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A B S T R A C T

Sobel is one of the most popular edge detection operators used in image processing. To date, most

users utilize the two-directional 3 × 3 Sobel operator as detectors because of its low computational

cost and reasonable performance. Simultaneously, many studies have been conducted on using large

multi-directional Sobel operators to satisfy their needs considering the high stability, but at an expense

of speed. This paper proposes a fast graphics processing unit (GPU) kernel for the four-directional

5x5 Sobel operator. To improve kernel performance, we implement the kernel based on warp-level

primitives, which can significantly reduce the number of memory accesses. In addition, we introduce

the prefetching mechanism and operator transformation into the kernel to significantly reduce the

computational complexity and data transmission latency. Compared with the OpenCV-GPU library,

our kernel shows high performances of 6.7x speedup on a Jetson AGX Xavier GPU and 13x on a GTX

1650Ti GPU.

1. Introduction

The Sobel operator is a classical first-order edge detec-

tion operator that performs a 2D spatial gradient measure-

ment on images and is generally used to find the approxi-

mate absolute gradient magnitude at each pixel. It is typ-

ically used to emphasize regions of high spatial frequency

that correspond to edges. Compared with other edge detec-

tion operators, such as the Canny and Roberts cross, the So-

bel operator has a low calculation amount, simple structure,

and high precision. Therefore, it has a wide range of appli-

cations in fields such as remote sensing [1], medical image

processing [2], and industrial detection [3].

To date, most applications using Sobel have chosen the

two-directional3×3 operator as their detectors because of its

low computational cost and reasonable performance. Nev-

ertheless, some applications still require further size expan-

sions and increases in the direction of the operator to sat-

isfy their unique requirements. In the medical field, Sheik

et al. [4] proposed a Sobel operator for the edge detection

of the knee-joint space of osteoarthritis. They improved the

operator by adding 315◦ and 360◦ directions on the bias of

horizontal and vertical directions, which can perform the de-

tection better than the original two. Remya et al. [5] applied

the Sobel operator to the edge detection of brain tumors in

MRI images. Their operator was improved to handle eight

directions to clearly detect extremely irregularly shapes of

tumors and showed a higher detection accuracy than other

methods. In the industrial field, Min et al. [6] utilized the

Sobel operator to detect the edges of screw threads. Con-

sidering the type of screw thread angles are mainly 30◦, 55◦

and 60◦, they assigned spatial weights and added 67.5◦ and

112.5◦ directions for the operator, which can efficiently ex-

tract more precise edges and achieve better continuity than

conventional methods. In addition to the direction, Siyu et
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al. [7] expanded the operator size from 3 × 3 to 7 × 7 us-

ing the average gradient vectors of two neighboring pixels

to quantify aggregate angularity. Compared with conven-

tional methods using one pixel, the improved method helps

calculate a more stable angularity index value. All these ap-

plications demonstrated that, in some cases, a large multi-

directional Sobel operator has higher robustness than the tra-

ditional operator and can better adapt to actual requirements.

However, as mentioned in [4], it always requires more com-

puting time. In particular, as the image size increases, the

amount of computation increases exponentially, which bur-

dens applications using edge detection as a preprocessing

step.

This paper proposes a fast graphic processing unit (GPU)

kernel for a four-directional 5 × 5 Sobel operator, because

GPUs usually show an excellent performance on real-time

image processing problems [8] [9]. In our experience, a 5×5

Sobel operator has similar edge detection robustness to a

7×7 operator but higher than 3×3. Meanwhile, the process-

ing speed of a multi-directional 5×5 operator is significantly

slower than a 3×3 operator [10]. To improve kernel perfor-

mance, we made innovations in the following aspects:

• we implement the kernel based on warp-level prim-

itives, which can significantly reduce the number of

memory accesses;

• we provide an efficient procedure with the prefetching

mechanism, which significantly reduces the computa-

tional complexity and data transmission latency, and

• we further accelerate the operations in diagonal direc-

tions using a two-step optimization approach, which

helps to increase the data reuse rate.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the acceleration strategies and results of the

current Sobel operator. Section 3 provides the principle of

the four-directional5×5 Sobel operator. In Section 4, we in-

troduce the implementation and optimization details of our
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GPU kernel. Then, we evaluate the kernel performance in

Section 5 and finally conclude this paper in Section 6.

2. Related Work

Recently, several studies have been conducted on accel-

erating the Sobel edge detection using GPUs.

Jo et al. [11] optimized their GPU-based Sobel kernel

using shared memory. They assigned the entire image to

several blocks and used the corresponding streaming mul-

tiprocessors (SMs) to detect edges in parallel with their re-

spective local information. This approach is simple and ver-

satile but has limited performance improvement because the

overuse of shared memory typically affects the number of

active blocks and reduces the parallelism of the kernel. Nev-

ertheless, the shared memory approach is 1.65x faster than

that of global memory.

Chouchene et al. [12] realized a fast grayscale and So-

bel edge detection on GPUs, which was approximately 50x

faster than running on a CPU. Similar to [11], they split the

edge detection task to each SM and stored the image frag-

ments in the corresponding shared memory. The difference

is that they enabled different sizes of CUDA blocks to ac-

complish the detection task, which proved more efficient in

their application than the block-size consistent method.

Xiao et al. [13] proposed an eight-directional Sobel oper-

ator on GPU using the open computing language (OpenCL)

framework. In their implementation, each work item handles

the convolution calculations for four pixels instead of one,

which can significantly improve memory access efficiency

and reduce computational complexity. Compared with ap-

proaches implemented by CPU, OpenMP, and CUDA, they

are 9.55, 2.23, and 1.17x faster, respectively.

Zuo. et al. [14] implemented a fast Sobel operator on

GPUs. They optimized their GPU kernel as follows: 1) using

the texture memory to store image data to accelerate memory

access; 2) performing a single thread to process the calcula-

tions of multiple pixels, which can significantly increase the

overall throughput and 3) fully exploiting the symmetry of

Sobel operators to reuse intermediate results to reduce the

entire computational complexity. They achieved a 122x ac-

celeration ratio for a 4096 × 4096 image compared with the

CPU-based implementation. However, owing to the limita-

tion of texture memory size, it is unreasonable for common

situations that require multiple images in practical applica-

tions.

The purposes of all the these methods are to accelerate

the Sobel-based edge detection as fast as possible, while en-

suring the correctness of results to satisfy real-time process-

ing requirements. However, owing to the limitations of their

parallel algorithms under GPU architectures, much room re-

mains for improving their acceleration methods. Then, we

will introduce an in-depth acceleration method for the Sobel

operator.

(b) (c) (d)(a)

Figure 1: Edge detection results. (a) Original image. (b) Two-
directional 3×3. (c) Four-directional 3×3. (d) Four-directional
5 × 5.

3. Four-Directional 5 × 5 Sobel Operator

3.1. Operator Definition
The Sobel operator is a classical edge detection opera-

tor proposed by Irwin Sobel and Gary Feldman [15]. It is a

discrete differential operator that detects the edge features of

images by computing the pixel gradients. The original So-

bel operator is an isotropic gradient operator using two 3×3

filters to convolve with an image and obtain derivative ap-

proximations: one each for horizontal and vertical changes.

Equation 1 shows the basic computation of the Sobel opera-

tor:

Gx =

⎡⎢⎢⎣

−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎦
∗ I, Gy =

⎡⎢⎢⎣

−1 −2 −1

0 0 0

1 2 1

⎤⎥⎥⎦
∗ I, (1)

where I represents the input image, and Gx and Gy are the

two images containing the horizontal and vertical derivative

approximations, respectively. ∗ denotes the basic convolu-

tion calculation between the input image and the two filters.

In these two filters, because the weights of the central axis in

both directions are 0, and the two sides in both directions are

opposite to each other, the convolution results are equivalent

to calculating the differences between the two sides, which

means calculating the gradients in both directions. Then, the

final result can be aggregated by calculating the root sum of

square (RSS) of Gx and Gy as follows:

G =

√
G2
x
+G2

y
. (2)

Figure 1(a) shows the original images, and Fig. 1(b) shows

the local edge images (the yellow boxes in Fig. 1(a)) detected

using the original two-directional 3 × 3 Sobel operator. Al-
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though some texture information is lost, the overall contour

of the petals, houses, and figures are clearly preserved.

The original Sobel operator considers only the horizon-

tal (0◦) and vertical (90◦) directions. To further enhance its

effect, we introduce a 5 × 5 Sobel operator by adding two

diagonal directions (45◦ and 135◦). The filters of the four-

directional 5 × 5 Sobel operator can be defined as follows:

Gx =

⎡
⎢⎢⎢⎢⎣

−1 −2 0 2 1

−4 −8 0 8 4

−6 −12 0 12 6

−4 −8 0 8 4

−1 −2 0 2 1

⎤
⎥⎥⎥⎥⎦
∗ I,

Gy =

⎡⎢⎢⎢⎢⎣

−1 −4 −6 −4 −1

−2 −8 −12 −8 −2

0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

⎤⎥⎥⎥⎥⎦
∗ I,

Gd =

⎡
⎢⎢⎢⎢⎣

−6 −4 −1 −2 0

−4 −12 −8 0 2

−1 −8 0 8 1

−2 0 8 12 4

0 2 1 4 6

⎤
⎥⎥⎥⎥⎦
∗ I,

Gdt =

⎡
⎢⎢⎢⎢⎣

0 −2 −1 −4 −6

2 0 −8 −12 −4

1 8 0 −8 −1

4 12 8 0 −2

6 4 1 2 0

⎤
⎥⎥⎥⎥⎦
∗ I,

(3)

and the final results can be aggregated as follows:

G =

√
G2
x
+ G2

y
+G2

d
+G2

dt
, (4)

where Gd and Gdt represent the two images containing the

diagonal derivative approximations. They can be obtained

by rotating Gx and Gy by 45◦. In general, users can de-

fine the filter weights according to their needs and must only

combine the Gaussian smoothing and differentiation. In Eq. 3,

the weight values are generated using the OpenCV Sobel li-

brary and used to perform the edge detection shown in Fig. 1(d).

To better distinguish the effect from the 3 × 3 operator, the

detection results obtained by the four-directional3×3 opera-

tor are listed in Fig. 1(c). Compared with the two-directional

operator, the four-directional operator provides more abun-

dant textures, such as petals and buildings. Furthermore,

5 × 5 operator is more insensitive to surrounding changes

and less affected by noise, which helps provide clearer edge

features and higher robustness than using 3 × 3.

However, a four-directional 5 × 5 operator without opti-

mization is approximately eight times more computationally

intensive than the two-directional 3 × 3, which significantly

slows the processing speed. Therefore, developing an effi-

cient acceleration method for the four-directional 5 × 5 op-

erator is essential.

3.2. Filter Weight Generalization
To avoid limiting our method to the constant weight val-

ues in Eq. 3, we generalize our Sobel operator as follows:

Kx = a ⋅

⎡
⎢⎢⎢⎢⎣

1

n

m

n

1

⎤
⎥⎥⎥⎥⎦
×
[
−1 −b 0 b 1

]

= a ⋅

⎡
⎢⎢⎢⎢⎣

−1 −b 0 b 1

−n −nb 0 nb n

−m −mb 0 mb m

−n −nb 0 nb n

−1 −b 0 b 1

⎤
⎥⎥⎥⎥⎦
= (kij)5×5,

Ky = a ⋅

⎡⎢⎢⎢⎢⎣

−1

−b

0

b

1

⎤⎥⎥⎥⎥⎦
×
[
1 n m n 1

]

= a ⋅

⎡
⎢⎢⎢⎢⎣

−1 −n −m −n −1

−b −nb −mb −nb −b

0 0 0 0 0

b nb mb nb b

1 n m n 1

⎤
⎥⎥⎥⎥⎦
= (kij)5×5,

Kd = a ⋅

⎡
⎢⎢⎢⎢⎣

−m −n −1 −b 0

−n −mb −nb 0 b

−1 −nb 0 nb 1

−b 0 nb mb n

0 b 1 n m

⎤
⎥⎥⎥⎥⎦
= (kij)5×5,

Kdt = a ⋅

⎡⎢⎢⎢⎢⎣

0 −b −1 −n −m

b 0 −nb −mb −n

1 nb 0 −nb −1

n mb nb 0 −b

m n 1 b 0

⎤⎥⎥⎥⎥⎦
= (kij)5×5,

a ∈ ℤ
+, b, m, n ∈ ℝ

+, and ∀kij ∈ ℤ.

(5)

In these filters, a, b, m, and n are all positive numbers, and all

the items kij are integers. The generalized operator ensures

that the absolute values of the weights remain symmetri-

cal in the horizontal and vertical directions, and the positive

and negative relationship is unchanged. Here, a constraint is

added to the weight values: expressing Kx and Ky as a con-

stant a multiplied by two vectors containing 1, which means

that the filter weight values are proportional in both hori-

zontal and vertical directions. This constraint is expected to

help us reuse the intermediate results and improve computa-

tional efficiency without affecting the Sobel edge detection.

Kd and Kdt do not satisfy this rule, requiring further opti-

mization in Section 4.3.5.

4. GPU Implementation

In this section, we introduce our acceleration strategies

from three aspects: 1) the kernel implementation method

based on warp-level primitives, 2) the procedure for the en-

tire image using the prefetching mechanism, and 3) the op-

erator transformation for diagonal directions. However, we

first introduce two key GPU techniques used in our optimiza-

tion method.

Qiong Chang et al.: Preprint Page 3 of 13
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4.1. GPU Warp-level Primitives
Nvidia GPUs and the CUDA programming model use

the single instruction, multiple threads (SIMT) execution model

to maximize the computing capability of GPUs [16]. GPUs

execute warps of 32 parallel threads using SIMT, enabling

each thread to access its registers, load and store from di-

vergent addresses, and follow divergent control flow paths.

In addition, the CUDA compiler and GPUs work together to

ensure the threads of a warp execute the identical instruction

sequences together as fast as possible. Current CUDA pro-

grams can achieve high performances using explicit warp-

level primitives, such as warp shuffles. Warp shuffles are a

fast mechanism for shifting and exchanging register data be-

tween threads in the same warp, such as __sℎfl_down_sync

and __sℎfl_xor_sync. These instructions can efficiently

complete the reduction and scan operations for the data stored

in vector registers without using other types of memory. Us-

ing the prefetching mechanism can save data latency and

increase practical thread utilization, significantly improving

program performance. This study fully uses this mechanism

to implement our GPU kernel.

4.2. Prefetching Mechanism
The prefetching mechanism is a standard technology used

in CPUs to hide the latency of memory operation. The pro-

cessor caches data and instruction blocks before they are ex-

ecuted. While that data travels to the execution units, other

instructions can be executed simultaneously. GPUs also sup-

port the prefetching mechanism, which has higher costs than

CPUs. Although GPUs typically use excess threads to hide

memory latency, using the prefetching mechanism is an ex-

cellent decision through explicit instructions, which require

frequent access to the global memory and loading part of

data each time [17].

4.3. GPU Kernel Design
We now introduce the details of our GPU kernel. The

preparations for the input image, including grayscale, bound-

ary padding, and transmission, are treated the same as in [18].

4.3.1. Task Assignment

As shown in Fig. 2(a), the input image is evenly dis-

tributed to different blocks for parallel processing by the GPU.

Each block is assigned multiple rows and columns of image

data. Because the Sobel filter is a surrounding window cen-

tered on the target pixel, two adjacent blocks must have over-

laps. When the radius of the filter is r, the overlap between

any two blocks is 2r.

4.3.2. Data Flow

For a large input image, assigning a thread to each pixel

is expensive. Our strategy involves allocating sufficient threads

in the horizontal direction while processing sequentially in

the vertical direction. Moreover, because the Sobel operator

does not require frequent data sharing between pixels, the

shared memory is not used in our kernel. This avoids re-

ducing block parallelism caused by excessive allocation of

shared memory and reduces latency caused by memory ac-

cesses. Figure 2(b) shows the data flow of one block for filter

Kx. At the beginning, 2r+1 rows (5 rows for a 5 × 5 oper-

ator) of the input image are loaded into the kernel sequen-

tially and processed to achieve the detection result of the rth

row (ROW 0). Then, for each incremental row (ROW 1,2)

in the output image, only the incremental parts of the input

image (row 5,6) must be updated at a time. This is primar-

ily because the filter Kx can be decomposed into the prod-

uct of the two vectors shown in Eq. 5, indicating that the

calculations of the horizontal and vertical directions can be

performed separately. Therefore, the intermediate results of

the overlapping rows (rows 2 - 4) can be held in the kernel,

and only incremental rows must be calculated each time. As

mentioned, because each block has overlapping regions, the

output image size is smaller than the input, with 2r fewer

columns and rows in the horizontal and vertical directions,

respectively.

4.3.3. Process Detail

Figure 2(c) shows the process detail of one warp for filter

Kx. The actions can be divided into three steps as follows.

• Step 1: each thread loads the corresponding pixel data

in one row from the global memory to the register,

and then shares it with other threads within the same

warp using the __sℎfl_down_sync primitive. Here,

we define the p
j

i
to denote the obtained pixel data,

where i denotes the thread ID and j denotes the pixel

index. Because for a 5 × 5 filter, the upper bound of j

is i+4, and data sharing between threads cannot cross

the warp, the last four (2r) threads will be idle, which

is the reason the overlap between blocks is 2r columns.

• Step 2: after obtaining the necessary pixel data, each

thread performs the basic convolution operations as

follows:

F u
i
= −1 ⋅ p0

i
+ (−b) ⋅ p1

i
+ b ⋅ p3

i
+ p4

i
, (6)

and stores result F u
i

to the corresponding register Ru
i
,

where u denotes the row index of the input image.

Then, for the initial calculation, Steps 1 and 2 are re-

peated for 2r+1 times until all rows are calculated.

Otherwise, only the oldest register data needs to be

updated. Note that because our method is based on

separable convolution, instead of expanding the calcu-

lation around a target pixel, thread i actually calculates

the result of pixel i+r in each row.

• Step 3: after completing horizontal calculations, each

thread begins to perform the vertical convolution op-

erations Gi, whose equation can be expressed as fol-

lows:

Gv
i
= a ⋅ F

f (v−2)

i
+ an ⋅ F

f (v−1)

i
+ am ⋅ F

f (v)

i

+ an ⋅ F
f (v+1)

i
+ a ⋅ F

f (v+2)

i
,

(7)

where

f (x) = x mod 5, x ≥ 0. (8)
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Figure 2: Implementation of 5×5 Sobel filter Kx. (a) Task assignment. (b) Data flow. (c) Process detail.

f (x) is used to represent the row index because F obtained

by the Eq. 6 is dynamically updated. The v in Eq. 7 denotes

the index of the center row, always maintaining the variable

x greater than 0. Referring to the three steps, edge detection

in the horizontal direction can be effectively implemented

using the 5 × 5 Sobel filter Kx. Similarly, detection using

filter Ky in the vertical direction can be implemented in the

same manner, using different coefficients.

4.3.4. Optimization for Data Loading

Typically, the data loading of the increments and calcu-

lations can be sequentially alternated as shown in Fig. 3(a).

Its benefit is in avoiding occupying too many on-chip reg-

isters, thereby reducing the thread parallelism. However, it

also directly leads to frequent accesses to the global mem-

ory, which can generate a considerable latency. To solve

this, we explicitly load the incremental image data from the

global memory while calculating the on-chip data using the

prefetching mechanism mentioned in Section 4.2. As shown

in Fig. 3(b), after loading the fourth row, we continue with

loading the fifth row without directly completing the calcula-

tions of G. Instead, these calculations will end while waiting

for the loading to complete, which can help us achieve par-

allelism in time and significantly improve the efficiency of

kernel execution. Here, because the prefetching trades more

registers for time parallelism, to avoid additional burden to

the processor, only one row of image data is fetched at a time.

Thus, the row index function f(x) in Eq. 8 is changed to

f (x) = x mod 6, x ≥ 0, (9)

when the prefetching mechanism is active.

4.3.5. Optimization for Diagonal Direction

According to Eq. 5, elements kij of Kd and Kdt are nei-

ther symmetric nor proportional, which implies that they can-

not be directly decomposed in the same manner as Kx and

Ky. This also implies that the convolution results Fd and Fdt

in horizontal cannot be reused and must be recalculated for

each Gd and Gdt. To solve this, we propose a new idea to

Qiong Chang et al.: Preprint Page 5 of 13
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Load row 0
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(a)
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Calculate F0

Load row 1

Calculate F1

(b)

Calculate F4

Load row 5

Calculate F5

Calculate G3

Calculate G2 Calculate G2

Load row 6

Calculate F6

Calculate F5

Calculate G3

Calculate F6

Calculate G4

Calculate F7

Load row 6

Calculate G4

Load row 7

Calculate F7

Calculate G5

Load row 7

Load row 8

Load row 9 

Load row 10

Load row 0

Calculate F0

Load row 1

Calculate F1

Load row 5 Calculate F4

Calculate G5

Calculate F8

Calculate G6

Calculate G7

Calculate F9

Figure 3: Optimization for data loading. (a) Sequential exe-
cution. (b) Prefetching.

generate two matrices Kd+ and Kd− as follows.

Kd+ = Kd +Kdt

= a ⋅

⎡⎢⎢⎢⎢⎣

−m −n − b −2 −n − b −m

b − n −mb −2nb −mb b − n

0 0 0 0 0

n − b mb 2nb mb n − b

m n + b 2 n + b m

⎤⎥⎥⎥⎥⎦
,

Kd− = Kd −Kdt

= a ⋅

⎡
⎢⎢⎢⎢⎣

−m b − n 0 n − b m

−n − b −mb 0 mb n + b

−2 −2nb 0 2nb 2

−n − b −mb 0 mb n + b

−m b − n 0 n − b m

⎤
⎥⎥⎥⎥⎦
,

(10)

which satisfy the symmetry requirements by calculating the

sum and difference of Kd and Kdt. If we efficiently use the

two filtersKd+ andKd−, thenGd andGdt are easily obtained

as follows:

Gd = Kd ∗ I =
K+

d
+K−

d

2
∗ I =

G+
d
+ G−

d

2
,

Gdt = Kdt ∗ I =
K+

d
− K−

d

2
∗ I =

G+
d
−G−

d

2
.

(11)

For each row u, the convolution results F u
ki

in the hori-

zontal direction using filter Kd+ can be obtained as follows:

F u
k0

= −am ⋅ p0 + a(−n − b) ⋅ p1 + (−2a) ⋅ p2

+ a(−n − b) ⋅ p3 + (−am) ⋅ p4,

F u
k1

= a(b− n) ⋅ p0 + (−amb) ⋅ p1 + (−2anb) ⋅ p2

+ (−amb) ⋅ p3 + a(b− n) ⋅ p4,

F u
k2

= 0,

F u
k3

= a(n − b) ⋅ p0 + (amb) ⋅ p1 + (2anb) ⋅ p2

+ (amb) ⋅ p3 + a(n − b) ⋅ p4,

F u
k4

= am ⋅ p0 + a(n + b) ⋅ p1 + (2a) ⋅ p2

+ a(n + b) ⋅ p3 + (am) ⋅ p4.

(12)

In addition, for a center row v, the results Gv
d+

can be ob-

tained by aggregating the four Fki from adjacent rows as fol-

lows:

Gv
d+

= F v−2
k0

+ F v−1
k1

+ F v+1

k3
+ F v+2

k4
, v ≥ 2. (13)

Here, for the convenience of understanding, we use ki to rep-

resent the vector index in filter Kd+, instead of using the

thread index i in Eq. 6. Because the absolute values of the

weights are symmetrical, for each row u, F u
k3

and F u
k4

are

easily obtained using F u
k1

and F u
k0

:

F u
k3

= F u
−k1

= −F u
k1
,

F u
k4

= F u
−k0

= −F u
k0
,

(14)

and

Gv
d+

= F v−2
k0

+ F v−1
k1

− F v+1

k1
− F v+2

k0
, v ≥ 2. (15)

Thus, we effectively reuse part of the intermediate results,

as shown in Fig. 4, without repeating convolution operations

for each row. Figure 4(a) shows the procedure of Gd+ and

Fig. 4(b) presents synchronous changes of on-chip register

data. In Step 1, we use k1 to convolve the second row in-

stead of k2, because k2 is a zero vector and does not affect the

convolution result. This prepares the reused data required to

ensure operation consistency in each step. Furthermore, we

regardF 3
k3

and F 4
k4

as F 3
−k1

andF 4
−k0

, respectively, to be able

to discover the pattern of data reuse. Then, G2
d+

can be ob-

tained according to Eq. 15 while loading the fifth row of the

image. After it succeeds, the sixth row begins to be loaded.

Simultaneously, the vectors from k0 to -k0 are strided down

to convolve the rows centered on row 3. In Step 2, in addi-

tion to convolving the fifth row with -k0, only F 1
k0

and F 4
−k1

(green blocks) need to be recalculated because F 2
k1

can be

reused. Compared with the original operations in Step 1,

Step 2 significantly saves a quarter of the computation, en-

suring that the filtering ofKd+ is efficiently performed. Note

that after Step 3, the second vectors k1 used in each step are

always the opposite of the previous step. However, this cal-

culation can be reflected in the calculation of Gd+ without

updating the register data. This method can be repeatedly ap-

plied to the calculation of incremental rows, while the regis-

ter index of the latest row is dynamically updated according

to Eq. 9.
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Figure 4: Calculation for Gd+. (a) procedure. (b) Registers status.

For filter Kd−, the F u
ki

in the horizontal direction can be

obtained as follows:

F u
k0

= −am ⋅ p0 + a(b− n) ⋅ p1

+ a(n − b) ⋅ p3 + (am) ⋅ p4,

F u
k1

= a(−n − b) ⋅ p0 + (−amb) ⋅ p1

+ (amb) ⋅ p3 + a(n + b) ⋅ p4,

F u
k2

= (−2a) ⋅ p0 + (−2anb) ⋅ p1 + 2anb ⋅ p3 + 2a ⋅ p4

F u
k3

= F u
k1

F u
k4

= F u
k0
.

(16)

In addition, the Gv
d−

of a center row v can be obtained using

Eq. 17:

Gv
d−

= F v−2
k0

+F v−1
k1

+F v
k2

+F v+1

k1
+F v+2

k0
, v ≥ 2. (17)

Figure 5(a) shows the procedureofGd−, and Fig. 5(b) presents

the changes of on-chip register data synchronously, which

is the same method as Gd+. According to this figure, all

convolutions for each row must be recalculated in each step

because theKd− filter no longer has a zero vector in the hori-

zontal direction, missing buffers that can be reused. Inspired

by Eq. 5, we decompose Kd− into the sum of two products

of two vectors as follows:

Kd− = a ⋅

⎡
⎢⎢⎢⎢⎣

−m b − n 0 n − b m

−n − b −mb 0 mb n + b

−2 −2nb 0 2nb 2

−n − b −mb 0 mb n + b

−m b − n 0 n − b m

⎤
⎥⎥⎥⎥⎦

=a ⋅

(⎡⎢⎢⎢⎢⎣

m

n + b

2

n + b

m

⎤⎥⎥⎥⎥⎦
×
[
−1 −b 0 b 1

]

−

⎡
⎢⎢⎢⎢⎢⎣

mb + b − n

nb + b2 − mb

2b − 2nb

nb + b2 − mb

mb − n + b

⎤
⎥⎥⎥⎥⎥⎦

×
[
0 −1 0 1 0

])
.

(18)

Equation 18 demonstrates that the first 1×5 horizontal vector

is the same as Kx, which means that its intermediate results

can be reused without recalculation. In addition, the second

horizontal vector means we only need to calculate the differ-

ence between columns 2 and 4. Thus, the Gv
d−

of a center

row v is easily obtained as follows:

Gv
d−

= am ⋅ F f (v−2) + a(n + b) ⋅ F f (v−1) + 2a ⋅ F f (v)

+ a(n + b) ⋅ F f (v+1) + am ⋅ F f (v+2)

− a(mb+ b − n) ⋅Df (v−2) − a(nb + b2 − mb) ⋅Df (v−1)

− a(2b− 2nb) ⋅Df (v) − a(nb + b2 − mb) ⋅Df (v+1)

− a(mb− n + b) ⋅Df (v+2),

(19)

and

f (x) = x mod 6, x ≥ 0,
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Figure 5: Calculation for Gd−. (a) procedure. (b) Registers status.

Table 1

Speed performance of our four-directional Sobel operators.

Execution time (µs) Throughput(GB/s)

Hardware Sobel operator Image size GM SM SM-P RG RG-v1 RG-v2 IO HToD DToH Speedup

GTX1650Ti

512 × 512 10.285 14.626 14.246 6.766 - - 80.475 6.035 6.233 1.52
3 × 3 1024 × 1024 43.792 55.639 54.455 30.791 - - 316.52 6.115 6.287 1.42

2048 × 2048 165.86 206.81 198.71 105.22 - - 1263.9 6.151 6.254 1.576

512 × 512 29.712 30.913 28.606 24.905 20.884 18.747 80.475 6.035 6.223 1.585
5 × 5 1024 × 1024 124.00 109.59 107.78 95.940 77.918 66.225 316.52 6.115 6.287 1.872

2048 × 2048 424.37 418.50 411.91 350.36 286.01 249.22 1263.9 6.151 6.254 1.702

Jetson AGX

512 × 512 17.426 17.693 17.139 13.881 - - 17.049 26.512 34.488 1.255
3 × 3 1024 × 1024 60.748 59.483 60.975 37.816 - - 65.737 28.802 32.440 1.606

2048 × 2048 250.65 230.66 227.94 160.81 - - 914.23 10.504 7.501 1.559

512 × 512 48.625 34.739 34.379 31.346 28.118 26.620 17.049 26.512 34.488 1.827
5 × 5 1024 × 1024 164.41 141.66 120.68 116.14 115.06 93.354 65.737 28.802 32.440 1.761

2048 × 2048 694.99 572.95 549.38 499.15 454.63 368.24 914.23 10.504 7.501 1.887

where D denotes the convolution results under the second

horizontal vector. Therefore, although the on-chip registers

must still be updated every time, we only need to perform

simple multiply-accumulate operations instead of multiple

convolutions, significantly reducing the overall calculation

amount and improving the processing speed.

Thus far, the efficient calculation methods in all four di-

rections for a 5×5 Sobel operator have been introduced, and

the final edge detection result can be obtained by integrat-

ing the respective results in these four directions according

to Eq. 4.

5. Evaluation and Discussion

5.1. Evaluation Platforms
We implemented our multi-directional 5×5 Sobel oper-

ator kernel on an embedded Jetson AGX Xavier GPU and

Nvidia GTX 1650Ti mobile GPU, because as widely used

mobile GPUs, they have recently been used in some studies

to handle systems that combine Sobel operators with other

upper-layer applications [19] [20] [21]. At the same time,

these two kinds of GPUs have different architectures, which

determine that the same CUDA kernel often reflects utterly

different performance. Jetson AGX Xavier is a powerful

platform, built on an Nvidia Volta GPU with 512 cores and

shares physical memory with the center processor. Users can
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Figure 6: Speed comparison of four-directional Sobel operators for a 1024 × 1024 image in different resource configurations.

allow both the host and device to access the shared data by

applying for managed memory, reducing the impact of data

transmission. In contrast, the GTX 1650Ti is built on a Tur-

ing architecture with 1024 cores and has dedicated memory.

Although it has a higher calculation capability than Jetson

AGX Xavier, the data it processes must be first transferred

from the host memory to the device memory through the

PCIe bus, which increases the burden of IO. Evaluating our

kernel on both platforms helps us fully understand its perfor-

mance, and users can choose different solutions according to

their requirements.

5.2. Evaluation of Kernel Performance
We evaluated the performance using three different sizes

of images: 512×512, 1024×1024, and 2048×2048. To eval-

uate kernel performancemore comprehensively, we used global

and shared memory as storage mediums other than the reg-

ister. Additionally, we compared the 3×3 operator.

Table 1 lists the speed performanceof our four-directional

kernels. GM, SM, and RG represent the original methods

using global memory, shared memory, and registers, respec-

tively. SM-P represents the method that covers transmission

latency by adding the prefetching mechanism to SM. RG-v1

indicates that we transformed the original diagonal filters Kd

and Kdt into Kd+ and Kd−; and RG-v2 the method that fur-
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Table 2

Speed comparisons of two-directional Sobel operators with other methods.

Method Operator size Image size Runtime∗ (ms) Hardware MPS MPS/C

SobelGPU-Jetson

3 × 3 1024 × 1024 0.074

Jetson AGX

1.41E10 2.77E7

2048 × 2048 0.519 8.07E9 1.58E7

5 × 5 1024 × 1024 0.085 1.24E10 2.42E7

2048 × 2048 0.552 7.59E9 1.48E7

SobelGPU-GTX

3 × 3 1024 × 1024 0.190

GTX 1650Ti

5.51E9 5.38E6
2048 × 2048 0.740 5.66E9 5.53E6

5 × 5 1024 × 1024 0.199 5.27E9 5.14E6
2048 × 2048 0.763 5.49E9 5.36E6

OpenCV-GPU 1

3 × 3 1024 × 1024 0.512

Jetson AGX

2.05E9 4E6
2048 × 2048 1.778 2.36E9 4.6E6

5 × 5 1024 × 1024 0.566 1.85E9 3.62E6
2048 × 2048 1.832 2.29E9 4.47E6

OpenCV-GPU 2

3 × 3 1024 × 1024 2.43

GTX 1650Ti

4.31E8 4.21E5
2048 × 2048 9.82 4.27E8 4.18E5

5 × 5 1024 × 1024 2.53 4.14E8 4.05E5
2048 × 2048 9.90 4.24E8 4.14E5

Xiao [13] 3 × 3 1024 × 1024 5.48† GTX 1070 1.91E8 9.97E4
2048 × 2048 18.95† 2.21E8 1.15E5

Zahra [22] 3 × 3 512 × 512 3.62 GTX 550Ti 7.24E7 3.77E5
1024 × 1024 14.74 7.11E7 3.7E5

Theodora [23]

3 × 3 1024 × 1024 0.601

GTX 1060

1.74E9 1.36E6
2048 × 2048 0.926 4.52E9 3.53E6

5 × 5 1024 × 1024 0.837 1.25E9 9.79E5
2048 × 2048 1.174 3.57E9 2.79E6

Dore [24] 3 × 3 1024 × 1024 11.01† GTX 470 9.5E7 2.1E5
2048 × 2048 84.023† 5E7 1.1E5

You [25] 3 × 3 1024 × 768 5 DE1-SoC 1.57E8 -
1920 × 1080 15 1.38E8 -

Sato [26] 3 × 3 512 × 512 1.1 Cyclone II 2.38E8 -
1024 × 1024 4.37 2.39E8 -

Tim [27] 3 × 3 1280 × 1024 31 ZYNQ 7030 4.22E7 -

*: Runtime includes the kernel execution time and data loading time. †: Only the kernel execution time is included.

ther decomposesKd− based on RG-v1. All RG series kernels

are equipped with the prefetching mechanism. Because the

calculation of the 3×3 operator in the diagonal directions is

not complicated, we only perform RG-v1 and RG-v2 to the

5×5 operator. Speedup denotes the ratio of GM to RG at run-

time. For each kernel, we used the NVprof profiling tool to

measure the kernel execution time 100 times and took the av-

erage value as the final execution time. Also, we calculated

the standard deviation of the execution time of each kernel,

ranging from 0.06 to 5.05, which fully proves the robust-

ness of our measurement results. Regardless of the platform,

our kernel achieved a 1.3x speedup, and the maximum even

reached over 1.8x. For the degraded case, the SM series ker-

nels on a GTX 1650Ti are slower than those of GM. This is

because using the shared memory without optimization only

increases data transmission costs and reduces kernel perfor-

mance. Although using the prefetching mechanism can hide

latency and reduce the execution time by 19µs on average

compared with GM, the performance of SM-P for a 3×3 op-

erator on GTX 1650Ti is still lower than that of GM. This

implies that, for a 3×3 operator, using shared memory as the

storage medium is not a good choice. The execution time

of the kernels increases linearly with the image size on both

platforms: approximately 4x on both platforms. This steady

change indirectly indicates that our method can fully utilize

hardware resources. Additionally, in almost all cases, the

introductions of SM-P, RG-v1 and RG-v2 gradually intro-

duce a reduction in execution time, indicating that our pro-

posed methods are effective and have high robustness. Par-

ticularly for the 5×5 operator, the speed of our accelerated

kernel RG-v2 (66.225µs) is only 33% slower than the original

3×3 kernel GM (43.792µs), enabling us to use the 5×5 So-

Qiong Chang et al.: Preprint Page 10 of 13



Journal of Parallel and Distributed Computing

bel operator with higher detection precision instead of 3×3

in the future. IO denotes the data transmission time required

according to the hardware architecture. As mentioned, be-

cause Jetson AGX Xavier GPU shares the physical memory

between the GPU and CPU, it does not cost too much on IO.

By contrast, the IO costs required on GTX 1650Ti are much

higher than the kernel execution. The Throughput metrics

between the host and the device in both directions also re-

flect the same issue. The throughputs we achieved on Jetson

AGX Xavier are much higher than those of GTX 1650Ti,

but still far from theoretical values. This means that our ker-

nel is memory limited and could be further ameliorated by

processing larger images or video streams.

Because our kernel is implemented in CUDA, the block

size configuration is closely related to its performance. There-

fore, we provide different combinations of block configu-

rations to the kernels and perform the 3×3 and 5×5 four-

directional Sobel operators on the 1024×1024 image shown

in Fig. 6. Each row of graphs represents different storage

mediums used in our kernels. The graphs in columns 1 and 2

show the processing results of the 3×3 operator under differ-

ent block configurations and platforms, and columns 3 and 4

show those for 5×5. In each sub-graph, the x-axis represents

the number of grid.y, which is determined by the number of

image sizes and threads allocated in the y direction within

each block; the larger the number, the fewer rows each block

processes in the y-axis direction. The y-axis represents the

execution time of these kernels. The methods performed

here are the same as those tested in Table 1. The difference is

that we specified block1: (128,1) and block2: (256,1) config-

urations for each method. According to the results, block1

and block2 do not affect much under the same method in

most cases. Moreover, the speed relationship between these

methods is the same as that shown in Table 1. Therefore, we

predict that the individual difference is caused by changes

in thread parallelism resulting from different register usage

rates. For each method, a large grid.y typically shows a high

performance because a higher number of blocks indicates a

more significant number of active blocks in parallel. Thus,

the kernel can use hardware resources better, resulting in bet-

ter performance.

Table 2 shows the speed comparison of our kernel with

other methods in two directions. The comparison objects

are fast Sobel operators published in recent years, and each

study provides their operator sizes, image sizes, execution

time, and required hardware platforms. Here, Runtime in-

cludes the kernel execution time and data loading time from

the host memory to the device. The hardware used by these

studies is primarily divided into two categories: GPUs and

field programmable gate arrays (FPGAs). Both are the most

widely used algorithm accelerators today. To compare the

computing capability of these operators based on different

hardware, we list the mega-pixel per second (MPS) values

of all these studies. Additionally, we use the mega-pixel per

second per core (MPS/C) parameter, which represents the

number of pixels processed per second by each core, to nor-

malize their processing capabilities on different GPUs. Ac-

(e)(a) (b) (c) (d)

SSIM=0.99 SSIM=0.99

SSIM=0.99 SSIM=0.99

SSIM=0.99 SSIM=0.99

SSIM=0.99 SSIM=0.99

Figure 7: Confirmation of edge detection results using 5x5
Sobel operators. (a) Two-directional: OpenCV-GPU kernel.
(b) Two-directional: Our RG kernel. (c) Four-directional: Our
GM kernel. (d) Four-directional: Our RG-v2 kernel.

cording to the Runtime, our kernels based on AGX are faster

than those based on 1650Ti, contrary to the results shown in

Table 2. This is because of the considerable time required by

the IO, resulting in a decrease in overall throughput. Com-

pared with other studies, our operators are much faster in

each case. Particularly for OpenCV-GPU, the most com-

monly used method in image edge detection, the processing

speed is approximately 3.3x to 13.3x slower than our ker-

nels. This is because the OpenCV-GPU treads the Sobel op-

erator as a 2D convolution filter by default, and ours is actu-

ally further optimized on the basis of two 1D separable ker-

nels. Besides, the OpenCV-GPU does not provide the func-

tions in the diagonal directions, where our kernel has a con-

siderable advantage. Xiao [13], Zahra [22], and Dore [24]

implemented their fast 3×3 Sobel operators on GPUs, and

You [25], Sata [26], and Tim [27] implemented on FPGAs.

They all achieved real-time processing on a large-scale im-

age, but remain at the milliseconds level, leaving little pro-

cessing time for upper-layer applications. Theodora [23] im-

plemented a complete version evaluation, including the com-

bination of two Sobel operators and two images of different

sizes. Their execution times are approximately 1.3x to 4.2x

longer than ours, even using a GTX 1060 GPU superior to

our GTX 1650Ti. According to the MPS and MPS/C, our

numbers exceed those of other studies, demonstrating that

our kernels have an overwhelming advantage.

To confirm the correctness, we listed edge detection re-

sults of four images shown in Fig. 7. For each image, we per-

form the edge detection using four different GPU kernels, in-

cluding the two-directional OpenCV-GPU kernel (Fig. 7(b));

our two-directionalRG kernel (Fig. 7(c)); our four-directional

GM kernel (Fig. 7(d)) and our four-directional RG-v2 kernel

(Fig. 7(e)). All the sizes of kernels are 5×5. Here, because

kernels (b) and (d) are implemented by the most primitive

method, we take them as reference objects, and calculate
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the Structure Similarity Index Measure (SSIM) values of (c)

and (e) relative to them respectively. SSIM is an indicator to

measure the similarity of two images, and is calculated from

the three image features of luminance, contrast and structure.

It can be calculated as follow:

SSIM(x, y) =
(2�x�y + C1)(2�xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

. (20)

Here, � and �2 represent the mean value and variance of

the image, respectively, and �xy represents the covariance

between the image x and image y. Finally,C1 and C2 are two

constants used to avoid instability when �2
x
+ �2

y
or �2

x
+ �2

y

are close to zero. The closer SSIM to 1 indicates, the higher

the similarity of two images. According to the high SSIM

values of 0.99 shown in Fig. 7, it can be observed that the

proposed acceleration method can guarantee the correctness

of Sobel operators in both two and four directions.

6. Conclusion

This paper proposed a fast GPU kernel for a four-directional

5 × 5 Sobel operator that entirely uses the register resource.

We improved the Sobel operator from two perspectives: com-

puter architecture and mathematics. In computer architec-

ture, we focused on fully using registers with the help of

warp-level primitives without utilizing global memory and

shared memory. Simultaneously, we introduced the prefetch-

ing mechanism to hide the system latency caused by data

transmission. Concerning mathematics, we proposed a two-

step optimization method for the Sobel operator with com-

plex patterns in diagonal directions, enabling us to fully reuse

intermediate results and significantly improve the execution

efficiency of the kernel. Extensive experiments prove that

our kernel has high robustness, with significant improve-

ments in detection speed for images of different sizes. Fur-

thermore, our kernel achieves 6.7x and 13x improvements

in processing speed compared with the OpenCV-GPU li-

brary on two different GPUs. To the best of our knowledge,

the proposed kernel is currently the fastest kernel based on

GPUs.

To further facilitate our kernel’s application, we plan to

combine it with high-level applications such as object de-

tection. In addition, for the bottleneck problem of IO, we

predict that stream processing can efficiently reduce the la-

tency caused by data transmission. In addition, the burden of

on-chip computation not being too heavy must be ensured.

These concerns will be addressed in future work.
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