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Abstract
Traffic variability is well known to have a substantial effect on railway capacity. Varying
train running and stopping times entail larger train separations and yield non-usable time
slots in train timetables and operations. In this paper, we aim to assess the effects of uncer-
tainty in running and dwell times on the capacity of railway corridors in long term planning
of rail traffic. Our main focus are commuter and metro systems, where the effects of fluctu-
ations of running and stopping times are particularly pronounced due to dense operations.
To analyze the effects of variability in train operations, we propose a new stochastic ap-
proach based on a serial queuing network with finite capacity service stations. The corridor
is modeled as a sequence of heavily correlated service stations representing line segments
and stations, for which effective throughput, distributions of train running times and service
quality are calculated. The performance of the model is tested in a case study for the central
link of the mass transit system in Cologne. In addition, an outlook on how the model can be
extended to general heavy-rail corridors with different types of train services is provided.
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1 Introduction

Planning for the unplanned is arguably one of the most challenging aspects in railway op-
erations research. Uncertainty and randomness enter in the form of varying running times
and delays in train operations or differing train path requests, train sequences and headways
in the capacity allocation process.

Long term planning, where strategic decisions with long-lasting effects on the appear-
ance of rail networks are taken, is particularly susceptible to variations in traffic evolution
forecasts. Due to the infrastructure’s long renewal cycles of the order of 30 years, traffic
demand, driving characteristics and timetable structure will almost surely change within its
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designated lifetime. At the same time, infrastructure design is accompanied by high invest-
ment costs and hence poses a substantial financial risk to the infrastructure manager. For
this reason, the infrastructure should be robust against deviations from the envisioned traf-
fic concept and flexible and performant enough to allow for changes in timetable structure.
It is this strategic long-term planning view on infrastructure and line concepts, which is
independent of the exact train sequence in the timetable, we adopt in this paper.

In this context, we investigate the effects of traffic variability on rail capacity. It is well
known that variations of train running times, station stopping times, driving characteristics,
and headways tend to have a negative effect on rail capacity (UIC, 2004; Dingler et al.,
2013). This is all the more true if the traffic concept itself is subject to uncertainty and
hence contributes to the heterogeneity of rail traffic in the sense of varying line frequencies
and train headways.

Presently, most methods in capacity analysis have been focusing on either service or
timetable variability: The effects of stochastic train running times have been studied using
algebraic approaches in (Goverde, 2007; Huisman and Boucherie, 2001; Meester and Muns,
2007). Similarly, delay propagation modeling with stochastic running times or in view
of random perturbations has been reported (Yuan and Hansen, 2007; Büker and Seybold,
2012). These models generally build on a fix train order as the number of possible train
combinations in case of random timetables becomes untractable.

Another aspect of service variability is traffic heterogeneity. In the field of capacity
analysis, traffic heterogeneity is generally reviewed in its effects on infrastructure occupa-
tion (UIC, 2004) or a-posteriori simulations (Warg, 2012; Dingler et al., 2013), where the
sum of reciprocal headways (SSHR) has been introduced as a measure of heterogeneity
(Vromans, Dekker, and Kroon, 2006). Timetable variability is accounted for by ensemble
averaging techniques (Jensen et al., 2017; Lindfeldt, 2010) or with probabilistic approaches
to train order and headways and a deterministic or statistic description of train running times
(Schwanhäußer, 1994). Queuing models, which are naturally suited to cope with both ran-
dom timetables and service processes, suffer from the fact that they can only be applied
locally (Schwanhäußer, 1994; Wendler, 2007) or make simplified assumptions on service
time statistics and station capacity (Huisman, Boucherie, and van Dijk, 2002). What is
more, they generally rely on an abstracted representation of the infrastructure rendering the
localization of infrastructure effects extremely difficult.

In the present paper we show how variability effects can be investigated on the system
level in a timetable independent a-priori model. To this end we introduce a new queu-
ing network approach to model rail corridors, which draws from techniques used to model
production lines in manufacturing system analysis. Directional track segments are viewed
as finite buffer work stations in a service network. By modeling block sections or track
segments as finite capacity queuing stations, network correlations such as the spillback of
delays resulting from capacity limitations can be accounted for. This allows to pinpoint
infrastructure bottlenecks as well as their effects on the traffic situation on the corridor. In
addition, the effectiveness of infrastructure adjustments with respect to the overall network
performance can be studied.

While still being hard to solve for general service processes, efficient numerical ap-
proaches for performance analysis of this type of systems have been discussed in the context
of manufacturing systems (cf. Curry and Feldman (2011) for an introduction to the topic). It
has been shown that the negative effects of variations on capacity can be understood by two
main factors: Blocking and starvation. Blocking refers to the fact that a request finishing



its service at a service location cannot proceed to the next location as the next server is cur-
rently dealing with another request and no storage capacity is available. Starvation denotes
the situation that a service station is forced to idle as requests can not be supplied on time
by the upstream queue, such that precious service capacity is wasted.

Building on previous work by Buzacott, Liu and Shanthikumar (1995), Tempelmeier
and Bürger (2001) and, more recently, Bierbooms, Adan and van Vuuren (2013), both the
effective running times and maximum achievable throughput including the propagation of
network effects due to service time variation can be calculated. It is important to point out
that the achievable throughput does not correspond to the absolute or theoretical capacity
known from deterministic modeling of railway capacity, but yields a smaller value which
already takes into account the effects of variations.

In this paper we demonstrate the use of the model in traffic planning for rail corridors.
It is shown how the methodology can be used to determine the maximum number of trains
that can be operated on a corridor such that a) the system remains stable in view of varying
train running and station dwell times and b) the effective running time remains bounded by
a certain threshold value given correlations are accounted for. The focus of this paper is on
heavily loaded central corridors of metro transit systems. Here, the question of the maxi-
mum feasible frequency of trains that can be operated on the corridor is central – especially
for traffic planning during peak hours. We test our methodology in a case study based on
the central commuter rail corridor in Cologne, Germany.

Nonetheless, the method is not limited to metro transit applications. In an extended
outlook we also explore an option to use the model in the context of general heavy rail
corridors with different types of train services. Here, significantly differing train speeds and
the possibility to swap train order in stations introduce additional complexity.

Apart from providing a more detailed understanding of the effects of variability on the
available capacity, our methodology allows to perform a structural investigation of the rail-
way infrastructure. It provides the means to detect bottlenecks resulting from collaborative
effects between different network elements, which – individually – may be subcritical. The
effective train running times established with the method and their deviation from input
running times can also be used to derive an approximation of delay build-up or (in case
minimum technical running times are used as input) as an indication on the optimal alloca-
tion of buffer times and timetable supplements.

In the following section we start by briefly reviewing the literature on railway capacity
analysis, focusing on previous work on variability as well as queuing models for rail traffic
modeling. Our model as well as its solution is described in Section 3. The functionality
of our method is demonstrated in a case study based on the central link of the Cologne
commuter rail system. Possibilities to extend the model to more general rail corridors with
different train types and overtakings are discussed in Section 5.

2 Literature Review

2.1 Railway Performance Modeling

The main goal of railway capacity planning is to assess the number of trains that can be
operated on a given part of the railway infrastructure within a certain time period. Different
capacity metrics, such as absolute capacity, denoting the maximum number of trains that
can theoretically be scheduled, the occupation ratio (i.e. the time share the infrastructure



is occupied) or the height and probability of delays have been used (Abril et al., 2007).
While the absolute capacity is relatively easy to access analytically, it is is usually hardly
achievable in railway systems, which is why the service level dependent practical capacity
based on quality metrics such as delays and occupation is much more widespread.

In medium term tactical planning, capacity analysis most often relies on an existing
operational concept or even a fully constructed timetable. Optimization approaches for as-
sessing the absolute capacity of railway networks have been proposed by Burdett and Kozan
(2006) for general, non-periodic timetables. For periodic timetable a max-plus approach to
calculate mean cycle lengths has been discussed by Goverde (1998). The same approaches
can also be used to determine whether a feasible timetable can be generated and the amount
of slack that can be incorporated in a timetable. Cacchiani, Caprara and Toth (2010) provide
a time dependent routing problem to schedule extra freight trains in an existing passenger
timetable concept.

Timetabling approaches have also been discussed in conjunction with service depen-
dency. Goverde (2007) proposes a max-plus technique to assess the mean cycle length of
a periodic timetable in the presence of delays progressing in the network. Burggraeve and
Vansteenwegen (2017) aim for an analysis of timetable robustness and an optimized alloca-
tion of timetable reserves.

Arguably, the most generally used method of capacity analysis is the timetable compres-
sion method according to UIC 406 standard, where the occupation ratio of timetables is as-
sessed (UIC, 2013). Various adaptations have been discussed, e.g. for application to stations
and junctions or to incorporate overtakings within the line segment to avoid underestimating
capacity utilization due to the negligence of correlations (Landex et al., 2006; Kuckelberg,
Gröger, and Wendler, 2011). While the method is defined based on infrastructure utilization
as a capacity metric it has also been used synthetically in timetable saturation approaches to
determine the residual number of trains that can be scheduled (Lindner, 2011).

For long term planning and infrastructure planning, in particular, timetable based ap-
proaches are not optimally suited, as either no detailed timetable concepts are available or
– in case they do – the latter are subject to sincere modification during the typical lifetime
of railway infrastructure. This is why the picture provided by a purely timetable based
approach – while being more exact for a single timetable – remains incomplete. By inves-
tigating a single timetable only, infrastructure bottlenecks tend to be masked by a timetable
concept which is optimally designed to accommodate for theses shortcomings.

Ensemble averaging has been introduced as a workaround for this problem. Jensen et
al. (2017) have recently provided a graph theoretical modeling of train interactions based
on sectional minimum headway times and provided an algebraic approach to calculate the
mean cycle length, and hence the infrastructure occupation both locally and network-wide.
Unlike other algebraic techniques, such as the approaches in Büker and Seybold (2012) or
Goverde (2007), the approach provided by the authors does not require a given train or-
der, but performs a distributional analysis of timetable realizations based on Monte-Carlo
sampling. A similar idea has been pursued by Lindfeldt (2010) in the so-called Timetable
Variant Evaluation Approach (TVEM), where a sample of timetable variants has been in-
vestigated using a posteriori traffic simulations with RailSys to calculate average delays for
a given infrastructure.

Stochastic models have also been used in this context. Yuan and Hansen (2007) and
Büker and Seybold (2012) discuss delay propagation models to calculate arrival punctuality
and knock-on delays based on distributional assumptions on buffer times and initial delays.



While no specific timetable is required, train order is assumed to be given. The variability
of driving parameters such as running times and minimum headway times, however, is not
accounted for. A generalization to general running times is however possible and has been
described by Huisman and Boucherie (2001) and Meester and Muns (2007).

Another class of capacity models reflecting variability effects are queuing methods.
Queuing based approaches to assess the required number of station tracks based on train
waiting probabilities have been discussed by Potthoff (1962); Hertel (1984) and Landex
(2011). For line sections and route nodes queuing based approaches to assess the scheduled
waiting times have been developed by Schwanhäußer (1994) and Wendler (2007). Knock-
on delays for both line segments (Schwanhäußer, 1974; Weik, Niebel, and Nießen, 2016)
and station threads (Nießen, 2013) have been assessed in a delay propagation model adopt-
ing a queuing system perspective of the railway infrastructure and using queuing theory
results to extrapolate heavy traffic limits. Weik and Nießen (2017) recently introduced a
generalization, where service times are modulated according to the current state of the in-
frastructure.

Most queuing models presently used in the railway context have been used in a local
setting for the analysis of individual line segments, station threads or route nodes. Huisman,
Boucherie, and van Dijk (2002) discuss a queuing network approach to analyze an entire
railway subnetwork. While being restricted to exponential service times for solvability, the
authors propose an expansion technique to model lines as a series of M/M/1-queues, such
that the free (unimpeded) phase-type distributed running times on line segments match the
first two moments of given running time statistics.

Queuing network models with more general service processes can rarely be solved an-
alytically due to correlations between service stations. The same holds true for finite ca-
pacity queuing networks, where the waiting area in front of service stations is limited. Yet,
the restriction to infinite capacity server stations limits the usability of queuing network ap-
proaches as spillbacks of delays in the network cannot be modeled. Osorio and Bierlaire
(2009) have provided an approximation scheme for road traffic, where the stationary dis-
tribution and the blocking parameters of the queues are solved consistently as a nonlinear
system of equation. However, the model is unable to cope with non-exponential service
times.

Additional insights can be gained from queuing network models used in the context
of manufacturing systems. Here, production lines with general servers and finite capac-
ity have successfully been solved using numerical approaches. Two main approaches can
be distinguished: Decomposition methods (Gershwin, 1987), where the production line is
decomposed into a series of tandem server queues, which – individually – can be solved
analytically. Correlations are accounted for in an iterative forward-backward updating pro-
cedure until the queue performance parameters in the production line are consistent. The
second approach is an expansion technique introduced by Kerbache and Smith (1987). Here,
finite capacity stations are expanded by a dedicated holding node to which blocked requests
are routed probabilistically.

An important conclusion that can be drawn from queuing network models used in this
area is the fact that, on the system level, the maximum capacity in the presence of vari-
ability is far lower than in deterministic systems, where the slowest queue determines the
achievable throughput. To the best of our knowledge, no a-priori investigation of the effects
of service time variability on the maximum achievable capacity in railway systems on the
system level has been undertaken.



3 Method

3.1 Queuing Network Models

In the present paper we explore queuing based modeling of railway systems. Similar to the
approach by Huisman, Boucherie, and van Dijk (2002), railway corridors are represented by
a series of queues, where service times are fitted to train running times on the correspond-
ing infrastructure. However, we do not pursue a Jackson network approach, where each
queue is modeled as an M/M/1-queue with infinite capacity. In our model, queues are
allowed to have general arrival and service processes and finite capacity, such that the phys-
ical infrastructure restrictions on train access are reflected in the topology of the model.
A correspondence of block sections and queuing stations is incorporated by taking block
sections to be G/G/1/0-queues, such that blocking and spillback are accounted for. The
method we propose is capable to treat feed-forward type networks, i.e. networks without
cycles, such that directionality can be defined in the network. This allows to investigate rail
corridors and many urban transit networks.

Correlations between queues naturally arise in case of non-exponential holding times,
which makes general queuing networks hard to solve and often only numerically or approx-
imately tractable. For general queuing networks the arrival process of a queue is correlated
with the service process of its predecessor queue. This requires an explicit modeling of

• starvation, where Queue i is depleted and forced to idle until the next request has
finished service at predecessor queue i− 1.

• Additionally, finite capacity entails blocking. That means that a request finishing
its service at Queue i cannot transfer to Queue i + 1, because the buffer in front of
the successor station is full or – in case the successor station has buffer size 0 – the
successor queue is currently still serving another train.

Blocking and starvation render the effective throughput of queues within a network context
smaller than the corresponding throughputs of the queues in isolation. This fundamental
queuing theory result is well known in the context of railway capacity under the term “net-
work effects”. In Landex et al. (2006), for instance, the influence of the observation area has
been investigated for the Danish railway network. Delays of a railway line were found to be
almost 72% higher in case the entire Danish railway network was considered as compared
to the case where the line was analyzed in isolation.

Due to their stochastic nature queuing-based models are unsuited to provide insights
into situations where highly structured (periodic) timetables with detailed connectivity in-
formation are prevalent. Still, they allow to investigate the system’s general behavior as well
as to identify infrastructure bottlenecks, which makes them particularly suited for long-term
planning purposes.

3.2 Modeling of Railway Corridors

For the modeling of double-track railway corridors we assume service stations in the queu-
ing network correspond to block sections on the infrastructure, i.e. we consider a linear
network of G/G/1/0-queues. The two directional tracks of the corridor are modeled as
two independent queuing lines as track changes are not performed in regular operations due
to the negative implications on capacity.



Figure 1: Modeling of railway infrastructure as a linear queuing network.

Metro transit systems, that we are primarily interested in in this paper, typically exhibit
similar train patterns, stopping policies and driving characteristics. As a result, we can
restrict ourselves to a single customer class.

Service times of the single queues correspond to train running times in the correspond-
ing block. Strictly speaking, simultaneous occupations of neighboring blocks to model
approach and clearance times would have to be considered (Pachl, 2014). These effects can
theoretically be incorporated in the model by resorting to service stations with correlated
arrival and service process – which can be either aborded analytically (cf. Mitchell and van
de Liefvoort (2003)) or via complicated phase-type distributed service and arrival processes
as in Bierbooms, Adan and van Vuuren (2013). As the main source of variation as well as
the critical elements in mass transit systems are station stopping times, the effects of this
approximation generally are not that pronounced.

3.3 Solution Technique

Overview
G/G/1/N -feed forward queuing networks can be solved with Gershwin (1987)’s decom-
position technique. The basic idea consists in decomposing the network into a sequence of
N − 1 tandem queuing systems, i.e. queuing networks consisting of two servers and one
buffer between the two servers (which can have size 0 for queues without waiting capabil-
ity). This simple queuing network is well understood and can be solved exactly (cf. Gersh-
win (1987)). The departure server of subsystem i equals the arrival server in subsystem
i+1 (see Figure 2). The departure server of subsystem i is blocked if the buffer (or the next
queue for zero-storage queues) in system i+ 1 is full at the instant of a service completion.
Equally, the arrival server of system i+ 1 is starved if the buffer in system i has run empty
once the last customer completes its service in subsystem i+ 1.

To correctly catch the dependencies between the servers in the network and to analyze
blocking and starvation effects, a backward-forward iteration scheme has been introduced
by Gershwin (1987). It consists of two steps:

• A forward propagation pass of the network, where the service rate of the arrival server
in subsystem i + 1 is updated by the idling rate of the departure server in i. This
accounts for starvation as the starvation probability of arrival server Ai+1 is given by
the probability that server Di idles.

• A backward propagation pass, where the service rate of the departure server in sub-
system i − 1 is prolonged by the blocking probability and duration of subsystem i.
The blocking probability of system i denotes the probability that buffer i → i + 1 is
full upon service completion at server Di−1.



Figure 2: Decomposition approach for finite capacity serial queuing networks. The series
of N queues is decomposed into N − 1 tandem server subsystems.

After each updating of the input parameters of a queue its queue length distribution and
the performance parameters, i.e. blocking and starvation probability pb and ps, as well as
the effective throughput TH of the subsystem, are updated. The forward-backward passing
procedure is repeated until convergence of the line’s throughput is achieved. An schematic
overview of this well-known forward-backward algorithm is given in Algorithm 1.

Initialization;
Initialize departure and arrival server. ;
Set mean service rates and coeff. of variation to values for corresponding queue

(i.e. ps = 0, pb = 0, and TH = 1/D(1) are assumed at the start);
Iteration;
while |TH − THold| > ϵ do

THold = TH;
for i = 2 : nqueues do

A(i) = S(i) +
1

TH(i− 1)
−D(i− 1)︸ ︷︷ ︸

starvation

;

update c2A(i);
ρ(i) = D(i)/A(i);
Calculate new TH(i) based on queue length distribution of subsystem i;

end
for i = nqueues − 1 : 1 do

D(i) = S(i) +
1

TH(i+ 1)
−A(i+ 1)︸ ︷︷ ︸

blocking

;

update c2D(i);
ρ(i) = D(i)/A(i);
Calculate new TH(i) based on queue length distribution of subsystem i;

end
end

Algorithm 1: Backward-Forward Propagation Algorithm.



S(i) denotes mean service time of Queue i, D(i), A(i), c2A(i) and c2D(i) are the mean
and the squared coefficient of variation (SCV) of the service time of the departure and
arrival server in subsystem i. For a more detailed description of the solution technique see
also Tempelmeier and Bürger (2001) or Buzacott, Liu and Shanthikumar (1995).

3.4 Subsystem Analysis

In the subsystem analysis in the iteration the performance parameters and the new through-
put is estimated based on the stopped arrival queue approximation introduced by Buzacott
Buzacott, Liu and Shanthikumar (1995). It deviates from well known loss systems in that
the arrival process is stopped once the buffer to the subsequent server is full. Here, arrival
volumes are temporarily adjusted so as to avoid the situation that requests arriving to a full
queue are lost. This allows to adjourn arrivals to subsystem i in case buffer i is full for the
residual service time of the departure server Di.

The approximation is based on the assumption of a geometric behavior of the stationary
queue length distribution in the GI/GI/1/N -queue, i.e.

πi = σπi−1, (1)

and builds on results for the GI/GI/1/∞-queue. The basic idea is to re-scale the results
for the GI/GI/1/∞-queue, such that the finite capacity of the GI/GI/1/N -queue is ac-
counted for and the maximum number of customers in the system is delimited by N + 1.
Based on the queue length distribution the throughput TH and the expected number of
customers Ncust in a finite capacity stopped arrival queue can be calculated by

TH = λ · 1− ρσN−1

1− ρ2σN−1
, (2)

where the scaling parameter σ is given by σ = N−ρ
N and

Ncust =
ρ2(1− c2S)

2(1− ρ)
· c

2
A + ρ2c2S
1 + ρ2c2S

+ ρ (3)

is an approximation of the average number of customers in the GI/GI/1/∞-queue. For the
rather technical derivation of the stopped arrival queue approximation the reader is pointed
to the textbook by Buzacott and Shanthikumaer (1993).

Please note that the general procedure of obtaining the throughput from the stationary
distribution is not based on the stopped arrival queue approximation, but can be derived from
any approximation of the stationary queue length distribution of the GI/GI/1/N -queue via

TH =
∑
i>0

πiµ, (4)

where π is the stationary queue length distribution and µ the service rate. This has recently
been exploited in Bierbooms, Adan and van Vuuren (2013) and allows for generalization to
G/G/1/N -queues, i.e. queues with correlated arrival and service processes. In Bierbooms,
Adan and van Vuuren (2013), the authors have approximated the arrival and service pro-
cesses in G/G/1/N -service stations by phase-type distributions, such that the subsystems
can be solved with standard Markov chain techniques on an extended state space.



While the mean values of the service times of the arrival and departure servers are up-
dated in the forward and backward iteration steps as presented in Algorithm 1, the question
remains how to approximate the variation of the arrival and departure processes in the finite
capacity queue in the presence of blocking and starvation. The fact that some trains are
blocked with probability pB and receive a prolonged service, whereas others are not, tends
to increase the variation of the service process. Hence, for more precise results, an update of
the squared coefficient of variation of the arrival and departure servers is given by Buzacott,
Liu and Shanthikumar (1995):

c2D(i) =
(c2S(i) + 1)S(i)2 + pb(i)((c

2
D(i+ 1) + 1)D(i+ 1)2 + 2 · S(i)D(i+ 1))

D(i)2
− 1.

A similar estimate can also be derived for the SCV of the arrival server based on the starva-
tion probability ps(i):

c2A(i) =
(c2S(i) + 1)S(i)2 + ps(i− 1)((c2A(i− 1) + 1)A(i− 1)2 + 2 · S(i)A(i− 1))

A(i)2
−1.

However, it was found in (Tempelmeier and Bürger, 2001) that Algorithm 1 works best if
either cA or cD are modified, but not both.

3.5 Performance Indicators

The two main performance indicators we investigate in this paper are the average throughput
and the trains’ mean running times in the network segments, individually, as well as for the
entire train route.

Throughput determination is what the decomposition approach has primarily been de-
veloped for. It is obtained as a direct result from the backward forward algorithm. As a
performance indicator, the throughput of the queuing network allows to calculate the max-
imum number of trains that can be accommodated by the system under given service time
fluctuations and network correlations. As such, the throughput can serve as an indicator for
the absolute achievable capacity, such that the system remains stable. Please note that this
does not correspond to the absolute or theoretical capacity used previously in the railway
context as the latter is based on deterministic running times. Throughput rather relates to
the minimum cycle times in stochastic approaches as in Goverde (2007).

While throughput defines a stability criterion for railway operations on densely operated
corridors, most corridors are not operated to capacity as this would imply heavy tolls on
running time and delays. This is why the effective running time at a specific traffic load
might be better suited as a capacity metric than the maximum throughput. To obtain this
performance indicator from the decomposition approach a slight trick is required: We add
an additional (virtual) server with infinite waiting space at the beginning of the queuing line
that can never be starved and whose service time matches the statistics of train arrivals to
the corridor. As this server is never starved, i.e. there always is a train waiting at a service
completion epoch, the departure process of this server is identical to the desired arrival
process. As a consequence, it produces arrivals to the first “real” server at a the service rate
of this virtual server and we can investigate the performance of the corridor given a specific
traffic load and statistics.



3.6 Validation

To validate the queuing approach we compare the analytic results to simulation results ob-
tained with a discrete event simulation of rail traffic on the corridor. Extended timetables
with several thousand trains are used in the simulation to make the results comparable to the
stationary results in the queuing approach and to avoid underestimating system performance
parameters due to finite size effects in the simulation. Trains are generated randomly and
taken to have random running and stopping times in the simulation. Both arrival intervals
and train running and stopping times are taken to be hypo-exponentially distributed, a gen-
eralization of the Erlang distribution that allows for matching of continuous values of the
SCV. In our model hypo-exponential distributions are matched to the first two moments of
train running times on the corresponding infrastructure (cf. Weik and Nießen (2017)).

In Figure 3, the queuing theory approximation of the throughput is compared to the
simulation results for different variation of the queue service times at the individual queues
in the queuing systems. In addition, the theoretical (absolute) capacity in a deterministic
scenario corresponding to the slowest queue’s throughput, is depicted as a red dashed line
for reference. A line consisting of 20 queues has been considered, where the mean queue
service times are chosen randomly uniformly distributed in the interval between 1.5 min
and 2.5 min – of the order of minimum headway times in mass transit systems. An average
over 20 random system designs, i.e. 20 different infrastructures has been performed.

Figure 3: Comparison of queuing approximation and simulation of throughput. Throughput
in deterministic systems (reciprocal of processing time of slowest queue) is added as a refer-
ence. An average over 20 different queuing infrastructure realizations has been performed.

It can be seen that the queuing method approximates the simulated results reasonably
well. Whereas for small variations of service times at the individual queues – which are
typical for train running times – the analytic approach tends to slightly overestimate the
throughput. For large variation, a slight underestimation of the throughput is found. What is
particularly striking in Figure 3 is that the theoretical absolute throughput in a deterministic



system, which is governed by the slowest queue, i.e. the infrastructure segment with the
largest running time, largely overestimates the actual throughput of the system, especially
for large variations of running times.

Looking at the effective service times of trains at the single queues in Figure 4 for
two single realizations with high variation explains why. In a scenario, where all queues
have approximately the same service times of about 1 min and c2S = 0.7, delays are back-
propagated, such that blocking effects run back along the line and yield ever-increasing
running times of trains. As a consequence, the entry to the beginning of the line serves as a
bottleneck.

To further investigate this effect we consider a second scenario where the first 10 queues
have 40% increased mean service times as compared to the second half of the system and the
variability of the last 10 queues is significantly lower (c2S(11− 20) = 0.1 vs. c2S(1− 10) =
0.7). A similar scenario could for example occur if the infrastructure state changes on the
corridor, such that the mean block length is significantly larger in the first segment of the
corridor.

As Figure 4 shows, the effective service times of the last queues remain stable and the
back-propagation of delay only occurs within the bottleneck area 1 to 10. These very pro-
nounced spillback effects cannot be covered in a simple deterministic bottleneck analysis,
which is why the corresponding throughput in a deterministic scenario is largely overesti-
mated.

Figure 4: Comparison of approximated and simulated service times at maximum throughput
in case of strong variations (c2S = 0.7). The black curve depicts a scenario where the
effective service times of all queues is in the range of 1 min. In the second (red) scenario,
service processes have been updated such that the first 10 queues have 40% higher service
times and the second ten queues have reduced variation (c2S(11− 20) = 0.1).



In practice, however, corridors are rarely operated close to saturation, which is why the
effective train running times at a specific traffic load are more relevant to estimate service
quality – and hence capacity utilization on the corridor. Figure 5 provides a comparison of
the queuing approximation and the simulation results for different traffic loads. Again, a
system consisting of 20 queues, with railway typical low SCVs of 0.1 is considered. Mean
service times are chosen smaller this time to account for shorter block lengths and short
stops encountered in metro systems.

As described in the previous Section, a given traffic load is enforced in the queuing
model by introducing a virtual starting queue whose service process corresponds to the
arrival statistics. It can be seen that the queuing model provides a reliable approximation
of the effective service times in this scenario, as well. Only for high load factors over 50%
(defined in terms of the deterministic system, i.e. with respect to the slowest queue’s service
time) the deviations between approximation and simulation start to increase. However, load
factors of this order are already close to the theoretical maximum throughput of the system.

Figure 5: Effective mean train running times on the different track segments as a function
of the traffic load on the corridor. Comparison of analytic queuing and simulation results.



4 Case Study: Cologne Commuter Rail Corridor

In the following, we apply the queuing based approach in a case study for performance anal-
ysis of Cologne’s main commuter rail (S-Bahn) corridor. The central link on this corridor
spans the three stops Cologne Hansaring, Cologne Main Station and Cologne Deutz and is
delimited by the station Cologne Hansaring to the west and Cologne Posthof intersection to
the east (see Figure 6). The central link consists of a total of 11 block sections. It is operated
by four commuter rail lines (+ an additional line during peak hours), which all converge on
this central link. Each line is operated with a regular frequency of 20 minutes, and addi-
tional trains during peak hours. Train services are operated with Bombardier/Alstom trains
of type BR 422 and BR 423.

K Messe/DeutzKöln HbfK Hansaring

S6S11

K Nippes/Neuss

S13/S19
S12

K Ehrenfeld/Horrem

S6 S11

K Mühlheim

S13/S19
S12

K Trimbornstr./Troisdorf

Figure 6: Cologne commuter rail network with central corridor.

The train running times on the corridor are calculated using LUKS®(Janecek and Wey-
mann, 2010), the standard timetable planning tool of DB Netz AG in Germany. The squared
coefficient of variation of scheduled stops is assumed to be 0.5, on other block segments 0.1
(see Table 1) to model that stopping times tend to be more variable than free running times
on intermediate track segments.

Table 1: Input data Cologne commuter rail corridor. Driving Times in seconds.

Block 1 2 3 4 5 6 7 8 9 10 11
- - stop - - stop - - stop - -

S 24 14 103 24 26 92 53 20 77 21 26
c2S 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1

With the throughput variant of the queuing-based solution routine we find the maxi-
mum throughput of the Cologne S-Bahn corridor to be 0.541/min, which is about 7% less
than the deterministic value of the slowest block which has a deterministic throughput of
0.5825/min, individually. That means that the densest train sequence which still yields sta-
ble traffic on the corridor consists of a train frequency of 1/1.85min. The relatively small
deviation from the absolute deterministic throughput indicates that, on the whole, variabil-
ity has a significant, but no dramatic effect on the corridor capacity. The relatively large
stopping time fluctuations do not seem to provoke a catastrophic backlog of delays.

However, the effect might be more pronounced on longer corridors with the same pa-
rameters. To test this, we prolong the Cologne commuter to generic, longer corridors by
adding replicas of itself, i.e. we consider multiples of the corridor. The results are depicted
in Table 2. It can be seen that the throughput decreases almost linearly in the system size,



yet with a very moderate slope such that the length of the corridor has a visible, but not
dramatic effect on system performance.

Table 2: Throughput as a fct. of corridor length (multiples of Cologne comm. rail corr.).
Corridor length real double 3 times 5 times 10 times

Throughput (analytic) 0.541 0.533 0.527 0.519 0.499
Throughput (simulation) 0.496 0.481 0.473 0.465 0.458

In Figure 7, the effective running times on the corridor for varying traffic load are de-
picted. Like in Figure 5 before, traffic load here refers to the deterministic utilization, i.e. a
traffic load of 0.5 corresponds to an arrival rate of 0.5/max(S), not to the throughput of
the entire queuing network. It can be seen that especially the block segments immediately
in front of scheduled stops show a significant increase of running times. Here, trains enter-
ing the stations are blocked by preceding trains whose exceeding their scheduled stopping
times, such that delays spill back to the previous line segment.

For high traffic load the effective service times of the individual queues approximated
with the queuing approach are not as precise as the throughput and tend to underestimate
running times as can be seen from Figure 7 and the mean total running times of trains on
the entire corridor in Table 3. This deviating behavior can possibly be explained by the cal-
culation of the blocking probability using a two-moment approximation of the queue length
distribution in the stopped arrival queue approximation. The approximation quality of the
queue correlations and train running times, especially at high traffic loads, could possibly
be improved by turning to a more detailed phase-type based modeling of the subsystems in
the decomposition approach as, for instance, proposed by Bierbooms, Adan and van Vuuren
(2013).

Figure 7: Total running times of trains as a function of traffic load.



Table 3: Running time (min) on corridor as a function of traffic load. The free running time
on the corridor is 8 min.

ρ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

QN 8.18 8.22 8.27 8.32 8.39 8.46 8.54 8.63 8.74 8.87 9.02
sim. 8.10 8.18 8.25 8.38 8.59 8.89 9.08 9.42 10.05 10.79 11.46

5 Outlook to Modeling Options for General Heavy-Rail Corridors

So far, we have discussed applications of single class queuing networks. For metro transit
systems with homogeneous traffic concepts this yields realistic results. For more general,
heavy rail corridors the situation is more complicated as driving characteristics of trains
vary strongly. Different classes of trains need to be considered as running times and stop-
ping policies vary between trains. However, additional complexity is introduced by the
possibility that interactions between the train types and shared infrastructure use has to be
incorporated. From a purely mathematical point of view this, nonetheless, remains viable
as long as the resulting graph is acyclic.

Assuming an optimized dispatching routine that ensures that slow trains are overtaken
by fast trains in stations whenever a conflict would occur on the subsequent line segment a
generalization to multiple train types can be given. As track occupation conflicts are solved
by overtakings and train class changes in stations, queuing centers between stations do not
have to correspond to block sections, any more. Instead, a modeling approach similar to
Huisman, Boucherie, and van Dijk (2002) can be used, where line segments are represented
by three queues: The first and the last one being G/G/1/0-queues, enforcing minimum
headways on the following line segment and at station entry, and a G/G/1/∞-queue in the
middle representing the residual running times on the line segment.

In case of infinite station capacity, this would have implications on slow trains only,
which suffer a prolonged station dwell time when put into siding. These overtaking block-
ing effects can be modeled probabilistically or based on extrinsic parameters from operation
data or fast asynchronous simulations of overtakings (also see Lindfeldt (2010) for param-
eter estimation of overtaking durations). These simulations, which only consider train re-
ordering in stations provide an efficient way to estimate the probability and duration of
overtakings in stations (also see Weik et al. (2019)), such that the queuing approach pre-
serves its advantage against parametric simulation. Fast trains would never get delayed as
conflicts are assumed to be solved in the previous overtaking station. In reality, however,
station overflow, i.e. the situation that a train siding cannot be performed as no station tracks
are available, occurs. In this case, a fast train is required to run behind a slower train on the
upcoming track segment. We propose to model this situation in the queuing network by a
probabilistic class change on the upcoming line segment. The routing is reversed at the next
station, where the fast train is routed back to the fast line to get the correct stopping policy.

Figure 8 gives a schematic description for two train classes. The model can of course be
extended to multiple trains by introducing additional lines. In this case, additional informa-
tion on class change probabilities depending on the type of the preceding train is required.
Note that the fact that the model assumes class changes occur at the beginning of the line
segment is a simplification. The situation that fast trains get caught at some later point on
the line segment can be included by splitting the residual running time queue (i.e. the cen-



Figure 8: Modeling of heavy rail corridors as a multi-class linear queuing network with
customer class switches.

tral G/G/1/∞-queue on line segments) into multiple queues and introducing class change
probabilities to the slow class such that the resulting Coxian distribution matches the distri-
bution of running time prolongation for the fast trains.

6 Conclusion

We have investigated the effects of traffic variability such as the stochasticity of train running
and stopping times on the capacity of rail corridors. It has been found that irregularities
spilling back in the network have a substantial impact on the train frequency that can be
stably operated on rail corridors. By adopting queuing theory techniques previously used
to describe production lines in manufacturing systems the throughput and the effective train
running times on rail corridors without precise timetable data can be obtained. The general
validity of the approximation has been demonstrated by comparison to stochastic simulation
of train traffic and the method has been applied in a case study for the analysis of the
commuter rail’s central corridor in Cologne, Germany. Finally, an option to generalize the
queuing methodology for general rail corridors allowing to additionally incorporate multiple
train classes and blocking/overtaking effects has been discussed.
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Potthoff, G., 1962. “Verkehrsströmungslehre Band 1: Die Zugfolge auf Strecken und in
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