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Abstract
In order to assess the actual ability of planned infrastructure investments to satisfy the re-
quired demand of service, railway engineers also need to plan the new offer of train ser-
vices. In turn, this requires a full re-planning of the line system and of the frequency of
each line. In cooperation with the Sales and Network Management department of the Ital-
ian infrastructure manager, we developed a model to determine an optimal set of lines and
the corresponding train frequencies. The model has been successfully applied to evaluate
alternative infrastructure enhancements in the metropolitan rail network of Rome. A set of
computational experiments has been carried out, providing interesting insights on the effects
of different infrastructural intervention policies.
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1 Introduction

This work stems from a project carried out with the Sales and Network Management de-
partment of the Italian railway infrastructure manager, Rete Ferroviaria Italiana (RFI). In
RFI, infrastructure investments are carried out by iterating two planning phases: namely
tentative infrastructure design followed by line planning. In general, line planning consists
in selecting a set of lines in an infrastructure network and their frequency of operation such
that a given travel demand can be routed. Remarkably, both infrastructure investment de-
cisions and line planning are performed ”by hand” in RFI, resulting in a very lengthy and
exhausting trial-and-error process, with no guarantee on the quality of the final solutions.
Actually, line planning also involves other municipal administrative and political bodies,
making the process even more awkward.

We focus on the railway system in the metropolitan area of Rome where RFI has al-
ready established an ambitious investment plan, even though some options are still open.
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Figure 1: Sequence of planning phases in public transportation.

The plan includes the realization of new stations and tracks, plus the completion of a ring
around the city center (ring closure). The ring closure is a particularly expensive decision,
which is still under consideration. Our major contribution was to support the planners in
evaluating investment alternatives, and in particular in analyzing the benefit of the costly
ring closure. In particular, we compared three different options. A first option (plan A) is
the “no-investment” option: Namely, we consider the line planning problem or, simply, the
train frequency decision on the existing lines, in order to evaluate the current infrastructure
in terms of some passenger-oriented performance indicators. The second option (plan B)
considers line planning on the new infrastructure, excluding ring closure. Finally, in the last
scenario (plan C) the ring closure is also taken into account.

1.1 Line Planning and related literature

Line planning is a well studied problem in the literature (see Schöbel (2012); Karbstein
(2013) for surveys). In a recent survey paper (Schöbel (2012)), Anita Schöbel observes that
the classical planning process in public transportation consists of a number of consecutive
planning phases, reported in Figure 1. The first phase is infrastructure design, followed by
the other phases as we move towards the actual transport operations. In our experience with
railway infrastructure planners we quickly found out that things are not so straightforward
as it may appear from this picture. For instance, in a recent project with the capacity depart-
ment of the Norwegian infrastructure manager (Jernbaneverket), infrastructure decisions
(on single lines1) were strongly intertwined with timetabling: indeed, in order to assess if
a given railway design suffices to accommodate the expected traffic of trains, one needs to
exhibit a suitable conflict-free timetable, see Lamorgese et al (2017). The planning process
is in fact a trial-and-error process in which tentative infrastructure and timetabling are re-
peated until a satisfactory solution is found, see Lamorgese et al (2017). Things get even
more complicated when the new infrastructure can change significantly the topology of the
original network. In this case, to assess the quality of the new infrastructure it might be
necessary to redefine the original lines. Therefore, infrastructure planning and line design
converge in a single design problem. In particular, The most common approach (Ceder and
Wilson (1986); Schöbel (2012)) in the literature is to select the lines to be activated from
a predefined pool. In our case the pool is provided directly by RFI as the new lines are part
of the overall plans to be realized. We remark that model presented here can still be used as
a building block in a column (line) generation approach even when the pool of lines is not
provided by some external source.

The models proposed in the literature typically assume the availability of an O-D ma-

1A line is defined as a sequence of stations traversed by a train from an origin station to the a destination station.



trix representing the demand on the network, and can be either cost-oriented or passenger
oriented, or both (see e.g., Borndoerfer et al (2007); Karbstein (2016)). In the cost-oriented
models, the goal is to find a set of lines serving all customers and minimizing the costs
for the public transportation company (see e.g., Goosens et al. (2004)). The passenger-
oriented approaches aim to minimize the passenger discomfort that can be measured either
as the total travel time or as the number of transfers. As an example, in the direct travelers
approach by Bussiek et al. (1996) the goal is to maximize the number of direct travelers (i.e.
customers that need not change the line to reach their destination), keeping into account the
capacity of the network. However, customers who actually need transfers are not consid-
ered, so that many transfers could be needed for some of them, and the traveling times are
not taken into account. The number of transfers and travelling times are instead directly
taken into account in the change&go model developed by Schöbel and Scholl (2006) and
adopted by several authors, as for instance in Goerigk and Schmidt (2017). In this paper
we propose an alternative model with fewer nodes (but potentially more arcs), which allows
for a simpler representation of constraints and avoid to resort to big-M coefficients. In our
model, passenger needs are expressed by suitable constraints, whereas we try to reduce op-
erational costs by minimizing the total length of the selected lines. We remark that the O-D
matrix is not available, so we resorted to use a demand estimate following the approach
adopted by RFI’s practitioners.

2 Problem description and MILP model

2.1 Notation

The railway network is represented by a directed graph G = (N,E) where the nodes N
correspond to the stations (and stops) of the railway, while the set of directed edges E
corresponds to the actual tracks existing between the pairs of adjacent stations. We assume
that between every pair of adjacent stations u, v ∈ V we always have two directed edges,
namely we have (u, v) ∈ E and (v, u) ∈ E. Note that even a single track between two
stations, say station A and station B, is normally used in both directions to connect A to B
and B to A. Correspondingly, we have two directed edges in the graph. A line with terminal
stations s, t ∈ N is simply a pair of directed paths, one from s to t and the other from t to s,
going through the same sequence of stations but in reverse order. Next, we are given a set
L of potential lines to be activated. For each line ` ∈ L, we let N ` ⊆ N be the stations on
the line and N `

stop ⊆ N ` be the actual stops of `. Also, we let E` ⊆ E be the set of edges
on line `. For each line ` ∈ L, we also define a set of “logical” arcs between each pair of
stations in N `

stop, i.e., there is an arc (u, v) ∈ E`
stop if u and v are stops on line `: note that

E`
stop is not a subset of E` since the former set includes arcs between non-consecutive stops.

Additionally, we indicate by θ`uv the time necessary to run edge (u, v) ∈ E`
stop for a train of

line `. If s and t are the terminal stations of line `, we let θ` = θ`st. Finally, we assume here
that all trains have the same capacity κ. For a given line, the number of trains running in the
peak hour is called line frequency.

2.2 Problem statement

Roughly speaking, our problem consists in choosing a subset of lines from L and decide the
hourly frequency of trains on each line so as to satisfy the demand of transportation and meet



some service level requirements. Also, we do not want the passengers to travel too long trips
and to do too many changes in order to reach their destination. In our experiments we will
focus only on one peak hour—however the same model can be used to plan the remaining
hours in the planning horizon. In principle, in order to satisfy the travel requirements,
we need to know the (hourly) flow of passengers for any possible origin/destination pair
(s, t) ∈ N . Unfortunately, this information is not available to the RFI planners (and in
general is extremely hard to get). So, the approach followed by RFI is to plan according to
the total number dv of passengers embarking and disembarking at each station v ∈ N . In
particular, the policy established at RFI is to evaluate the number of trains through a station
v (in the peak hour) sufficient to accommodate dv passengers, regardless to what happens
in the other stations. We call this constraint demand constraint. This demand modeling
reminds the hose model introduced independently in Duffield et al (1999); Fingerhut et
al (1997), and since then widely used in telecommunication networks (see for example
Cacchiani et al. (2016); Merakli and Yaman (2017)). In particular, in the hose model, rather
than specifying demands for all pairs of nodes (which can be impractical in large networks),
each node is assigned an outgoing and incoming traffic bandwidth capacity. This implies
optimizing for a set of demands rather than a single traffic matrix, and this makes resource
management more flexible to cope with possible changes in the demand realizations. The
hose model is a very powerful tool since it relies on cumulative bandwidth capacities, which
can be more reliably and easily estimated than individual demand expectations. This is true
also for railway networks, since it is extremely hard to have reliable O-D demand matrices,
and, even when available, can be highly unstable. On the other hand, a number of passengers
expected at a certain station can also be estimated on the basis of the number of citizens of
the area.

Next, the restriction on the number of changes is imposed by the so called one-hop
constraint, which stipulates that a passenger should be able to reach any destination by
using at most two trains (i.e. lines). Indeed, this restriction does not limit the possibility
for a passenger to choose a different (possibly shorter in terms of travel time) route, rather
it only imposes that the line infrastructure is designed so that a steady travel is possible for
any possible origin-destination pair.

Finally, we need to limit the maximum distance travelled by any passenger. This is
modelled through the stretch constraint, which enforces that the duration of a shortest trip
between any pair of stations s, t ∈ N is at most α · θ∗st, where θ∗st is a precomputed bench-
mark (for instance the expected travel time by car) and α ≥ 1 is the stretch parameter.
For each line, the number of trains per hour is our major decision variable and is called
frequency.

In our model, we assume that (i) each line included in the line plan is active in both
directions and with the same frequency; (ii) the stations have infinite capacity; and (iii) an
infinite number of trains is available.

2.3 MIP model

The decision concerning line selection, is committed to binary variables x`, ` ∈ L, indicat-
ing whether line ` is selected (x` = 1) or not (x` = 0). The goal of the model is also to
determine the frequency of each line in order to satisfy the travel demand. To this purpose,
in our MIP model, we use integer variables f ` ∈ Z+ representing the number of trains



traveling on an active line ` ∈ L in the time unit2. A detailed description of the objective
and constraints and their formulation follows.

The objective function is a measure of the average network load.

min
∑
`∈L

θ` f ` (1)

In (1), the number of trains running in one hour for each line on the railway network is
weighted by the running time of the corresponding line. By minimizing such an objective,
we aim at minimizing the total distance traveled by trains on the network.

In order to model one-hop constraints (ensuring that it is possible to reach every station
t ∈ N of the network from any other station s ∈ N with at most one transfer) we make
use of the following additional sets of binary variables, each indicating whether or not the
corresponding circumstances are met:

• wst = 1 if there is at least one active line ` ∈ L that stops in s ∈ N and t ∈ N and
so it connects the two nodes directly, wst = 0 otherwise;

• zsht = 1 if two active lines exist, one connecting s to h and the other h to t, i.e.,
this variable indicates whether there is a one-hop connection between stations s and
t, zsht = 0 otherwise.

The following set of inequalities implement one-hop constraints:

wst ≤
∑
`∈L :

s,t∈N`
stop

x` s, t ∈ N (2)

zsht ≤ wsh h ∈ N \ {s, t} (3)
zsht ≤ wht h ∈ N \ {s, t} (4)

wst ≥ 1−
∑
h∈N

zsht s, t ∈ N (5)

Constraints (2) ensure that the variable wst is equal to 1 only if there is at least one active
line that connects the two nodes s, t ∈ N and it stops in both of them. Constraints (3) and
(4) control that each variable zsht may be equal to 1 only if there are an active line that
connects s to h and an active line that connects h to t, so that in station h a transfer to
reach the station t starting from the station s is possible. Finally, constraints (5) impose the
connectivity for every pair of stations in the network with a direct line or with one-hop.

As we discuss above, stretch constraints put an upper bound on the potential loss, in
terms of travel time, of a person choosing to move on a train instead of an alternative (fast)
transport. For each origin-destination pair (s, t), s, t ∈ N , we require that among all pos-
sible routes for going from s to t along active lines (according to the w-values, see above),
there is at least one, that we denote by P st, whose travel time meets the stretch constraint.
Therefore, recalling that there is a “logical” arc (u, v) ∈ E`

stop for all stops u and v along
line `, we define a binary variable yst(u, v, `) for each pair (s, t), line ` ∈ L, and logical arc
(u, v) ∈ E`

stop. For a given pair of stops (s, t), variables yst(·, ·, ·) identify the route P st: In
particular, yst(u, v, `) is set equal to 1 if the route P st includes traveling along line ` ∈ L
boarding at stop u and getting off at stop v; yst(u, v, `) = 0 otherwise.

2Tipically, number of trains per hour.



In order to impose that the binary variables yst determine a route from s to t, we con-
sider the following flow constraints, where φ(s,t)u = 1, or 0, if u = s or u ∈ N \ {s, t},
respectively:∑

`∈L:
(u,v)∈E`

stop

yst(u, v, `)−
∑
`∈L:

(v,u)∈E`
stop

yst(v, u, `) = φ(s,t)u u ∈ N \ {t}, (s, t) ∈ N ×N ;

(6)

and we force P st to use only active lines by the following constraints:

yst(u, v, `) ≤ x` ` ∈ L, (u, v) ∈ E`
stop, (s, t) ∈ N ×N. (7)

We are now left with computing the travel time of P st, that we denote by τst, and writing
down the stretch constraint. First, we can compute τst:

τst =

∑
`∈L

∑
(u,v)∈E`

stop

yst(u, v, `) (θ`uv + λ)

− λ, (8)

where λ ∈ R+ is a time-penalty constant that approximates the additional time required by
each transfer. Indeed, let ȳ be a given route plan, then∑

`∈L

∑
(u,v)∈E`

stop

ȳst(u, v, `) = nst(ȳ)

is the number of lines used by a passenger traveling from s to t and (nst(ȳ)−1)λ is the time
needed to transfer between subsequent lines. Now, it is possible to write stretch constraints
as follows:

τst ≤ α θ∗st (s, t) ∈ N ×N. (9)

Note that constraints (6) do not impose any restriction on the number of transfers of the
indicated route, that is, we are only bounding the overall transit time of a possible (in terms
of active lines) travel between two stations, disregarding one-hop constraints. Moreover,
implementing stretch-constraints requires a large number of variables and inequalities. In
practice, we only apply constraints (7) to a “most significant” subset of (s, t) pairs and per-
form an ex post check to verify that the shortest path—with at most one transfer—between
every pair of origin-destination stations satisfy such constraint.

The goal of the model is also to determine the frequency of each line in order to satisfy
the travel demand. To this purpose, in our MIP model, we use integer variables f ` ∈
Z+ representing the number of trains traveling on an active line ` ∈ L in the time unit3.
Constant fmax is a maximum potential number of trains per time unit (considering a single
direction of the line). We also make use of the two additional parameters: capacity cuv of
arc (u, v) ∈ E (i.e., the maximum allowed number of trains travelling on arc (u, v) in a time
unit) and capacity κ of a train (maximum number of passengers that may simultaneously

3Tipically, number of trains per hour.



travel on a train). The formulation of the constraints is:

f ` ≥ x` ` ∈ L (10)

f ` ≤ fmaxx
` ` ∈ L (11)∑

`∈L :
(u,v)∈E`

f ` ≤ cuv (u, v) ∈ E (12)

∑
`∈L :
u∈N`

stop

2κf ` ≥ du u ∈ N. (13)

The meaning of constraints (10)–(12) is obvious: the first constraints (10) ensure that
there is at least one train traveling on an active line. Constraints (11) implies that the number
of trains traveling along line ` is bounded by fmax. Constraints (12) implement the capacity
satisfaction requirements.

The peculiar expression of the demand satisfaction constraints (13) is motivated by
availability of demand data in terms of the number du of passengers departing from or
arriving to station u ∈ N (cf. discussion at the beginning of Section 2). For the origin or
destination nodes these data represent the actual number of people traveling on the trains.
For other stations u, du is indeed a lower bound since the passengers already on the train
(thus reducing train capacity) are not taken into account. However, in the experiments this
model of demand proved to be quite effective in representing actual traffic loads on the net-
work connections. The factor 2 in the constraint is needed in order to keep into account that
each line is activated in both directions.

The above described constraints (2–13) define the set of feasible alternatives.

3 The railway network of Rome

The model described in the section above has been tested on the regional railway network of
Rome. This network collects the demand not only of people moving in the city center, but
also of many passengers coming from neighbouring areas that use the rail public transfer to
get to the city, see figure 2.

Current service offers nine lines traveled by regional trains, freight trains, long distance
trains and high-speed trains. Along each route there is a “door” station that defines the
area of the node and it does not necessarily coincide with the last station of the route. The
lines with some basic information (origin and destination stations, off-peak and rush hour
frequencies, interchanges) are reported in Table 1. MA and MB indicate the two subway
lines of the city. (We remark that subways are not managed by RFI, however they are
considered here for the sake of completeness, as they are an important connectivity element
of the metropolitan network. As a consequence, in our models, the corresponding lines are
always considered as active.)

The railway transportation is the base of public transport due to low pollution rate, re-
liable travel times, and greater comfort. In particular, in our case it allows the connection
with the suburban areas of Rome and the other provinces of the region, ensuring greater
accessibility to the city. Furthermore, the railway network improves the mobility of citizens
and tourists in the city, connecting to the metro and tram network.



Name Terminal stations Frequency Interchangesmin–max

FL1 Fara Sabina–Fiumicino Airport 4 tr/hr. FL2, FL3, FL5, MA, MB
FL2 Tivoli–Roma Tiburtina 2–4 tr/hr. FL1, FL3, MB
FL3 Viterbo–Roma Tiburtina 2–4 tr/hr. FL1, FL2, FL5, MA, MB

FL4 Ciampino–Roma Termini 4 tr/hr. MA, MB, FL5,
FL6, FL7, FL8, LE

FL5 Civitavecchia–Roma Termini 2–3 tr/hr.
FL1, FL3, FL4
FL6, FL7, FL8
LE, MA, MB

FL6 Cassino–Roma Termini 1–4 tr/hr. FL4, FL5, FL7, FL8,
LE, MA, MB

FL7 Latina–Roma Termini 2–4 tr/hr. FL4, FL5, FL6, FL8,
LE, MA, MB

FL8 Nettuno–Roma Termini 1–2 tr/hr. FL4, FL5, FL6,
FL7, MA, MB, LE

LE Fiumicino Airport–Roma Termini 2 tr/hr. FL1, FL4, FL5,
FL6, FL7, FL8, MA, MB

Table 1: Current regional service offer.

In the current situation, increasing the frequencies of the nine regional lines would in-
crease the number of citizens commuting by train, but in some areas such an enhancement
is impossible due to lack of capacity. Indeed, the Italian railway network is one of the
safest in Europe. As it is common in railway lines, trains headways are controlled by means
of block sections: Namely, the track is divided in sections about 1 km long and through
suitable signaling devices, each train cannot enter in a section if the preceding train is still
occupying it and it must decrease his speed if the preceding train is not at least two section
away. Travel times are also affected by the high number of stops of regional trains. Indeed,
one of the main problem is the interference between regional and long-distance trains, due
to shared infrastructures and lack of passing tracks which is the cause of slowing down
and consequent higher travel times. For instance, this situation affects both the connection
with Abruzzo and Viterbo on the FL2 and FL3 lines, but also the Leonardo Express be-
tween Roma Ostiense and Fiumicino airport. Moreover, there are many crossroads along
the tracks and conflicting routes, in particular, at Roma Tuscolana and Roma Ostiense where
freight trains and regional trains meet. Finally, some stations, especially head stations like
Fiumicino airport, have other infrastructure constraints that significantly impact on the train
frequencies.

All these elements limit the capacity of the network; in fact, at most 8 trains per hour
are allowed to travel on each track in the same direction. Fortunately, the high-speed (AV)
line has separate tracks from regional lines even through also the AV line must keep a low
speed in the urban area. In Figure 3, the actual load track is reported, showing the need of
an upgrading of the infrastructures and a reorganizations of the services, in order to increase
the capacity and to improve the quality of service.



Figure 2: Map of the Lazio region

3.1 Infrastructure improvement plan

Trains are managed by train operators, namely independent companies which are typically
separated by the infrastructure manager. However, line design is carried out by the infras-
tructure manager, also because this may require large investments. The process is complex
and may occasionally involve train operators which can point out some needs. At the end
of this process, the infrastructure manager has selected a number of lines which are then
offered - possibly by a competitive tender - to the train operators.

Within a time-line of five years, RFI has already planned a series of interventions on
the infrastructure in order to increase the capacity of the metropolitan and regional area.
These projects, combined with a reorganization of the service offer—also relying on our
optimization model—aim to improve the quality of service and to further shift the mobility
from private to public transport. Beyond a series of investments in technology, the inertial
(i.e., already planned) projects, are:

1. Building three new stations: the first one at Fiumicino airport (called “North Fiu-
micino airport”) corresponding to the building of a new terminal at the airport, the
second one, “Pigneto”, in order to allow the change with the new subway line, called
metro C, the third one called Villa Senni on the line to Frascati.

2. Reducing block section length in congested areas (as between Roma Ostiense and
Roma Tiburtina) and/or doubling the tracks where needed (see for example between
Roma Casilina and Ciampino).

3. Enhancing the capacity of some main stations (like Roma Tuscolana).

4. Completing the rail circle line in the north of the city by extending the railway line
from Vigna Clara to Roma Smistamento and consequantly to build the Tor di Quinto
station.



Figure 3: Load of the tracks.

The first three actions have been already scheduled while, due to its major costs, further
considerations are required for the fourth operation.

In order to properly evaluate the effects of the changes in the infrastructures, the con-
sequences on the offered service must be evaluated, and this was our contribution. For this
reason, we considered three different scenarios for the infrastructure:

Scenario A the actual infrastructure with no interventions (see figure 4). It consists of 25
stations and the line pool proposed by RFI contains 30 lines.

Scenario B the infrastructure obtained after the first three interventions listed above (all
except the closure of the ring involving the building of the station of Tor di Quinto).
It consists of 27 stations, and the line pool contains 38 lines.

Scenario C the infrastructure of scenario B plus the closure of the ring with the Tor di
Quinto station (see figure 5). In this case we have 28 stations and a line pool contain-
ing 43 lines.

3.2 Demand data

As already mentioned in section 2, the only available demand data on the Rome railway
network, is the number of daily passengers that embark on and disembark at each station of
the considered area.

In our case, we refer to the number of passengers embarked on and disembarked at each
station of the considered area counted on a certain date of the year. As in the hose model
in TLC networks, we use these data to determine an aggregate value for the demand at each
node. To scale the data in a time horizon of an hour, we suppose sixteen hours of railway



Figure 4: Infrastructure in Scenario A

service, in which six are peak hours and assume that 70 % of the passengers are concentrated
in this time window.

The frequency of services on the lines is established considering the demand data during
the peak hours, when the network is more congested. Afterwards, once the lines have been
settled, train frequencies are determined for the other times of the day.

Capacity. The capacity of each arc is determined on the basis of the number of tracks,
knowing that on each track at most 8 train per hour are allowed to travel in both directions.
(An exception is the line Ostiense–Tiburtina where this limit is increased up to 12 trains per
hour).

4 Results

We tested the model on all the three scenarios and we obtained results that RFI found ex-
tremely valuable.

Recall that, since enforcing the stretch constraints implies adding a large number of
flow variables yst(u, v, `)), we relax our model and impose the stretch bound on a limited
number of origin destination pairs (in particular, the 26 most significant ones, according
to RFI indications). The model described in section 2 has been implemented in AMPL



Figure 5: Infrastructure in Scenario C

(see Fourer et al. (2002)) and solved by means of Gurobi (see Gurobi (2016)). In our
experiments, we set the following parameters:

1. the capacity of the trains is set to κ = 700;

2. the time-penalty for each transfer is set to λ = 15 minutes;

3. the parameters θ∗st used as benchmarks for the stretch constraints is the time needed
to go from s to t by car with no traffic as given by Google Maps. We have to point
out that traveling by car is the only real viable option as bus services do not cover
effectively the whole area considered in this study. Furthermore, these quantities are
definitely underestimates of the actual travel times, especially during the rush hours.
This in turn corresponds to the fact that α is larger than the actual stretch parameter.

4. fmax is set to 6 trains per hour.



As a first step, we decided to evaluate the current service, that consists in considering
Scenario A where we fix as active lines only the ones reported in Table 1.

4.1 Evaluation of the current service

In order to evaluate the service offered at the moment, we considered Scenario A, and fixed
the x` variables by only activating the 9 lines described in section 3. The model does not
produce feasible solutions. In particular, one-hop constraints are not satisfied: some origin
destination pairs require three transfers. If we relax one-hop constraints, we have that the
demand is satisfied even with lower frequencies than in the actual service (which confirms
that our demand is a lower estimate). On the other hand, the resulting stretch coefficients
turn out to be less or equal than 3, 2, 1.5, and 1, in, respectively, 97.3%, 84.3%, 55.5%, and
26.4% of cases, i.e., possible origin destination pairs. Overall, the actual stretch coefficient
is between 3.4 (where the problem is feasible) and 3.3 (where the problem is infeasible).

The conclusion is that the actually offered regional service does not satisfy one-hop
constraints, and for some O-D pairs up to three transfers are needed, whereas RFI required
this constraint to be satisfied for all the O-D pairs. Moreover, in order to further understand
the performance of the actually offered service, in all scenarios, we also evaluated the option
of keeping active the current set of lines—by fixing to 1 the corresponding x` variables—
and possibly add new lines so that the one-hop and stretch constraints become satisfied (see
Experiments # 4 in Tables 2 and 3, and Experiment #3 in 4).

4.2 Scenario A and B

Given these preliminary results, we ran the model on both Scenario A and Scenario B. In
Tables 2 and 3, we summarize the results. In both scenarios, the model does not provide
feasible solutions, which is due to bad connections in the north-west area, around Guidonia
(Experiments #1, in both Tables 2 and 3). In fact, the consequence is that, in order to connect
that area, too many lines cross the central area of the network around Roma Tiburtina, which
in turn makes the capacity of the tracks in the area between Fara Sabina and Roma Tiburtina
not sufficient.

We tried to relax alternatively one-hop constraints for all pairs involving Guidonia and
Prenestina, or to relax the capacity constraint on the tracks between Fara Sabina and Roma
Tiburtina. In both cases, the model returns an optimal solution, with the following charac-
teristics:

Scenario A, relaxing the one hop constraint the optimal solution activates 11 lines, for a
total number of 16 trains running during the peak hour. Among these ones 7 belong
to the set of actual active lines (Experiment #3, Table 2). We also considered the
option to fix the variables corresponding to the currently active lines. This option
corresponds to keep active the lines actually offered and only add new ones, so that
the users that are satisfied by the service do not have to change their habits. In this
case, an optimal solution has 12 active lines, for a total number of 17 trains per hour
(Experiment #4, Table 2).

Scenario A, relaxing the capacity constraint the optimal solution activates 16 lines and a
total number of 23 trains (Experiment #2, Table 2). Among these ones 6 belong to
the set of actual lines. In all the feasible simulations, the stretch coefficient can be



# One-hop Stretch Demand Capacity # of lines # of trains
(α = 2.8) (current) per hr.

1 X X X X no sol -
2 X X X (no FS-Tib) 16(6) 23
3 (no Guidonia) X X X 11(7) 16
4 (no Guidonia) X X X 12(9) 17

Table 2: Results for Scenario A

# One-hop Stretch Demand Capacity # of lines # of trains
(α = 2.8) (current) per hr.

1 X X X X no sol -
2 X X X (no FS-Tib) 18(6) 24
3 (no Guidonia) X X X 14(7) 17
4 (no Guidonia) X X X 15(9) 18

Table 3: Results for Scenario B

reduced up to 2.8.

Scenario B, relaxing one-hop constraints the optimal solution activates 14 lines, for a to-
tal number of 17 trains per rush hour. Among these ones 7 belong to the set of actual
lines (Experiment #3, Table 3). If we fix the currently active lines, then the solution
activates 15 lines with a total number of 18 trains (Experiment #4, Table 3).

Scenario B, relaxing the capacity constraint the optimal solution activates 18 lines, for a
total number of 24 trains. Among these ones 6 belong to the set of currently active
lines (Experiment #2, Table 3).

In all the considered cases, the stretch coefficient can be reduced up to 2.8. The results are
summarized in the two tables (one per each scenario) 2 and 3.

In conclusion, the planned infrastructure intervention (plan B), despite its significant
improvements, cannot solve all the critical issues of the actual service. We will show in the
next subsection that, on the contrary, the closure of the ring allows to find a feasible solution
fixing all the important criticalities.

4.3 Scenario C

In Scenario C, the problem admits a solution, and the quality of the service significantly
improves, not only by satisfying one-hop constraints but also by allowing a reduction of the
stretch coefficient α, that can be decreased down to 2.5. In Table 4, the results are reported:
All the constraints can be satisfied by activating 16 lines (6 of them are already active) with
a total number of 21 trains per hour (Experiment #1, Table 4). The stretch coefficient can
be shortened to 2.55 (Experiment #2, Table 4). On the other hand, if the currently active
lines are fixed, 18 lines are then needed in order to satisfy all the constraints (with stretch
coefficient equal to 2.55) with a total number of 21 trains per hour (Experiment #3, Table 4).



# One-hop Stretch Demand Capacity # of lines # of trains
(α = 2.8) (current) per hr.

1 X X X X 15(6) 21
2 X α = 2.55 X X 15(6) 21
3 X α = 2.5 X X 18(9) 21

Table 4: Results for Scenario C

These results imply that the major intervention of the ring closure is justified by the
benefits on the whole service, allowing a greater connectivity on the network, without over-
loading part of the tracks. Of course, the number of trains needed in order to satisfy the
actual (unknown) demand may clearly be higher, but since the number of trains in output of
the model is lower than the one running on the network now, there is room for increasing
the frequencies where needed.

5 Conclusions and future work

In this work, we developed a model to determine a suitable set of lines and the corresponding
train frequencies in a railway network. The model proved to be effective in supporting rail-
way’s engineers when evaluating alternative infrastructure enhancements in the metropoli-
tan rail network of Rome.

In particular, the model allowed RFI to assess the potential impact of planned and po-
tential infrastructure developments. We remark that, even in the absence of exact or reliable
OD-flows, the model is capable of determining other crucial parameters such as, e.g., the
connectivity and the stretch parameter. Indeed, the positive results obtained by applying
our model were used by RFI in support of the crucial (and expensive) intervention of the
closure of the ring. Moreover, due to this first successful experience, RFI decided to apply
our model also to the regional railway network of Milan, where more reliable demand data
and OD-flows are at hand.

Indeed, infrastructure managers are becoming ever more aware that in order to deter-
mine the right mix of new investments, it is necessary to predict the impact of the new
infrastructure on current and future demand of transportation. In particular, planning new
infrastructure requires the definition of feasible routes and schedules for the trains which
ensure that the target demand can be satisfied. In turn, because the overall process is very
complex and cannot be handled manually, this can only be achieved by developing suit-
able optimization models and effective solution algorithms. An example of such two-stage
infrastructure planning at the Norwegian infrastructure manager Banenor is described in
Lamorgese et al (2017).
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