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Abstract

In this paper, we consider complex, busy stations whose limited capacity is
one of the main reasons of delay propagation. Our goal is to improve, during
the planning phase, the robustness of a complex station by fully exploiting the
potential of the available capacity. The main feature of our approach is the
interaction between routing decisions, timetabling and platform assignments.
By altering one of these, slack can be created to allow improvements by the
others as well. An objective function that maximizes the time span between
any two trains is defined and the timing of the trains and the way how trains
are routed to the platforms are optimized in the scope of this objective. By
maximizing the spread of the trains, potential conflicts are avoided which is
beneficial for — but not identical to — robustness. Using our approach, the
robustness in the station zone of Brussels, Belgium’s main railway bottleneck,
can be improved by 8%. Next to that, the amount of knock-on delay arising
due to conflicts within this area can be halved. This performance of our
approach is confirmed by a second case study based on the station zone of
Antwerp.
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1. Introduction

When two trains come too close together on a shared infrastructure part,
a conflict occurs with delay propagation as a consequence. Increasing the
time span between these two trains works beneficial for the robustness of
the system. Doing this for all pairs of trains, however, is impossible when
dealing with highly used railway bottlenecks like complex, busy stations. In
this paper, we improve the robustness of a railway system in bottlenecks and
their neighborhood by focussing on the potential of the available capacity.
Routing actions, timetable changes and platform deviations to improve the
spreading of the trains are considered. Also the interaction between any of
these changes is studied. Altering one item may require several other moves
but can also create new possibilities for further improvement. Our goal is to
improve the railway robustness which is a broad concept tackled by many
authors. In [14], our vision on robustness is introduced and motivated: “A
railway timetable that is robust minimizes the real total weighted travel time
of the passengers, in case of frequently occurring small delays.” Thus, fo-
cussing on the passengers, we want to decrease the travel times in practice,
which include delays and missed transfers.
This paper results from a cooperation between the University of Leuven and
the Belgian railway infrastructure manager Infrabel. Daily, the latter records
a large amount of delay propagation in the zone of Brussels, the center of the
Belgian railway network. This resulted in the following research question:
How can we improve the robustness in and around large railway stations?
The idea behind this study and the first obtained results can be found in [15].
In the current paper, a new and significantly improved version of our ap-
proach is presented. Not only did we increase the level of detail to make
the simulation (and the timetable) more realistic, we also applied our proce-
dure to a new and intrinsic different case study. For this new case study, our
findings are confirmed by the Belgian infrastructure manager when they sim-
ulated our results using their own commercial (microscopic) simulation tool
LUKS [19]. In the algorithm itself, two new ways to improve the systems’
robustness are introduced: changes in the order of trains and in the platform
allocations are now being considered. Applying any of these changes can eas-
ily result in conflicts, i.e., overlapping blocking times. As a consequence, an
extra loop that can cope with these infeasibilities is successfully introduced
in the algorithm. It tries to solve the conflicts and looks further ahead to
evaluate the potential of the initial change.



1.1. Approach

In order to improve the robustness in a complex station zone, we focus
on three aspects of the planning: the routing of the trains through the sta-
tion zone, the timetable at the stations within this zone and the platform
assignments. Clearly, there is an interaction between these three aspects. A
modification of one aspect affects the set of possible achievable improvements
of another one. For instance, a time shift of a train affects the achievable
improvements of rerouting this train. Changing the platform assignment for
a train without taking other actions, may not be beneficial for the system or,
even worse, create conflicts which result in extra delay. The full strength of
a (platform) change can only be explored whenever other, related timetable
(and routing) adjustments are considered simultaneously. This is what we
call the potential of a change. In this paper, this potential and the interac-
tion between the different changes are investigated thoroughly.

In general, the construction of a railway timetable is done top-down. The
schedule is created on a macroscopic level and microscopic checks are used
to evaluate and repair the feasibility at individual stations [22]. The other
way around, first building a plan for each station individually and combin-
ing all these (small) plans to one (large) timetable, the bottom-up approach,
can be very cumbersome and non-efficient. Something in between this top-
down and bottom-up approach can be practical especially in the case of
star shaped networks. Using the nomenclature of the theory of constraints
(drum-buffer-rope) [20], one may say that the center functions as drum and
the lines towards the center can act as buffer. Adapting the other stations in
the network to the new planning and hitting the drum at the optimal beat
of the center, can improve the performance of the overall system. This is the
idea behind our study.

In order to construct a robust timetable, we propose to develop a timetable
for the center of the network. Next, this local timetable can be used as start-
ing point to construct a timetable for the whole Belgian network. To extend
the local timetable to a feasible global schedule, one can use a top-down ap-
proach with feedback loops or the technique of goal programming [41, 42].
Similar as in the top-down approach where some rough capacity constraints
are considered to model the available capacity at stations and a feedback
loop is added to perform microscopic checks, we start from an initially feasi-
ble schedule and have added time-window constraints for each train. When
creating a national timetable, the timetable’s attractiveness, or market suit-



ability, as it is called in [27], needs to be considered. In [27], several examples
to indicate shortcomings in the UIC Code 406 method to measure capac-
ity [13] are presented. These examples point at some drawbacks in the way
capacity is measured and at the consequences capacity restrictions can have
on the attractiveness of the timetable, e.g., when trains on a single track are
grouped per direction. However, using the method of retiming and reflow-
ing [33], one should be able to detect and solve such cases. The same holds
for the planning of transfers in the new timetable. Based on a reflow action,
important transfers can be detected and a retiming action can improve or
restore the transfers if needed.

Thus, although changing the event times of some trains in a station may
lead to conflicts at other stations, we do not sort this out in this paper.
We are convinced that these conflicts are not impossible to solve and that
a good schedule for the central bottleneck takes precedence. Nevertheless,
this should be kept in mind and interpreting and extrapolating the obtained
results should be done carefully.

Using our algorithm, the impact on the performance of infrastructure changes,
like increasing the number of platforms in one station, can be evaluated as is
done in [15]. In this paper, we consider the infrastructure as unchangeable.
Although adding extra routing possibilities could avoid intersecting paths,
which is one of the main reasons of delay propagation in the station zone of
Brussels and thus would improve the routing solutions considerably, we only
focus on the potential of the planning itself to improve the robustness of the
system.

1.2. Definitions

In this paper, we use the term station zone to indicate the network that
consists of a set of stations with their platforms and the tracks and switches
that connect the incoming lines with the platforms and the outgoing lines.
An overview of the station zone of Antwerp is given in Figure 1. On the left
hand side of this figure, an overview of the zone is shown and more details
about the network are presented at the right hand side. Note that tunnels
are represented by dashed lines.

The (minimal) time span between two trains is defined as the smallest delay
that causes these trains to conflict in the station zone. By comparing the
blocking times of the trains’ common sections under undisturbed circum-
stances, the minimal time span between two trains can be calculated. When
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Figure 1: An overview of the station zone of Antwerp

the minimal time span is nonnegative for all pairs of trains, the train schedule
is considered feasible or conflict-free.

In this paper, three aspects of the planning within a station zone are con-
sidered. (i) The train routing problem is about finding a path for each train
through the considered network, in our case a station zone. More precisely,
given a set T of trains and the set R of all possible routes through the
complete zone, a solution of the train routing problem is an allocation of
exactly one route r € R to each train ¢ € T in a conflict-free way. Solving
the train routing problem, we assume that the arrival and departure time
of each train and the assigned platforms are fixed. (ii) In what we call the
timetabling problem, we keep the routing solution and the assigned platforms
but allow variations in arrival and departure times. (iii) When focussing on
the platform assignment, we reallocate a particular train in a particular sta-
tion to a new platform. Consequently, a new route for this train is needed
since a route is linked to a unique platform. In order to avoid conflicts and
explore the potential of this reallocation, timetable changes are also allowed
after a platform reallocation is made.

The time needed to make a certain journey according to the timetable, so
under ideal circumstances, is what we call the planned travel time. In real-
ity, disturbances will occur such that the time spent while traveling will be
different from the planned travel time. Therefore, we define the (average)
real (total) travel time as the total travel time that is needed to make the
trip under these disturbed circumstances, so from the moment of planned
departure until the effective arrival at the destination. Note that robustness
is about the impact of disturbances on the system. For a passenger railway
system, this comes down to bringing the passengers as fast as possible to their
destination. In terms of the concepts that are introduced above, robustness



is about minimizing the real travel time of the passengers. In Section 3, we
use this to come up with a practically usable definition of robustness. For
completeness, we also explain what we mean with the nominal travel time.
The nominal travel time is the time needed to make a journey when the
duration of each action (including transfers) equals the minimal necessary
duration.

In the next section, an overview of the related literature is given. In Section 3,
our vision on robustness is presented. The used objective function and the
three modules that form our algorithm are tackled individually in Section 4.
In Sections 5 and 6, the simulation model that is used to evaluate new found
solutions and the case studies where this simulation model is applied on are
introduced. After that, we present the results from our study and in the last
section conclusions are drawn.

2. Literature

2.1. Train routing and platforming

In our algorithm, we consider the routing of the trains through the station
zone twice. First, we solve the train routing problem for a given platform
assignment and second, we investigate the impact of platform changes.

An extensive overview of the train routing problem at station level can be
found in the survey paper of Lusby et al. [28]. In [15], we elaborate on some
related papers ([3, 4, 5, 44, 45]) and on the comparison with our approach.
The main differences between these papers and our work are the way robust-
ness is tackled and the fact that they allow small timetable deviations to
obtain a feasible train routing while we alternate between the routing and
timetabling, keeping the train routing problem feasible at all times.

Where for the train routing problem, it is assumed that multiple routes exist
to reach a certain platform, in the train platforming problem, one assumes
that the switch zones bordering the stations are less complex such that the
choice of the platform more or less determines the route to follow [6, 11].
Often, the allocation of trains to the platforms of a complex station is con-
sidered for capacity purposes as is done in [35]. In this paper, however, we
start from a feasible platform assignment and try to reallocate trains to an-
other platform to improve the robustness of the system. Doing so, a new
route needs to be selected out of a set of candidate routes that lead to and
from that platform.



In this paper, we restrict our study to a network consisting of some (main)
stations that lie closely together such that disturbances at one station will
inevitably cause conflicts at the other ones. Such a station zone with multi-
ple stations which are lined up with multiple lines that merge, intersect and
diverge, is also considered in [7]. However, unlike in our approach, they do
not consider the routing through the network as well as the robustness of the
schedule.

2.2. Robust Timetabling

Robust timetabling is a topic that is covered by a lot of papers. Indepen-
dent of how long the list of papers about robustness is, the list of interpreta-
tions of what timetable robustness is about is nearly as long [2, 14]. An often
applied and useful technique is the inclusion of timetable slack. This can be
in the form of running and dwell time supplements to avoid or absorb de-
lays or by increasing the buffer times to avoid delay propagation [24, 31, 36].
However, the assessment of the slowed down traffic (increased planned travel
time) versus the gain in real travel time by less delay is hardly made. Schobel
and Kratz [32] and Vansteenwegen and Van Oudheusden [41, 42] do consider
both aspects. Both try to minimize the chance on a missed transfer and
do consider the travel time at the same time. The former uses a bicriteria
approach and minimizes both the planned travel time and the possibility of
missing a transfer, while the latter computes the chance on a missed transfer
in function of the size of the running time supplements and minimizes the
real passengers’ travel time accordingly. Also in Sels et al. [34], the real (or
expected) passengers’ travel time is considered upon optimizing and evalu-
ating a timetable. Another methodology that can be added to the list with
papers considering the cost of robustness (here: increased planned travel
time), is light robustness [17]. First, an initial timetable is created, e.g., by
minimizing the planned travel time, and then a worsening in objective func-
tion value is allowed to improve the robustness by, e.g., including running
time supplements. The concept of recoverable robustness, which considers
recovery measures upon scheduling, has been used for multiple stages within
the railway planning process: when creating a timetable [8, 26], when solving
the train platforming problem [26], and when scheduling the rolling stock [1].
Although the technique was originally developed to handle large disruptions,
it is also used for timetable robustness against small disruptions.

In spite of all the effort put in creating a robust timetable, there will al-
ways be disturbances which require real-time interventions to solve conflicts.
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Then topics like delay management [16, 29] and real-time rescheduling and
rerouting [9, 10, 12, 39] become useful.

2.8. Robustness Evaluation

As mentioned in the previous section, there are many interpretations of
the concept timetable robustness. The same holds for the way robustness is
measured. In general, one can evaluate a timetable while optimizing, e.g.,
by including a robustness function in a mathematical model, or one can ob-
tain a robustness score afterwards, e.g., through simulation. A popular way
to include robustness while optimizing is by looking at the minimal time
spans as is done in [3, 43]. With the use of simulation, multiple performance
indicators can be evaluated simultaneously. Also more complex quality mea-
sures like the passenger disutility can be computed [23, 38]. Another, more
theoretical technique to calculate the delay propagation, the percentage of
missed connections or the settling time, is through the theory of max-plus
algebra [21]. In [40], a practical approach to compare the robustness of two
timetables is presented. Based on a macroscopic and a microscopic simula-
tion, the propagation and the recovery of delays are analyzed. In this paper,
we use an objective function based on the minimal time spans to estimate
the robustness during the optimization, see Section 4.1, and afterwards, we
measure the real robustness, as is defined in the next section, by running a
simulation model.

3. Robustness

To remove the discrepancy between the numerous existing definitions of
robustness, we focus on what we think is the core of what robustness is
about. According to [37], robustness is about offering a good quality of the
passengers’ service, even under disturbed circumstances. In the case of pub-
lic transport, we are convinced that the level of passengers’ service should
be measured by the real total travel time of all the passengers. That is
why we define railway robustness as follows: A railway system that is robust
minimizes the real total weighted travel time of the passengers, in case of
frequently occurring, small disturbances.

Considering the real total travel time of the passengers, as defined in Sec-
tion 1.2, allows one to assess the use of timetable slack and account for
important transfers. The real total weighted travel time of the passengers is



measured by adding weights representing the passengers’ perception of un-
necessary travel time extensions like delays, waiting on a platform for the
arrival of a connecting train, or consuming a running time supplement while
dwelling [14, 15]. To obtain a fair comparison between different systems,
which can have different nominal travel times due to, e.g., more or less stops,
we normalize this real total weighted travel time by the nominal travel time
of the corresponding system. Thus, for a system X, the weighted travel time
extension (WTTE) is measured as follows:

(real total weighted travel time), — (nominal travel time)

WTTEx =

(nominal travel time)

Now, the robustness of system X can be compared to the robustness of any
reference system (REF') by using

WTTEgrpr — WITEx

1 . 1
* WTTERer (1)

A value of 1.10 or 110% means that system X is 10% more robust than the
reference system.

4. Methodology

In this section, the outline of our algorithm is presented. A reference
timetable is used as initial solution. This is a timetable that is used for
many years in practice and is improved step by step in the course of the
years. Also the routings and platform allocations are based on real life data
corresponding to this timetable. The algorithm starts with calling the routing
module, followed by the timetabling module. If the timetabling module did
not find any improvement, the platforming module is executed. Otherwise,
the routing module is resolved right after the timetabling module has finished.
An overview of this framework is given in Algorithm 1.

4.1. Objective function

Including robustness in the objective function would result in a compli-
cated model since delay propagation computations are required to find the
real total travel time. That is why we apply maximizing the spread of trains
(time spans), a commonly used technique [3, 25, 31], to indirectly improve
the robustness. The impact on the robustness is measured afterwards.



Algorithm 1 Framework of our algorithm

input: infrastructure data and reference timetable
while number of consecutive non-improving itera-
tions < 5 do

solve train routing problem

apply the tabu search (timetabling module)

if timetabling did not found improvements

do start the platforming module

Let T be the set of trains and let B,y (from Buffer time) be the minimal
time span between trains ¢t and ¢’. Define the cost

15 if B;y = 0 (conflicting),
Cipv =< 1/Biy if Byy < B™™ minutes, (2)
0 otherwise,

with B™* a model parameter denoting the shortest duration of a time span
that is considered insensitive to conflicts. The cost C' corresponding to a
conflict is set equal to 15 because we use a precision of 0.1 minutes for
computing B causing Cyy to be smaller than 15 if B,y > 0. C is used as
cost in our spreading objective function:

min Z Chry (3)

Using this function has several advantages. First of all, due to the usage of
the reciprocals in (2), smaller time spans correspond to higher costs and there
is a decreasing marginal effect of increasing a time span. Second, since the
sum ranges over all time spans, one can assess the impact of each timetable
change that causes increased and decreased time spans, and third, it provides
a fast and easy way to evaluate a timetable.

Our spreading objective function is similar to Vromans’ SSHR measure (Sum
of the Shortest Headway Reciprocals) [43]. Using the sum of the reciprocals,
the impact of heterogeneity on the reliability of a railway system can be
measured since time spans at the beginning and end of a track section will
differ due to speed differences. Where the applicability of the SSHR measure
in [43] is restricted to track sections between stations, we consider the stations
itself and use (3) as objective function instead of a reliability measure only.
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4.2. Routing Module

In the routing module, the train routing problem is solved to optimality
using a mixed integer linear program. The objective function coefficients are
computed using (2) prior to solving the mathematical model. Since the full
details of this model are already presented in [15], we do not give any further
details here.

4.8. Timetabling Module

When the train routing problem is solved, each train has a unique route
which is chosen such that the total spread of the trains is as large as possi-
ble for the given event times. Within the timetabling module, one tries to
improve the spreading objective value (3) even more by changing the arrival
and departure times of some trains. Using a mathematical model requires the
inclusion of the minimum time spans for all possible combinations of event
times which would result in a large and complex model. As an alternative,
we chose a tabu search heuristic to improve the timetable. As a consequence,
the optimal timetable (or the optimal spreading value) as well as the opti-
mality gap are not known.

Since we assume periodic timetables, we consider only one or two periods
(hours) in our algorithm. We do not allow trains to be shifted to another
period. That is why we imply a time-window for each train individually.
Where needed, this allows us to restrict the deviations in comparison with
the original schedule or to keep two trains close together for important trans-
fers.

The tabu search heuristic uses three neighborhood structures: shift, com-
bined shift and order swap. When any of these neighborhood structures is
called, it considers all candidate moves and returns the best one (steepest
descent). In a first step, each of the neighborhood structures is explained
and afterwards the details of the tabu search algorithm are given. In the
following, we assume that the move under consideration considers an incre-
ment of By, the time span between train ¢ and ¢, with ¢ the predecessor of
t', notation ¢ < t'. The size of a timetable deviation (shift) is indicated with
0 and means that all arrival and departure times of the corresponding train
are changed with §.

4.8.1. Shift
A shift move, the most basic one, consists of the shift of one or more
trains in time with 0; = —dmin, —Omin +1,..., =1 or 0y = 1,2,...,0™**. Onin
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and 6™ are model parameters whose values are given in Table 1. Remember
that we assume that ¢ < ¢ such that these shifts increase B, by advancing
(postponing) train ¢ (') by &; (dy). If the shift (¢, ;) (analogous for (¢, dy) or
any other train that gets shifted) would incur a conflict with another train,
say t, or make B;y < By, t also gets shifted with J,. Note that we only
allow one of the two trains (¢ or t') to be shifted.

4.3.2. Combined Shift

Where the shift operator only allows a shift in one direction with size ¢,
combined shift considers the combination of multiple shifts. It starts with
a simple shift, then the candidate list is updated and a new shift is done.
In total #shift™* shift moves are allowed simultaneously. At the end, the
best of all candidates returned by the shift operator, is selected. This is not
necessarily the one in which #shift™** individual shifts are made.
Some words about the update of the candidate list. Each time a neigh-
borhood structure is called, only the elements of a restricted candidate list
(RCL) are considered. This is done to reduce the computation time. In
general, the RCL consists of the pairs of trains whose time span belongs to a
prescribed interval (which is updated within the tabu search framework, see
below). This way, two trains with a time span larger than B™** will not be
considered for a shift.
After a new solution is obtained within the combined shift framework, the
RCL gets updated such that the set of candidate moves becomes related to
one of the previous moves. This way, we avoid shifting simultaneously two
trains which are far apart in time. More precisely, let M be the set of si-
multaneously shifted trains. Then the pair of trains (¢,¢') will be added to
the RCL if ¢t € M, ¢’ € M or if there exists a ¢ € M such that B;, or By ;
is smaller than the current upper bound of the interval that determines the
RCL within the tabu search, see (4) below. The latter allows to explore the
potential of a prior shift; a first change can have created the possibility to
increase the time span of another pair of trains.

4.8.83. Order Swap

The neighborhood structures above try to increase B, by shifting ¢ for-
ward and /or postponing the events of ¢'. The idea behind an order swap move
is to consider the possibilities of changing the order of two trains at their crit-
ical point, i.e., the place where the time span equals the minimal time span.
Thus instead of t < ', the shifts §; and 0y are such that t + d; = t' + op.

12



Algorithm 2 Details for the order swap Algorithm 3 Tabu search algorithm

input: RCL and tabu list input: reference timetable and routing
for all (¢,#') € RCL do while stop criteria 1 and 2 are not met do
(i) determine ¢ and ¢ for ¥ = 0..(E5ep).. 9™ do
for (¢,t), (¢t,t') or (¢',1) do (i) construct the RCL using (4) or
(ii) determine 0** with all pairs of conflicting trains
(iii) for &; = 0..(dstep)-.0"" and (ii) impro < shift
0y = 0; — 0% do if limpro do impro < shiftcombi
(iv) shift ¢ and ¢ or the whole if limpro do impro < order swap
extended set (iii) if impro do
(v) perform the internal time- ¥ < 0, update tabu list
tabling module and evaluate (iv) Perform smallest ascent move
return best found and update tabu list

Note that now ¢, # 0 and dy # 0 is allowed. The outline of this move, which
is new in comparison with [15], is summarized in Algorithm 2.

An order swap consists of five steps. (i) The first step is the selection of the
swap pair. If (¢,¢') is the RCL-candidate, denote with ¢ () the train closest
to t (') such that ¢ < ¢ (¢ < t). Then, one by one, the order swap of the
pairs (£,t), (t,t') and (¢',¢) is considered. All three go through steps (ii)-(v).
This is done because of the observation that sometimes B;y cannot be in-
creased without involving the other trains surrounding these. For the ease of
notation, we use (t,t') as swapping pair in the remainder of this paragraph.
(ii) In the second step, the size of the total shift, 6%, is determined. §** is
the smallest value for which ¢ + §** > ¢’ and By g0t v > Byy.

(iii) The third step is about determining the values of §; and dy. This is a
loop containing step (iv) and (v). It starts with §, = 0 and §y = —0** and
adapts them in each iteration with dgep such that d; 4 |0p| = 6" at all times.
(iv) The fourth step is also a loop. In the first iteration only ¢ and t' get
shifted before the algorithm proceeds to step (v), but in the second iteration
of the loop the set of shifted trains is extended. The selection criteria are
analogue to the ones of the shift operator but the size of the shift is the
smallest (in absolute values) that solves the conflict.

(v) When all selected trains get their shift, there can still be a conflict some-
where. In the first iteration of step (iv) this is expected but also in the second
iteration this can occur, for example, when shift causes a train to leave its
predetermined time-window. In case the new timetable is feasible, a large
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and dull change was made. So nothing guarantees a direct improvement but
many new possibilities for improvement have arisen. That is why, step (v)
is a recursive call to the timetabling module but with a limitation on its
maximum number of moves and without order swaps itself.

The idea is as follows. Upon start of this internal timetabling module, fea-
sibility is checked. Is the solution infeasible, the RCL will only contain the
conflicting trains. Otherwise, the RCL is constructed as usual. Next, one
tries to increase the minimal time span of each RCL-pair such that feasibility
is restored or the solution improved. When the stopping criteria are met (the
solution is still infeasible after a number of iterations or a maximum number
of moves are made), the internal timetabling module stops and returns a
solution to the order swap.

As output, order swap returns the best, feasible solution found after executing
the internal timetabling module. Using this internal call to the timetabling
module, allows us to work with infeasible solutions and to evaluate the po-
tential of a move, i.e., the new possibilities created by the order swap. This
feature has enhanced the strength of our algorithm a lot and made order
swaps attractive. Note that computational tests give no clear distinction be-
tween which iteration of step (iv) performs best. Thus both are kept in the
algorithm.

4.8.4. Tabu Search

Because the above neighborhood structures can incur a large threat to
cycle, we opted for a tabu search structure to embed our neighborhoods.
The heuristic contains four steps. Initially, all tabu lists are emptied and
the variable 19, which is used to determine the restricted candidate list, is set
to 0. The main steps are summarized in Algorithm 3.
(i) The search starts with determining the restricted candidate list (RCL). In
case the current solution is infeasible, the RCL contains all pairs of conflicting
trains. Otherwise, the RCL consists of all pairs of trains whose minimal time
span B, lies within the interval that is bounded from below by the overall
minimal time span plus ¥ and has egep, as width, with egep a model parameter.

RCL = {(t,t’) €T XT : By € (ixginT2 Bi;+ 9, ({rgir;z Bii+ 9+ sstep> } :
) € 5 S
(4)
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(ii) When the RCL is constructed, the shift neighborhood is explored. If an
improved timetable is found, the algorithm proceeds to step (iii) with this
new solution. Otherwise, the combined shift neighborhood is explored. Here
the same principle is repeated and if no solution is accepted, an order swap is
considered. When this did not result in a better solution, the search returns
to step (i) with ¥ < ¥ + egep if ¥ < 9™ or proceeds to step (iv) with
the best non-improving solution that is found since the last move was made
(smallest ascent).

(iii) and (iv) The algorithm reaches step (iii) when an improving move is
made. If no such move is found within the whole J-for loop, a smallest as-
cent move is performed in step (iv). In both cases, the tabu lists are updated
accordingly. This happens as follows. For all trains that got shifted, a reverse
shift (independent of the size of the shift) becomes shift-tabu. If the order
of two trains is swapped, these two trains become swap-tabu. Thus after
an order swap, multiple trains will be added to the shift-tabu list (due to
the internal timetabling module) and one pair of trains added to the swap-
tabu list. The tabu tenures are deterministic but list dependent. Note that
a candidate move that is tabu will only be accepted whenever it improves
the globally best found solution (aspiration). After the tabu list update,
the algorithm returns to step (i) with ¥ = 0 unless the maximum number
of moves (stop criteria 1) or the maximum number of non-globally improv-
ing moves (stop criteria 2) is reached, in which case the algorithm terminates.

The selected values of the parameters are given in Section 7. A common
used feature of a tabu search is a diversification loop. Here we do not ex-
plicitly have a diversification phase but use the platforming module and the
routing module to diversify the search.

4.4. Platforming Module

Until now, as well as in [15], the platform assignment of all trains is as-
sumed to be fixed. When the combination of the routing module and the
timetabling module gets stuck in a local optimum, we drop this assumption
and consider the impact of a platform change. This asks for three decisions:
(1) which trains should get a new platform and at which station, (ii) which
platforms are to be considered for a given train and (iii) since a route is plat-
form dependent, a new route needs to be selected out of the set of candidate
routes. Changing a platform for a train incurs a risk on conflicts. In order
to resolve possible conflicts or explore the potential of a platform change, an
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internal run of the timetabling module is added to the platforming module
in a similar way as done for an order swap.

To keep the platforming move relevant and limit the computation time, we
do not consider all possible platforming combinations but restrict the search
to the relevant ones. In the remainder of this paragraph, we provide a short
overview of the criteria that are used. We skip the details as these criteria
mainly affect the computation time but hardly the solution quality, which
we consider to be much more important.

First, only these trains for which we may expect a possible improvement
are selected; only those t € T for which there exists a ' € T such that
B,y < min(gﬁ cr2 Bii + Bmargin, with Bpargin @ model parameter, are eligi-
ble. Next, a selected candidate should be moved from a busy platform to a
calmer one or the number of intersecting routes causing time spans smaller
than B™** should be decreased. This is implemented because a busy plat-
form limits the shift possibilities and preliminary results showed that trains
that intersect at switch yards neighboring stations are more delay sensitive
than those intersecting elsewhere. Next to the new platforms satisfying these
criteria, a train’s original platform is always considered as a candidate (new)
platform. In this case, only a route change is applied. The train routing
problem will not consider this (new) route if it gives rise to too small time
spans or conflicts. That is why, applying the internal timetabling module to
explore the potential of this new route can (and often will) be improving.
After deciding upon the set of candidate platforms for a train, all possible
routes connecting that train’s inbound and outbound line with any of the
new platforms are selected. A dominance rule, similar to the one used for
solving the train routing problem [15], is applied here to limit the number
of candidate new routes. This also includes a restriction on the amount of
(latent) conflicts of the new route in comparison with the old one.

If all these conditions are met, the combination of a train, a platform and a
route is a candidate for a platform change and its potential impact will be
checked using the internal timetabling module. This is done for all possible
trains at all possible stations and at the end the best platform change is
selected if it leads to an improved solution. Then, the algorithm returns to
the routing module.
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5. Simulation

At the end of our algorithm, we have a solution (route, timetable and
platform assignment) for which none of the three modules can find an im-
proved version anymore. In comparison to the initial (reference) timetable,
the spreading of the trains (our objective function) is improved. To test
if and how much the performance has changed, we apply a self-developed
simulation model on the station zone under consideration. Since several as-
sumptions are made when creating this simulation model, the output needs
to be interpreted with care. Nevertheless, the model is appropriate to evalu-
ate the performance of our algorithm because all instances are valuated using
the same assumptions such that a fair comparison is guaranteed.

In our discrete event driven simulation model, events are handled synchronously
and stochastic influences are represented by input delays. Analogue to [18]
and [38], we use a simulation model to validate the improvements of the new
schedule independent of our optimization algorithm. Since this simulation
model has a secondary role with respect to our algorithm some assumptions
can be made to reduce its complexity.

During each run of the simulation model, initial or external disturbances are
represented by delays drawn from the exponential distribution of which the
parameters are determined using real data. For the results in this paper, we
gave half of the trains a delay upon entering the system and half of the trains
a dwell delay. In [15], we show that the improvement in robustness is stable
(standard deviation of 1%) when varying the delay parameters. Note that we
only consider small delays, i.e., those frequently occurring during the daily
practice, and do not consider large disruptions.

Trains enter the system at their inbound line or at the platform of departure
in case of a reutilization. In the first case, we apply a minimum headway of
three minutes. Then, the trains travel from signal to signal at a predeter-
mined speed that equals the real allowed maxima within the station zone.
We assume that the time lost by slowing down or speeding up can be approx-
imated by a constant and only affects the travel time through the first (last)
block section after (before) a stop. The size of this constant is based on the
difference between the expected travel time (when traveling at maximum al-
lowed speed) and the scheduled travel time for that type of train through the
corresponding sections. Note that we approximate the type of rolling stock
(and thus the specific acceleration characteristics) by the type of train. This
way, the simulated travel time through the first (last) section after (before)
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a stop will be similar to the planned travel time through that section.

Next to the assumptions about the speed profiles, we also made some sim-
plifications concerning the blocking times. In [30], the intervals that are part
of the total blocking time are being described. In our simulation model,
however, we only distinguish three different blocking time subintervals: the
travel time through the section, the clearing time, and thirdly, an interval
of constant size representing, among others, the signal processing. The first
one is based on the ratio between the length of the block section(s) and the
speed of the train together with the penalties for speeding up or slowing
down (if applicable). The clearing time consists of the time needed for the
tail of the train to leave the block section and is a function of the length of
the train and its speed. The last subinterval captures the time needed for
setting the signals and aligning the switches but also needed to release the
section after the passage of a train. The minimum headway time is set to 3
minutes, which is a commonly used threshold for trains on a common line.
Events are handled chronologically and conflicts are not predicted in advance
but only detected when a train approaches an already reserved block section.
Conflicts are solved one by one on a first-come, first-serve basis meaning that,
once detected, a conflict is solved immediately by postponing the next event
of the approaching train until the estimated time the corresponding block
section becomes available again. If multiple events become active simulta-
neously on a shared resource, extra priority rules, which are derived from
practice, apply. This way, high-speed trains get priority on local commuter
trains and slightly delayed trains may precede punctual trains in the event
list. No real-time rerouting actions or cancelations of trains are allowed.
Because of the limited capacity, no running time supplements are planned
on the lines between the stations. Nevertheless, dwell time supplements that
are included in the reference timetable and running time supplements on the
incoming or outgoing lines are kept constant within our algorithm. These
supplements and the slack time that originates from rounding the arrival
and departure times to minutes are considered as is done in practice and can
result in extra waiting time at one of the stations.

For every performance measure, the average over 10000 simulation runs is
taken as result. Together with the spreading objective value, this forms the
rows of the result tables (Tables 2 and 4 in Section 7). First, we get the ro-
bustness value as computed by (1). Next, the real total weighted travel time
(see Section 3) and the amount of knock-on delay per hour are given. The
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latter is the sum of all the delay that have arisen due to conflicts detected by
the simulation model. Finally, the percentage of trains that entered without
delay but leaves the system with delay (newly delayed) and those that left
with more delay than they had upon arrival (exztra delayed) are given.

As said above, the results from our simulation model need to be interpreted
while keeping the assumptions in mind. Although some simplification is
made, we do take the interaction between trains into account and apply
rules from practice when solving conflicts. Introducing more details in the
simulation model and necessarily also within the entire algorithm would com-
plicate the computations a lot with only a moderate gain in accuracy as a
result. The question then remains how external effects like, for example,
the driver’s behavior, can bias the results. Recognizing the drawbacks of
our model, Infrabel has confirmed our results using their microscopic, asyn-
chronous simulation package LUKS [19]. They extended the study area such
that it contains an extra stopping station for each train. The improvements
to the system they noticed, were of the same order of magnitude as the results
we present in Section 7.

6. Case studies

Initially, the presented approach is used to investigate improvements in
the performance on the network connecting the three major stations in the
zone of Brussels, Belgium’s capital. The Brussels area truly is an interesting
case study to evaluate our approach as it contains three of the country’s four
busiest stations regarding passenger numbers [33]. It includes the largest sta-
tion with respect to the number of platforms and a true, physical bottleneck
since 19 (through) platforms are connected through a 6-track tunnel, con-
taining the busiest station, with the 12 platforms of the station on the other
side. Figure 2 gives a microscopic overview of the infrastructure connecting
the three stations. According to the timetable, the travel time between the
stations is 3 minutes. Next to the tracks towards the Central station and
a shunt yard, each of the outer stations has four in- and outbound orienta-
tions such that trains run from all over the country towards Brussels, forming
a crisscross of lines with many intersecting routes in the station zone as a
consequence. In total there are up to 90 trains per (peak) hour making the
capacity utilization nearly saturated. All of this makes that a small delay
in the centrally located Brussels area easily spreads out in space and time.
Thus, it is expected that an optimized local schedule and an appropriate
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Figure 2: Microscopic overview of the railway infrastructure in Brussels

routing through the station zone will help to improve the performance on
the whole railway network.

To show the general applicability of our approach, we also consider a second
case study that is significantly different from the first one. In the station
zone of Antwerp, see Figure 1, the two major stations are connected through
three corridors allowing trains to arrive at three different levels in the Central
station. The zone of Antwerp is an interesting case study because of the high
capacity usage by a heterogeneous fleet of trains; international trains mix up
with slow and fast local trains and with freight trains. Other challenges are
that all but four platforms in the Central station are dead end tracks and
that, in comparison with the study for Brussels, there are more restrictions
on the combinations between inbound and outbound lines and the allocated
platforms.

Currently, no list of important transfers within the zone of Brussels is avail-
able and as a consequence, no transfers are guaranteed in practice. Due to
the high frequency of trains in each direction, the extra waiting time caused
by a missed transfer remains limited. This is in contrast with the situation
in Antwerp. As most of the lines terminate or originate there, transfers are
important. Thus, next to the limited routing and platforming possibilities,
also within the timetabling module extra constraints apply.

7. Results

In [15], the first results of our study for the case of Brussels can be found.
In the current paper, however, the computational results obtained with an ex-
tended and significantly better version of our algorithm are presented. Next
to that, the general applicability of our methodology is illustrated by the new
case study, the station zone of Antwerp. Since the algorithm contains several
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parameters, we start by giving their values which are determined based on
(simple) computational experiments, see Table 1. The used stop criteria are
the maximum number of moves (stop criterium 1) which is unbounded for
the general timetabling module but limited to 30 for the internal timetabling
module, and the maximum number of consecutive non-improving moves (stop
criterium 2) equal to 200 and 5 for the general and internal timetabling mod-
ule, respectively.

The algorithm is coded in C++4-, uses Cplex 12.5, and runs on a 2009-DELL
Optiplex 760 with Intel(R) Core(TM) 2 Duo 3.00 GHz, 4.00 GB RAM, 64-
bit operating system. Since the computation times for both case studies are
of the same order of magnitude, we only report these for the case study of
Antwerp. Where the routing module lasts less than 5 seconds, the nested
structure of the timetabling module in combination with the potential checks
make the computation times for the first iteration to be around 840 seconds
but for the next iterations this decreases to about 145 seconds. Together
with the platforming module which lasts between 275 and 850 seconds, the
total computation time for the whole algorithm was 6700 seconds. In total,
6 platform changes and 11 calls to the timetabling module were made for the
case study of Antwerp. For Brussels, similar results apply.

Considering the different neighborhood structures, one can say that restrict-
ing the timetabling module to the shift neighborhood is very fast (less than
5 seconds) but not effective. In combination with the combined shift neigh-
borhood, a significant improvement is found (reduction of nearly 25% in
the objective function value), but order swaps are needed to find the best
solutions.

7.1. Brussels

Now, the computational results for the case study of the station zone
of Brussels can be given. These results are summarized in Table 2 and
Table 3. For the explanation of the rows in Table 2, we refer to Section 5.
The columns represent the result of, respectively, the reference system, the
reference timetable with improved routing, the solution obtained after the
iterative procedure of routing and timetabling has reached a local optimum,
and finally, the best found solution when also platform changes are allowed
(Platforming).

In Table 3, the amount of knock-on delay that emerges due to conflicts in a
station or on the switch zones between two stations is given. Based on the
infrastructure from Figure 2, five subareas are identified: the three stations
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(North, Central, and South) and the two switch zones connecting these. Each
entry in the column Reference is the amount of knock-on delay, in minutes,
that emerges in each of the corresponding zones. The other columns represent
the fraction of the knock-on delay in the Reference situation that emerges in
the corresponding zone for that case. Thus the 99.2% for the North station
in the Routing column means that, on average, the amount of knock-on delay
that is caused by conflicts within the North station, is equal to 99.2% of the
7.2 minutes in the Reference situation.

From the results in Table 2, we see that, except for the spreading objective
value, changing the routing does not seem to have a large impact. This is
because changing the routing only affects the time spans at the switch zones
between the stations and, although the reduction in delay propagation varies
between 20 and 30% there, this only represents a fraction of the total amount
of knock-on delay. When routing is combined with timetabling (column
Timetabling), a considerable reduction in delay propagation at all zones is
achieved. This is reflected in a 5% improvement in robustness. The results
in the last column show that the extra freedom given by allowing platform
changes enables a robustness improvement of more than 8%. Concerning the
real total weighted travel time itself, a reduction of nearly 4% is achieved
by applying our algorithm. Although the total amount of knock-on delay is
halved, we know from Table 3 that, locally, it can be reduced to 20% of the
initial amount. Even in the bottleneck itself, the Central station, about half
of the knock-on delay can be avoided by maximizing our spreading objective
function.

7.2. Antwerp

Analogues to Tables 2 and 3, the results for the case study of the sta-
tion zone of Antwerp are presented in Table 4 and Table 5. In Table 5,
the station zone of Antwerp is divided into five areas; the two large stations
(Berchem and Central) and the switch areas bordering these stations. The
area Central-border contains the station Luchtbal. Note that about 30% of
the considered trains passes this station but only 10% stops there while for
the station Berchem this is 95% and 88%, respectively.

Unlike in Brussels, the specific layout of the infrastructure in Antwerp does
limit the routing possibilities considerably. As a result, the routing module
alone does not lead to improvement. Since the Central station is a (partial)
terminus, reutilizations are common. This implies that larger free time slots
at a platform are required to apply a platform change then in the case of
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Table 1: Parameter values

Parameter Value Parameter Value Parameter Value
B™* (min) 15 step (min) 5 shift-tabu tenure 5
Omin (min) -5 Estep (min) 0.5 swap-tabu tenure 5
™™ (min) 5 Y™ (min) 5 stop criterium 1 oo (30)
#shi ftmex 10 Biargin (min) 2 stop criterium 2 200 (5)

a through station. Hence, the impact of adding the platforming module is
moderate compared to the effect of the timetabling module. Nevertheless,
we are convinced that significant improvements can be obtained by changing
the platform allocation on a larger scale in combination with altering the
reutilizations, i.e., assigning a train to another line after it has terminated.
The large amount of knock-on delay at the Central station and the surround-
ing areas, as well as the larger values in the row extra delayed, are another
consequence of the terminus. Where arrivals at the other stations occur on
a first-come, first-serve basis and the platform occupation times remain lim-
ited, in the Central station, a train might have to wait before entering the
station because of another train that blocks its platform. Furthermore, all
ingoing and outgoing routes, except for the limited amount of through trains,
use the same infrastructure. Thus, also the total occupation time of the
block sections bordering the Central station will be larger than for the other
stations.

Comparing the results for Brussels and Antwerp, we see the same trends;
a huge decrease in spreading objective function value, a robustness increase
of about 8% together with a reduction of about 4 to 5% in real travel time.
The difference in knock-on delay per hour is due to the above mentioned
differences in setting but in both cases the improvement per zone is more
or less stable, except for Brussels’ Central station (nearly saturated capacity
usage) and the border zones (first meeting place).

8. Conclusion

In this paper, a new way to improve the robustness in railway bottlenecks
is presented. The objective of our methodology is to increase the minimal
time span between any two trains in a station zone. Our algorithm is able
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Table 2: Computational results for the case of Brussels

‘ Reference ‘ Routing Timetabling Platforming

Spreading objective value 100% 71.9% 20.6% 13.4%

Robustness 100% 100.6% 105.2% 108.1%

Real total weighted travel time | 10.6 min | 99.7% 97.6% 96.3%
Knock-on delay per hour 35 min 93.4% 64% 49.3%
Newly delayed 85% | 7.6% 5.4% 3.9%

Extra delayed 33.6% 30% 21.8% 17.1%

Table 3: Knock-on delays within the zone of Brussels

‘ Reference ‘ Routing Timetabling Platforming

North 7.2 99.2% 67.6% 5%
North-Central 4.8 71.1% 46.3% 28.9%
Central 16 100.1% 65.1% 54.4%
Central-South 4 79% 58.8% 29.2%
South 2.9 99.6% 85.1% 19.9%
Knock-on delay per hour | 35 | 93.4% 64% 49.3%

Table 4: Computational results for the case of Antwerp
‘ Reference ‘ Routing Timetabling Platforming

Spreading objective value 100% 95.8% 19.5% 16.5%
Robustness 100% 100% 106% 108%
Real total weighted travel time | 14.8 min | 100% 96.4% 95.1%
Knock-on delay per hour 70.1 min | 100.4% 71.4% 60.5%
Newly delayed 13.6% 13.5% 9.3% 8.3%

Extra delayed 49.1% 49% 33.9% 30%

Table 5: Knock-on delays within the zone of Antwerp

‘ Reference ‘ Routing Timetabling Platforming

border-Berchem 2.6 101.6% 147.6% 122.8%
Berchem 28.4 100.5% 65.8% 55.6%
Berchem-Central 15.6 100.6% 68.1% 58.2%
Central 20.7 100.3% 71.9% 63.4%
Central-border 2.8 98.7% 74.3% 46%
Knock-on delay per hour |~ 70.1 100.4% 71.4% 60.5%
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to fully exploit the potential of an integrated optimization of routing deci-
sions, train sequences and schedules, and platform allocations. Since our
improvement modules do not suggest infrastructure changes, the cost for im-
plementing the new planning is very small. Simulation results show that we
are able to reduce the passengers’ travel time within the considered area,
which is an important quality measure, with 4 to 5%. Other results pre-
dict that by using our algorithm a gain in robustness of about 8% can be
achieved. This improvement is due to a decrease in knock-on delay of 40 to
50% and a considerable reduction in the number of trains that are hindered
during their passage through the bottleneck. The generality of our approach
is shown by a second case study, with completely different settings, for which
the algorithm returns similar results.

Some thoughts for further research are: including the passenger flows and po-
tential delays into the improvement modules or considering more case study
specific features like improving the reutilizations timings or the platform re-
allocation possibilities. A large potential for improving the robustness can
be found in considering infrastructure changes. By specific changes in the
layout of a switch yard, new routes can be created which allow for further
improvements of the routing solutions.
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