
HAL Id: hal-03820079
https://hal.science/hal-03820079

Submitted on 21 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parallel Algorithm for Constructing Multiple
Independent Spanning Trees in Bubble-Sort Networks

Shih-Shun Kao, Ralf Klasing, Ling-Ju Hung, Sun-Yuan Hsieh

To cite this version:
Shih-Shun Kao, Ralf Klasing, Ling-Ju Hung, Sun-Yuan Hsieh. A Parallel Algorithm for Constructing
Multiple Independent Spanning Trees in Bubble-Sort Networks. AAIM 2021, Dec 2021, Dallas, United
States. pp.252-264, �10.1007/978-3-030-93176-6_22�. �hal-03820079�

https://hal.science/hal-03820079
https://hal.archives-ouvertes.fr


A parallel algorithm for constructing multiple
independent spanning trees in bubble-sort

networks?

Shih-Shun Kao1,2, Ralf Klasing1, Ling-Ju Hung3, and Sun-Yuan Hsieh2,4

1 CNRS, LaBRI, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence,
France {shih-shun.kao,ralf.klasing}@labri.fr

2 Department of Computer Science and Information Engineering, National Cheng
Kung University, No. 1, University Road, Tainan, Taiwan

3 Department of Creative Technologies and Product Design, National Taipei
University of Business, No.100, Sec. 1, Fulong Road, Taoyuan, Taiwan

ljhung@ntub.edu.tw
4 Institute of Medical Informatics, National Cheng Kung University, No. 1,

University Road, Tainan, Taiwan
hsiehsy@mail.ncku.edu.tw

Abstract. The use of multiple independent spanning trees (ISTs) for
data broadcasting in networks provides a number of advantages, includ-
ing the increase of fault-tolerance and secure message distribution. Thus,
the designs of multiple ISTs on several classes of networks have been
widely investigated. Kao et al. [Journal of Combinatorial Optimization
38 (2019) 972-986] proposed an algorithm to construct independent span-
ning trees in bubble-sort networks. The algorithm is executed in a recur-
sive function and thus is hard to parallelize. In this paper, we focus on
the problem of constructing ISTs in bubble-sort networks Bn and present
a non-recursive algorithm. Our approach can be fully parallelized, i.e.,
every vertex can determine its parent in each spanning tree in constant
time. This solves the open problem from the paper by Kao et al. Further-
more, we show that the total time complexity O(n · n!) of our algorithm
is asymptotically optimal, where n is the dimension of Bn and n! is the
number of vertices of the network.

Keywords: Independent spanning trees · Bubble-sort networks · Inter-
connection networks.

1 Introduction

The design of modern interconnected networks faces several critical demands,
such as how to perform fault-tolerant transmission and secure message distri-
bution in a reliable communication network. The practical solution to meet the

? This research was supported by the LaBRI under the “Projets émergents” program.
This study has been carried out in the frame of the “Investments for the future”
Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02).



2 Kao et al.

above requirements is to design a multi-path routing mechanism, which requires
the network to provide disjoint paths between each pair of vertices. Therefore,
if the transmission fails due to a disconnection in the current transmission path,
we can resume the data transmission via another disjoint backup path. This dra-
matically increases the performance of fault-tolerant communication [2, 14]. In
addition, disjoint paths could be used in secure message distribution over a fault-
free network in the following way [2, 30]. A message can be divided into several
packets where the source node sends each packet to its destination via different
paths. Thus, each node in the network receives at most one of the packets except
for the destination node that receives all the packets.

Usually, an interconnection network is modeled by a simple undirected graph
G = (V,E), where the vertex set V (G) and the edge set E(G) represent the
set of processors and the set of communication links between the processors,
respectively. A spanning tree T in G is a connected acyclic subgraph of G such
that V (T ) = V (G). Two spanning trees rooted at a specific vertex, say r, are
called independent spanning trees (ISTs for short) if, for any vertex v ∈ V (G) \
{r}, the two paths from v to r in any two trees share no common edge and no
common vertex except for v and r. Accordingly, the provision of multiple ISTs
suffices to meet the requirement of reliable communication in a network.

Research on ISTs has been conducted for nearly three decades. In 1989,
Zehavi and Itai [40] conjectured that there exist k ISTs rooted at an arbitrary
vertex in a k-connected graph. From then on, this conjecture has been confirmed
only for k-connected graphs with k ≤ 4 (see [9, 10, 14]). Since this conjecture is
still unsolved for general k-connected graphs for k ≥ 5, the follow-up research
mainly focused on the study of constructing ISTs on specific interconnection
networks, e.g., the construction of ISTs on some variations of hypercubes [3,
20, 29, 30, 37], torus networks [28], recursive circulant graphs [34, 35], and special
subclasses of Cayley networks [7, 8, 12, 13, 15, 19, 39]. In particular, special topics
related to ISTs include the research on reducing the height of the ISTs [31, 33,
36] and parallel construction of ISTs [4–6, 32, 37, 38].

Note that there is a similar problem called the construction of completely
independent spanning trees (CISTs for short) in a network. A set of k unrooted
spanning trees are called CISTs if they are pairwise edge-disjoint and inner-node-
disjoint (i.e., for each pair of vertices u and v in any two spanning trees, there
exist no common edge and vertex in the paths between u and v except for the
two end vertices). In particular, if k = 2, the two CISTs are called a dual-CIST.
Hasunuma [11] showed that the problem of determining whether there exists a
dual-CIST in a graph is NP-complete. He also conjectured that there exist k
CISTs in a 2k-connected graph. Currently, this conjecture has been proved to
fail by counterexamples [21, 26]. For recent research results on CISTs and their
applications, the reader is referred to [22–25] and references quoted therein. Here,
we explicitly point out that the construction of multiple ISTs and CIST are two
different problems.

For the construction of ISTs on bubble-sort networks, Kao et al. [15] proposed
an algorithm to construct n− 1 ISTs of Bn and showed that the algorithm has



A parallel algorithm for constructing ISTs in Bubble-Sort Networks 3

optimal amortized efficiency for multiple trees construction. In particular, every
vertex can determine its parent in each spanning tree in constant amortized time.
The algorithm is executed in a recursive function and thus is hard to parallelize.
In this paper, we present a parallel algorithm to construct n− 1 ISTs in bubble-
sort networks Bn. Our approach can be fully parallelized, i.e., every vertex can
determine its parent in each spanning tree in constant time. This solves the open
problem from [15]. Furthermore, we show that the total time complexity O(n·n!)
of our algorithm is asymptotically optimal, where n is the dimension of Bn and
n! is the number of vertices of the network.

The rest of this paper is organized as follows. In Section 2, we introduce the
bubble-sort graphs and some notations. In Section 3, we introduce the algorithm
for constructing independent spanning trees of Bn. In Section 4, we show the cor-
rectness of our algorithm and give the complexity analysis. Finally, conclusions
and future works are given in Section 5.

2 Preliminaries

Let Σn be the set of all permutations on {1, 2, . . . , n}. For a permutation p ∈ Σn

and an integer i ∈ {1, 2, . . . , n}, we use the following notations. The symbol
at the ith position of p is denoted by pi, and the position where the symbol i
appears in p is denoted by p−1(i). A symbol i is said to be at the right position
of p if pi = i, and for p 6= 12 · · ·n the position of the first symbol i from the
right which is not in the right position is denoted by r(p). For i ∈ {1, · · · , n−1},
let p〈i〉 = p1p2 · · · pi−1pi+1pipi+2 · · · pn be the permutation of Σn obtained from
p by swapping two consecutive symbols at positions i and i + 1. The bubble-
sort network, denoted by Bn, is an undirected graph consisting of the vertex set
V (Bn) = Σn and the edge set E(Bn) = {(x,x〈i〉) : x ∈ Σn, 1 6 i 6 n − 1},
where the edge (x,x〈i〉) is called an i-edge of Bn. Thus, Bn is a Cayley graph
generated by the transposition set {(i, i+ 1): 1 6 i 6 n− 1}, which is specified
by an n-path Pn = (1, 2, . . . , n) as its transposition graph [1, 16]. For example,
Fig. 1 depicts B4. Clearly, for Bn, the transposition graph Pn contains only two
subgraphs isomorphic to an (n− 1)-path: one is (1, 2, . . . , n− 2) and the other is
(2, 3, . . . , n − 1). Thus, for n > 3, there are exactly two ways to decompose Bn

into n disjoint subgraphs that are isomorphic to Bn−1. Let Bi
n denote the graph

obtained from Bn by removing the set of all i-edges. Then, both B1
n and Bn−1

n

consist of n disjoint subgraphs isomorphic to Bn−1.

3 Constructing ISTs on Bn

In this section, we present an algorithm for constructing n−1 ISTs of Bn. Since
Bn is vertex-transitive, without loss of generality, we may choose the identity
1n = 12 · · ·n as the common root of all ISTs. Also, since Bn has connectivity
n − 1, the root in every spanning tree has a unique child. For 1 6 t 6 n − 1, if
the root of a spanning tree takes 1n〈t〉 = 12 · · · (t − 1)(t + 1)t(t + 2) · · ·n as its
unique child, then the spanning tree of Bn is denoted by Tn

t . To describe such



4 Kao et al.

Fig. 1. The bubble-sort network B4

a spanning tree, for each vertex v = v1 · · · vn ∈ V (Bn) except the root 1n, we
denote by Parent(v, t, n) the parent of v in Tn

t .

The case n = 3. Since B3 is isomorphic to a 6-cycle, we have

Parent(v, 1, 3) =



123 if v = 213;

213 if v = 231;

231 if v = 321;

321 if v = 312;

312 if v = 132;

and Parent(v, 2, 3) =



231 if v = 213;

321 if v = 231;

312 if v = 321;

132 if v = 312;

123 if v = 132.

That is, the two paths T 3
1 = (132, 312, 321, 231, 213, 123) and T 3

2 = (213, 231, 321,
312, 132, 123) are ISTs of B3 that take 13 = 123 as the common root.

The case n > 4. In general, for Bn with n > 4, the construction of the ISTs of
Bn can be accomplished by Algorithm 1 to determine the parent of each vertex
(except the root) in every spanning tree.

The main idea of the algorithm is as follows. In Tn
t for t ∈ {1, 2, . . . , n − 2}

all paths are from the vertex x with xn ∈ {1, 2, . . . , n− 1} \ {t} to the vertex y
with yn = t. Then, all paths are from the vertex y with yn = t to the root r.
In Tn

n−1 all paths are from the vertex v with vn = n to the vertex u with un ∈
{1, 2, . . . , n−1}. Then, all paths are from the vertex u with un ∈ {1, 2, . . . , n−1}
to the root r.



A parallel algorithm for constructing ISTs in Bubble-Sort Networks 5

Algorithm 1: The new parallel algorithm

Input : v: the vertex v = v1 · · · vn in Bn

t: the t-th tree Tn
t in IST

n: the dimension of Bn

Output: p: p = Parent(v, t, n) the parent of v in Tn
t

1 if vn = n then
2 if t = 2 and Swap(v, t) = 1n then p = Swap(v, t− 1)
3 else if t = n− 1 then p = Swap(v, vn−1)
4 else p = FindPosition(v)

5 end
6 else
7 if vn = n− 1 and vn−1 = n and Swap(v, n) 6= 1n then
8 if t = 1 then p = Swap(v, n)
9 else p = Swap(v, t− 1)

10 end
11 else
12 if vn = t then p = Swap(v, n)
13 else p = Swap(v, t)

14 end

15 end
16 return p

Function FindPosition(v)

Input : v: the vertex v = v1 · · · vn in Bn

Output: p: p = Parent(v, t, n) the parent of v in Tn
t

1 if vn−1 ∈ {t, n− 1} then j = r(v), p = Swap(v, vj)
2 else p = Swap(v, t)
3 return p

Function Swap(v, x)

Input : v: the vertex v = v1 · · · vn in Bn

x: the symbol in the vertex v1 · · · vn
Output: p: p = Parent(v, t, n) the parent of v in Tn

t

1 i = v−1(x), p = v〈i〉
2 return p



6 Kao et al.

Table 1. The parent of every vertex v ∈ V (B4) \{14} in T 4
t for t ∈ {1, 2, 3} calculated

by Algorithm 1

v t v4 p v t v4 p
1 3214

1234 - - - 3124 2 4 1324
3 3142

1 2143 1 3412
1243 2 3 1423 3142 2 2 3124

3 1234 3 1342
1 3124 1 2314

1324 2 4 1234 3214 2 4 3124
3 1342 3 3241
1 3142 1 3214

1342 2 2 1324 3241 2 1 3421
3 1432 3 2341
1 4123 1 3421

1423 2 3 1432 3412 2 2 3142
3 1243 3 4312
1 4132 1 3241

1432 2 2 1342 3421 2 1 3412
3 1423 3 4321

1 1234 1 4213
2134 2 4 2314 4123 2 3 4132

3 2143 3 1423
1 2134 1 4312

2143 2 3 2413 4132 2 2 1432
3 1243 3 4123
1 2134 1 4231

2314 2 4 3214 4213 2 3 4123
3 2341 3 2413
1 2314 1 2431

2341 2 1 3241 4231 2 1 4321
3 2431 3 4213
1 2431 1 4321

2413 2 3 4213 4312 2 2 3412
3 2143 3 4132
1 2341 1 3421

2431 2 1 4231 4321 2 1 4312
3 2413 3 4231

Note that in a pre-processing stage, each node v = v1v2 · · · vn (v 6= 1n)
computes its inverse permutation, i.e., v−1(1)v−1(2) · · · v−1(n), and the position
of the first symbol i from the right which is not in the right position, i.e., r(v).
This can be done efficiently in O(n) time for each vertex. Algorithm 1 uses two
functions FindPosition(v) and Swap(v, x). The function FindPosition(v) finds
the rightmost symbol x in v which is not in the right position, and then calls
the Swap(v, x) function. The function Swap(v, x) swaps the symbol x in v in its
position i with the symbol in position i + 1. Since we have the pre-processing
stage, the two functions FindPosition(v) and Swap(v, x) can be calculated in
constant time.

Table 1 shows the parent of every vertex v ∈ V (B4) \ {14} in T 4
t for t ∈

{1, 2, 3} calculated by Algorithm 1. For example, we consider v = 3214 and t =
3. Since v4 = 4, p = Swap(v, v4−1) = 3241. Also, we consider v = 4321 and t =
1. Since v4 = 1, p = Swap(v, 4) = 3421. The corresponding three ISTs rooted at
vertex 14 for B4 are shown in Fig. 2.



A parallel algorithm for constructing ISTs in Bubble-Sort Networks 7

Fig. 2. The three ISTs of B4 calculated by Algorithm 1

4 Correctness and complexity analysis

In this section, we first show the correctness of Algorithm 1. Let T be a tree and
u, v ∈ V (T ), we use T (u, v) to denote the unique path joining u and v in T . For
two spanning trees Tn

t and Tn
t′ for t, t′ ∈ {1, 2, . . . , n− 1} with t 6= t′, we denote

by Tn
t (v, r) and Tn

t′ (v, r) the two paths from v to the common r.

Theorem 1. For n > 4, Tn
1 , T

n
2 , . . . , T

n
n−1 are n− 1 ISTs of Bn.

Proof. Suppose that n > 4, let r = 1n(= 12 · · ·n), the proof is by showing that
for any vertex v ∈ V (Bn) \ {r}, the two paths from v to r in any two trees of
Tn
1 , T

n
2 , . . . , T

n
n−1 share no common edge and no common vertex except for v and

r, and thereby proving the independence. Consider the following three cases:
Case 1: vn = n.
Each vertex of the two paths Tn

t (v, r) and Tn
t′ (v, r) (apart from Tn

n−1(v, r))
swaps symbol t (resp., t′) to the position vn−1 for t, t′ ∈ {1, 2, . . . , n − 2}.
Then, the rightmost symbol i which is not in the right position swaps to the
right position. Therefore, Tn

t (v, r) and Tn
t′ (v, r) are vertex-disjoint. Now con-

sider Tn
n−1(v, r), each vertex of the path swaps the position vn−1 to vn. Then,

the vertex v with vn = n swaps the symbol n − 1 to the position vn. Hence,
Tn
t (v, r), Tn

t′ (v, r) and Tn
n−1(v, r) are vertex-disjoint. See Fig. 3, the paths from

the vertex v with vn = n to r are marked in red, in Tn
n−1(v, r) each vertex of the

path has symbol n− 1 in vn. The other trees Tn
t (v, r) have symbol t in position

vn for t ∈ {1, 2, . . . , n− 2}.



8 Kao et al.

Fig. 3. An illustration of the paths described in the proof of Case 1 of Theorem 1

Fig. 4. An illustration of the paths described in the proof of Case 2 of Theorem 1

Fig. 5. An illustration of the paths described in the proof of Case 3 of Theorem 1



A parallel algorithm for constructing ISTs in Bubble-Sort Networks 9

Case 2: vn = n− 1.
Each vertex of the two paths Tn

t (v, r) and Tn
t′ (v, r) (apart from Tn

n−1(v, r))
swaps symbol t (resp., t′) to the position vn for t, t′ ∈ {1, 2, . . . , n − 2}. On the
other hand each vertex of the path has symbol t (resp., t′) in different position.
Therefore, Tn

t (v, r) and Tn
t′ (v, r) are vertex-disjoint. In Tn

n−1(v, r) each vertex
of the path swaps symbol n to the position vn. By Case 1, the paths Tn

1 (v, r)
and Tn

n−2(v, r) are vertex-disjoint. Hence, Tn
t (v, r), Tn

t′ (v, r) and Tn
n−1(v, r) are

vertex-disjoint. See Fig. 4, the paths from the vertex v with vn = n− 1 to r are
marked in red, in Tn

1 (v, r) each vertex of the path has symbol n − 1, 1 or n in
the position vn, in Tn

n−2(v, r) each vertex of the path has symbol n − 1, n − 2
or n in the position vn, in Tn

n−1(v, r) each vertex of the path swaps symbol n to
the position vn.

Case 3: vn = j for j ∈ {1, 2, . . . , n− 2}.
Each vertex of the two paths Tn

t (v, r) and Tn
t′ (v, r) (apart from Tn

n−1(v, r))
swaps symbol t (resp., t′) to the position vn for t, t′ ∈ {1, 2, . . . , n − 2}. On the
other hand each vertex of the path has symbol t in different position. Therefore,
Tn
t (v, r) and Tn

t′ (v, r) are vertex-disjoint. In Tn
n−1(v, r) each vertex of the path

swaps symbol n − 1 to vn. By Case 2, the paths Tn
1 (v, r) and Tn

n−2(v, r) are
vertex-disjoint. Hence, Tn

t (v, r), Tn
t′ (v, r) and Tn

n−1(v, r) are vertex-disjoint. See
Fig. 5, the paths from the vertex v with vn = 1 to r are marked in red, in
Tn
1 (v, r) each vertex of the path swaps symbol n to vn, in Tn

n−2(v, r) each vertex
of the path swaps symbol n− 2 or n to vn, in Tn

n−1(v, r) each vertex of the path
swaps symbol n− 1 to vn. This completes the proof. �

The height of a rooted tree T , denoted by h(T ), is the number of edges from
the root to a farthest leaf. We define Hn = max

16t6n−1
h(Tn

t ) to analyze the height

of our constructed ISTs for Bn.

Theorem 2. For the bubble-sort graph Bn, Algorithm 1 correctly constructs
n− 1 ISTs of Bn with height at most n(n+ 1)/2− 1. In particular, every vertex
can determine its parent in each spanning tree in constant time.

Proof. From Algorithm 1, the path from the vertex v with vn = 2 to the vertex
u with un = 1 has at most n − 1 edges, and the path from the vertex u with
un = 1 to the vertex x with xn = n has at most n − 1 edges. Moreover, the
path from the vertex w with wn = n to the vertex x with xn = n and xn−1 = t
has at most n − 1 edges, and the path from the vertex x with xn = n and
xn−1 = t to the vertex y with yn = n and yn−1 = n − 1 has at most n − 2
edges, and the path from the vertex y with yn = n and yn−1 = n − 1 to the
vertex z with zn = n, zn−1 = n − 1 and zn−2 = n − 2 has at most n − 3
edges. Since (n − 2) + (n − 3) + · · · + 1 = (n − 1)(n − 2)/2, the path from the
vertex x with xn = n and xn−1 = t to the root r has at most (n − 1)(n − 2)/2
edges. The path from the vertex v with vn = 2 to the root r has at most
(n−1)(n−2)/2+(n−1)+(n−1) = (n2−3n+2+4n−4)/2 = (n2 +n−2)/2 =
n(n + 1)/2 − 1 edges. Hence, Hn ≤ n(n + 1)/2 − 1. Obviously, each vertex in
Algorithm 1 can determine its parent in each spanning tree in constant time.
This completes the proof. �



10 Kao et al.

Corollary 1. The total time complexity O(n · n!) of Algorithm 1 is asymptoti-
cally optimal.

Proof. There are n − 1 ISTs, each IST contains n! vertices, hence the lower
bound Ω(n · n!) is obvious. Since each vertex in Algorithm 1 can determine its
parent in each spanning tree in constant time, the total time complexity of the
proposed Algorithm 1 is O(n · n!). Hence, the total time complexity O(n · n!) of
Algorithm 1 is asymptotically optimal. This completes the proof. �

5 Conclusion

In this paper, we have proposed an algorithm for constructing n−1 ISTs rooted
at an arbitrary vertex of the bubble-sort network Bn. Our approach can be fully
parallelized, i.e., every vertex can determine its parent in each spanning tree in
constant time. Furthermore, we show that the total time complexity O(n ·n!) of
our algorithm is asymptotically optimal, where n is the dimension of Bn and n!
is the number of vertices of the network.

Since Bn is a regular graph with connectivity n−1, the number of constructed
ISTs is the maximum possible. For future work, a problem remaining open from
our work is whether our algorithm can be extended to the (n, k)-bubble-sort
graph [27, 41, 42] which is a generalization of bubble-sort networks. Moreover,
the butterfly graph [17, 18] has good structural symmetries, is regular of degree
4, and the recursive construction properties are similar to bubble-sort networks.
Thus, it is of interest to study the construction of ISTs on butterfly graphs.

References

1. S. B. Akers and B. Krishnamurty, “A group theoretic model for symmetric in-
terconnection networks,” IEEE Transactions on Computers, vol. 38, no. 4, pp.
555-566, 1989.

2. F. Bao, Y. Funyu, Y. Hamada, and Y. Igarashi, “Reliable broadcasting and se-
cure distributing in channel networks,” in: Proc. of 3rd International Symposium
on Parallel Architectures, Algorithms and Networks, ISPAN’97, Taipei, December
1997, pp. 472-478.

3. J.-M. Chang, J.-D. Wang, J.-S. Yang, and K.-J. Pai, “A comment on independent
spanning trees in crossed cubes,” Information Processing Letters, vol. 114, no. 12,
pp. 734-739, 2014.

4. J.-M. Chang, T.-J. Yang, and J.-S. Yang, “A parallel algorithm for constructing
independent spanning trees in twisted cubes,” Discrete Applied Mathematics, vol.
219, pp. 74-82, 2017.

5. Y.-H. Chang, J.-S. Yang, J.-M. Chang, and Y.-L. Wang, “A fast parallel algorithm
for constructing independent spanning trees on parity cubes,” Applied Mathematics
and Computation, vol. 268, pp. 489-495, 2015.

6. Y.-H. Chang, J.-S. Yang, S.-Y. Hsieh, J.-M. Chang, and Y.-L. Wang, “Construc-
tion independent spanning trees on locally twisted cubes in parallel,” Journal of
Combinatorial Optimization, vol. 33, no. 3, pp. 956-967, 2017.



A parallel algorithm for constructing ISTs in Bubble-Sort Networks 11

7. D.-W. Cheng, C.-T. Chan, and S.-Y. Hsieh, “Constructing independent spanning
trees on pancake networks,” IEEE Access, vol. 8, pp. 3427-3433, 2020.

8. D.-W. Cheng, K.-H. Yao, and S.-Y. Hsieh, “Constructing Independent Spanning
Trees on Generalized Recursive Circulant Graphs,” IEEE Access, vol. 9, pp. 74028-
74037, 2021.

9. J. Cheriyan and S.N. Maheshwari, “Finding nonseparating induced cycles and
independent spanning trees in 3-connected graphs,” Journal of Algorithms, vol. 9,
no. 4, pp. 507-537, 1988.

10. S. Curran, O. Lee, and X. Yu, “Finding four independent trees,” SIAM Journal
on Computing, vol. 35, no. 5, pp. 1023-1058, 2006.

11. T. Hasunuma, “Completely independent spanning trees in maximal planar graphs,”
in: Proc. of 28th International Workshop on Graph-Theoretic Concepts in Com-
puter Science, WG 2002, LNCS, vol. 2573, Springer, Cham, 2002, pp. 235-245.

12. J.-F. Huang, E. Cheng, and S.-Y. Hsieh, “Two algorithms for constructing indepen-
dent spanning trees in (n, k)-star graphs,” IEEE Access, vol. 8, pp. 175932-175947,
2020.

13. J.-F. Huang, S.-S. Kao, S.-Y. Hsieh, and R. Klasing, “Top-Down construction of
independent spanning trees in alternating group networks,” IEEE Access, vol. 8,
pp. 112333-112347, 2020.

14. A. Itai and M. Rodeh, “The multi-tree approach to reliability in distributed net-
works,” Information and Computation, vol. 79, no. 1, pp. 43-59, 1988.

15. S.-S. Kao, K.-J. Pai, S.-Y. Hsieh, R.-Y. Wu, and J.-M. Chang, “Amortized ef-
ficiency of constructing multiple independent spanning trees on bubble-sort net-
works,” Journal of Combinatorial Optimization, vol. 38, no. 3, pp. 972-986, 2019.

16. S. Lakshmivarahan, J. Jwo, and S. K. Dhall, “Symmetry in interconnection net-
works based on Cayley graphs of permutation groups: A survey,” Parallel Com-
puting, vol. 19, no. 4, pp. 361-407, 1993.

17. F.T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes,” Morgan Kaufmann Publishers, 1992.

18. L.-H. Liu, J.-E. Chen, S.-Q. Chen, and W.-J. Jia, “An new representation for inter-
connection network structures,” Journal of Central South University of Technology,
vol. 9, no. 1, pp. 47-53, 2002.

19. C.-F. Lin, J.-F. Huang, and S.-Y. Hsieh, “Constructing independent spanning trees
on transposition networks,” IEEE Access, vol. 8, pp. 147122-147132, 2020.

20. J.-C. Lin, J.-S. Yang, C.-C. Hsu, and J.-M. Chang, “Independent spanning trees
vs. edge-disjoint spanning trees in locally twisted cubes,” Information Processing
Letters, vol. 110, no. 10, pp. 414-419, 2010.

21. K.-J. Pai, J.-S. Yang, S.-C. Yao, S.-M. Tang, and J.-M. Chang, “Completely inde-
pendent spanning trees on some interconnection networks,” IEICE Transactions
on Information Systems, vol. E97-D, no. 9, pp. 2514-2517, 2014.

22. K.-J. Pai and J.-M. Chang, “Dual-CISTs: Configuring a protection routing on
some Cayley networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 3,
pp. 1112-1123, 2019.

23. K.-J. Pai, R.-S. Chang, R.-Y. Wu, and J.-M. Chang, “A two-stages tree-searching
algorithm for finding three completely independent spanning trees,” Theoretical
Computer Science, vol. 784, pp. 65-74, 2019.

24. K.-J. Pai, R.-S. Chang, Ro-Yu Wu, and J.-M. Chang, “Three completely indepen-
dent spanning trees of crossed cubes with application to secure-protection routing,”
Information Sciences, vol. 541, pp. 516-530, 2020.



12 Kao et al.

25. K.-J. Pai, R.-S. Chang, and J.-M. Chang, “Constructing dual-CISTs of pancake
graphs and performance assessment of protection routings on some Cayley net-
works,” The Journal of Supercomputing, http://dx.doi.org/10.1007/s11227-020-
03297-9

26. F. Péterfalvi, “Two counterexamples on completely independent spanning trees,”
Discrete Mathematics, vol. 312, no. 4, pp. 808-810, 2012.

27. N. Shawash, “Relationships among popular interconnection networks and their
common generalization,” Ph.D. thesis, Oakland University, 2008.

28. S.-M. Tang, J.-S. Yang, Y.-L. Wang, and J.-M. Chang, “Independent spanning
trees on multidimensional torus networks,” IEEE Transactions on Computers, vol.
59, no. 1, pp. 93-102, 2010.

29. Y. Wang, J. Fan, G. Zhou, and X. Jia, “Independent spanning trees on twisted
cubes,” Journal of Parallel and Distributed Computing vol. 72, no. 1, pp. 58-69,
2012.

30. J.-S. Yang, H.-C. Chan, and J.-M. Chang, “Broadcasting secure messages via op-
timal independent spanning trees in folded hypercubes,” Discrete Applied Mathe-
matics, vol. 159, no. 12, pp. 1254-1263, 2011.

31. J.-S. Yang and J.-M. Chang, “Optimal independent spanning trees on Cartesian
product of hybrid graphs,” Computer Journal, vol. 57, no. 1, pp. 93-99, 2014.

32. J.-S. Yang, J.-M. Chang, K.-J. Pai, and H.-C. Chan, “Parallel construction of inde-
pendent spanning trees on enhanced hypercubes,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 11, pp. 3090-3098, 2015.

33. J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, “Reducing the height of
independent spanning trees in chordal rings,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 5, pp. 644-657, 2007.

34. J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, “On the independent span-
ning trees of recursive circulant graphs G(cdm, d) with d > 2,” Theoretical Com-
puter Science, vol. 410, no. 21-23, pp. 2001-2010, 2009.

35. J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, “Constructing multiple
independent spanning trees on recursive circulant graphs G(2m, 2),” International
Journal of Foundations of Computer Science, vol. 21, no. 1, pp. 73-90, 2010.

36. J.-S. Yang, S.-S. Luo, and J.-M. Chang, “Pruning longer branches of independent
spanning trees on folded hyper-stars,” Computer Journal, vol. 58, no. 11, pp. 2972-
2981, 2015.

37. J.-S. Yang, S.-M. Tang, J.-M. Chang, and Y.-L. Wang, “Parallel construction of
optimal independent spanning trees on hypercubes,” Parallel Computing, vol. 33,
no. 1, pp. 73-79, 2007.

38. J.-S. Yang, M.-R. Wu, J.-M. Chang, and Y.-H. Chang, “A fully parallelized scheme
of constructing independent spanning trees on Möbius cubes,” Journal of Super-
computing, vol. 71, no. 1, pp. 894-908, 2015.

39. Y.-C. Yang, S.-S. Kao, R. Klasing, S.-Y. Hsieh, H.-H. Chou, and J.-M. Chang, “The
construction of multiple independent spanning trees on burnt pancake networks,”
IEEE Access, vol. 9, pp. 16679-16691, 2021.

40. A. Zehavi and A. Itai, “Three tree-paths,” Journal of Graph Theory, vol. 13, no.
2, pp. 175-188, 1989.

41. S.-L. Zhao and R.-X Hao, “The generalized connectivity of (n, k)-bubble-sort
graphs,” The Computer Journal, vol. 62, no. 9, pp. 1277-1283, 2019.

42. S.-L. Zhao and R.-X Hao, “The fault tolerance of (n, k)-bubble-sort networks,”
Discrete Applied Mathematics, vol. 285, pp. 204-211, 2020.


