
Deep Learning based Data Prefetching in CPU-GPU Unified Virtual
Memory
Xinjian Longa,b, Xiangyang Gonga,b,∗, Huiyang Zhouc and Bo Zhanga,b

aState Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
bSchool of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, 100876, China
cDepartment of Electrical and Computer Engineering at North Carolina State University, Raleigh, 27606, NC, USA

A R T I C L E I N F O

Keywords:
Data prefetching
GPU
Unified Virtual Memory
Deep learning

A B S T R A C T

Unified Virtual Memory (UVM) relieves the developers from the onus of maintaining complex data
structures and explicit data migration by enabling on-demand data movement between CPU memory
and GPU memory. However, on-demand paging soon becomes a performance bottleneck of UVM
due to the high latency caused by page table walks and data migration over interconnect. Prefetching
is considered a promising solution to this problem given its ability to leverage the locality of program
memory access patterns. However, existing locality-based prefetching schemes can not handle all the
situations. An ideal prefetcher should not only look at narrow regions of the requested address space
but also capture global context to deliver a good prediction of the memory access pattern.

This paper proposes a novel approach for page prefetching for UVM through deep learning. We
first show that a powerful Transformer learning model can provide high accuracy for UVM page
prefetching. We then perform analysis to interpret this Transformer model and derive several insights
that allow us to design a simpler model to match the unconstrained model’s accuracy with orders of
magnitude lower cost. We evaluate this simplified model on a set of 11 memory-intensive benchmarks
from popular benchmark suites. Our solution outperforms the state-of-the-art UVM framework,
improving the performance by 10.89%, improving the device memory page hit rate by 16.98% (89.02%
vs. 76.10% for prior art), and reducing the CPU-GPU interconnect traffic by 11.05%. According to
our proposed unified metric, which combines the accuracy, coverage, and page hit rate, our solution
is approaching the ideal prefetching scheme more than the state-of-the-art design (0.90 vs. 0.85, with
the perfect prefetcher of 1.0).

1. Introduction
Modern GPUs support unified virtual addressing (UVA) [1,

2], which provides a unified virtual address space between
the host CPU and the GPU. This technique allows the CPU
to manage data residing in GPU physical memory with
the same pointers as the ones used by the CPU program.
Depending on UVA, UVM (Shared Virtual Memory or
SVM in OpenCL terminology) supports the programmer-
agnostic demand-driven movement of data between host
and GPU memory instead of requiring the developers to
manually copy data from the CPU to the GPU memory
before a GPU kernel can access that data. This technique
is typically supported by fault-driven transfers at the page or
the multi-page (4KB to 2MB) granularity. Since CUDA 8.0,
developers can decently exploit the UVM technique by using
cudaMallocManaged instead of cudaMalloc followed by
cudaMemcpy API calls in their programs.

However, along with the improved programmability,
UVM also raises the consideration of the efficiency of the
GPU runtime’s (CUDA runtime in this paper) data manage-
ment policy. As for UVM, only one physical copy of the data
is maintained either on the host or the device memory. Fol-
lowing the first-touch migration policy, on every first access
to a page by the device, the corresponding page table entry
in the host/device is invalidated and data is migrated to the

∗Corresponding author
xygong@bupt.edu.cn (X. Gong)

ORCID(s): 0000-0002-0631-9747 (X. Gong)

device/host memory and a new entry is created in the page
table. On-demand paging will soon make UVM become
costlier than the traditional cudaMemcpy due to a large
amount of stalled warps and the near sequential combination
of kernel execution and data migration. Prefetching is a good
solution to these problems. But a poor prefetching scheme
may easily generate heavy transfer traffic between the host
and the GPU, which may also easily negate the potential
performance benefits brought by the UVM technique.

Thanks to the attempts in recent studies [3, 4], re-
searchers reveal that pages accessed by most of the GPU
applications are strongly clustered. This locality mainly
resides in virtual address space (physical addresses of the
accessed pages may be non-contiguous due to address in-
terleaving performed by the memory controller). To exploit
this property, the locality-based data prefetching scheme has
been introduced.This technique suggests that when the GPU
runtime is provided with a requested page to be migrated,
the runtime also schedules an additional 𝑁 pages in its
virtual address neighborhood for migration. Locality-based
prefetching has been proved effective in mitigating the
overhead of using UVM. A prior work [5] also uncovered
that a tree-based neighborhood hardware prefetcher was
implemented in modern CUDA runtime.

However, locality-based prefetching techniques can not
handle all the situations. When the applications preserve
their page access pattern for certain time intervals or the
memory access pattern is constant and repetitive, using

Long et al.: Preprint submitted to Elsevier Page 1 of 14



DL-based Data Prefetching in CPU-GPU UVM

locality-based prefetching will lead to significant perfor-
mance improvement. However, when the subset of fre-
quently accessed pages becomes disjoint between consec-
utive kernel iterations, application performance may drop
drastically because the prefetcher fails to capture the locality
from the latest memory accesses.

Studies [3, 4, 5, 6, 7, 8, 9] have been proposed to improve
locality-based prefetching. One of the simplest ideas is to
increase the aggressiveness of the prefetcher. By retrieving
more areas around the neighborhood of the first touched
page, the chance of hitting the future requested pages also
increases. However, this method also enlarges the probabil-
ity of retrieving useless pages which would contribute little
or nothing to the overall performance. Moreover, when the
GPU device memory is oversubscribed, using an aggressive
prefetching scheme may force the runtime to keep evicting
the pages from the device memory, which causes a high
risk of suffering page thrashing overhead. There are other
more sophisticated methods like pinning the pages in the
host memory and only access them remotely (i.e., hard pin-
ning) or delaying the page migration with page-level access
counters (i.e., soft pinning). These methods do not mitigate
the prefetching scheme’s strong reliance on locality, and they
may also cause other problems like contention in the CPU-
GPU interconnect and/or low utilization of powerful GPU
local bandwidth.

This paper presents a novel approach for improving page
prefetching in CPU-GPU UVM using deep learning. Our
work has three steps. First, we design a powerful, uncon-
strained Transformer model that is trained for individual
benchmark applications. Second, we interpret this model to
reveal several important insights from the input data distri-
bution and the output results. Third, we use these insights
to simplify our design, and the revised design matches the
unconstrained model’s accuracy with orders of magnitude
lower cost.

In choosing an unconstrained model, we build on the
motivation that the accuracy of predicting memory access
patterns should take long memory access history into con-
sideration instead of blindly focusing on the neighborhood
of the recently accessed region. Thus, we formulate the data
prefetching problem as a sequence classification problem,
where the goal is to assign each sequence of memory access
history a category that indicates which page should be con-
sidered as a future prefetching candidate. We run different
benchmark kernels on a GPGPU-Sim extension and collect
the memory access traces. After some pre-processing, we
use these traces as the training data and feed them to the
Transformer model. We find that this model achieves high
prediction accuracy across different GPU applications (Ta-
ble 1).

An analysis of the Transformer-based model reveals
several insights. First, clustering is a necessary step to help
the predictor deliver good prediction performance, and the
training data clustered by streaming multiprocessors (SM)
id delivers the highest accuracy. Second, the Transformer-
based model can adapt to different prediction distances while

retaining high prediction accuracy. Third, the page address
delta and the program counter (PC) make the major contri-
bution to the high accuracy among several features that are
extracted from the memory trace. Fourth, the full attention
module is the Transformer-based predictor’s main source of
complexity. We can replace the full attention module with an
approximation that matches the original model’s prediction
accuracy while reducing both the temporal and memory
complexity. The level of approximation is determined by
the distribution of the specific benchmark’s memory access
history.

We use these insights to design a simplified model, and
we exploit the quantization technique to make its memory
consumption be orders of magnitude lower than the uncon-
strained one (Table 6 and Table 7). The simplified model
matches the unconstrained model’s accuracy (Table 8) and
it is more approaching to the theoretical upper bound of the
prefetching scheme compared to the state-of-the-art design
(Table 11).

To summarize, this paper makes the following contribu-
tions:

1. We present the first use of deep learning to page
prefetching in CPU-GPU UVM.

2. We design a Transformer-based model that achieves
very high prediction accuracy and can be interpreted
to derive important insights about page prefetching.
And we design a simplified attention module for
this model to lower its complexity from 𝑂(𝑁2) to
𝑂((𝑙𝑜𝑔𝑁)2).

3. Our simplified model improves upon UVMSmart [9],
a state-of-the-art framework for CPU-GPU UVM.
Among 11 different GPU benchmark applications
across different categories, our solution improves
the benchmark IPC by 10.89% (geometric mean),
improves the device memory page hit rate by 16.98%
(89.02% vs. 76.10% for UVMSmart, arithmetic mean),
and reduces the CPU-GPU interconnect usage by
11.05% (geometric mean). We also propose a metric to
integrate the accuracy, the coverage, and the page hit
rate. Based on this metric, we show that our solution
is more approaching the perfect prefetching (0.90 vs.
0.85 for UVMSmart, and the perfect prefetcher is 1.0)
than UVMSmart.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the background and motivation of this work.
Section 3 discusses the related work of this paper. Section
4 describes the design of the unconstrained Transformer-
based predictor. Section 5 derives the insights from the
unconstrained model. Section 6 describes the design of the
simplified predictor. Section 7 compares the results of our
simplified model with the UVMSmart framework.

2. Background & Motivation
In this section, we review the general mechanics of

on-demand paging in CPU-GPU UVM, the soft and hard

Long et al.: Preprint submitted to Elsevier Page 2 of 14



DL-based Data Prefetching in CPU-GPU UVM

pining, and the software and hardware prefetcher following
the NVIDIA/CUDA terminology. It is worth noting that
techniques mentioned in this section as well as our design
described in the following sections are adaptable to the other
GPU architectures besides NVIDIA. We then describe the
performance bottleneck associated with GPU UVM page
prefetching, and we discuss how we can exploit deep learn-
ing to alleviate the bottleneck.

2.1. On-demand Page Migration and Soft/Hard
Pinning

CPU-GPU UVM provides a single virtual address space
accessible from both CPU and GPU. Using CUDA, devel-
opers can apply UVM by calling the cudaMallocManaged
API to allocate data that can be accessed by both host code
and GPU kernels with a single shared pointer. The function-
ality of Unified Memory is enabled by on-demand mem-
ory allocation and fault-driven page migration. In modern
GPUs, load/store instructions use virtual addresses. When a
scheduled thread/warp in an SM (Streaming Multiprocessor)
generates a device memory access with virtual addresses,
such virtual addresses are translated to physical ones before
accessing data in the GPU L1 cache. The load/store unit
(LDST) of that SM performs a translation lookaside buffer
(TLB) lookup to find whether the translation for the issued
memory access is cached in TLB or not. A miss in the last
level TLB will be relayed to GPU memory management
unit (GMMU), which performs a page table walk for the
requested page. If there is a hit in either the TLB lookup
or the page table walk, the translation will be returned and
the requested data will be accessed within the GPU memory
hierarchy. This is shown as sequence (1) in Figure 1.

Figure 1: Overview of the UVM page migration and zero-copy.

However, if there is no page table entry (PTE) for the
requested page or the valid flag is not set, then a far-fault
is registered in the GMMU’s Far-fault Miss Status Han-
dling Registers (MSHR) and the corresponding warp will be
stalled. Then this request will be forwarded to the host and
triggered a host-side page table walk. Once the page table
walk is finished and the requested page is returned, MSHRs
will be consulted to notify the corresponding LDST to replay
the device memory access, and then the stalled warp will be
marked executable. This is shown as sequence (2) in Figure

1, and this is the general process of GPU UVM on-demand
page migration.

Handling far-faults with on-demand migration is costly
because of the high latency of page table walk and data
migration over PCI-e interconnect. The NVIDIA CUDA
runtime introduces pinning memory to alleviate this prob-
lem. On the one hand, developers can call the cudaHostReg-
ister and the cudaHostGetDevicePointer APIs to force the
memory allocation to be hard-pinned to the host memory.
In this case, pages in such allocation of memory will never
be transferred from host to device memory. GPU kernels
can only request these pages using remote direct memory
access (RDMA). This is demonstrated as sequence (3) in
Figure 1, and this is the case of CUDA zero-copy. On the
other hand, developers can call the cudaMemAdviseSetAc-
cessedBy and the cudaMemAdviseSetPreferredLocation
APIs to advise the allocation to be soft-pinned to the host
memory. In this case, pages in such allocation will not be
migrated to the device memory at the first touch. Rather, the
migration will be delayed till the number of read-requests
reaches a certain static threshold. This is illustrated as the
combination of (2) and (3) in Figure 1.

2.2. Software and Hardware Prefetcher
CUDA 8.0 introduced the cudaMemPrefetchAsync

API to handle the costly far-faults. This is a software
prefetching scheme that allows the developers to manually
overlap the kernel execution with the asynchronous data
migration.

Figure 2: A tree-based neighborhood hardware prefetcher
implemented by NVIDIA since CUDA 8.0 on a 512KB memory
chunk.

In the GPU Technology Conference 2018, a tree-based
hardware prefetcher was mentioned being implemented by
NVIDIA CUDA 8.0 driver. Ganguly et al. [5] uncovered the
semantic of this tree-based neighborhood prefetcher through
micro-benchmarking and profiling. The user-requested size
of a cudaMallocManaged allocation is logically divided
into some 2MB memory chunks plus a remainder. Each of
these chunk is further logically divided into 64KB basic
blocks, which is the unit of prefetching. According to the far-
faults received from the GPU, the runtime calculates the base
addresses of the basic blocks corresponding to these faults.
Then, these base addresses will be sent to the IOMMU and
all the pages within the corresponding basic blocks will be
migrated to the GPU. The runtime keeps track of the total
size of valid memory resided in GPU for each non-leaf node
among all the 2MB trees. If runtime detects that any non-
leaf node’s GPU valid memory is more than 50% of the total

Long et al.: Preprint submitted to Elsevier Page 3 of 14



DL-based Data Prefetching in CPU-GPU UVM

capacity of that node, the remaining non-valid pages of that
node will be scheduled as further prefetching candidates.
Figure 2 illustrates such a tree structure for a 512KB region.

2.3. Current Challenges
Studies [3, 4, 5] have shown that GPU applications’

device memory accesses are strongly clustered in virtual
address space. This further exemplifies the effectiveness
of the tree-based prefetcher since it can prefetch at most
2𝑀𝐵 neighborhood of the requested page. However, lever-
aging such (spatial) locality is not a panacea. Locality-
based prefetching scheme performs well on GPU applica-
tions whose memory access pattern is constant and repeti-
tive. When the subsets of hot pages become disjoint between
consecutive kernel iterations , the locality-based prefetching
scheme may soon become the performance bottleneck since
it fails to capture the locality in the latest memory accesses
and prefetches useless pages.

Most recently, Ganguly et al. [9] proposed an adaptive
framework for oversubscripition management in CPU-GPU
UVM. This work achieves soft-pinning of hot pages to the
device memory while remotely accessing cold pages from
host memory by using adaptive runtime to detect pattern in
CPU-GPU interconnect traffic. This work is promising but
it does not solve the problem of locality-based prefetching
scheme. On the other hand, remote zero-copy access may
alleviate the large overhead caused by page prefetching.
However, zero-copy requires very careful usage of pinned
memory, since pinned memory buffers are limited and they
are involved in both the pinned data transfer and the pageable
data transfer. Excessive allocation of pinned memory may
degrade the performance of both the host programs and
the GPU kernels. Besides, relying on zero-copy transfer
also leads to problems like low utilization of GPU memory
bandwidth, as the interconnection bandwidth become new
bottleneck.

In this work, we introduce deep learning to improve the
page prefetching scheme. The Transformer architecture [10]
and the Transformer-based models, such as BERT [11] and
GPT-3 [12], are successful and yield state-of-the-art results
on a wide variety of Natural Language Processing (NLP)
tasks. This model is known to vastly outperform previous
sequence model like LSTM. By extracting knowledge from a
long GPU kernel memory access history instead of focusing
on a narrow, currently requested range, we believe that
deep learning will be a promising approach to improve the
locality-based page prefetching scheme in CPU-GPU UVM.

3. Related Works
This paper is the first to propose deep learning based

CPU-GPU UVM page prefetching scheme. We now discuss
related works in UVM, and studies that apply artificial
intelligence to other parts of the microarchitecture.

3.1. CPU-GPU UVM Studies
UVM support in modern discrete CPU-GPU systems [1,

2] has been studied widely. Agarwal et al. [3] proposed

aggressive first-touch migration and prefetching neighbor-
ing pages. Zheng et al. [4] studied different user-directed
and user-agnostic prefetchers to overlap data migration and
kernel execution. Ganguly et al. [5] uncovered the mecha-
nism of the tree-based prefetcher implemented in NVIDIA
GPU driver. Pratheek et al. [13] proposed walk stealing to
reduce interference in page walks from concurrent tenants
while also ensuring high walker utilization. Chen at al. [6]
proposed an application-transparent framework for reducing
memory oversubscription overheads in GPUs. Kim et al. [7]
proposed a GPU runtime software and hardware solution
that enables efficient demanding paging for GPUs. Ganguly
et al. proposed a programmer-agnostic framework [8] and
an application-aware adaptive framework [9] to deal with
memory oversubscription overhead stemming from page
thrashing in irregular, data-intensive GPU applications.

3.2. Artificial Intelligence in Computer
Architecture

Hashemi et al. [14] apply the RNN model into the anal-
ysis of memory access pattern, which demonstrates higher
precision and recall than table-based approaches. Peled et
al. [15] proposed the context-based prefetcher, which em-
ploys the contextual bandits model of reinforcement learn-
ing. Bhatia et al. [16] introduced perceptron-based prefetch
filtering which acts as an independent check on the quality
of predictions made by the underlying prefetch engine. Shi et
al. [17] applied deep learning to solve the cache replacement
problem. Doudali et al. [18] presented a page scheduler
with machine intelligence for applications that execute over
hybrid memory systems.

Peled et al. [19] use a fully-connected feed-forward net-
work instead, and they formulate prefetching as a regression
problem to train their neural network. Shi et al. [20] propose
a hierarchical model of data prefetching that accommodates
both delta patterns and address correlation. Bera et al. [21]
propose a customizable prefetching framework that formu-
late prefetching as a reinforcement learning problem.

4. Transformer-based UVM Page Predictor
Inspired by the previous studies [14, 17], we formulate

the prefetching problem as a classification problem. We
phrase GPU UVM page prefetching as a supervised learning
problem in which a predictor is trained with the past page ac-
cesses to predict the future page accesses. This is presented
in Figure 3. Figure 4 shows the architecture of our predictor.

As shown in Figure 3, we collect the memory access
traces of several GPU benchmark applications using an
extended GPGPU-Sim [9], which supports UVM. We split
each trace into a training and validation set, using 80% for
training and 20% for validation, and we use 100% for testing.
Instead of feeding the predictor with the entire benchmark
trace, we cluster the data according to multiple features
(demonstrated in Figure 3) and we try to find out the differ-
ent levels of importance among them. This pre-processing
exploration is further elaborated in Section 5.1.

Long et al.: Preprint submitted to Elsevier Page 4 of 14



DL-based Data Prefetching in CPU-GPU UVM

Figure 3: Overview of the Transformer-based UVM page
prediction. A feature vector/token contains the following
fields, PC: instruction address; Hit/Miss: the counter to tell
whether this access causes a far-fault; warp/SM/TPC/CTA:
the warp/Streaming Multiprocessor/Texture Processing Clus-
ter/Cooperative Thread Array id; pAddr/bbAddr/rAddr: the
4KB page address/ the 64KB basic block address/the 2MB
root node address of the requested page; In: the base addresses
of the input arrays of the kernel function; Δ𝑝/Δ𝑏𝑏/Δ𝑟: the
address delta of the corresponding type of addresses.

Hashemi et al. [14] found out that the number of uniquely
occurring address deltas, 𝐴𝑑𝑑𝑟(𝑛) − 𝐴𝑑𝑑𝑟(𝑛 − 1), is often
orders of magnitude smaller than uniquely occurring ad-
dresses. To exploit this finding in our prediction, we label
every unique delta within the trace, and we use them as the
categories for classification. The number of categories varies
among different benchmarks. Inspired by the experiments
described in Section 7.2, we select Transformer as the basic
model of this study. The Transformer-based predictor takes
as the input a sequence of page accesses and assigns as the
output a probability prediction to each classification cate-
gory, where the prediction indicates the distance between the
page addresses of the current and the next access.

Inspired by the prior work by Shi et al. [17], we consider
that a long history of past accesses is beneficial and we
define the sequence length as 30. We apply top-1 predictions
on UVM page deltas. In our approach, for a faulty page,
we keep prefetching its basic block, the same as the tree-
based prefetching, and we will prefetch one additional page
with the highest predicted probability to be accessed in
the near future (i.e., top-1). This means that the maximum
prefetching size of one read-request will be 15 + 1 = 16
pages (=64 𝑘𝐵), which will be much smaller than 1𝑀𝐵.

In this work, we use an encoder-only Transformer, which
is similar to BERT [11]. As shown in Figure 4, we begin
by turning each token of the input sequence into a vector
using embedding. The output size of the embedding layer is
200 ∗ 30 (30 is the length of the input sequence, and 200 is
the total dimensions of the concatenation of 13 features men-
tioned in Figure 3 after embedding). After that, a positional
embedding layer is applied and this is designed to help the
predictor to recognize the token order. We use the original
position encoding scheme [10], which is based on a family of
sinusoidal functions. The output of the positional encoding

Figure 4: The Transformer-based predictor architecture.

layer will be input to a stack of Transformer encoders (we
use the stack size of 2 in this work), which perform the multi-
headed self-attention evaluation among the tokens within the
input sequence and generate output encodings. Finally, these
encodings are processed through linear transformation and
softmax normalization, the prediction of the current input
sequence will be generated. This finishes one forward pass
of our predictor. The weights of this model are updated
using back-propagation with gradient descent. Table 1 shows
that the Transformer-based predictor achieves an average
94.04% top-1 accuracy and an average 0.9426 weighted f1
score among 9 benchmark applications, and these prove the
effectiveness of the deep learning model for the page address
prediction in CPU-GPU UVM.

Table 1
Transformer-based UVM page prediction results.

Bechmark f1 score top-1 Acc. top-10 Acc.

AddVectors 0.9785 0.9767 0.9931
ATAX 0.9904 0.9943 0.9981
Backprop 0.9175 0.8893 0.9974
BICG 0.9932 0.9959 0.9992
Hotspot 0.7611 0.7676 0.9933
MVT 0.9889 0.9936 0.9979
NW 0.97 0.964 0.9958
Pathfinder 0.9128 0.9119 0.9996
Srad-v2 0.9708 0.9707 0.9994

5. Insights from the Transformer Model
Although the Transformer-based predictor is effective

in UVM page prediction, applying this model can be pro-
hibitively costly in both time and memory. In this section,
we discuss the insights observed from this predictor. We try
to leverage these insights to improve the practicality of this
model while retaining its effectiveness.

Long et al.: Preprint submitted to Elsevier Page 5 of 14



DL-based Data Prefetching in CPU-GPU UVM

5.1. Preprocessing
Preprocessing is an effective method for the learning

of memory access pattern [14]. By partitioning data into
smaller clusters, the number of address deltas is significantly
smaller than the global vocabulary, and this is beneficial
for the model to extract knowledge from the traces. The
PC is unique to an instruction that has been compiled from
a program, and PC sequences can inform the model of
patterns in the control flow. Researchers have used PC as
one of the most important features [16, 17] when they try
to extract knowledge from raw access traces. However, our
observation (Table 2) shows that PC is not as effective as SM
id when it is applied to clustering.

In GPGPU-Sim, we capture each benchmark kernel’s
memory trace from the GMMU. GPU tolerates long-latency
stalls using fine-grained multithreading, and GPU cores may
issue instructions from different warps to keep their pipeline
busy. Each executing thread within these warps can access
a different memory location. Thanks to the memory coa-
lescing technique, the concurrent accessing requests will be
alleviated to a smaller scale. However, there are still multiple
page requests that may arrive at the GMMU simultane-
ously. These requests may come from different instructions
depending on the SM processing speed, and they can be
possibly mixed with each other losing the order information
that the PC sequences are supposed to carry. We use the SM
id to cluster the training data in this study.

Table 2
Page prediction results with different clustering methods.

Bechmark Cluster f1 score top-1 Acc.

AddVectors PC 0.4397 0.4403
NW PC 0.6757 0.6029
AddVectors Kernel id 0.4177 0.4168
NW Kernel id 0.6948 0.603
AddVectors SM id 0.9311 0.9152
NW SM id 0.9562 0.9496
AddVectors CTA id 0.4701 0.4588
NW CTA id 0.7048 0.6207
AddVectors Warp id 0.555 0.5001
NW Warp id 0.7032 0.6207

5.2. Prefetching Timeliness
Timeliness is a critical factor of prefetching. Due to

the high page migration latency through the CPU-GPU
interconnect (PCI-e, NVLink, etc.), a too-early prefetch may
never be able to reach the device memory before the associ-
ated far-fault occurs. On the other hand, a too-late prefetch is
also unacceptable because the latency cost of demand access
has already been paid before the prefetching is finished. Fur-
thermore, when the memory is oversubscribed, a too-early
prefetch may cause page thrashing which evicts the pages
that have not been accessed yet and wastes the bandwidth
of repeatedly transferring them. As shown in Table 3, our
results indicate that the Transformer-based predictor can
adapt to different prediction distances when it scales from

1 to 30. Empirically, we set the prediction distance as 30 in
this study.

Table 3
Page prediction results using different prediction dis-
tances.

Bechmark Distance f1 score top-1 Acc.

Backprop 1 0.9175 0.8893
Srad-v2 1 0.9708 0.9707
ATAX 1 0.9904 0.9943
NW 1 0.97 0.964
Backprop 30 0.8895 0.7874
Srad-v2 30 0.9444 0.9254
ATAX 30 0.9852 0.9888
NW 30 0.9801 0.9564

5.3. Input features
Among all the features described in Figure3, we observe

that 1) page address deltas, 2) page addresses, and 3) PCs
carry most of the knowledge. It is worth noting that there
are some special cases in this exploration. When we do
similar tests on the data of ATAX, BICG and MVT, we
found that no matter which feature is removed from the
input sequences, the prediction performance difference is
negligible. When we look into the data distribution, we find
that there are always several address deltas dominant among
the classification categories. For instance, as for ATAX, the
number of training samples with address delta 16384 is
262077 while the training set size is 264040, which means
address delta 16384 occupies 99.26% of the entire output
vocabulary. In such cases, we will get almost the identical
prediction results even we remove all the features in the input
sequences. This finding inspires us on how to simplify the
predictor according to the distribution of the input data.

Figure 5: Page prediction results using one single feature.
Features in this figure are the same as the ones demonstrated
in Figure 3.

5.4. Full-attention module simplification
Simplification of the Transformer model is challenging

and is a hot research topic recently [22, 23]. Researchers
agree that the core limitation of the Transformer model is

Long et al.: Preprint submitted to Elsevier Page 6 of 14



DL-based Data Prefetching in CPU-GPU UVM

the quadratic dependency (mainly in terms of memory) on
the sequence length due to the full attention mechanism. To
improve the efficiency of the self-attention module, stud-
ies have been proposed to alleviate the heavy calculation
brought by dot product. For example, CGNL [24] applies
the Taylor series to approximate the pixel similarities. CC-
Net [25] approximates the self-attention module via two
consecutive criss-cross attention modules. These efforts give
us the hint that we may not actually need a complete Trans-
former, and an approximation with less complexity may be
good enough to solve our problem.

Thus, we do further explorations to find out the different
levels of reliance on Transformer among all the benchmark
kernels. We randomly shuffle the input sequences to see the
effect of the self-attention module. It is worth noting that
the original Transformer model is indifferent to the input
sequence order. However, researchers argue that sequence
order (word order) carries important information and it
can make big difference semantically. We use the position
encoder proposed in the original Transformer paper [10].

As demonstrated in Figure 6, ATAX, BICG, and MVT
are not sensitive to input orders. These benchmarks have
dominate address deltas as mentioned before. This indi-
cates that the existence of dominant address delta not only
weakens the contribution of other features, but also reduces
the predictor’s reliance on the self-attention module. We
define the convergence of address delta as the ratio of the
largest number of address delta to the total size of the
output vocabulary. Figure 6 shows that the percentage of
performance degradation of each benchmark without Trans-
former is proportional to its delta convergence. Thus, the
convergence of address delta may be an important indicator
to tell how many levels of self-attention module should
be involved to perform accurate page address prediction.
The remaining benchmarks show significant performance
degradation when the input order are shuffled. And this
indicates that the self-attention module plays an important
role in the prediction of these benchmarks.

Figure 6: Page delta convergence and page prediction results
for the ordered sequence and the shuffled sequence.

To verify our observation, we select four benchmarks
in the previous exploration, two (ATAX, BICG) from the
special cases and two (NW, Backprop) from the others, and
we use Transformer and plain fully connected (fc) layers as
the predictor separately. Table 4 shows that special cases

work well even with one single fc layer without the self-
attention module. In these cases, training using Transformer
become totally unnecessary which only cause a waste of time
and memory. The other two benchmark experience different
levels of performance loss with only the fc layer, which
indicates the necessity of Transformer in their predictions.

Table 4
Page prediction results using Transformer and simple
fully-connected layer.

Bechmark Shuffle Predictor f1 score top-1 Acc.

ATAX True Transformer 0.9889 0.9939
BICG True Transformer 0.9932 0.9959
NW True Transformer 0.97 0.964
Backprop True Transformer 0.9175 0.8893
ATAX True FC layer 0.9894 0.9939
BICG True FC layer 0.9956 0.9929
NW True FC layer 0.8128 0.7378
Backprop True FC layer 0.4794 0.6666

We design our simplification method upon Reformer [22],
a study that reduces the quadratic complexity 𝑂(𝑁2) of
the self-attention module to 𝑂(𝑁𝑙𝑜𝑔𝑁) (𝑁 indicates the
length of the input sequence). The core idea of Reformer
is to use locality sensitive hashing (LSH) attention, which
is an approximation for full attention, to compute nearest
neighbors and replace the 𝑂(𝑁2) factor in attention layer,
and enables the model to operate on long sequences. As
described by Kitaev et al. [22], Reformer matches the results
obtained with full Transformer but runs much faster, and has
orders of magnitude better memory efficiency. Moreover,
LSH attention is configurable, whose accuracy grows with
the number of hashes. Therefore, we choose to leverage LSH
attention in this work.

The key reason for the success of LSH attention is that
the output of softmax normalization is dominated by the
largest elements. So, when we perform the calculation of
self-attention, which is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 ∕

√

𝑑𝑘), we only need
to focus on the 𝑄𝐾𝑇 entries that may produce the largest
dot product. In other words, we only need to focus on the
𝑄𝐾𝑇 entries, which are closest to each other. By doing
the calculation only on the closest entries instead of all
the entries in the query and the key matrix, LSH attention
can approximate the result of full attention with much less
calculation overhead (both memory and time). Actually, this
indicates an implicit precondition of using LSH attention.
If the original attention matrix is not sparse enough, which
means the 𝑄𝐾𝑇 dot-product matrix delivers nearly uniform
distribution, LSH attention may only be able to contribute
little on reducing the complexity of the full attention.

Fortunately, when we look into the attention weights of
our data, we find that the weight matrix is sparse enough
even without configuring the scaling factor. As a result, we
think that LSH attention is suitable for our problem.

Long et al.: Preprint submitted to Elsevier Page 7 of 14



DL-based Data Prefetching in CPU-GPU UVM

Figure 7: Attention weight vectors of consecutive tokens.

To further reduce the complexity of the attention mecha-
nism, we propose Hamming-based Locality Sensitive Hash-
ing Attention (HLSH) mechanism, which is described in Al-
gorithm 1. In the original LSH Attention, after the sequences
of queries and keys finish LSH bucketing and sorting, atten-
tion within each bucket will be calculated to generate the
final output. We argue that it is not necessary to perform
dot-product calculation among all the elements of each LSH
bucket. Firstly, the results of dot-products are dominated by
the similar 𝑄𝐾𝑇 pairs. This indicates that the correctness of
the final output will not be seriously affected even we erase
the pairs whose distances are very large. Secondly, if vector
𝐴 is very close to vector 𝐵, the dot-product 𝐴𝐶 will also
be close to 𝐵𝐶 . We believe that similar queries should be
able to share the dot-product results by running only one
calculation while still providing a good approximation for
the original attention matrix. As for each batch, we will get
a matrix of hashes after LSH bucketing (as for the shared-
𝑞𝑘 structure, the LSH hashing of 𝑄 and 𝐾 are identical).
According to the definition of the angular LSH method
described in Reformer, the more similar the input vectors
are, the more likely the identical bucket ids will appear in the
same round of angular LSH. Thus, we use hamming distance
to measure the similarity of the LSH hashes, which gives
the number of bucket ids that are different in the same bit
(Line 2). As shown in in Algorithm 1, Line 3 is designed
to reduce 𝑠𝑒𝑞_𝑙𝑒𝑛∕2 hamming values to one unified result
for each entry. According to the aforementioned intuition, if
the calculated hamming distance is larger than𝐻𝑇𝑂𝑃 (Line
6), we consider that the associated entry in the original 𝑄
or 𝐾 matrix is very distinct compared to the other entries,
which will lead to a negligible dot-product result in the final
attention matrix. Thus, we simply erase such entries to save
the time and memory of calculation (Line 7). On the other
hand, if the calculated hamming distance is smaller than
𝐻𝐵𝑂𝑇 (Line 9), this indicates that the associated 𝑄 entries
are very close to each other, which will lead to a similar dot-
product with the same 𝐾 entry. In this case, we only keep the
first entry and erase the others in this category, and we simply

copy the dot-product result of the saved entry to the erased
one according to their indexes (Line 9−16, Line 19). As for
the entries associated with the calculated distance between
𝐻𝐵𝑂𝑇 and 𝐻𝑇𝑂𝑃 , the typical matrix multiplication of
attention will be operated. Assumed that the length of the
LSH hashing is 𝐿𝐿𝑆𝐻 , we define 𝐻𝐵𝑂𝑇 as 0.1 ∗ 𝐿𝐿𝑆𝐻 ,
and 𝐻𝑇𝑂𝑃 as 0.9 ∗ 𝐿𝐿𝑆𝐻 . Theoretically, our proposed
HLSH attention mechanism can improve Reformer LSH
attention from the complexity of 𝑂(𝑁𝑙𝑜𝑔𝑁) to 𝑂((𝑙𝑜𝑔𝑁)2).

Algorithm 1: Hamming-based Locality Sensitive
Hashing Attention Mechanism.

Input:
The original shared matrix 𝑄 and 𝐾 , whose shape are
(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑠𝑒𝑞_𝑙𝑒𝑛, 𝑛_𝑒𝑚𝑏𝑒𝑑𝑠).
The resulting matrix of LSH bucketing 𝑄𝐿𝑆𝐻 and 𝐾𝐿𝑆𝐻 , whose
shape are (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑠𝑒𝑞_𝑙𝑒𝑛, 𝑛_ℎ𝑎𝑠ℎ𝑒𝑠).
Threshold 𝐻𝑇𝑂𝑃
Threshold 𝐻𝐵𝑂𝑇

Output:
The resulting attention matrix 𝑜𝑢𝑡𝑝𝑢𝑡𝐻𝐿𝑆𝐻 .

1: for 𝑖 = 1 → 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 do
2: Randomly select 𝑠𝑒𝑞_𝑙𝑒𝑛∕2 entries from the sub-matrix 𝐾𝐿𝑆𝐻

𝑖
according to 𝑎𝑥𝑖𝑠 = 0, and calculate their Hamming distance
among all the entries in 𝑄𝐿𝑆𝐻

𝑖 according to 𝑎𝑥𝑖𝑠 = 0
3: As for 𝑄𝐿𝑆𝐻

𝑖 , calculate the 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 of the associated hamming
distances according to 𝑎𝑥𝑖𝑠 = 0, get 𝐻𝑆𝐶𝑂𝑅𝐸𝑖

4: Create buffer 𝑅𝐸𝐶𝑂𝑅𝐷 whose max length is 𝑠𝑒𝑞_𝑙𝑒𝑛
5: for 𝑗 = 1 → 𝑠𝑒𝑞_𝑙𝑒𝑛 do
6: if 𝐻𝑆𝐶𝑂𝑅𝐸𝑖𝑗 ≥ 𝐻𝑇𝑂𝑃 then
7: Replace the 𝑗𝑡ℎ entry in 𝑄𝑖 and 𝐾𝑖 with all-zeros vector
8: end if
9: if 𝐻𝑆𝐶𝑂𝑅𝐸𝑖𝑗 ≤ 𝐻𝐵𝑂𝑇 && 𝑗 not in 𝑅𝐸𝐶𝑂𝑅𝐷 then

10: if the size of 𝑅𝐸𝐶𝑂𝑅𝐷 is 0 then
11: Record 𝑗 as 𝑏𝑎𝑠𝑒
12: else
13: Replace the 𝑗𝑡ℎ entry in 𝑄𝑖 and 𝐾𝑖 with all-zeros vector
14: end if
15: Push 𝑗 to 𝑅𝐸𝐶𝑂𝑅𝐷
16: end if
17: end for
18: 𝑜𝑢𝑡𝑝𝑢𝑡𝐻𝐿𝑆𝐻

𝑖 = 𝑚𝑎𝑡𝑚𝑢𝑙(𝑄𝑖, 𝐾𝑖
𝑇 )

19: Copy the entries in 𝑜𝑢𝑡𝑝𝑢𝑡𝐻𝐿𝑆𝐻
𝑖 whose indexes equals to 𝑏𝑎𝑠𝑒 to

the entries whose indexes equals to the values in 𝑅𝐸𝐶𝑂𝑅𝐷
20: end for
21: Get 𝑜𝑢𝑡𝑝𝑢𝑡𝐻𝐿𝑆𝐻

The comparison between using the full attention module
and our proposed HLSH attention module is presented in
Table 5. From the results, we can see that our proposed
HLSH achieves very similar performance compared to the
full attention module.

6. Our Solution
Our insights reveal that it is possible to substitute the

Transformer-based predictor with a simpler model. We sim-
plify and revise our predictor as follows:

1. We use the combination of SM id and warp id to
cluster the traces.

2. We use 3 features (page address, page address delta,
PC) to construct one input token, and we use 30 con-
secutive tokens to construct one input sequence. The

Long et al.: Preprint submitted to Elsevier Page 8 of 14



DL-based Data Prefetching in CPU-GPU UVM

Figure 8: Overview of the revised predictor.

Table 5
Page prediction results using Transformer and HLSH
attention.

Bechmark Shuffle Predictor f1 score top-1 Acc.

ATAX True Transformer 0.9889 0.9939
BICG True Transformer 0.9932 0.9959
NW True Transformer 0.97 0.964
Backprop True Transformer 0.9175 0.8893
ATAX True HLSH attention 0.9887 0.9939
BICG True HLSH attention 0.9929 0.9956
NW True HLSH attention 0.95 0.9565
Backprop True HLSH attention 0.9209 0.8949

output size of the embedding layer is decreased to 12 ∗
30 (12 is the total dimensions of the concatenation of
delta and PC after embedding) correspondingly.

3. We use a single layer of encoder in the revised predic-
tor.

4. We use HLSH attention to replace the full attention
module, and the number of the attention head is 1.

5. We use 1 indicator to decide whether to bypass the
attention module according to the page convergence
of the input data.

The other parameters of the model are kept the same
as the description in Section 4. Figure 8 shows the overall
structure of the revised predictor.

Furthermore, we exploit quantization to compress the
memory consumption of our model. Memory footprint of
the previous model is shown in Table 6, which is nearly
187MB on average. Through our explorations, we find that
clamping all the weights and the forward/backward pass
activation values of all the layers to [−8,+8] will not cause
a serious performance degradation to the UVM page predic-
tion. Table 8 shows the comparison results between using
float32-based model and the clamped model. According to
this finding, we believe that the memory consumption of
the revised predictor could theoretically be one-eighth of the
previous one (4 bits are enough to represent all the integers
within [−8,+8]). The estimated memory consumption of the

revised model is shown in Table 7, which is about 4.51MB
on average. The memory consumption statistics are collected
using the API provided by a MIT-licensed library [26].
(torchinfo.summary).

Table 6
Memory footprint using full-attention Transformer.

Bechmark Params. F/B pass acti. Total

AddVectors 7.16MB 151.10MB 158.63MB
ATAX 33.60MB 151.44MB 185.40MB
Backprop 117.03MB 155.33MB 272.73MB
BICG 27.87MB 151.18MB 179.41MB
Hotspot 16.66MB 151.27MB 168.30MB
MVT 33.48MB 151.43MB 185.28MB
NW 39.27MB 152.41MB 192.05MB
Pathfinder 25.96MB 151.17MB 177.50MB
Srad-v2 12.27MB 151.22MB 163.85MB

Table 7
Memory footprint using revised predictor.

Bechmark Params. F/B pass acti. Total

AddVectors 17.5KB 4.30MB ≈4.31MB
ATAX 77.5KB 4.34MB ≈4.35MB
Backprop 0.77MB 4.83MB ≈5.60MB
BICG 31.25KB 4.31MB ≈4.32MB
Hotspot 47.5KB 4.32MB ≈4.33MB
MVT 76.25KB 4.34MB ≈4.35MB
NW 0.25MB 4.46MB ≈4.71MB
Pathfinder 28.75KB 4.31MB ≈4.32MB
Srad-v2 37.5KB 4.31MB ≈4.32MB

7. Evaluation
We evaluate our simplified Transformer predictor by

comparing it against a state-of-the-art framework (UVMS-
mart) which supports delayed page migration, zero-copy,
and tree-based page prefetching. We compare IPC, page hit
rate, CPU-GPU interconnect usage, and unity of benchmark

Long et al.: Preprint submitted to Elsevier Page 9 of 14



DL-based Data Prefetching in CPU-GPU UVM

Table 8
Page prediction results using Transformer(T) and revised
predictor(R).

Bechmark f1 (T) top1 (T) f1 (R) top1 (R)

AddVectors 0.9785 0.9767 0.8986 0.9074
ATAX 0.9904 0.9943 0.9889 0.9939
Backprop 0.9175 0.8893 0.8267 0.8125
BICG 0.9932 0.9959 0.9929 0.9956
Hotspot 0.7611 0.7676 0.6846 0.7112
MVT 0.9889 0.9936 0.9886 0.9936
NW 0.97 0.964 0.8945 0.8821
Pathfinder 0.9128 0.9119 0.8734 0.8844
Srad-v2 0.9708 0.9707 0.9335 0.9418

kernels running with UVMSmart and our revised predictor.
Unity, defined in Section 7.6, is our proposed single metric
capturing the combined effects of prediction accuracy, cov-
erage, and page hit rate on the GPU side.

7.1. Evaluation methodology
We use an GPGPU-Sim extension implemented by Gan-

guly et al. [9] in our experiments. This extension provides
functional and timing simulation support for UVM. Fur-
thermore, this extension supports a smart runtime, which is
composed of (1) a detection engine to identify the pattern in
CPU-GPU interconnect traffic, (2) a dynamic policy engine
that chooses from a wide array of existing memory manage-
ment policies, and (3) an augmented memory management
module that adaptively switches between delayed page mi-
gration and pinning. To compare with UVMSmart, we use
the same GPGPU-Sim extension to run the same benchmark
kernels with the same number of simulated instructions
while disabling the UVMSmart runtime.

GPGPU-Sim UVMSmart provides a set of regular and
irregular GPU applications from Rodinia, Lonestar, and
Polybench benchmark suites. These benchmarks are mod-
ified to use CUDA UVM APIs. Since we focus on page
prefetching in this work, we run these benchmarks under
no oversubscription by configuring the device memory size
larger than the benchmarks’ working set size. Beside the
benchmarks used in Sections 5 and 6, we use two more
benchmarks (2DCONV, StreamTriad) in our evaluation. Ta-
ble 9 shows the primary configuration of the simulator, and
the configuration associated with the UVMSmart runtime is
the same as in [9].

In order to hide the long latency of model training, we
randomly select 5 benchmark applications (ATAX, Back-
prop, Bicg, Hotspot, NW) and run them using different
input data set compared to the simulations described in
Section 7. We use 50% of each of these benchmarks’ sim-
ulation results to build a corpus, and we train our predictor
described in Section 6 on this corpus until its accuracy
reaches a reasonable range (≥0.85 in our experiments). We
use this pre-trained model to make predictions for each
benchmark, and we fine-tuned this model in each simulation
every 50 million instructions to make it become adaptive

in different program phases. According to our statistics
among 11 benchmarks, this training method introduces a
microsecond-level inference overhead for each prediction.
According to NVIDIA’s announcement [27], the inference
latency of BERT-large (with 345 million parameters) could
be slashed to 1.2 𝑚𝑠 by leveraging the TensorRT 8.0 SDK.
Shi et al. [20] also claim that their model (which is composed
of LSTMs and Transformers with a much larger model
size than our predictor) can make predictions every 18000
nanoseconds. We believe that this prediction overhead can
be improved by more advanced hardware/software tech-
nologies, more fancy equipment, and more sophisticated
programming skills. However, these are out of the scope
of this study. Instead, we conduct a prediction overhead
sensitivity test of our predictor (described in Section7.3) to
show the impact of predictor latency upon the performance.

Table 9
Configuration parameters of GPGPU-Sim.

Simulator GPGPU-Sim UVMSmart

GPU Architecture NVIDIA GeForceGTX 1080Ti
Pascal-like

GPU Cores 28 SMs, 128 cores each @
1481 MHz

Shader Core Config Max 32 CTAs and 64 warps
per SM, 32 threads per warp
GTO scheduler

Page Size 4KB
Page Table Walk Latency100 core cycles
CPU-GPU Interconnect PCI-e 3.0 16x, 8 GTPS per

channel per direction, 100
GPU core cycles latency

DRAM Latency 100 GPU core cycles
Zero-copy Latency 200 GPU core cycles
Far-fault Latency 45𝜇s

7.2. Comparison among different predictors
As described in Section 3.2, researchers have adopted

different AI-based approaches to divergent computer archi-
tectural problems. More precisely, some of these works [15,
16, 19, 20, 21, 28, 29, 30, 31] are targeting data prefetching
problems (beyond GPU UVM), which is similar to our study.
In order to compare these methods, we use a batch of 50
million instructions of each GPU application to train these
models, and we use these trained models to make predictions
on another batch of 50 million instructions. Figure 9 shows
the comparison results of using different predictors to deliver
page address prediction. We can see that the Transformer-
based method delivers the best prediction performance com-
pared to the other methods (Convolution Neural Network,
LSTM, Multi-Layer Perceptron). And our revised predictor
(HLSH) achieves a similar performance as Transformer.

It is worth noting that the input datasets of different
GPU workloads are randomly generated, and our revised
predictor achieves consistent performance on different GPU
workloads’ input datasets.

Long et al.: Preprint submitted to Elsevier Page 10 of 14



DL-based Data Prefetching in CPU-GPU UVM

Figure 9: Prediction results using different predictors.

7.3. Prediction overhead sensitivity test
Figure 10 shows the normalized IPC results with dif-

ferent prediction latencies for 11 GPU benchmarks under
no memory oversubscription. We vary the latency among
1, 2, 5, and 10 microsecond-per-prediction. Since the GPU
core frequency is configured as 1481 MHz in the simula-
tor, so these latencies roughly correspond to 1500, 3000,
7500, 15000 cycle-per-prediction in each simulation. We
consider UVMSmart as the state-of-the-art (SOTA) design.
The average normalized IPC results under different levels
of prediction overheads are 1.10X (1 microsecond), 1.06X
(2 microseconds), 1.00X (5 microseconds), and 0.90X (10
microseconds). Compared to the SOTA design, our predictor
can achieve a 10% average IPC improvement when the
prediction overhead is 1 microsecond, but this improvement
vanishes when the overhead grows to 5 microseconds. Such
deterioration continues and turns into a 10% performance
slowdown when the overhead grows to 10 microseconds.
These results show that our predictor, as well as other
learning-based methods, are sensitive to the prediction over-
head. In our subsequent experiments, we assume that our
revised predictor is situated at the UVM backend to make
predictions. We use 1 microsecond (1500 cycle) as the pre-
diction overhead, which is sharply distinct from the previous
works [17, 20] that consider zero prediction overhead while
exploiting deep learning models to boost the application’s
IPC performance. Both the training overhead of the pre-
trained model and the fine-tuning overhead are not consid-
ered in the simulation, we assume that these processes can
be achieved offline in practice.

Figure 10: Normalized IPC of 11 GPU benchmark applications
using our solution under different levels of prediction overhead.

7.4. Performance
From Figure 10, we can see that with the prediction

latency of 1500 cycles, our solution achieves performance
improvement for most benchmarks ranging from 1% to 34%.
Compared to the aggressive tree-based prefetching method
exploited by the UVMSmart runtime, our predictor improve
the prefetching precision without harming the prefetching
coverage (Table 11). By reducing the useless prefetches,
page migration overheads caused by the corresponding
load requests are saved. More accurate prediction also
improves the application’s page hit rate, which reduces the
virtual address translation overhead. Srad-v2, Backprop’s,
and Pathfinder’s IPC improvement is mainly due to this
reason. Srad-v2’s page hit rate grows from 0.86 to 0.94,
Backprop’s grows from 0.73 to 0.95, and Pathfinder’s grows
from 0.58 to 0.99 (Table 10). High-accuracy prefetching also
helps mitigate the adverse effects of clustered page faults.
For a far-fault, if multiple pages are to be transmitted as a
result of prefetching, the service of the subsequent far-faults
would be delayed since the PCIe bus has been occupied.
As a result, some applications may experience high stall
latency even the overall page hit rate is high. BICG follows
this routine that the improvement in page hit rate is minor
(from 0.94 to 0.99) while the IPC improvement is relatively
significant (34%). This is further dissected in Section 7.5.

Overall, our solution improves IPC by an average of
10.89% (geometric mean) compared to UVMSmart. In ad-
dition, our solution improves the device memory page hit
rate (i.e., the ratio of the demanded pages available at the
GPU side) for all the benchmarks with an average (geometric
mean) of 16.98%.

Table 10
Page hit rate(Hit) of GPU applications using UVMSmart
runtime(U) and revised predictor(R).

Bechmark Hit(U) Hit(R) Simulated Inst.

AddVectors 0.778014 0.940632 23068672
ATAX 0.979349 0.979211 13366000
Backprop 0.738671 0.955269 133000000
BICG 0.941975 0.998812 167936000
Hotspot 0.613115 0.840864 112000000
MVT 0.495362 0.509689 28000000
NW 0.999372 0.999874 29010432
Pathfinder 0.587640 0.994977 403828004
Srad-v2 0.864029 0.942056 160000000
StreamTriad 0.559403 0.683084 7195000
2DCONV 0.814476 0.948211 50212980

7.5. CPU-GPU interconnect usage
Figure 11 shows the PCIe usage of simulating BICG’s 2

million instructions. As described in Section 2.2, the number
of the prefetching pages grows when the valid pages of
a 2MB node exceed 50%. We can see that UVMSmart’s
consumption of PCI-e bandwidth increases from nearly 1
GB/s to 15 GB/s following this scheme. More specially,
the PCIe bus is highly occupied in the range of 407000 to

Long et al.: Preprint submitted to Elsevier Page 11 of 14



DL-based Data Prefetching in CPU-GPU UVM

528000 cycles. In this case, the far-faults of the subsequent
memory instructions have to wait until all the pending pages
have been transferred. Thanks to the accurate page predic-
tion powered by the revised predictor, our solution achieves
higher prefetching precision without harming the prefetch-
ing coverage. As a result, the kernel using our solution
experiences much less stalls compared to the one using the
tree-based prefetcher. This is the reason why the simulation
of the identical BICG’s 2 million instructions using UVMS-
mart consumes 528244 cycles while our solution consumes
392440 cycles.

Figure 11: PCIe usage of BICG using UVMSmart runtime and
our solution.

Overall, our solution reduces PCI-e usage by an average
of 11.05% (geometric mean) compared to UVMSmart (Fig-
ure 12).

Figure 12: Normalized PCIe usage of 11 GPGPU benchmarks
using UVMSmart runtime and our solution.

7.6. Unity
As described in previous works [16], prefetcher accuracy

refers to the fraction of prefetched memory chunks that end
up being used by the application, and prefetcher coverage
refers to the fraction of memory access misses that could be
mitigated by the prefetches. There is a fundamental tradeoff
between prefetcher accuracy and prefetcher coverage. Also,
another cirtical factor of prefetchers is the timeliness. To
evaluate all these factors together, we propose a new metric
’unity’, which is defined as follows.

𝑈𝑛𝑖𝑡𝑦 ∶= 3
√

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑃𝑎𝑔𝑒_ℎ𝑖𝑡_𝑟𝑎𝑡𝑒 (1)

As shown in the equation, we use page hit rate to mea-
sure the prefetching timeliness. For a perfect prefetcher,
its unity would be 1. Next, we compare the unity of our
proposed model with it of UVMSmart. The results are shown
in Table 11. Our solution’s average unity (0.90) is much
closer to the ideal prefetching scheme (1.0) than UVMS-
mart (0.85). We can see that the UVMSmart’s prefetching
scheme (Tree-based Neighborhood Prefetcher) works really
well at coverage (100% coverage among all the benchmark
kernels). However, such perfectness comes at the price of
a large number of prefetches, which affect the performance
of the prefetcher accuracy (79.46% on average). Thanks to
the deep learning model, our solution reduces the number
of prefetches for most of the benchmark kernels without
losing the prefetching correctness. As a result, our method
achieves higher prefetcher accuracy (88.50%) while keeping
a reasonable coverage (91.24%). By learning patterns in long
memory access history instead of relying on most current
accesses’ spatial locality, our solution (89.02% on average)
outperforms UVMSmart (76.10% on average) in the device
memory page hit rate (i.e., timeliness). Both improved accu-
racy and timeliness are the reasons for the overall improved
performance achieved by our proposed scheme.

Table 11
Unity of GPU applications using UVMSmart runtime(U)
and revised predictor(R).

Bechmark Prefetcher Acc. Cov. Hit. Unity

AddVectors U 1 1 0.78 0.92
ATAX U 0.89 1 0.98 0.96
Backprop U 0.81 1 0.73 0.84
BICG U 0.99 1 0.94 0.98
Hotspot U 0.56 1 0.61 0.70
MVT U 0.51 1 0.50 0.63
NW U 0.99 1 0.99 0.99
Pathfinder U 0.99 1 0.59 0.84
Srad-v2 U 0.79 1 0.86 0.88
StreamTriad U 0.51 1 0.56 0.66
2DCONV U 0.99 1 0.81 0.93
AddVectors R 1 0.96 0.94 0.97
ATAX R 0.90 0.88 0.98 0.92
Backprop R 0.87 0.99 0.96 0.94
BICG R 0.99 0.99 0.99 0.99
Hotspot R 0.68 0.99 0.84 0.83
MVT R 0.88 0.53 0.51 0.62
NW R 0.99 0.98 0.99 0.99
Pathfinder R 0.99 0.99 0.99 0.99
Srad-v2 R 0.87 0.96 0.94 0.92
StreamTriad R 0.68 0.92 0.68 0.75
2DCONV R 0.97 0.98 0.95 0.97

Ideal 1 1 1 1

Long et al.: Preprint submitted to Elsevier Page 12 of 14



DL-based Data Prefetching in CPU-GPU UVM

8. Conclusion
In this paper, we make a case for deep learning to im-

prove page prefetching in CPU-GPU UVM. We first design
a powerful Transformer-based model that uses the device
memory access history of GPU applications, and this model
delivers high prediction accuracy in the prediction of fu-
ture requested pages. Then, we interpret the unconstrained
Transformer model to derive several important insights, and
we use these insights to simplify our model and to improve
its practicality. The simplified model matches the high pre-
diction accuracy of the unconstrained model with orders of
magnitude lower cost. Finally, the evaluation results show
that our proposed solution achieves higher performance than
the state-of-the-art scheme for managing CPU-GPU UVM.

Thanks to the prior efforts of applying deep learning and
machine learning algorithms into the area of microarchitec-
ture, we can see a trend of exploiting machine intelligence
to solve the valid problems (branch prediction, prefetching,
cache replacement, etc.) in this domain. With the advance of
technology, we expect that not only the simple models, such
as perceptron, but also the more complex neural network,
such as Transformer, could be leveraged by the hardware
designers. We hope that this paper will inspire the design
for other studies which are trying to introduce the learning-
based solutions in heterogeneous systems like CPU-GPU
and multi-GPUs.

Acknowledgement
This work was supported in part by the National Natural

Science Foundation of China (No.61802022 and No.61802027),
and the Industrial Internet Innovation and Development
Action Plan Project (No. TC210A02K).

References
[1] AMD, Radeons next-generation vega architecture,

https://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf,
2017.

[2] NVIDIA, Nvidia pascal architecture, https://www.nvidia.com/en-
us/data-center/pascal-gpu-architecture/, 2019.

[3] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, T. F. Wenisch,
Unlocking bandwidth for gpus in cc-numa systems, in: 2015 IEEE
21st International Symposium on High Performance Computer Ar-
chitecture (HPCA), IEEE, 2015.

[4] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, S. W. Keckler,
Towards high performance paged memory for gpus, in: 2016 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2016.

[5] D. Ganguly, Z. Zhang, J. Yang, R. Melhem, Interplay between
hardware prefetcher and page eviction policy in cpu-gpu unified
virtual memory, in: Proceedings of the 46th International Symposium
on Computer Architecture (ISCA), ACM, 2019.

[6] C. Li, R. Ausavarungnirun, C. J.Rossbach, Y. Zhang, O. Mutlu,
Y. Guo, J. Yang, A framework for memory oversubscription man-
agement in graphics processing units, in: Proceedings of the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), ACM, 2019.

[7] H. Kim, J. Sim, P. Gera, R. Hadidi, H. Kim, Batch-aware unified
memory management in gpus for irregular workloads, in: Proceedings
of the 25th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), ACM,
2020.

[8] D. Ganguly, Z. Zhang, J. Yang, R. Melhem, Adaptive page mi-
gration for irregular data-intensive application under gpu memory
oversubscription, in: 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2020.

[9] D. Ganguly, R. Melhem, J. Yang, An adaptive framework for
oversubscription management in cpu-gpu unified memory, in: Design,
Automation & Test in Europe (DATE), IEEE, 2021.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in:
Advances in neural information processing systems (NeurIPS), MIT
Press, 2017.

[11] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, Bert: Pre-training
of deep bidirectional transformer for language understanding, arXiv
preprint arXiv:1810.04805, 2018.

[12] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, D. Amodei, Language models are few-shot
learners, arXiv preprint arXiv:2005.14165, 2020.

[13] B. Pratheek, N. Jawalkar, A. Basu, Improving gpu multi-tenancy with
page walk stealing, in: 2021 IEEE International Symposium on High
Performance Computer Architecture (HPCA), IEEE, 2021.

[14] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, P. Ranganathan, Learning memory access patterns, in:
35th International Conference on Machine Learning (ICML), ACM,
2018.

[15] L. Peled, S. Mannor, U. Weiser, Y. Etsion, Semantic locality and
context-based prefetching using reinforcement learning, in: Proceed-
ings of the 42th International Symposium on Computer Architecture
(ISCA), ACM, 2015.

[16] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V.Gratz, D. A.Jimenez,
Perceptron-based prefetch filtering, in: Proceedings of the 46th
International Symposium on Computer Architecture (ISCA), ACM,
2019.

[17] Z. Shi, X. Huang, A. Jain, C. Lin, Applying deep learning to the cache
replacement problem, in: Proceedings of the 52th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), ACM,
2019.

[18] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi,
A. Gavrilovska, Kleio: A hybrid memory page scheduler with
machine intelligence, in: Proceedings of the High Performance
Distributed Systems (HPDC), ACM, 2019.

[19] L. Peled, U. Weiser, Y. Etsion, A neural network prefetcher for arbi-
trary memory access patterns, in: ACM Transactions on Architecture
and Code Optimization (TACO), ACM, 2019.

[20] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, C. Lin,
A hierarchical neural model of data prefetching, in: Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), ACM,
2021.

[21] R. Bera, K. Kanellopoulos, A. V. Nori, T. Shahroodi, S. Subramoney,
O. Mutlu, Pythia: A customizable hardware prefetching framework
using online reinforcement learning, in: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), IEEE/ACM,
2021.

[22] N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The efficient trans-
former, arXiv preprint arXiv:2001.04451, 2020.

[23] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. On-
tanon, P. Pham, A. Ravula, Q. Wang, L. Yang, A. Ahmed, Big
bird: Transformers for longer sequences, in: Advances in neural
information processing systems (NeurIPS), MIT Press, 2020.

[24] K. Yue, M. Sun, Y. Yuan, F. Zhou, E. Ding, F. Xu, Compact
generalized non-local network, in: Advances in neural information
processing systems (NeurIPS), MIT Press, 2018.

Long et al.: Preprint submitted to Elsevier Page 13 of 14



DL-based Data Prefetching in CPU-GPU UVM

[25] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, Ccnet:
Criss-cross attention for semantic segmentation, in: Proceedings
of the IEEE International Conference on Computer Vision (ICCV),
IEEE, 2019.

[26] TylerYep, torchinfo, https://github.com/TylerYep/torchinfo, 2021.
[27] NVIDIA, Nvidia announces tensorrt 8 slashing bert-large inference

down to 1 millisecond, https://developer.nvidia.com/blog/nvidia-
announces-tensorrt-8-slashing-bert-large-inference-down-to-1-
millisecond/, 2021.

[28] M. Bakhshalipour, P. Lotfi-Kamran, H. Sarbazi-Azad, Domino
temporal data prefetcher, in: 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), IEEE, 2018.

[29] A. Jain, C. Lin, Linearizing irregular memory access for improved
correlated prefetching, in: 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), IEEE/ACM, 2013.

[30] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, A. Moshovos,
Practical off-chip meta-data for temporal memory streaming, in:
2009 IEEE International Symposium on High Performance Computer
Architecture (HPCA), IEEE, 2009.

[31] P. Michaud, Best-offset hardware prefetching, in: 2016 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2016.

Long et al.: Preprint submitted to Elsevier Page 14 of 14


