or both) into two sets. For
some problems both of these sets are of interest, and for other problems only one of the sets,
while the other sets may be categorized as “all the rest”. Examples of such problems include
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Maximal Independent Set and Maximal Matching. The other type of problems partitions
the graph into several sets. This type of problems may be referred as “labeling” problems
where there is a set of valid labels and every part of the graph is labeled by a unique label.
Examples of such problems include Coloring and Network Decomposition.

In the following sections we will present some of the problems in the field of graph theory
which exploit the potential of distributed algorithms. While we discuss some of the main
bipartition problems, in our model for privacy preserving the labeling problems are more
relevant.

2.2 Graph Theory Problems

The definition of the problems is given here briefly, a detailed definition can be found in [5].

A function ϕ : V → [α] is a legal α-Coloring of graph G = (V,E) if and only if, for each
{v, u} ∈ E → ϕ(v) 6= ϕ(u). Similarly, a function ϕ : E → [α] is a valid α-edge coloring of
graph G = (V,E) i.f.f. for any vertex v ∈ V there are no two distinct vertices u,w ∈ Γ(v)
such that ϕ((v, u)) = ϕ((v, w)). While a deterministic construction of such (∆ + 1)-graph
coloring requires at least O(log∗ n) rounds [16]. A randomized (∆ + 1)-graph coloring can be
done in poly(log logn) rounds [22]. Graph coloring is of special interest due to its applications
in many resource management algorithms. In particular, certain resource allocation tasks
require a proper coloring (possibly of a power graph) and that each vertex knows its own
color, but not the colors of its neighbors. For example, this is the case in certain variants of
Time Division Multiple Access schemes.

A forest is a graph which contains no cycles. A forest decomposition of graph G = (V,E)
is an edge-disjoint partition of G, to α sub-graphs F1,F2, ...,Fα such that Fi is a forest for
every 1 ≤ i ≤ α. One way to define the arboricity of a graph G is as the minimal number of
forests which are enough to fully cover G.

Given a graph G = (V,E) and a vertex-disjoint partition of graph G = (V,E) to α
clusters C1, C2, ..., Cα, we define an auxiliary graph G = (V, E) such that V = {C1, C2, ..., Cα}
and (Cu, Cv) ∈ E (Cu, Cv ∈ V) iff ∃(u, v) ∈ E such that u ∈ Cu and v ∈ Cv. The partition
C1, C2, ..., Cα is a valid (d, c)-network decomposition [1] if (1) the chromatic number of G is
at most c and (2) the distance between each pair of vertices contained in the same cluster
v, u ∈ Ci is at most d. In strong network decomposition, the distance is measured with respect
to the cluster Ci (in other words, distCi(v, u) ≤ d). In weak network decomposition, the
distance is measured with respect to the original graph G (in other words, distG(v, u) ≤ d).
Different algorithms yield different kind of network decompositions which satisfy different
values of d and c. One of the most valuable decompositions, which presents good trade-off
between the radius of each cluster and the chromatic number of the auxiliary graph is an
(O(logn), O(logn)-network decomposition.

A set I ⊆ V of vertices is called an Independent Set (IS) if and only if for each pair of
vertices v, u ∈ I there is no edge (v, u) ∈ E. An independent set I is Maximal Independent
Set (MIS) i.f.f. there is no vertex v ∈ V \ I such that I ∪ {v} is a valid independent set.
Similarly, a set of edges M ∈ E is called a Matching i.f.f. there is no pair of vertices
u1, u2 ∈ V (u1 6= u2) such that ∃v ∈ V where {(u1, v), (u2, v)} ⊆ M . A matching M is
Maximal Matching (MM ) i.f.f. there is no edge e ∈ E \M such that M ∪ {e} is a valid
matching.
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2.3 Secure Multi-Party Computation

Multi-Party Computation (MPC ) is the ability of a party consisting of n participants to
compute a certain function f(x1, x2, ..., xn) where each participant i(1 ≤ i ≤ n) holds only
its own input xi. At the research fields of cryptography and networks security, Secure
MPC [23] protocols enables parties to compute a certain function f without revealing their
own input (xi). Our security model is information-theoretic secure, which means it is not
based on any computational assumptions. Furthermore, we base our security notion on the
semi-honest model (as was devised by [11]) which means that there are possibly curious
participants but no malicious adversary. In other words, adversary participant can not
deviate from the prescripted protocol. However, it may be curious, meaning it may run an
additional computation in order to find out private data of another participants. Permitting
the existence of malicious adversaries which may collude with t nodes will necessitate the
graph to be (2t+ 1)-connected for security to hold (as shown by [20]), which is not a feasible
constraint.

Previous works on secure-MPC ([23], [11]) do not state any assumptions on the nature of
neither the function f nor the interactions between the participants. As a consequence, the
privacy preserving protocols devised during the past decades are generalized for any kind
of mathematical function and not necessarily computation of graph features. Furthermore,
each of the participants is assumed to be an equal part of the computation. As such, any
pair of participants is assumed to have a private communication line of its own. Translating
those protocols to distributed algorithms for graph theory problems, will require a complete
graph representing the communication which may be different than the input graph of the
problem. While this approach is applicable in many realistic networks and problems, general
networks with non-uniform communication topology may benefit from efficient distributed
algorithms for computations where the desired function f is local. Other works (such as [13]
and [12]) are dedicated to general graphs. However, their goal was not to optimize the rounds
complexity as the protocols created by their algorithms will require at least O(n2) rounds
even for a relatively simple function f . Furthermore, their techniques require a heavy setup
phase, and based on some computational assumptions. Several other works provide secure
protocols for general or sparse graphs ([6] [10] [7]). However, the focus in those protocols
was to work for every function f , at the expense of increasing the round complexity, or the
necessity of several computational assumptions.

Recently, Parter and Yogev [20] [21] suggested a new kind of privacy notion which they
tailored to the CONGEST distributed model. In their notion, the neighbors of each node v
construct a private neighborhood tree throughout which they broadcast a shared randomness.
This randomness is used in order to encrypt the private variable of each neighbor. The
node receives these encrypted private variables x1, x2, ..., xt (t = |Γ(v)|) and performs its
local computation f(x1, x2, ..., xt). Let OPT(G) be the best depth possible for private
neighborhood trees. Parter and Yogev devised an algorithm which constructs such trees in
O(n+ ∆ ·OPT(G)) rounds, where each tree has depth of O(OPT(G) · polylog(n)) and each
edge e ∈ E is part of at most O(OPT(G) · polylog(n)) trees. Using their notion one can turn
any r-rounds algorithm into a secure algorithm with an overhead of poly(∆, logn) ·OPT(G)
rounds for each round. Furthermore, they showed that for a specific family of distributed
algorithms (to which they referred as “simple”), the round overhead can be reduced to
OPT(G) · polylog(n). Using their method they have devised a variety of both global and
symmetry-breaking local algorithms. However, their notion requires an extensive pre-
construction phase additional to the secure computation itself which requires quite high
round complexity. Furthermore, their notion assumes a bridgeless graph, meaning that the
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graph consists of a single connected component and there is no single edge such that its
removal will split the graph into two connected components. The method of Parter and Yogev
relies on cryptographic hardness assumptions, e.g., the existence of a shared randomness and
a public-key encryption scheme. This allows achieving security both for input and output. In
contrast, our current work focuses on output security, but there are no hardness assumptions,
and no requirement for bridgeless graphs.

3 Inherently Secure Distributed Algorithms

Most of the classic distributed algorithms models assume that each vertex is aware of its
neighbors. This is the case in our paper as well. Usually each node does not have any
additional input except for its own ID. The output of the algorithm is a set of labels where
each label corresponds to each vertex. Throughout the current work, vertices IDs will not
be considered as a private input. Formally, from the perspective of node v ∈ V , a classic
distributed algorithm calculates a function fv(DΓ(v)) = lv, where lv ∈ [l] (for some constant l)
is vertex v’s label which was calculated based on the input messages (DΓ(v)) came from vertex
v’s neighbors (Γ(v)). From a global perspective, the algorithm computes: f : G(V,E)→ [l]n.
This work considers the following security notion: each vertex v cannot infer the value of
lu (such that u ∈ V, u 6= v) with a certain probability. Our model assumes that each node
v ∈ V holds a private randomness generator rv.

As an example, consider an algorithm for ∆2 graph multicoloring of graph G = (V,E)
with maximum degree ∆ = ∆(G) which provides any vertex v with a set of ∆ valid colors
ϕ(v) = {x1, x2, ..., x∆}. By “valid” we mean that any of the colors in ϕ(v) is not contained
in any of v’s neighbors’ sets, i.e. xi /∈

⋃
u∈Γ(v)

ϕ(u) (for any 1 ≤ i ≤ ∆). Using this kind of

coloring, v can privately select a random color out of the ∆ valid colors in ϕ(v). Hence, the
identity of the exact color of v can be securely hidden from any of the other vertices in G.

We generalize the above idea as follows. Consider the following family of algorithms.
Each algorithm Π in the Inherently-Secure algorithms family IS consists of two stages: (1)
Calculating a generic set of k possible valid labels. (2) Randomly and privately (using the
private randomness generator rv), each node selects its final label. That is, the first stage
of algorithm Π (denoted by Πgeneric) calculates the function: f1(G(V,E)) = {`u1 , ..., `un

},
where `ui = {l1i , l2i , ..., lki } for any ui ∈ V . Henceforth, Πgeneric will be referred as generic-
algorithm. The first stage can run without any additional security considerations, meaning
any node may know the `ui of other nodes. Later, we will show algorithms which satisfies
even stronger security notion where the identity of `ui

is also kept secret. The second stage
(Πselect) securely calculates the function f2 : [`]kn → [l]n. Overall, algorithm Π indeed
calculates f = f1 ◦ f2 : G(V,E)→ {l1, ..., ln}. Let L be the ground set of valid labels from
which the possible labels are being picked, i.e. for any 1 ≤ i ≤ n and 1 ≤ j ≤ k, li ∈ L and
lji ∈ L .

By increasing the amount of possible values (k) we make the actual labels {l1, l2, ..., ln}
less predictable. However, in order to do so we may need to increase the ground set of the
available labels. For instance, in graph coloring we may want to be able to produce ∆ valid
possible colors for each vertex. However, an increase of the amount of colors (to ∆2) may
be necessary. On the other hand, one may want to minimize the size of the ground set
since large ground sets may lead to trivial algorithms on one hand, and to a higher memory
complexity on the other hand.

In order to analyze this kind of algorithms we define several parameters.
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I Definition 1. The size of the problem domain of a problem P solved by algorithm Π which
calculates the function f : G(V,E)→ {l1, l2, .., ln}, where li ∈ L, is the number of valid labels
for any li, i.e. |L|.

I Definition 2. The size of the solution domain of a generic algorithm Πgeneric which
calculates the function f1 : G(V,E)→ {{l11, l21, ..., lk1}, ...{l1n, l2n, ..., lkn}} is the minimal number
of valid possible labels for any vertex, i.e. k.

I Definition 3. The contingency factor of generic algorithm Πgeneric used to solve problem
P (as they defined on definitions 1 and 2) is the ratio between the size of the problem domain
|L| (Def. 1) and the size of the solution domain k (Def. 2) , i.e. |L|/k.

In order to clarify these definitions, consider the problem of ∆2-graph coloring. The size
of the problem domain is ∆2. A generic algorithm that calculates ∆ possible valid colors
for each vertex will provide a solution domain of size ∆. The contingency factor of this
algorithm will be ∆2

∆ = ∆.
In many cases, the number of labels (i.e. the size of the problem domain) can be increased

artificially by a factor c > 1. This artificial increase will lead to an expansion of the problem
domain by the same factor c. As a result, the contingency factor will remain the same.
That is, the contingency factor is a property of the algorithm itself and not influenced by
artificial increases. Small contingency factor indicates that most of the members of the
problem domain are valid options on the solution domain, while the generic algorithm did
not exclude those members from being considered as valid possible solutions. As such, small
contingency factor indicates that the algorithm preserves better security by excluding only
a small portion of possible solutions. Problems with small problem-domain will have even
smaller solution domain which will lead to a contingency factor that is close to the original
size of the problem domain. Therefore, finding a generic algorithm with good contingency
factor for these problems is a complicated task. As a consequence, we will focus on finding
generic algorithms for problems with relatively large problem-domain, i.e. labeling problems.
For problems with small problem domain, other techniques (such as Parter and Yogev’s
compiler [20]) should be considered.

Note that even though a malicious node may interrupt the validity of the algorithm by
picking a solution which is not part of its solution domain, this kind of intrusion will not
affect the privacy of the algorithm. However, in our model the nodes are not malicious.

3.1 Generic Algorithms for Graph-Coloring
Considering the problem of graph coloring, we will focus on finding generic algorithms that
will provide contingency factor of ∆. This factor is optimal for general graphs, as we prove
in Theorem 4.

I Theorem 4. For any α-coloring problem (α > ∆), and any generic algorithm Π, there is
an infinite family of graphs such that their solution domain must be of size O(α/∆) at most.
Hence, the contingency factor would be at least Ω(∆).

Proof. Suppose for contradiction that there is a valid solution domain such that every vertex
has more than α/∆ valid options. Consider a graph G = (V,E) with clique C ⊆ V of size
|C| = ∆ + 1. Each vertex v ∈ C has ∆ neighbors, each of them has α/∆ valid colors. But
since v and all its neighbors are part of the clique, each of them has a unique set of colors.
It means that there are at least (∆ + 1) · (α/∆) > α colors in the α-coloring, which is a
contradiction. J
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3.1.1 Generic Algorithm for 3∆-Coloring of Oriented Trees
A well known algorithm for 3-Coloring of oriented trees was devised by Cole and Vishkin [8].
The deterministic algorithm exploits the asymmetric relationship between a vertex v and its
parent (in the tree) π(v) in order to get a valid coloring in O(log∗ n) rounds.

For any two integers a and b, let < a, b > be a tuple which can be represented in binary as
the concatenation of the binary representations of a and b. We can define a generic algorithm
that runs Cole Vishkin’s algorithm to get a valid coloring ϕ : V → [3]. Later, each vertex
will set its solution domain ϕ̂(v) as follows: ϕ̂(v) =

⋃
0≤i<∆

< i, ϕ(v) >. As a result, we get

a generic algorithm where each vertex has ∆ valid colors. The validity of this algorithm is
provided by the following Lemma:

I Lemma 5. For any vertex v ∈ V , for every value x ∈ ϕ̂(v), x is not a possible color for
any other vertex u ∈ Γ(v).

Proof. Suppose for contradiction that there exists a vertex u ∈ Γ(v) such that x ∈ ϕ̂(u).
Since, ϕ̂(v) =

⋃
0≤i<∆

< i, ϕ(v) >, there exists a value 1 ≤ i ≤ ∆ such that x =< i, ϕ(v) >=<

i, ϕ(u) >. Hence, ϕ(v) = ϕ(u), which is a contradiction since ϕ is a valid coloring as was
proved by [8]. J

Lemma 5 leads to the following corollary:

I Corollary 6. Given a tree T = (V,E, v), there exists a generic algorithm which provides
any vertex v ∈ V with a set of ∆ possible valid colors

The generic algorithm described above uses a simple approach which achieves privacy
by artificially increasing the size of both the problem domain and the solution domain
accordingly. Another technique is to run an algorithm d times in parallel. For coloring
problems a good d will probably be ∆ (as was shown in Theorem 4). While this approach
will lead in deterministic algorithms to the same results as the previous technique, applying
this technique with random algorithms will lead to solution domain which is somewhat less
predictable than the domain we will receive by artificially increasing the size of the solution
domain.

While these approaches (artificially increasing the size of the solution domain and run
the algorithm multiple times) are useful for problems with very efficient base algorithms (i.e.
Cole Vishkin 3-coloring), for many problems such an efficient algorithm is not yet known.
However, one still may devise efficient generic-algorithms for some of these problems, as
demonstrated in the following sections.

3.1.2 Generic Algorithm for 2∆c · log n-Coloring of General Graphs
While the best known algorithms for (∆ + 1)-Coloring of generic graphs uses logarithmic
number of rounds [14] [18], a reasonable size of contingency factor may yield more efficient
algorithms with sub-logarithmic and even constant number of rounds. As an example,
consider Algorithm 1 which uses O(1) rounds to achieve a secure coloring of general graphs
with contingency factor of O(∆).

Algorithm 1 GENERIC-RANDOM-COLORING.

Result: A set of O(logn) colors for each vertex v ∈ V
1 Every vertex selects independently at random k = c · logn different numbers (c is a

constant, c > 1) I = {< 1, x1 >,< 2, x2 >, ..., < k, xk >} where xi ∈ [2∆] is a
number selected uniformally at random (for each 1 ≤ i ≤ k).

2 Send I to each neighbor.
3 For each message Î = {< 1, x̂1 >,< 2, x̂2 >, ..., < k, x̂k >} received, do I ← I \ Î.
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The fact that Algorithm 1 is privacy preserving is established by the Theorem below. Its
proof can be found in [5]. The contingency factor of the algorithm is 2∆c·logn

c·logn/2 = O(∆).

I Theorem 7. For any vertex v ∈ V , executing algorithm GENERIC-RANDOM-COLORING,
the algorithm produces a set of at least k/2 valid colors in O(1) rounds, with high probability.

3.1.3 Generic Algorithm for O(∆2)-Coloring of General Graphs

Since currently known deterministic algorithms for (∆ + 1)-coloring require at least
√

logn
rounds, applying the simultaneous execution described above with such an algorithm will
lead to relatively poor round complexity. Instead, in this section we generalize a construction
of [3][16] which provides O(∆2)-coloring in log∗ n + O(1) rounds, in order to directly (i.e.
without simultaneous executions) obtain secure algorithm for O(∆2)-coloring. We employ a
Lemma due to Erdös et al. [9].

I Lemma 8. For two integers n and ∆, n > ∆ ≥ 4, there exists a family J of n subsets of

the set {1, ...,m}, m = d∆2 · lnne, such that if F0, F1, ..., F∆ ∈ J then F0 *
∆⋃
i=1

Fi.

A set system J which satisfies the above is referred as ∆-cover-free set.
Erdös et al. [9] also showed an algebraic construction which satisfies Lemma 8. For two

integers n and ∆, using a ground set of size m = O(∆2 · log2 n), they construct a family F
of n subsets of the set {1, ...,m}, such that F is a ∆-cover-free. Linial [16] showed that this
construction can be utilized for distributed graph coloring. We construct a slightly different
family which also provides multiple uncovered elements in each set:

I Theorem 9. For two integers n and ∆, using a ground set of size m = O(∆2 · log2 n),
there exists a family F of n subsets of the set {1, ...,m}, such that if F0, F1, ..., F∆ ∈ F then∣∣∣∣F0 \

∆⋃
i=1

Fi

∣∣∣∣ ≥ ∆.

The proof of Theorem 9 can be found in [5].
These polynomials provides sets of labels such that if every vertex is assigned to a set,

each set has at least ∆ values which are not contained in any of its neighbors’ sets. An
illustration of this construction is provided in [5].

Next, we will use the constructions from [9] and Theorem 9 to devise a generic-algorithm
for O(∆2)-coloring. Our algorithm is similar to Linial’s iterative algorithm ([16]), but instead
of getting only one color on the last iteration, we get ∆ different possible colors (for each
vertex).

Starting with a valid n-coloring for some graph G = (V,E) (the color of each vertex
is its ID), we can apply the coloring algorithm from [16] which will turn the n-coloring
into an O(∆2 log2 n)-coloring in a single round. After log∗ n+O(1) rounds we will get an
O(∆2 log2 ∆)-coloring. For a sufficiently large ∆, it holds that O(∆2 log2 ∆) ≤ (3∆)3. Hence,
in order to further reduce the number of the colors to O(∆3) and get ∆ valid optional
colors we will use the set system from Theorem 9 to reduce the O(∆2 log2 ∆)-coloring to
a q2 = (3∆)2-coloring of G such that each vertex has at least ∆ valid colors. To conclude,
the problem domain is of size 9∆2. The solution domain contains of at least ∆ valid colors.
Consequently, the contingency factor is O(∆), which is proved to be optimal (see Theorem 4).
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3.1.4 Generic Algorithm for p-Defective O
((

∆
p

)2
)
-Coloring of General

Graphs
For a graph G = (V,E), the function ϕ : V → [α] is a valid p-defective α-coloring iff for
each vertex v ∈ V , the number of neighbors which have the same color as v is at most p, i.e.
|{u ∈ Γ(v) | ϕ(v) = ϕ(u)}| ≤ p.

First, we shall find the lower bound of contingency factors for generic algorithms of
defective coloring:

I Theorem 10. For any p-defective α-coloring problem, there is an infinite family of graphs
such that their solution domain must be of size O

(
α · p∆

)
at most and the contingency factor

will be at least Ω
(

∆
p

)
.

Proof. Suppose for contradiction that there is a valid solution domain such that every vertex
has more than α · p∆ valid options. Consider a graph G = (V,E) with a clique C ⊆ V of size
|C| = ∆ + 1. Each vertex v ∈ C has ∆ neighbors, each of them has α · p∆ . Since v and all
its neighbors are part of a clique, each color can be an optional color of at most p different
vertices. It means that there are at least (∆ + 1) · (α · p∆ )/p > α colors in the p-defective
α-coloring, which is a contradiction. J

The results from the previous section can be extended and combined with the results of [4],

to achieve generic algorithm for ρ-defective O
((

∆
ρ

)2
)
-coloring which provides a solution

domain of size O
(

∆
ρ

)
. Such an algorithm provides an optimal contingency factor. The proof

of the next Theorem can be found in [5].

I Theorem 11. Given a graph G = (V,E) (|V | = n) with maximum degree ∆, and a fixed

parameter 1 ≤ p ≤ ∆, there is a generic algorithm that calculates p-defective O
((

∆
p

)2
)
-

coloring with a solution domain of size O(∆/p) and a contingency factor of at least Ω(∆/p),
in O(log∗ n) rounds.

The contingency factor is optimal by Theorem 10.

3.2 Generic Algorithm for Network Decomposition
As was mentioned before, network decomposition may be referred as a labeling problem
where the cluster IDs are the labels and the clusters assignment is the labeling function.
Hence, network decomposition problems are good candidates for generic algorithms. However,
considering the term of privacy in the network decomposition problem, different definitions
may be suggested. One may suggest a permissive notion where all the members of the same
cluster are allowed to share their private data with each other. This permissive notion makes
sense since network decomposition is frequently used as a building block in other algorithms
(such as coloring or finding MIS) where in the first stage each vertex discovers its cluster’s
topology, calculates private solution for the entire cluster, and then communicates with other
clusters in order to generate an overall solution. However, even on a restrictive notion where
each vertex may know only its own cluster assignment, some efficient algorithms may be
suggested. Hence, during this work we will use the restrictive notion.

In section 3.1.1 we have shown how multiple simultaneous executions of the same random
algorithm can expand the solutions domain and provide a generic algorithm for graph
coloring problems. This approach can be adopted in order to expand the solution domain
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of network decomposition algorithms, However, since the network decomposition should
satisfy certain constraints (namely, the depth of the clusters and the chromatic number
of the auxiliary graph), this approach should be implemented carefully. We will use the
weak-diameter (O(logn), O(logn))-network decomposition random algorithm devised by
Linial and Saks [17]. This algorithm runs in O(log2 n) rounds. Our generic algorithm
proceeds as follows. Given a graph G = (V,E), and a positive integer c > 1, execute
Linial and Saks’s algorithm for c times simultaneously, in parallel. Each of the execution
will have its own serial number i ∈ {1, ..., c}. Let Ci : V → {1, ..., O(logn)} be a set of
labeling functions (1 ≤ i ≤ c), such that Ci(v) = j iff vertex v ∈ V was assigned by the i-th
execution to cluster Cj . For each vertex v ∈ V we assign a set of logn different possible labels
C(v) =< 1, C1(v) >, ..., < c, Cc(v) >. Each of the labels will represent a distinct cluster ID.
These labels are different since even if the independent executions produced the same cluster
assignments, the first parameter on each tuple representing the label will be different since it
represents the unique ID of each independent execution.

The clusters assignment described above is a privacy preserving (O(logn), O(c · logn))-
network decomposition. The proof of the following Theorem can be found in [5]

I Theorem 12. Given a graph G = (V,E), there is a generic algorithm which calculates weak-
diameter (O(logn), O(c · logn))-network decomposition in O(log2 n) rounds. The algorithm
produces c valid possible cluster assignments for each vertex v ∈ V .

Since the size of the problem domain is O(c · logn) and the solution domain is of size c,
the contingency factor is O(logn).

Usually, it is useful to set the parameters of the network decomposition to be polylogar-
ithmic in n. Hence, it may be useful to set c = logn and get an (O(logn), O(log2 n))-network
decomposition. On the other hand, in order to preserve privacy, setting c = min(∆, logn) is
sufficient as it allows each of the ∆ neighbors of each vertex to have a different set of possible
cluster assignments.

3.3 Generic Algorithms for Forest Decomposition
An oriented tree is a directed tree T = (V,E, r) where r ∈ V is the root vertex, where
every vertex v ∈ V knows the identity of its parent π(v) and has an oriented edge (v, π(v)).
An oriented forest is such a graph that any of its connected components are oriented trees.
Any graph G = (V,E) with maximum degree ∆ can be decomposed into a set of ∆ edge-
disjoint forests F1, ..., F∆(Fi = (VFi

, EFi
) such that E =

⋃
1≤i≤∆

EFi
. The problem of how to

decompose a graph into forests can be viewed as a labeling problem where each edge should
have a label 1 ≤ i ≤ ∆ that represents the forest Fi which it belongs to. Since in every
oriented forest, each vertex has at most 1 parent, each vertex will have at most ∆ outgoing
edges, each belongs to a different forest. Hence, for each vertex v ∈ V there are

( ∆
degout(v)

)
different options to associate edges to different forests. From the edge’s point of view, each
of the ∆ labels is a valid possible label.

Panconesi and Rizzi [19] devised an algorithm for ∆-forest decomposition of a general
undirected graph in 2 rounds. Their algorithm can be viewed as two separate algorithms,
each of a single round. The first algorithm is a simple yet powerful way to decompose a
directed acyclic graph with maximum outgoing degree d into d oriented forests. The second
is a a way to turn an undirected graph with maximum degree ∆ into a directed acyclic
graph with maximum outgoing degree ∆. Each of these algorithms run in a single round.
Combining these two algorithms produces a 2 round algorithm for ∆-forest decomposition of
any undirected graph with maximum degree ∆.
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Next we will describe Panconesi and Rizzi’s algorithm for forest decomposition of oriented
graphs. We will show how this algorithm can be modified in order to preserve privacy while
maintaining a contingency factor of 1. Later, we will show two algorithms which produce a
directed acyclic graphs. The first is Panconesi and Rizzi’s algorithm for orienting any general
undirected graph. The second algorithm (due to [2]) performs an acyclic orientation for a
graph with bounded arboricity a such that the maximum outgoing degree is b2 + εc · a. The
combination of these algorithms yields a ∆-forest decomposition for graphs with maximum
degree ∆ and b2 + εc · a-forest decomposition for graphs with bounded arboricity a. Both of
them fit the constraint of preserving privacy.

3.3.1 Forest Decomposition of Oriented Graphs
Given a directed acyclic graph G = (V,E), such that each vertex has a set of outgoing edges
E(v) = {(v, u) | (v, u) ∈ E} the single round algorithm of Panconesi and Rizzi [19] goes as
follows. Each vertex v ∈ V , in parallel, assigns a distinct number 1 ≤ i ≤ |E(v)| to each
e ∈ E(v). Let Êi be the set of all edges that were assigned with the number i. The forest
decomposition is the set of forests F1, ..., F∆ where Fi = (V, Êi). The correctness of the
algorithm was proved by [19]. While in the original algorithm the nodes do not assign the
labels randomly, in our algorithm a random assignment is required. Next, we analyze the
privacy of the algorithm. The proof of the following Theorem can be found in [5].

I Theorem 13. Panconesi and Rizzi’s forest decomposition algorithm with random label
assignment is privacy preserving and it has a contingency factor of 1.

3.3.2 Acyclic Orientation of Graphs
Panconesi and Rizzi [19] showed that the simple orientation where each edge is oriented
towards the vertex with the higher ID, is an acyclic orientation. Hence, any undirected graph
can achieve an acyclic orientation in a single round, and can be decomposed privately into ∆
forests in one additional round. This orientation provides each vertex with up to ∆! valid
options for forest assignments. From the edge’s point of view, each of the ∆ labels is a valid
possible label. Barenboim et al. [2] devised an O(logn)-rounds algorithm that receives a
graph with bounded arboricity a and performs an acyclic orientation with maximum outgoing
degree of b2 + εc · a. This orientation is achieved by partitioning the vertices of a graph
G into l = b 2

ε lognc sets H1, ...,Hl such that each vertex v ∈ Hi(i ∈ {1, ..., l}) has at most
(2 + ε) · a neighbors in ∪lj=iHj . Then, the orientation is done such that each edge (u, v) ∈ E
with endpoints u ∈ Hi and v ∈ Hj , points towards the vertex that belongs to the higher
ranked set (in case the two endpoints belong to the same set, the edge will point towards
the vertex with the higher ID). This orientation provides each vertrex with up to

((b2+εc·a)
|E(v)|

)
valid options for forest assignments. From the edge’s point of view, each of the b2 + εc · a
labels is a valid possible label.

3.4 Generic Algorithms for Graph Coloring of Graphs With Bounded
Arboricity a

The forest decomposition algorithms that was described above can be used as building blocks
for other distributed algorithms for classic graph theory problems as graph coloring. In the
following chapter we will use the b2 + εc · a-forest decomposition of [2] that we showed in the
previous chapter to achieve an 2a · c · logn-coloring for graphs with bounded arboricity a (for
any c > 1). We will show that this coloring is private and has contingency factor of O(a).
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Combining the GENERIC-RANDOM-COLORING algorithm (algorithm 1) with the
acyclic orientation algorithm devised by [2] yields a secure algorithm for generic 2a · c · logn-
Coloring for graphs with bounded arboricity a such that from initial selection of k = c · logn
initial colors (for any c > 1), each vertex has, at the end of the execution, at least k/2 valid
optional colors. The algorithm basically performs the original random generic coloring, but
it makes advantage of the acyclic orientation to break the symmetry between each pair of
neighbors and make sure that only O(a) neighbors constraint the valid residual colors of
each vertex.

The algorithm consists of two steps. On the first step, the algorithm performs an acyclic
orientation of graph G such that the maximum outgoing degree is b2 + εc · a. The orientation
is done by invoking the first two steps of procedure Forests-Decomposition (algorithm 2 in
[2]) with graph G and parameter 0 < ε ≤ 2. On the second step the generic coloring is
done. Each vertex v chooses independently at random k = c · logn numbers from the range
[2 · A]. These choices form a set of optional colors: Iv = {< 1, x1 >, ..., < k, xk >}. Next,
each vertex v sends its set of colors Iv to its children (in correspondence to the orientation).
Each vertex u which received a set Iv from one of its parents performs Iu ← Iu \ Iv.

I Lemma 14. The residual set of colors contains at least k/2 colors.

The proof of this Lemma can be found in [5].

I Lemma 15. For any vertex v ∈ V , there is no color < i, xi > in the residual available
colors set Iv such that < i, xi >∈

⋃
u∈Γ(v)

Iu.

Proof. Suppose for contradiction that < i, xi >∈ Iu for some u ∈ Γ(v). Let Fj be the forest
in F which includes the edge (u, v). It means that either u ∈ πj(v) or v ∈ πj(u), which
means that either u or v received it from its parent (v or u, respectively) and should have
removed it from its residual set, contradiction. J

The time complexity of the algorithm follows from the time complexity of Procedure Forest-
Decomposition(a, ε), which is O(logn), plus O(1) for coloring. The size of the problem
domain is 2a · c · logn and the size of the solution domain is c·logn

2 . Hence, the contingency
factor is O(a).

3.5 Generic Algorithms for Edge Coloring
When considering the meaning of privacy in the context of edges, there is a slight difference
between vertex coloring and edge coloring. Since the algorithms in both LOCAL and
CONGEST ran on the vertices (rather than the edges, which represents communication
lines) the color of each vertex should be known only to the vertex itself. On the other hand,
in edge coloring, both edge endpoints are responsible for the coloring of the edge, which
means that in terms of privacy preserving we may consider the edge coloring as private when
at most the two endpoints of each edge know the color of the edge. However, when the graph
is directed, we may demand that only the source endpoint of the edge will be aware of edge’s
color.

Nevertheless, there is a strong connection between graph vertex coloring to edge coloring.
The similarity between the two problems is obvious, but more interestingly, there is a straight
reduction between vertex coloring and edge coloring algorithms for general graphs. In the
following section we will use this reduction in order to perform privacy preserving generic
edge coloring of graphs. This reduction can be used to apply the defective graph coloring we
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presented in section 3.1.4 in order to compute a defective edge coloring. There is however,
a faster way to get a defective edge coloring. This technique, which is due to [15] will be
presented in the later section.

3.5.1 Edge Coloring Using Line Graphs
Given a graph G = (V,E), a line graph L(G) of graph G is a graph which is constructed
as follows. Each edge e ∈ E becomes a vertex of the line graph L(G) = (E, E). Each two
distinct vertices of the line graph e1, e2 ∈ E are connected ((e1, e2) ∈ E) if they are incident
to a single vertex in the original graph, i.e. there exist three vertices v, u, w ∈ V such that
e1 = (v, u) and e2 = (v, w). Observe that the line graph has m ≤ n2 vertices and a maximum
degree of ∆(L(G)) = (2∆(G)− 1). Also observe that a legal vertex coloring in the line graph
L(G) is a legal edge coloring in the original graph. Hence, if any vertex of the original graph
is responsible for the coloring of part of its incident edges, the vertices can produce a legal
graph coloring for the line graph and translate it to a legal edge coloring of the original
graph. The assignment of each vertex to any incident edge can be done by specifying that
for any edge (u, v) ∈ E, the vertex with the greater ID is responsible for the coloring of the
edge in the line graph.

As a result, the algorithms provided in section 3.1 can be applied to the line graph
in order to produce a generic edge coloring. Given a graph G = (V,E) with maximum
degree ∆, the algorithm for 2∆c · logn-Coloring, applied on the line graph L(G), produces
an 2 · (2∆ − 1) · c · log (n2) = 8∆ · c · logn-edge-coloring, with solution domain of size
c · log (n2)/2 = c · logn, which yields a contingency factor of O(∆). The algorithm for O(∆2)-
Coloring, applied on the line graph L(G), produces an O((2∆− 1)2) = O(∆2) edge coloring
of the original graph, with a solution domain of size (2∆− 1), which keeps a contingency
factor of O(∆).

3.5.2 Generic Defective Edge Coloring
The line graph, which was presented in the previous section, can be used in order to perform

a p-defective O
((

2∆−1
p

)2
)
-generic edge coloring of the original graph by applying the

algorithm from Theorem 11 on the line graph. Such an algorithm will achieve a solution
domain of size O(∆/p) and a contingency factor of O(∆/p) as well, both in O(log∗ n) rounds.

There is however a faster privacy preserving algorithm for p-defective O
((

2∆−1
p

)2
)
-defective

coloring based on the algorithm of Kuhn (Algorithm 3 in [15]).
Kuhn’s algorithm goes as follows. Suppose we have an undirected graph G = (V,E) with

maximum degree ∆, and a constant i ≥ 1. Each vertex numbers its adjacent edges with
numbers between {1, ..., d∆/ie} such that each number will be assigned to at most i of the
vertex’s adjacent edges. Then each vertex sends the number of each of its adjacent edges
to the vertex on the other endpoint of the edge. Suppose that for a graph G = (V,E), and
an edge (u, v) ∈ E, eu and ev are the colors that was assigned to edge e by vertex u and v
(respectively). The set {eu, ev} is assigned to be the color of edge e. Kuhn showed that this
simple O(1) rounds algorithm achieves a 4i− 2-defective

(d∆/ie+1
2

)
-Edge Coloring. Setting

p = 4i− 2 we get an p-defective O
((

∆
p

)2
)
-edge coloring.

Kuhn’s algorithm performs communication only between the two endpoints of each edge
and only once. Hence the knowledge about the color of each edge is held only by its two
endpoints. While in Kuhn’s algorithm the nodes do not assign the labels randomly, in our
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algorithm a random assignment is required. Therefore, our algorithm preserves privacy. Since
every vertex assigns the numbers independently, each of the available colors may be assigned
(in certain scenario) to each edge. As a result, we achieve the following theorem.

I Theorem 16. There is a privacy preserving algorithm for p-defective O
((

∆
p

)2
)
-edge

coloring with contingency factor of 1.

3.6 Generic Algorithm for Edge Dominating Set Colored with O(
√

∆)
Colors

The problem of constructing an edge domination set, is a bipartition. However, a useful
variant of this problem, where the dominating set should be colored with O(

√
∆) colors is

actually a labeling problem. A privacy preserving algorithm for this problem can be found
in [5].

4 Conclusion

The computer-science research fields of secure multi-party computation and distributed
algorithms were both highly investigated during the last decades. While both of the fields
prosper and yield many theoretical and practical results, the connection between these fields
was made only seldom. Nevertheless, as implementation of distributed algorithms becomes
common in sensor networks and IoT (Internet of Things) architectures, efficient privacy
preserving techniques are essential.

In this work we present a novel approach, which rather than turning existing algorithms
into secure ones, identifies and develops those algorithms that are inherently secure. Naturally,
our work focuses on labeling problems. The inherently secure algorithms analyzed in this
work are listed in

We believe that these results establishes a broad basis for further research of both
inherently secure algorithm and efficient techniques to translate distributed algorithms into
secure algorithms. Such algorithms will open new possibilities for secure interconnection
between machines, eliminating the need to mediate through a central secure server. As
a consequence, distributed communication would possibly open a free and secure way to
transmit data and solve problems.
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