
Exploring Edge TPU for
Network Intrusion Detection in IoT

Seyedehfaezeh Hosseininoorbin 1a,b, Siamak Layeghya, Mohanad Sarhana,
Raja Jurdakc, Marius Portmanna

aSchool of Information Technology and Electrical Engineering, The University of
Queensland, Australia

bDATA61, Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Australia

cSchool of Computer Science, Queensland University of Technology, Australia

Abstract

This paper explores Google’s Edge TPU for implementing a practical network

intrusion detection system (NIDS) at the edge of IoT, based on a deep learning

approach. While there are a significant number of related works that explore

machine learning based NIDS for the IoT edge, they generally do not consider

the issue of the required computational and energy resources. The focus of this

paper is the exploration of deep learning-based NIDS at the edge of IoT, and

in particular the computational and energy efficiency. In particular, the paper

studies Google’s Edge TPU as a hardware platform, and considers the following

three key metrics: computation (inference) time, energy efficiency and the traffic

classification performance. Various scaled model sizes of two major deep neural

network architectures are used to investigate these three metrics. The perfor-

mance of the Edge TPU-based implementation is compared with that of an

energy efficient embedded CPU (ARM Cortex A53). Our experimental evalua-

tion shows some unexpected results, such as the fact that the CPU significantly

outperforms the Edge TPU for small model sizes.

Keywords: Google Edge TPU, Edge Machine Learning, Network Intrusion

Detection Systems, Internet of Things, Deep Learning, IoT Security.

1Corresponding author.
E-mail address: f.noorbin@uq.net.au (Faezeh Noorbin).

Preprint submitted to Arxiv.org March 31, 2021

ar
X

iv
:2

10
3.

16
29

5v
1

 [
cs

.N
I]

 3
0

M
ar

 2
02

1

1. Introduction

Practical network intrusion detection systems (NIDSs) in the context of IoT

edge computing differ from non resource-constrained network solutions with

ample computational and energy resources. Indeed, what makes a solution

for NIDS at the edge of IoT different from NIDSs for general networks is the

considerations for the computational, energy and other resources constraints.

However, most of the proposed NIDSs for the IoT edge are general NIDSs that

are proposed without investigating the limitations concerning the resources on

edge devices for running such applications.

This paper explores Google’s Edge TPU for implementing NIDS at the IoT

edge by investigating the requirements of the computational and energy con-

straints for running Deep Learning (DL) based algorithms. The Edge TPU

platform is a purpose-built ASIC hardware accelerator recently developed by

Google to run inference at the edge [1]. The hardware accelerators are created

to enhance the computational capabilities of the systems and make it possible

to implement DL algorithms on the edge devices [2, 3, 4]. The NIDS algorithms

utilised in this exploration are selected from two major deep neural network

architectures, the feed forward and convolutional neural networks.

The practicality of Edge TPU for implementing NIDS at the edge of IoT is

investigated in three aspects, the computational cost / inference time, energy

efficiency and attack detection / classification performance. These three direc-

tions are explored by scaling the structure of the neural network architectures,

i.e. generating neural networks with different model sizes. The models are cat-

egorised into small and large sizes and the effect of each group on the above

three parameters is studied via a public IoT benchmark dataset [5].

The implementations of the NIDS algorithms on another hardware platform,

ARM Cortex-A53 which is a power-efficient 64-bit embedded CPU, are used

to further investigate the practicality of an Edge TPU-based NIDS. All the

experiments run on Edge TPU are repeated for this platform and the results are

2

compared. There are several findings, including the two following major points.

First, Cortex-A53, surprisingly, is faster and more energy efficient than Edge

TPU for very small model sizes. Secondly, the energy efficiency and inference

time of the Edge TPU platform significantly depends on whether the neural

network model size is larger or smaller than the size of on-chip memory of the

platform.

The rest of this paper is organised as follows. The related works for net-

work intrusion detection systems in the field of IoT are reviewed in Section 2.

Section 3 explains the two neural network architectures used in this study and

how their structures are scaled. Section 4 presents the dataset and hardware

platforms used in this paper, and describes our experiments. The results of the

experiments are presented and discussed in Section 5, and Section 6 concludes

the paper.

2. Related Work

While there are many previous studies proposing NIDSs for the IoT edge,

only a few have included studying the computational and energy resources util-

isation / limitation in their proposals. Since the focus of this paper is the

practical NIDS at the edge, which concerns resource utilisation / limitation,

only previous works with similar directions are included in this section.

Almogren [6] proposed an IDS for Edge-of-Things networks based on deep

belief neural networks (DBN). The author explored the DBN structure to find

the best accuracy by adding hidden units to Restricted Boltzmann Machine

(RBM) layers. The proposed DBN-based approach used to detect normal traffic

and 9 different attack types. The maximum accuracy achieved on a single attack

classification is 85.73% on UNSW-NB15 dataset [7]. While deep belief neural

network achieve promising accuracy, RBM-based approaches are not efficient in

terms of inference time.

Otoum et al. [8], have studied the feasibility of ML solutions for IDS in

wireless sensor networks. For this purpose, they compared the performance

3

of two different IDSs, RBM clustered IDS and the Adaptive Supervised and

Clustered Hybrid (ADH) IDS. While their both methods achieve a F1-score of

∼99% on KDD Cup 99 [9], the inference times for both methods are very long,

for RBM it is 1.62 seconds and for ADH it is 0.86 seconds.

Eskandari et al. [10] proposed Passban IDS, which is a machine learning

(ML)-based anomaly detection approach that uses the ensemble isolation for-

est. The proposed method was implemented on a Raspberry Pi3 as an IoT

gateway and used 24.68% (54 MB) of main memory and 47.17% of CPU load

and achieved a F1-score of 97.25% on their own dataset collected from IoT

testbed set up. While their solution achieves high performance, considering the

2 Watts power usage of Raspberry Pi3 with almost half used by its CPU [11],

the proposed method is very inefficient in terms of the energy consumption.

Hafeez et al. [12] proposed IoT-KEEPER IDS which uses fuzzy C-Means

clustering and fuzzy interpolation scheme to analyse network traffic using TCP/IP

features, and targeted different attack types. The prototype implementation of

the method on a Raspberry Pi3, achieved 0.95% and 0.93% F1- score for binary

and multiclass classification, respectively, on a combination of YTY2018 [13]

and MSI2017 [14] datasets. In prototype implementation, IoT-KEEPER used

12% (121 MB) of available memory and 4% of CPU load.

Jan et al. [15] proposed an SVM-based IDS to detect DDos attack. The

authors used different statistics of the packet arrival rate, such as Mean, Median,

Max and their combination to analyse data. In the binary classification between

DDoS / non-DDoS, the method achieved 98.03% accuracy on CIC-IDS2017

dataset [16]. To show the efficiency of their approach, the authors compared

the elapsed CPU time to simulate their NIDS, 2.28 seconds, with those of three

previously proposed algorithms. However, they only used simulations for the

evaluation of their method and provided no information regarding the required

resources (memory, CPU, and energy) in their method.

Soe et al. [17] proposed an ML-based classifier along with a feature selection

algorithm to implement a lightweight IDS. The feature selection algorithm is

used to reduce the number of features as well as computational cost. They

4

proposed using different features for different attack types, and reduced the size

of their classifier to fit on Raspberry Pi3. They used the Bot-IoT dataset [18] for

the evaluation of their IDS, and achieved a F1-score of 98.42%, the CPU Time of

0.81 seconds, and a memory usage of 425 MB. While they have investigated the

resource utilisation of their proposed NIDS, which shows their concern about

the practicality of their method, their proposed method is tailored to their

evaluation dataset. In other words, using a single feature to identify a specific

attack type across various benchmark dataset is not currently confirmed.

The above studies showed a promising potential for using ML based methods

for implementing NIDSs on IoT edge devices. However, most of these methods

are using shallow learning techniques which requires hand engineered features

not generalisable to other benchmark datasets and real-world network traffic.

Moreover, wherever information relating the resource utilisation of these meth-

ods are provided they indicate their corresponding solution is hardly feasible

on most of the IoT edge devices. The two deep learning-based methods [6, 8],

on the other hands, report very long processing time and do not provide in-

formation relating the resource utilisation of their proposed method. As such,

exploring the resource utilisation of ML-based and specially DL-based NIDSs,

for implementation on IoT edge devices, is a crucial task in this field which is

addressed by this paper.

3. Classification Architecture

Two types of neural network architectures along with structural variations

have been used to explore the resource utilisation of the hardware platforms

considered in this study. The first architecture is the feed forward, which is the

most trivial architecture in many deep learning problems. The next architecture

is the convolutional neural network that is commonly used in many DL-based

NIDSs [19, 20, 21, 22, 23].

This study examines the effect of the model size on the capabilities of the

hardware platforms for implementing the NIDS, and changing the structure of

5

Figure 1: The feed forward neural network architecture

neural networks is utilised to scale the model sizes. The models with a size of

800 KiB or less are called small and models with a size larger than that are

called large models. This is the model size of the biggest neural network with

the feed forward architecture, and beyond this value, we have only extended

the CNN architecture. The two neural network architectures along with their

structural variations are explained in this section.

3.1. Feed Forward Neural Network

Figure 1 shows an example feed forward neural network architecture used

in this study. It consists of a stack of fully connected layers including an input

layer, various number (M) of hidden layers and the output layer. The number

of nodes in the first layer equals number of data features / attributes, which

is 39 in the case of the dataset used in this paper. The hidden layers have

100 nodes and the output layer is binary which distinguishes “Legitimate” and

“Malicious”. In order to scale the model size, number of hidden layers (M) is

doubled in each step of the experiment, starting from 2 up to 64. The resulting

model sizes are less than 800 KiB referred to as small models in this study. The

activation function for all nodes is set to Rectified Linear Unit (ReLU) except

the output layer where Softmax is used. The loss function for this model is

Sparse Categorical Cross-entropy.

6

Figure 2: The convolutional neural network (CNN) architecture

3.2. Convolutional Neural Network

The general form of the Convolutional Neural Network (CNN) architecture

used in this paper is shown in Figure 2. Two sets of experiments are conducted

based on CNN architecture. In the first set of experiments that corresponds

to small models, scaling the model size is achieved by changing the number of

kernels and kernel size in convolution layers. The CNN architectures in the first

set of experiments generally include 3 convolution layers with N , N/2 and N/2

kernels of size W ×W respectively, and max-pooling layers with 2 × 2 kernels

between them. The value of N is doubled in each step of the experiments from

8 up to 256, with W from 2 to 5.

In the next set of experiments that corresponds to large models, while N and

W are set to 256 and 5 respectively, number of convolution layers is increased.

The new convolution layers are added only after the first convolution layer. The

total number of convolution layers increases by the step of 3 in each experiment,

from 3 to 30. The output of the last convolution layer is flattened and sent to

the final dense layer with 2 nodes. The ReLU activation function is used for all

layers except the final, which is the Softmax function to generate either of the

“Legitimate” and “Malicious” labels.

7

4. Experimental Setup

4.1. Dataset

A heterogeneous IoT dataset has been utilised to evaluate the proposed

TPU-based NIDS. The ToN-IoT dataset [5] was released in 2019 by the Cyber

Range and IoT Labs of UNSW Canberra based on a large-scale network testbed.

It includes multiple data sources such as operating system logs, telemetry data

of IoT/IIoT devices and IoT network traffic. The records containing labelled

IoT network flow samples are utilised in this paper. It consists of nine attack

scenarios including backdoor, DoS, Distributed DoS (DDoS), injection, Man In

The Middle, password, ransomware, scanning and Cross-Site Scripting.

The dataset is made up of mainly attack samples; 21,542,641 (96.44%) and

a low amount of benign samples; 796,380 (3.56%). The Bro IDS was used to

extract 44 features from IoT network traffic that make up the dataset. There are

5 flow identifier features that include timestamp (ts), source IP address (src ip),

destination IP Address (dst ip), Source L4 Port (src port) and destination L4

port (dst port). The flow identifiers have been removed to avoid bias towards

the attacking and victim end nodes in the classification experiments.

4.2. Hardware Platforms

This section explains the two hardware platforms used in the experiments of

this paper, Google’s Edge TPU and Raspberry Pi 3B+ that uses ARM Cortex-

A53 as its processor.

4.2.1. Google Edge TPU

The Edge TPU is a purpose-built ASIC hardware accelerator for machine

learning (ML) applications with high performance and low energy footprint. In

2019, Google launched the Edge TPU with the aim of running machine learning

inference at the edge [1]. The TPU is based on a systolic array architecture,

which allows highly efficient matrix multiplication at a massive scale. All op-

erations are limited to 8 bit integers, which increases both performance and

energy efficiency [24]. For the experiments presented in this paper, the Edge

8

Figure 3: Coral USB accelerator with Edge TPU and Raspberry Pi 3 model B+ platforms

TPU Coral USB Accelerator [25] is utilised. Figure 3 shows the Edge TPU

Coral USB Accelerator (on the left), and the Edge TPU chip on top of a penny

for reference.

4.2.2. Raspberry Pi

The Raspberry Pi 3B+ is the second hardware platform used in this study.

It is equipped with a 64-bit quad-core Arm Cortex-A53 CPU @1.4GHz with

1GB RAM. It is powered with a 5V-2.5A power supply running the Raspbian

GNU/Linux OS. The Raspberry Pi 3B+ is can be connected to networks via

gigabit Ethernet, integrated 802.11ac/n wireless LAN, and Bluetooth 4.2. Fig-

ure 3 (on the right), shows the credit card sized Raspberry Pi 3B+.

5. Results

First, the results relating to the small models are presented, then results

relating to the large models are discussed, and finally both are compared.

5.1. Performance of Small Models

The results relating small models includes three parts, the trade-off between

the model size and classification performance, the trade-off between model size

9

and computational time, and the energy cost of performing an inference (clas-

sification).

5.1.1. Classification Performance

Figures 4 (a) and (b) show the classification performance of the feed-forward

and convolutional architectures respectively as a function of model size on two

hardware platforms. As seen, the difference between the two hardware platforms

is not significant. The horizontal axis is model size in KiB and the vertical axis

is the F1-score as a metric of the classification performance.

The variation of the model size for the feed forward models (Figure 4 (a))

is created by varying the number of the fully connected hidden layers (M). On

both hardware platforms, the F1-score is increasing for the model sizes up to

338 KiB where it starts to drop. The highest achieved value of F1-score is 0.98,

which relates to values of M between 2 and 32.

The variation of the model size for the CNN architecture (Figure 4 (b)) is

created by changing the number of kernels N and kernel sizes W×W . The model

size of 5.2 KiB, corresponding to (N=8, W=2), has achieved the lowest value

of the F1-score in all experiments. Initially, the F1-score rapidly increases with

the model size, but it is very sensitive to model parameters, swinging between

Figure 4: The average F1-score versus model size for small models with (a) feed forward and

(b) CNN architectures on Edge TPU and Cortex-A53

10

0.93 and 0.98 for model sizes up to 6.3 KiB. By increasing the model size up to

7.4 KiB, corresponding to (N=16, W=3), the F1-score becomes stable around

0.98, where it remains fix for all the larger model sizes. This is in contrast

with the feed forward models (Figure 4 (a)) in which increasing the model sizes

beyond 338 KiB reduces the F1-scores.

5.1.2. Computational Time

Figure 5 shows the inference time of the feed-forward (on the left) and CNN

(on the left) architectures respectively as a function of model size, on both hard-

ware platforms. The horizontal axis indicates model size in KiB and the vertical

axis indicates the time needed to run a single inference using the corresponding

architecture in Milliseconds.

Surprisingly, Cortex-A53 is faster than Edge TPU for very small model sizes.

In the case of the feed forward architecture (Figure 5 (a)), the advantage of

Cortex-A53 continues for model sizes up to 136 KiB, but for the case of CNN

architecture (Figure 5 (b)) this advantage only continues for model sizes up to

25 KiB.

Edge TPU outperforms Cortex-A53 in both neural network architectures

and performs faster for all larger model sizes. It is also noticeable that the

Figure 5: The inference time versus model size for small models with (a) feed forward and (b)

CNN architectures on Edge TPU and Cortex-A53

11

growth of the advantage of Edge TPU over Cortex-A53 is much faster in the

case of the CNN architecture than for the feed forward architecture.

5.1.3. Energy Efficiency

While the energy needed to run a set of operations on a hardware platform

is related to the time taken to perform the operations, since different hardware

platforms have a different power consumption, the energy efficiency is inde-

pendently investigated. The energy efficiency is defined in this context as the

number of inferences that can be performed with an energy budget of 1 Milli-

Joule (mJ).

Figure 6 (a) and (b) show the energy efficiency for the feed-forward and

convolutional architectures respectively, as a function of the model size, on both

hardware platforms. The horizontal axis indicates model sizes in KiB and the

vertical axis indicates the energy efficiency. The Cortex-A53 platform has the

initial advantage, i.e. it is more energy efficient than the Edge TPU for smaller

model sizes. The superiority of Cortex-A53 continues for all model sizes up to

136 KiB and 25 KiB for the feed forward and CNN architectures respectively.

Again, after the initial advantage of Cortex-A53, the Edge TPU leads the

energy efficiency race for all the larger model sizes. It is also noticeable that

Figure 6: Energy efficiency versus model size for small models with (a) feed forward and (b)

CNN architectures on Edge TPU and Cortex-A53

12

the Edge TPU’s lead over Cortex-A53 is bigger when using the CNN architec-

ture. In other words, the Edge TPU is more energy efficient when using CNN

architecture than using the feed forward architecture, for the same model size.

5.2. Performance of Large Models

In addition to comparisons conducted for the small models including the

classification performance, computational time and energy efficiency, the mem-

ory usage of the large models is also discussed in the following. As mentioned

before, the large models are only investigated using the CNN architecture where

the increase of the number of convolution layers from 3 to 30 by step of 3 is

used to scale the model size (N=256 and W=5 are fixed).

5.2.1. Classification Performance

Figure 7 shows the classification performance for the large models. The F1-

score is ∼0.984 for model sizes up to 6000KiB, corresponding to 12 convolution

layers, and drops for models beyond that to ∼0.932 on both hardware platforms.

While this performance degradation is a clear indication for not using larger

Figure 7: The average F1-score versus model size for large models with CNN architecture on

Edge TPU and Cortex-A53

13

models for this problem, large models have been investigated in this paper to

study other factors such as memory usage, inference time and energy efficiency

of the hardware platforms in the broader range.

5.2.2. Computational Time

Figure 8 illustrates the inference time for large CNN models on both hard-

ware platforms, as a function of the model size. As can be seen, the inference

time of similar model sizes on Edge TPU are much smaller than on Cortex-A53.

The other phenomenon observed in the results is the bi-modal behaviour of

the Edge TPU platform. While the slope of the linear curve (inference time per

model size) is very small for model sizes up to 8000KiB, the slope becomes much

bigger after this value. The bi-modal behaviour of Edge TPU is connected to its

on-chip memory usage, as also observed in [26]. As such, the memory usage of

the CNN architecture with model sizes in the range of these behavioural modes

is investigated in the next sub-section.

Figure 8: The inference time versus model size for large models with CNN architecture on

Edge TPU and Cortex-A53

14

5.2.3. Memory Usage

Figure 9 illustrates the memory usage of the Edge TPU platform throughout

its bi-modal behaviour range. The figure is created by running CNN architec-

tures with model sizes in both modes, and recording the corresponding inference

time, on-chip and off-chip memory usage. The horizontal axis is the model size

in KiB, the left vertical axis indicates the inference time in Milliseconds and the

right vertical axis indicates the utilised memory in KiB.

The curve of the inference time consists of two linear curves. The first curve

starts from a model size of about 1000 kiB and finishes at a model size of

8000 kiB. This is the beginning of the second linear curve with a different slope

which continues to model sizes up to 14000 KiB (and possibly beyond). Similar

trends can be seen in the case of the other two curves, the on-chip and off-chip

memory usages. The turning point of all three curves is at the model size of

8000 KiB. Investigating the on-chip memory curve makes this very clear. The

on-chip memory curve increase up to 8000 KiB with a slope of ∼1, which means

the on-chip memory usage is equal to the model size. In other words, the entire

CNN model is loaded into the on-chip memory, and the off-chip memory usage

Figure 9: The memory usage (right vertical axis) and inference time (left vertical axis) versus

model size for large models with CNN architecture on Edge TPU and Cortex-A53

15

is near zero.

Once the model sizes get bigger than 8000 KiB, the inference time signifi-

cantly increases and the second behavioural mode appears. The on-chip memory

usage remains at 8000 KiB for all larger model sizes, which is the size of the on-

chip memory of the Edge TPU platform. Simultaneously, the off-chip memory

usage starts growing with the increase of the model size, which means part of

the CNN models are being loaded into the off-chip memory. The inference time

increases as more model parts are loaded into the off-chip memory.

5.2.4. Energy Efficiency

Figure 10 shows the energy efficiency of the two considered hardware plat-

forms for large models as a function of the model size. The first observation is

the decline of the energy efficiency with the increase of the model size on both

hardware platforms, which is not a surprise. The other observation is the supe-

riority of the Edge TPU over Cortex-A53 in terms of the energy efficiency, for all

large models. While Edge TPU leads over Cortex-A53 for all large model sizes,

Figure 10: Energy efficiency versus model size for large models with CNN architecture on

Edge TPU and Cortex-A53

16

its advantage is much larger for model sizes below 8000 KiB. This is another

manifestation of the Edge TPU’s bi-modal behaviour. For model sizes beyond

8000 KiB, the energy efficiency of the two platforms converges and becomes less

efficient.

5.3. Summary of The Small and Large Models

In order to have an overall view of the performance comparison for both small

and large models, the results form Section 5.1 and Section 5.2 are summarised in

Figures 11. The figure shows the ratio of the energy efficiency of the Edge TPU

over Cortex-A53 for both neural network architectures, in terms of the model

size, including both small and large models. The horizontal axis indicates the

model sizes in logarithmic scale, and the vertical axis indicates the ratio of the

energy efficiency of Edge TPU over Cortex-A53, also in logarithmic scale.

The first observation is that using the CNN architecture on the Edge TPU

platform is more energy efficient than using the feed forward architecture, inde-

pendent of the model size. The CNN architecture is 8 to 10 times more energy

efficient than feed forward models when used on the Edge TPU platform.

Figure 11: The ratio for energy efficiency of Edge TPU over Cortex-A53 in terms of model

size for both small and large models using the CNN and feed forward architectures

17

The next observation is the superiority of Cortex-A53 over Edge TPU for

both neural network architectures, when using very small model sizes. The

curves corresponding to both architectures start at a ratio below 1 (the hor-

izontal blue line), which means Cortex-A53 is more efficient than Edge TPU.

However, by increasing the model sizes, both curves soon pass the blue hor-

izontal line, meaning the Edge TPU becomes more energy efficient. Again,

the CNN architecture passes the blue line for much smaller model sizes, which

means using the CNN architecture is more energy efficient on Edge TPU for

much smaller model sizes than for the feed forward architecture.

The last observation is the bi-modal behaviour of the Edge TPU. As seen,

the advantage of CNN over the feed forward model increases when we increase

the model size. However, once Edge TPU starts using the off-chip memory, i.e.

about a model sizes of 8000 KiB, increasing the model size further reduces the

relative advantage of the Edge TPU.

6. Conclusion

This paper explores Google’s Edge TPU for the implementation of a prac-

tical deep learning-based NIDS at IoT edge. The Edge TPU-based NIDS is

evaluated on a public IoT benchmark dataset. The detection performance, en-

ergy efficiency and inference time are the three aspects investigated using this

dataset, for varying neural network models sizes. Two neural network architec-

tures are considered in this exploration, feed forward and convolutional neural

networks.

In order to further investigate the practicality of an Edge TPU-based NIDS

in IoT, and for comparison, all the created neural network models are also

implemented on the ARM Cortex-A53, a power-efficient 64-bit embedded CPU.

The result of our comparison indicate that Cortex-A53, somewhat surprisingly,

is faster and more energy efficient than the Edge TPU for very small neural

network models.

Our results also show that, beyond small model sizes, the Edge TPU platform

18

is always superior to Cortex-A53, for both considered neural network architec-

tures. We further observed that the advantage of Edge TPU over Cortex-A53

declines once the model size reaches the size of the on-chip memory of the Edge

TPU platform. This bi-modal behaviour of Edge TPU, which is also reported in

[26], is not currently documented by Google. This clearly shows the importance

of considering the Edge TPU’s on-chip memory size and the neural network

model size, when designing deep learning-based systems for IoT/edge applica-

tions, and for making a decision whether the Edge TPU is the right hardware

platform for such an application. The final finding of these experiments is that

the CNN architecture on the Edge TPU platform is more energy efficient than

feed forward models, for all model sizes.

References

[1] Google, Advanced neural network processing forlow-power devices, https:

//coral.ai/technology (2020).

[2] C. Wisultschew, A. Otero, J. Portilla, E. de la Torre, Artificial vision on

edge iot devices: A practical case for 3d data classification, in: 2019 34th

Conference on Design of Circuits and Integrated Systems (DCIS), 2019, pp.

1–7. doi:10.1109/DCIS201949030.2019.8959857.

[3] Y. Hui, et al., Early experience in benchmarking edge ai processors

with object detection workloads, in: International Symposium on Bench-

marking, Measuring and Optimization, 2020, pp. 32–48. doi:10.1007/

978-3-030-49556-5_3.

[4] A. Reuther, et al., Survey and benchmarking of machine learning acceler-

ators, in: 2019 IEEE High Performance Extreme Computing Conference

(HPEC), 2019, pp. 1–9.

19

https://coral.ai/technology
https://coral.ai/technology
http://dx.doi.org/10.1109/DCIS201949030.2019.8959857
http://dx.doi.org/10.1007/978-3-030-49556-5_3
http://dx.doi.org/10.1007/978-3-030-49556-5_3

[5] A. Alsaedi, N. Moustafa, A. M. Z. Tari, A. Anwar, TON IoT telemetry

dataset: A new generation dataset of iot and iiot for data-driven intrusion

detection systems, IEEE Access 8 (2020) 165130–165150. doi:10.1109/

ACCESS.2020.3022862.

[6] A. S. Almogren, Intrusion detection in Edge-of-Things computing, Journal

of Parallel and Distributed Computing 137 (2020) 259–265. doi:10.1016/

j.jpdc.2019.12.008.

[7] N. Moustafa, J. Slay, Unsw-nb15: a comprehensive data set for network

intrusion detection systems (unsw-nb15 network data set), in: 2015 military

communications and information systems conference (MilCIS), IEEE, 2015,

pp. 1–6.

[8] S. Otoum, B. Kantarci, H. T. Mouftah, On the Feasibility of Deep Learning

in Sensor Network Intrusion Detection, IEEE Networking Letters 1 (2)

(2019) 68–71. doi:10.1109/LNET.2019.2901792.

[9] S. Hettich, Kdd cup 1999 data, The UCI KDD Archive.

[10] M. Eskandari, Z. H. Janjua, M. Vecchio, F. Antonelli, Passban ids: An

intelligent anomaly-based intrusion detection system for iot edge devices,

IEEE Internet of Things Journal 7 (8) (2020) 6882–6897. doi:10.1109/

JIOT.2020.2970501.

[11] A. Frumusanu, et al., Arm a53/a57/t760 investigated - samsung

galaxy note 4 exynos review, https://www.anandtech.com/show/8718/

the-samsung-galaxy-note-4-exynos-review/4 (2015).

[12] I. Hafeez, M. Antikainen, A. Y. Ding, S. Tarkoma, Iot-keeper: Detecting

malicious iot network activity using online traffic analysis at the edge, IEEE

Transactions on Network and Service Management 17 (1) (2020) 45–59.

doi:10.1109/TNSM.2020.2966951.

[13] Y. Mirsky, T. Doitshman, Y. Elovici, A. Shabtai, Kitsune: An ensemble of

autoencoders for online network intrusion detection, ArXiv abs/1802.09089.

20

http://dx.doi.org/10.1109/ACCESS.2020.3022862
http://dx.doi.org/10.1109/ACCESS.2020.3022862
http://dx.doi.org/10.1016/j.jpdc.2019.12.008
http://dx.doi.org/10.1016/j.jpdc.2019.12.008
http://dx.doi.org/10.1109/LNET.2019.2901792
http://dx.doi.org/10.1109/JIOT.2020.2970501
http://dx.doi.org/10.1109/JIOT.2020.2970501
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
http://dx.doi.org/10.1109/TNSM.2020.2966951

[14] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, S. Tarkoma,

IoT SENTINEL: Automated Device-Type Identification for Security En-

forcement in IoT, in: 2017 IEEE 37th International Conference on Dis-

tributed Computing Systems (ICDCS), IEEE, 2017, pp. 2177–2184. doi:

10.1109/ICDCS.2017.283.

[15] S. U. Jan, S. Ahmed, V. Shakhov, I. Koo, Toward a lightweight intrusion

detection system for the internet of things, IEEE Access 7 (2019) 42450–

42471. doi:10.1109/ACCESS.2019.2907965.

[16] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, Toward generating a new in-

trusion detection dataset and intrusion traffic characterization., in: ICISSp,

2018, pp. 108–116.

[17] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, K. Sakurai, Towards a

Lightweight Detection System for Cyber Attacks in the IoT Environment

Using Corresponding Features, Electronics 9 (1) (2020) 144. doi:10.3390/

electronics9010144.

[18] N. Koroniotis, N. Moustafa, E. Sitnikova, B. Turnbull, Towards the devel-

opment of realistic botnet dataset in the Internet of Things for network

forensic analytics: Bot-IoT dataset, Future Generation Computer Systems

100 (2019) 779–796. doi:10.1016/j.future.2019.05.041.

[19] M. Roopak, G. Y. Tian, J. Chambers, An intrusion detection system

against ddos attacks in iot networks, in: 2020 10th Annual Computing

and Communication Workshop and Conference (CCWC), IEEE, 2020, pp.

0562–0567.

[20] P. V. Huong, L. D. Thuan, L. T. Hong Van, D. V. Hung, Intrusion Detec-

tion in IoT Systems Based on Deep Learning Using Convolutional Neural

Network, in: 2019 6th NAFOSTED Conference on Information and Com-

puter Science (NICS), IEEE, 2019, pp. 448–453. doi:10.1109/NICS48868.

2019.9023871.

21

http://dx.doi.org/10.1109/ICDCS.2017.283
http://dx.doi.org/10.1109/ICDCS.2017.283
http://dx.doi.org/10.1109/ACCESS.2019.2907965
http://dx.doi.org/10.3390/electronics9010144
http://dx.doi.org/10.3390/electronics9010144
http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1109/NICS48868.2019.9023871
http://dx.doi.org/10.1109/NICS48868.2019.9023871

[21] S.-N. Nguyen, V.-Q. Nguyen, J. Choi, K. Kim, Design and implementation

of intrusion detection system using convolutional neural network for dos

detection, in: Proceedings of the 2nd International Conference on Machine

Learning and Soft Computing, ICMLSC ’18, Association for Computing

Machinery, New York, NY, USA, 2018, p. 34–38. doi:10.1145/3184066.

3184089.

[22] L. Mohammadpour, T. C. Ling, C. S. Liew, C. Y. Chong, A convolutional

neural network for network intrusion detection system, Proceedings of the

Asia-Pacific Advanced Network 46 (2018) 50–55.

[23] R. Vinayakumar, K. P. Soman, P. Poornachandran, Applying convolutional

neural network for network intrusion detection, in: 2017 International

Conference on Advances in Computing, Communications and Informat-

ics (ICACCI), IEEE, 2017, pp. 1222–1228. doi:10.1109/ICACCI.2017.

8126009.

[24] N. P. Jouppi, et al., In-datacenter performance analysis of a tensor process-

ing unit, in: Proceedings of the 44th Annual International Symposium on

Computer Architecture, ISCA ’17, Association for Computing Machinery,

New York, NY, USA, 2017, p. 1–12. doi:10.1145/3079856.3080246.

[25] Google, USB Accelerator, https://coral.ai/products/accelerator

(2020).

[26] S. Hosseininoorbin, S. Layeghy, B. Kusy, R. Jurdak, , M. Portmann, Scal-

ing spectrogram data representation for deep learning on edge tpu, in:

the fifth IEEE International Workshop on Smart and Green Edge Com-

puting and Networking (SmartEdge) @ Percom, Kessel, Germany, 2021,

(ACCEPTED).

22

http://dx.doi.org/10.1145/3184066.3184089
http://dx.doi.org/10.1145/3184066.3184089
http://dx.doi.org/10.1109/ICACCI.2017.8126009
http://dx.doi.org/10.1109/ICACCI.2017.8126009
http://dx.doi.org/10.1145/3079856.3080246
https://coral.ai/products/accelerator

	1 Introduction
	2 Related Work
	3 Classification Architecture
	3.1 Feed Forward Neural Network
	3.2 Convolutional Neural Network

	4 Experimental Setup
	4.1 Dataset
	4.2 Hardware Platforms
	4.2.1 Google Edge TPU
	4.2.2 Raspberry Pi

	5 Results
	5.1 Performance of Small Models
	5.1.1 Classification Performance
	5.1.2 Computational Time
	5.1.3 Energy Efficiency

	5.2 Performance of Large Models
	5.2.1 Classification Performance
	5.2.2 Computational Time
	5.2.3 Memory Usage
	5.2.4 Energy Efficiency

	5.3 Summary of The Small and Large Models

	6 Conclusion

