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Abstract

Buffer times are an important factor in railway timetable design preventing the propagation of delays and

ensuring timetable robustness. Determining the required amount of buffer times, such that a certain level of

service quality is achieved, falls within the responsibility of railway capacity analysis. This is why capacity

analysis is intrinsically linked to delay propagation modelling. Currently, delay propagation modelling in

this context relies on the assumption of random, exponentially distributed or deterministic buffer times.

Real-world timetables tend to deviate from this behaviour, such that a more general modelling of buffer

time distributions is desirable. In this paper the impact of different buffer time distributions on the build-up

of knock-on delays in delay propagation modelling is analysed using a Monte-Carlo simulation approach. It

is shown that the choice of distribution has a significant impact on performance metrics. In a sensitivity

analysis line capacity is observed to vary by as much as 17% as a function of the underlying buffer time

statistics in the investigated scenarios.
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1. Introduction and Literature Review

Buffer times correspond to an increase of headway times beyond minimum separation times, which are

enforced by track occupation constraints in interlocking. Consequently, they impede the formation of train

conflicts and counteract the transmission of delays between trains (knock-on delays) resulting from small

primary delays. These knock-on delays appear when a delayed train hinders other trains by still occupying

parts of the scheduled route and therefore thwarting other trains from passing or crossing (Yuan and Hansen,

2007).

Depending on their location and size, the effectiveness of buffer times varies and timetables exhibit dif-

ferent degrees of robustness against disruptions. Ensuring and optimising timetable robustness by effectively

allocating buffer times is a delicate task that has attracted a lot of interest both in academia and industry
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(see Lusby et al. (2017) for a recent survey of robustness in railway planning). While many methods in the

field rely on (iterative) a-posteriori simulation of disturbed timetables, robust optimisation approaches have

also found widespread application in recent years.

Salido et al. (2008) discuss different robustness metrics and present analytic approaches to compare the

robustness of timetables from a railway operator’s point of view based on disruption scenario simulations.

A comparable methodology adopting a passenger centred approach has been proposed by Takeuchi et al.

(2007). Here, robustness is assessed in terms of passenger disutility. The analysis also relies on Monte Carlo

simulation of operations in view of disruptions. A more elaborate delay propagation simulation tool and

its use in robustness analysis of timetables are discussed by Corman et al. (2014): The authors set up a

multi-level dispatching scheme, where regional rescheduling is coordinated on network scale. Normal and

disruption timetables are analysed with respect to train delays and passenger travel times.

Cacchiani and Toth (2012) provide an overview of robust optimisation approaches to the (capacitated)

train timetabling problem. Both cyclic and non-cyclic timetabling approaches are discussed. More recently,

a knapsack approach for the buffer time allocation problem has been proposed by Jovanović et al. (2017).

A robust joint routing and scheduling model for densely used station areas is discussed by Dewilde et al.

(2014). The approach has been tested for the Brussels Central area, where a decrease of delay propagation

of 25% with respect to previous timetables is found.

In Khoshniyat and Peterson (2017), a buffer time optimisation framework is studied where buffer times

are allocated in relation to the headway times between trains. This is motivated by the fact that long train

running sections exhibit larger degrees of uncertainty in operations. A new notion of robustness – robustness

in critical points – has been introduced by Andersson et al. (2013). The criticality of timetable reserves

with respect to the train sequence in timetables is analysed. An evaluation of the effectiveness of a purely

analytic ex-ante timetable optimisation approach based on the robustness critical points has been provided

in Solinen et al. (2017) using microscopic train simulations.

In the scheduling context, robustness analysis is predominantly concerned with analysing and optimising

timetables where the number of trains is taken to be fix. The feasibility of the operational concept is generally

assumed to have been ensured by capacity analysis beforehand. Only very few publications consider the

possibility to cancel train paths (Cacchiani et al., 2016) or to schedule additional train paths within a given

timetable (Burdett and Kozan, 2009; Khoshniyat and Törnquist Krasemann, 2017). In Khoshniyat and

Törnquist Krasemann (2017) a MILP approach for scheduling additional train paths or maintenance works

with minimal timetable deviations is investigated. The method allows to deduce a-posteriori robustness

parameters in scheduling.

Capacity planning, by contrast, aims to determine the number of trains which can be operated, such that

a pre-defined level of service is maintained (UIC, 2004). This level of service is defined in terms of quality

indicators such as train punctuality or amount of delays (Abril et al., 2008). As a consequence, capacity

analysis methods necessarily involve some kind of delay propagation modelling. Even techniques relying

on metrics like infrastructure occupation, such as the widespread UIC schedule compression method (UIC,

2013), require standards for the level of service which are calibrated either based on expert knowledge or

delay modelling (Wendler et al., 2002).

In delay modelling for capacity analysis, two main streams can be distinguished: Timetable-centred
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approaches, which investigate train delays forming in rescheduling a perturbed, fully constructed timetable.

These approaches are closely linked to the previously discussed approaches in timetable stability and ro-

bustness analysis. Their main area of use is tactical planning, when timetable structure and train sequence

are already largely known (Delorme et al., 2009; Adenso-Dıaz et al., 1999). The second stream consists of

probabilistic approaches, which do not require a fully constructed timetable. Train interactions and con-

flicts are modelled in terms of queueing systems (Huisman et al., 2002; Wendler, 2007; Weik and Nießen,

2017) or stochastic models based on probability distribution functions describing train arrival/departure

times (Schwanhäußer, 1974; Weik et al., 2016), running times (Meester and Muns, 2007) or delays (Yuan,

2006; Büker and Seybold, 2012). A linear programming approach for complex route nodes, where conflict

probabilities between train paths are input for a delay minimisation problem is discussed by Mussone and

Calvo (2013). A similar train path exclusion technique is used for route nodes to obtain simplified queueing

descriptions with aggregated service centers in Nießen (2008).

The focus of the present paper is on the second stream of probabilistic approaches for delay propagation

modelling in capacity analysis. In this context, the representation and analysis of suitable delay distribution

functions has attracted a lot of interest (see, e.g., Yuan (2006); Wen et al. (2017)). By contrast, the

assumptions made on buffer times, which are equally crucial for delay build-up, have received much less

attention. Existing approaches assume buffer times to be either deterministic (Büker and Seybold, 2012;

Yuan, 2006) or exponentially distributed (Schwanhäußer, 1974; Weik et al., 2016). In Nie and Hansen

(2005), however, it has been shown that real-world data for timetable buffer times on railway lines are not

necessarily exponentially distributed. A more detailed analysis of buffer time statistics is missing, so far.

This paper aims to close this gap by providing a rigorous analysis of the influence of buffer time distri-

butions on the formation of knock-on delays. The analysis is based on a stochastic event-based simulation,

which allows to analyse the build-up of knock-on delays from primary delays, locally. Note that this does

not mean that the results are limited to local delay propagation models like the ones discussed by Weik

et al. (2016). They equally transfer to network models, such as (Büker and Seybold, 2012; Yuan, 2006),

which are composed of individual events, where buffer times enter in the convolution integrals describing

delay propagation. For comparison the simulation is validated against the STRELE method (Schwanhäußer,

1994), an analytic method which forms the standard approach used by German infrastructure manager DB

Netz AG for delay prognosis and capacity assessment of railway lines (DB Netz AG, 2008).

A more detailed discussion of the STRELE framework as well as the event-based simulation approach

applied in this work is given in the following section. Section 3 – which is the main part of this paper –

contains the investigation of the relation between buffer time distributions and knock-on delays. Apart from

the analysis of how these distributions bear on knock-on delays, we also provide a brief discussion of the

computation complexity of the approach as well as a sensitivity analysis.

2. Method

Subsequently, the methodology used in this work is presented. We start by introducing the STRELE

framework, which is the standard method for the assessment of knock-on delays in Germany (DB Netz AG,

2008). The second part describes the structure of the simulation tool and gives an idea of the effects of
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synchronous and asynchronous conflict resolution techniques in simulation. In conclusion of the section a

short summary of the required input data for STRELE and simulation is given.

2.1. STRELE

The STRELE approach (Schwanhäußer, 1974) to compute knock-on delays is based on a decomposition

of railway lines into independent directional tracks. Using a probabilistic propagation technique for train

interactions as well as results from queueing theory an approximation of the mean knock-on delays of

trains is obtained. The method is commonly used in Germany to determine railway capacity and has

been implemented in various software tools, including LUKS® and SLS (Janecek and Weymann, 2010;

Schwanhäußer et al., 2000). While conceptualised for double-track railway lines the STRELE-formula can

be used for single-track railway lines with minor modifications, as well.

The STRELE formula, which is at the center of the approach, allows to determine the expected knock-on

delay t for a railway line segment between two overtaking stations. It is given by

t =
(
pdel −

p2
del

2

)
· t̄2del

t̄b + t̄del ·
(
1− exp(− h̄

t̄del
)
)

·

[
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(
1− exp

(
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t̄del

))2
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t̄del

(
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(
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))
+
h̄

t̄b

(
1− exp

(
− h̄
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))]
,

with

pdel – probability of primary delay,

t̄del – average delay of the delayed trains,

t̄b – average buffer time,

peq – probability of trains with equal rank,

h̄ – average minimum headway time,

h̄eq – average minimum headway time between trains with equal rank,

h̄diff – average minimum headway time between trains with different rank.

The computation of knock-on delays follows the principle of calculating the first-order delays and up-

scaling the result by a factor which incorporates a heavy traffic regime and queueing system results to

estimate the delays of higher order.

To assess the quality in operation, a level of service has to be defined which regulates the maximum

admissible knock-on delays in railway operations. The standard for quality in Germany is defined in Directive

405 of DB Netz AG (DB Netz AG, 2008). A more extensive and rigorous discussion of the STRELE-

framework and its use in capacity analysis can be found in Weik et al. (2016).

2.2. Simulation Environment

For the simulation, an event-based Monte-Carlo approach is applied. Knock-on delays are calculated in

a three-step procedure. A visualisation of the procedure is given in Algorithm 1 (c.f. Appendix A).
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2.2.1. Schedule Generation

By setting a number of trains n with c classes, i.e. sets of trains with similar driving characteristics,

a schedule is generated from a random sequence of trains. As both directional tracks are operated inde-

pendently and no overtakings are possible, blocking time stairways of a segment can be merged into one

block.

Hence, the first train starts at time tsched,1 = 0 followed by a second train at time tsched,2 = tsched,1 +

h1,2 + b1,2 with minimum headway time h1,2, which is a technical constraint. Additionally, buffer time b1,2

is added, which aims to ensure adequate quality in operations by minimising the transmission of primary

delays, e.g. due to bad weather, signal or train malfunction or high passenger load. The start times tsched,i

of the following trains are calculated in the same manner:

tsched,i = tsched,i−1 + hi−1,i + bi−1,i for train i ∈ {2, n}.

Note that minimum headway times are fully determined by train type and infrastructure and the amount

of buffer times in the schedule lies within the responsibility of the infrastructure manager (timetable con-

struction process). In the simulation framework the effects of different buffer time distributions can be tested

in case the schedule is not known. On the other hand, given a schedule, a buffer time distribution can be

fitted and knock-on delays can be calculated and evaluated.

2.2.2. Delay Implementation

Infrastructure managers have empirical train specific values of delay probability and average delay time

within their network. The data is either based on the values mentioned in the rulebook (in Germany, for

instance, in DB Netz AG (2008)) or based on the (approximate) evaluation of real world delay statistics of

railway lines. However, in the latter case the separation of primary and knock-on delays is an important

issue, for which no fully satisfactory solution has been found so far. Several locally successful attempts

to distinguish primary and knock-on delays have been made, e.g. by real world data analysis and mining

techniques in Daamen et al. (2009), Goverde and Meng (2011) and Cule et al. (2011).

In the simulation environment, the trains i = 1, . . . , n are affected by primary delay with probability

pdel,i and are delayed by tdel,i on average in that case. At the end of the delay implementation the schedule

usually contains conflicts, which have to be resolved.

2.2.3. Rescheduling

Resolving the induced conflicts can be basically handled in two different manners – regarding priorities

in service (asynchronous) or resolving the conflicts in ascending order in time without inclusion of ranks

(synchronous). In asynchronous simulation, trains are scheduled ascending in ranks, whereas in synchronous

simulation trains are treated as equally ranked. The first has the advantage of giving precedence for trains

which are more important for the infrastructure manager, e.g. long distance trains prior to local trains and

freight trains, while the latter is more efficient in terms of network capacity. In case of high traffic load

the method of operation is mostly First-Come-First-Served, but in slightly or medium perturbed operations

priorities should persist. In this paper, we examine results based on asynchronous rescheduling to achieve

comparable results with the analytical calculation (STRELE formula, c.f. Section 2.1). The simulation

however is highly flexible and any rescheduling method can be used in general.

5



2.2.4. Evaluation of a Simulation Run

To obtain knock-on delays tknock-on,i of a train i the planned start time tsched,i and the primary delay

tdel,i (that may be 0 as well) are subtracted from the actual start time tact,i:

tknock-on,i = tact,i − (tsched,i + tdel,i)

The actual starting time is calculated based on the rescheduling policy and reflects the shift due to train

path conflicts. For notational simplicity we define the operational starting time top,i = tsched,i + tdel,i of a

train as its earliest starting time after the primary delays are inserted.

Assume that during the rescheduling process all trains (at least 2) are always in chronological order

and are sorted according to Section 2.2.3 with respect to their rank. The first train in the list can be

scheduled without restrictions. The second train can only have a conflict with the first train. Hence,

tact,2 = max(top, tact,1 + h1,2).

All the following trains i are rescheduled depending on their position in the regime of operation:

(a) If the train can be scheduled in front of the first train, i.e. top,i + hi,1 < tact,1, set tact,i = top,i.

Otherwise, proceed to (b).

(b) If the train can be scheduled between the other rescheduled trains, the following two conditions have

to be checked. If one is true, the train is scheduled as described. Otherwise, repeat the procedure for

all the rescheduled trains j until the end of the schedule is reached. In the case the train cannot be

scheduled in the middle, proceed to (c).

(i) If the condition (tact,j +hj,i +hi,j+1 < tact,j+1) & (top,i +hi,j+1 < tact,j+1) & (top,i < tact,j +hj,i)

holds, set tact,i = tact,j + hj,i

(ii) If the condition (tact,j +hj,i +hi,j+1 < tact,j+1) & (top,i +hi,j+1 < tact,j+1) & (top,i > tact,j +hj,i)

holds, set tact,i = top,i

(c) If the train can be scheduled after all other rescheduled trains, i.e. top,i > tact,end, set tact,i =

max{top,i, tact,end + hend,i}

Depending on the evaluation the knock-on delays for a train class or for all trains are aggregated by

averaging over them.

2.2.5. Limitations of the Simulation Environment

The simulation is designed to map the behaviour of a queuing model describing a railway segment. The

segment reaches from one station providing the possibility of overtaking to the following such that for a

railway line usually more than one segment needs to be considered. All segments are calculated individually

and the nominal capacity in the bottleneck-segment determines the capacity of the whole railway line.

For conformity with the STRELE approach, extended running times are not considered in the simulation

environment. This simplification is necessary to achieve comparability to the STRELE-framework. As the

method is designed to calculate the capacity of railway lines interactions of trains within stations are not

considered in the simulation.
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Extended running times could theoretically be covered in the model by introducing uncertainty in head-

ways by allowing for variation in blocking times, for example. In order to be applicable for larger line sections

spanning multiple overtaking sections the STRELE framework discussed in this model can be coupled with

a gap acceptance model like the one discussed in Gast (1986), which accounts for additional delays from

overtakings.

The STRELE framework is based on a simplified picture of railway operations. Still, the basic statistical

principles investigated in this paper are thought to be valid for more complex models such as the OnTime

framework (Büker and Seybold, 2012) or the delay propagation model proposed by Yuan (2006), as well, as

these models rely on the same governing principles.

2.3. Comparison of Input Data in STRELE and Simulation

A brief overview over the similarities and dissimilarities of STRELE and simulation is given in Table 1.

In the STRELE formula many train attributes are lost due to averaging procedures in its derivation (cf.

Weik et al. (2016)). On the other hand, it provides a quick and easy to use tool to assess knock-on delays

and does not suffer computational time restrictions like the simulation.

STRELE Simulation

buffer time distribution Exponential Distribution arbitrary

delay distribution mix of Exponential and Degenerate Dist. arbitrary

train composition relevant relevant

minimum headway times average with small variation class specific

priorities arbitrary arbitrary

number of trains in schedule irrelevant relevant

Table 1: Comparison of input data of STRELE and simulation
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3. Results

We subsequently present the results of the analysis of buffer time distributions. We start by validating

our simulation approach by comparison to the STRELE results. A short discussion of the computational

complexity of STRELE and simulation is attached, followed by a demonstration of the main results of this

paper – the examination of the influence of buffer time distributions in railway operations.

In the following discussion, the minimum headway time is set to 4 minutes, delay probability to 0.5

and train delay to 5 minutes for each train. We choose 6 model trains such that two train types per class

(long-distance train, local train, freight train) are represented. Train types are drawn with equal probability

and 400 trains are simulated 500 times for each data point. Unless stated otherwise, the remainder of this

chapter is based on the above input.

3.1. Validation of the Simulation for Exponentially Distributed Buffer Times

Before analysing the impact of buffer time distributions using the simulation approach, the latter is

validated against the STRELE formula. To this end, exponentially distributed buffer times are used, as the

analytic STRELE framework relies on this assumption.

Figure 1: Comparison of knock-on delays from simulation and STRELE

In Figure 1, the knock-on delay per train in relation to the corresponding buffer time for simulation

and STRELE formula is depicted. It can be seen that for average buffer times starting from 3 minutes,

the results of the simulation converge reasonably fast towards STRELE. In case of small buffer times the

number of classes chosen is a main factor for the amount of the expected waiting times since the probability

of shifting a train with lower priority from the beginning to the end of schedule is significantly higher. When

larger buffer times are realised, the trains are not packed as tightly anymore and the schedule offers more

possibilities to insert lower ranked trains in earlier positions. In other test cases a similar behaviour has

been observed.
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3.2. Computational Complexity

The implementation of the simulation environment lies within O(n2 ·log(n)·s·t) with n being the number

of trains, s the number of runs per point in time t. For example, in case of n = 400, s = 500 and t = 70

the completion of computation takes roughly 300s on an i5-6500 CPU with 3.2 GHz. With more advanced

implementation techniques it might be possible to reduce the computation time by another dimension of n.

The calculation of STRELE is theoretically done within O(c2), with c classes/ranks, due to the fact that

the preprocessing for the input data of STRELE has to evaluate the matrix of minimum headway times and

other train corresponding data. In practice the calculation does not exceed one second unless having a very

large number of classes.

3.3. Determination of the Underlying Buffer Time Distribution

In this section we discuss how the buffer time distribution for a railway line is determined: Buffer times are

extracted from the actual schedule which is, in this case, performed using the construction module within

LUKS®-software package (Janecek and Weymann, 2010). Afterwards, the four best fitting parametric

distributions are determined according to Akaike’s Information Criterion (AIC) (Akaike, 1974; Kingdom

and Prins, 2016) using the method of (Sheppard, 2012) to evaluate the extracted data. Therefore, the AIC

is determined for a wide class of parametric distributions and then sorted in ascending order. This ordering

does not give an absolute goodness-of-fit indicator, but a relative ordering of the selected distributions.

In general, for every observed distribution the absolute goodness-of-fit can be determined. In our paper,

we use the Kolmogorov-Smirnov-Test (Corder and Foreman, 2014). For every distribution the so-called

p-value is calculated. If the p-value is bigger than the pre-defined significance level α the hypothesis that the

chosen distribution describes the data set cannot be rejected. In the analysis α = 0.05 is chosen as standard

significance level.

Fig. 2

Distribution Gen. Pareto Erlang Weibull Gamma

∆AIC 0 1.45 2.14 2.39

p-value 0.234 0.131 0.188 0.154

Hypothesis not rejected not rejected not rejected not rejected

Fig. 3

Distribution Inverse Gaussian Gen. Pareto Lognormal Birnbaumsaunders

∆AIC 0 1.25 1.86 1.96

p-value 0.042 0.236 0.224 0.194

Hypothesis rejected not rejected not rejected not rejected

Fig. 4

Distribution Tlocationscale Logistic Normal Gen. Extreme Value

∆AIC 0 1298.7 1303.9 1304.7

p-value 1e-8 2e-7 6e-7 7e-8

Hypothesis rejected rejected rejected rejected

Table 2: Overview of the results depicted in Figures 2-4

In Figure 2, 3 and 4 three examples of buffer time distribution matching to real-world timetable data

for different railway lines are given. For all cases the recorded actual buffer times (Data) and the fitted
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Figure 2: Probability density functions of best fitting buffer time distributions

Figure 3: Probability density functions of best fitting buffer time distributions

parametric probability distributions are depicted. Additionally, the differences of the AIC-values to the best

fitting distribution as well as the p-values according to the KS-test are given in Table 2. The suspected

buffer time distribution is tested against the data set and rejected in case of p < 0.05.
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Figure 4: Probability density functions of best fitting buffer time distributions

It can be seen, that depending on the structure of the schedule, various distributions may be considered.

Especially for highly cyclic schedules, e.g. for the suburban railway line Bochum-Dorstfeld where commuter

trains are operated exclusively, it is possible that there is no good-fitting parametric probability distribution

at all. In Figure 4 every parametric continuous distribution has to be rejected according to the KS-test.

Hence, the only valid option may be to use the Degenerate distribution to map the actual buffer times from

the schedule to a model.

3.4. Influence of Buffer Time Distributions

For the influence of buffer time distributions we consider two scenarios. The first one is the generic

example used in section 3.1, above. Exponential distributions, Normal distributions with variation σ2 = 1,

Erlang distributions with shape parameter k = 3, as well as Degenerate distribution are examined. All

distributions are scaled to the same mean buffer time, such that, on average, the buffer times are equivalent

for every pair of trains.

Scenario 1

In Figure 5 the expected knock-on delays per train for the above mentioned distributions are depicted

over the mean buffer time. Additionally the current Level of Service (LoS) in German Railways DB Netz

AG (2008) is added to demonstrate the differences in the evaluation and can be understood as the expected

knock-on delay ETknock-on per train that results in an optimal quality. Hence, the point of intersection

between expected knock-on delays and accepted height of knock-on delays by the rulebook is of special

interest. To obtain the limit, train dispatchers were interviewed on the quality of flow on their surveyed

railway line.
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Figure 5: Influence of buffer time distributions - Scenario 1

The LoS is calculated by the following equation, which has been derived in Schwanhäußer and Schultze

(1982) and is the current standard specified in Directive 405 of DB Netz AG (2008).

LoS = 0.257 · exp(−1.3 · ppt) · tsched

with

ppt – percentage of passenger trains,

tsched – length of the schedule.

The length of the schedules is in fact distinct for the considered distributions. Since the relative error

between mean size of schedules and the original schedules of the distributions is on average less than 1.5%

the error made by the usage of the average schedule length seems negligible.

With the knowledge of the minimum buffer time tb,min – the point of intersection between expected

waiting times and Level of Service – it is additionally possible to calculate the nominal capacity NC for an

arbitrary observed time horizon th:

NC =
th

tb,min + h̄

All chosen distributions follow the course of declining mean waiting times with increasing mean buffer

time. In contrast to the other chosen distributions the Exponential distribution does not concentrate its

probability density in a close range. Therefore, it is more likely that extreme values occur.

The points of intersection for Degenerate and Normal distribution are located around minute 4, respec-

tively 4.1, for Erlang distribution around minute 4.5 and for Exponential distribution at minute 5.4. These

minimum buffer times correspond to 37 (Degenerate and Normal distribution), 35 (Erlang(3) distribution)

respectively 31 trains (Exponential distribution) which can be operated in a 5-hour time-frame at the same

quality.

For practical capacity issues this means that for schedules that are constructed with the considered

buffer time distributions a difference of around 80 seconds per train may be necessary to retain a reasonable
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quality standard. Second, the analysis clearly shows that it is important to take the generated buffer

time distribution into account. When constructing a schedule, different buffer time distributions lead to

significantly differing knock-on delays and as a result to different capacity values. This is particularly

relevant when both highly structured cyclic traffic and random mixed traffic services are to be compared.

Scenario 2

In Figure 6, a second instance for the influence of buffer time distributions is given. The input data,

which is given in Appendix B, corresponds to a more heterogeneous train program. The point of intersection

for all distributions, apart from Exponential, is approximately minute 7.8 – corresponding to 21 trains in 5

hours – whereas the Exponential distribution intersects the LoS at minute 9 – corresponding to 19 trains

in 5 hours. Thence, to gain the same Level of Service lines with exponentially distributed schedules require

circa 70 seconds additional buffer time per train.

Figure 6: Influence of buffer time distributions - Scenario 2

3.5. Sensitivity Analysis

In the following section the influence of parameters on the point of intersection with the LoS regarding

the observed buffer time distributions is examined. The reference scenario consists of 6 train types (two

long-distance model trains, two local model trains, two freight model trains) as follows:

� minimum headway time h = 5 minutes for all trains

� average probability of delay pdel = (0.5, 0.5, 0.4, 0.4, 0.6, 0.6)

� average amount of delay for the delayed trains tdel = (5, 5, 2, 2, 20, 20)

� train mix (0.1, 0.2, 0.2, 0.2, 0.2, 0.1)

For the simulation 300 trains and 500 runs are considered. Buffer times are incremented in steps of 0.1

minutes. It yields the following points of intersection tb,min with the LoS as measurement of acceptable

operation quality and corresponding nominal capacity NC in a 5-hour time-frame:
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� Exponential Dist.: tb,min = 7.0, NC = 25.0

� Normal Dist.: tb,min = 5.5, NC = 28.6

� Erlang(3) Dist.: tb,min = 6.1, NC = 27.0

� Degenerate Dist.: tb,min = 5.1, NC = 29.7

� STRELE: tb,min = 6.9, NC = 25.2

In the following, the sensitivity of the reference scenario towards variations of minimum headway time,

average probability of delay and average amount of delay of the delayed trains is observed, respectively. The

results are noted as tb,min/NC.

h
Exponential

Dist.

Normal

Dist.

Erlang(3)

Dist.

Degenerate

Dist.
STRELE

1 1.7/44.8 1.5/46.2 1.6/45.5 1.4/46.9 1.6/45.5

2 3.3/36.1 2.7/39.0 2.9/38.0 2.6/39.5 3.2/36.6

3 4.5/31.6 3.7/34.5 4.0/33.3 3.5/35.3 4.6/31.3

4 5.7/28.0 4.7/31.0 5.0/30.0 4.2/32.6 5.8/27.8

5 7.0/25.0 5.5/28.6 6.1/27.0 5.1/29.7 6.9/25.2

6 8.0/23.0 6.4/26.3 7.0/25.0 6.1/27.0 7.9/23.2

7 9.0/21.4 7.2/24.6 7.8/23.4 7.0/25.0 8.8/21.7

8 10.1/19.9 8.1/22.9 8.9/21.6 8.0/23.0 9.5/20.6

9 11.1/18.6 8.9/21.6 9.5/20.7 9.0/21.4 10.2/19.7

10 12.0/17.6 9.8/20.3 10.4/19.5 9.9/20.1 10.9/18.9

11 13.0/16.7 10.6/19.2 11.0/18.8 10.9/18.9 11.5/18.1

12 13.8/16.0 11.6/18.1 11.9/17.8 11.9/17.8 12.0/17.6

Table 3: Point of intersection tb,min with LoS and nominal capacity NC (no. of trains) for various buffer time distributions

and STRELE for different minimum headway times h

In Table 3 the impact of deviations in the amount of minimum headway times is depicted for various

buffer time distributions and the STRELE-formula. The nominal capacity of the exponentially distributed

scenario follows the course of the STRELE formula, but it seems noteworthy that the STRELE-formula

seems to overestimate the nominal capacity due to averaging the delay characteristics. Additionally, it can

be observed that highly cyclic schedules seem to result in higher nominal capacities. The difference in this

particular scenario to STRELE in terms of nominal capacity is nearly 1 train per hour for minimum headway

times of 4 minutes.

Table 4 shows the influence of varying delay probabilities as input parameter for the given scenario. It

can be seen that, in general, simulations with exponentially distributed buffer times produce results similar

to the STRELE-formula. The nominal capacity for the other observed buffer times distributions tends to be

higher. It seems particularly notable that the effects on the nominal capacity diminish slowly with increasing
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pdel
Exponential

Dist.

Normal

Dist.

Erlang(3)

Dist.

Degenerate

Dist.
STRELE

0 0.0/60.0 0.0/60.0 0.0/60.0 0.0/60.0 0.0/60.0

0.1 3.2/36.6 3.4/35.7 3.3/36.1 3.5/35.3 2.6/39.5

0.2 4.5/31.6 4.1/33.0 4.0/33.3 4.8/30.6 4.2/32.6

0.3 5.3/29.1 4.6/31.3 4.7/30.9 4.9/30.3 5.4/28.8

0.4 6.0/27.3 4.9/30.3 5.3/29.1 5.0/30.0 6.3/26.6

0.5 6.7/25.6 5.2/29.4 5.7/28.0 5.0/30.0 7.0/25.0

0.6 7.2/24.6 5.5/28.6 6.0/27.3 5.3/29.1 7.5/24.0

0.7 7.6/23.8 5.8/27.8 6.4/26.3 5.6/28.3 7.9/23.3

0.8 7.9/23.3 6.0/27.3 6.7/25.6 6.0/27.3 8.2/22.7

0.9 8.1/22.9 6.3/26.6 7.0/25.0 6.2/26.8 8.4/22.4

1 8.3/22.6 6.5/26.1 7.1/24.8 6.6/25.8 8.4/22.4

Table 4: Point of intersection tb,min with LoS and nominal capacity NC (no. of trains) for various buffer time distributions

and STRELE for different average probabilities of delay pdel

probability of delay since the arrival of the trains gets stronger randomised and hence closer to a queuing

perspective.

factor multiplied

with tdel

Exponential

Dist.

Normal

Dist.

Erlang(3)

Dist.

Degenerate

Dist.
STRELE

0.25 5.1/29.7 4.3/32.3 4.4/31.9 4.6/31.3 3.7/34.5

0.5 5.9/27.5 4.8/30.6 5.1/29.7 4.9/30.3 5.4/28.8

0.75 6.6/25.8 5.2/29.4 5.6/28.3 5.0/30.0 6.3/26.5

1 7.0/25.0 5.5/28.6 5.9/27.5 5.0/30.0 6.9/25.2

1.25 7.3/24.4 5.7/28.0 6.4/26.3 5.4/28.9 7.3/24.4

1.5 7.5/24.0 6.0/27.3 6.5/26.1 5.7/28.0 7.6/23.8

1.75 7.8/23.4 6.2/26.8 6.7/25.6 6.0/27.2 7.8/23.4

2 7.9/23.3 6.4/26.3 7.1/24.8 6.2/26.8 8.0/23.1

2.25 8.0/23.1 6.5/26.1 7.3/24.4 6.5/26.1 8.1/22.9

2.5 8.3/22.6 6.8/25.4 7.3/24.4 6.6/25.9 8.2/22.7

2.75 8.2/22.7 6.8/25.4 7.5/24.0 6.7/25.6 8.3/22.6

3 8.5/22.2 7.0/25.0 7.5/24.0 6.9/25.2 8.4/22.4

Table 5: Point of intersection tb,min with LoS and nominal capacity NC (no. of trains) for various buffer time distributions

and STRELE for different average heights of delay of the delayed trains tdel

Table 5 demonstrates the effect of the amount of delay of the delayed trains on the minimum admissible

15



average buffer time and the corresponding nominal capacity. As before, the samples with exponentially

distributed buffer times stick closely to the STRELE-formula. The impact of variations of tdel on the

nominal capacity seem rather small. In the last case late freight trains arrive on average 60 minutes after

their planned departure. Still, it was found that waiting times for these trains remain stable.

It can be observed that the Exponential distribution is affected the most by changes in the parameters,

produces the highest knock-on delays and therefore requires a high amount of buffer time to perform adequate

in operations. Degenerate and Normal distribution seem to cope best with changing parameters and generate

in general smaller knock-on delays and hence higher nominal capacities. It is additionally notable that by not

only fitting data with Exponential distribution, but allowing extra phases towards an Erlang distribution,

the mass of probability density is concentrated more closely and hence produces more stable schedules.

We therefore conclude that it is advantageous to have centred buffer time distributions to achieve stable

operations due to relatively equal distributed buffer times.

4. Conclusion

In the present paper, the importance of realistic buffer time distributions representing actual timetable

characteristics in (stochastic) delay propagation modelling for capacity analysis is investigated. We showed

that the choice of buffer time has a significant influence on the expected knock-on delays and thus capacity.

Differences of up to 1 minute buffer time per train, on average, were found to be necessery to achieve the

same level of service. Line capacity, was found to vary by as much as 17%. As a result, an enhancement of

delay propagation models in capacity analysis with respect to buffer time representation seems advisable.
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I. Gast. Wartezeiten infolge stehender Überholungen auf Eisenbahnstrecken, volume 39. Institute of Transport Science, RWTH

Aachen University, 1986.

R. M. P. Goverde and L. Meng. Advanced monitoring and management information of railway operations. Journal of Rail

Transport Planning & Management, 1(2):69–79, 2011.

T. Huisman, R. J. Boucherie, and N. M. van Dijk. A solvable queueing network model for railway networks and its

validation and applications for the netherlands. European Journal of Operational Research, 142(1):30–51, 2002. doi:

10.1016/S0377-2217(01)00269-7.

D. Janecek and F. Weymann. LUKS - Analysis of lines and junctions. In Proceedings of the 12th World Conference on

Transport Research (WCTR), 2010.
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Appendix A. Pseudo-Code of the Simulation Environment

Data: vector of arbitrarily distributed buffer times tb of size n, matrix of minimum headway times

h of size c× c, vector of train ranks r of size n+ 1, vector of probabilities of delay pdel of size

n+ 1, vector of average time of delay of the delayed trains tdel of size n+ 1

Result: sum of knock-on delays skod, schedule length slen

// Schedule Generation (c.f. 2.2.1)

1 initialise matrix ssch of size (n+ 1)× 3;

// First column for storing the scheduled departure time, initially set to 0

// Second column for storing the train number, intitially set to 1..n+ 1

// Third column for storing the train rank r

2 for i = 2..n+ 1 do

3 ssch(i, 1) = ssch(i− 1, 1) + tb(i− 1) + h(r(i− 1), r(i));

// Delay Implementation (c.f. 2.2.2)

4 Initialise matrix sop = ssch;

5 for i = 1..n+ 1 do

6 if rand ≤ pdel(r(i)) then

7 delay = exprnd(tdel(r(i)));

8 sop(i, 1) = sop(i, 1) + delay

// Rescheduling (c.f. 2.2.3)

9 Initialise shelp = sortrows(sop, [3, 1]);

// Sort the disturbed schedule by rank and actual departure time

10 Initialise sres(1, :) = shelp(1, :);

11 for i = 2..n+ 1 do

12 if shelp(i, 1) < sres(1, 1) then

13 if shelp(i, 1) + h(shelp(i, 3), sres(1, 3)) < sres(1, 1) then

14 Sort shelp(i, 1) in the free spot in front;

15 else

16 Sort shelp(i, 1) in the next free spot in the middle;

17 Sort sres by departure time;

18 else if shelp(i, 1) ≥ sres(1, 1) & shelp(i, 1) < sres(end, 1) then

19 Sort shelp(i, 1) in the next free spot in the middle;

20 Sort sres by departure time;

21 else

22 Sort shelp(i, 1) in the next free spot at the end;

23 Update sres by departure time;

// Evaluation of a Simulation Run (c.f. 2.2.4)

24 Calculate sum of knock-on delays skod =
∑n+1

i=1 (sop(i, 1)− ssch(i, 1));

25 Set slen = sop(end, 1);

Algorithm 1: Algorithm sketch for the calculation of knock-on delays and schedule length in the

proposed simulation tool
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Appendix B. Input Parameters for Scenario 2 in Section 3.4

In the second example we simulated n = 300 trains with 500 runs in 0.1 minute steps. In Table B.1 the

minimum headway times for the second example are given for long distance trains (ldt), local trains (lt) and

freight trains (ft). Table B.2 gives the remaining train parameters for the simulation.

headway times ldt1 ldt2 lt1 lt2 ft1 ft2

ldt1 3 3 3 3 3 3

ldt2 4.4 4 4 4 4 4

lt1 6 5.5 5 5 5 5

lt2 8 7.5 6.2 6.2 5.8 5.8

ft1 10 10 8 8 7.6 7.6

ft2 13 13 12 11 11 9.3

Table B.1: Minimum headway times for the second example

ldt1 ldt2 lt1 lt2 ft1 ft2

pdel 0.5 0.5 0.6 0.25 0.6 0.6

tdel 5 5 4.5 2 10 10

probability in % 12.5 12.5 25 25 20 5

Table B.2: Train parameters for the second example
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