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Abstract

In this work we describe an algorithm to generate tree-decomposable minimally

rigid graphs on a given set of vertices V . The main idea is based on the well-

known fact that all minimally rigid graphs, also known as Laman graphs, can be

generated via Henneberg sequences. Given that not each minimally rigid graph

is tree-decomposable, we identify a set of conditions on the way Henneberg steps

are applied so that the resulting graph is tree-decomposable. We show that the

worst case running time of the algorithm is O(|V |3).

Keywords:

Minimally rigid graphs, Laman graphs, Henneberg sequences, Geometric
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1. Introduction

We address the problem of generating tree-decomposable minimally rigid

graphs, also known as Laman graphs, by applying sequences of Henneberg con-

structions on a given set of vertices.

This kind of graphs are of interest in graph-based geometric constraint solv-5

ing and its applications in many different fields, such as computer-aided design,

molecular modelling, tolerance analysis and theorem proving. In graph-based

geometric constraint solving technology, the problem is defined as a rough sketch

1Email Address: mhidalgo@cipf.es
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of an object made out of simple geometric elements. Then the user selects the

intended exact shape by annotating the sketch with constraints. The resulting10

annotated sketch is captured as a graph where vertices are geometric elements

and edges are the constraints. Finally, a geometric constraint solver checks

whether the set of geometric constraints coherently defines the object and, if so,

determines the position of the geometric elements.

The success of the geometric constraint solver depends to a great extent15

on the combinatorial properties of the graph. If the graph is minimally rigid,

the geometric constraint problem defines a rigid object and, consequently, the

solution to the constraint problem has finitely many solution instances, [1]. If the

graph is tree-decomposable, tools developed in graph-based geometric constraint

solving can be applied to solve the constraint problem at hand, [2, 3, 4, 5, 6].20

It is well known that the set of graphs generated by Henneberg sequences

and the set of minimally rigid graphs is the same set, [7, 8, 9, 10]. However,

not every minimally rigid graph is tree-decomposable [11, 12]. Hence, the idea

that guided this work was to find out conditions on the application of Hen-

neberg construction steps so that the resulting graph is minimally rigid and25

tree-decomposable.

In this paper we present a theory that characterizes tree-decomposable min-

imally rigid graphs by an inductive construction of Henneberg steps. Then we

describe an algorithm for generating tree-decomposable minimally rigid graphs

of a given order based on this theory.30

The rest of the paper is organized as follows. In Section 2 we recall known

theoretical results that we will use later on. In Section 3 we provide new theo-

retical results that characterize a class of Henneberg sequences which generates

tree-decomposable minimally rigid graphs. Section 4 is devoted to describing

the algorithm that actually builds this kind of graphs on a set of given vertices35

V . The algorithm implements the results of the previous section. We show

that the algorithm’s worst case running time is O(|V |3). We provide some con-

clusions in Section 5. Finally, proofs for the theorems in the manuscript are

developed in Section 6.
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Figure 1: a) Graph. b) Graph tree decomposition step induced by the triple {a, h, f}.

2. Preliminaries40

In this section we describe tools that will be used later on. First we define

the concept of graph tree-decomposability and recall Henneberg constructions.

Then we formalize sequences of Henneberg constructions as rewrite systems.

Finally we recall a characterization of minimally rigid graphs.

2.1. Tree-decomposable Graphs45

Consider the graph G = (V,E) and let G1 = (V1, E1), G2 = (V2, E2) and

G3 = (V3, E3) be three subgraphs of G such that

V = V1 ∪ V2 ∪ V3, E = E1 ∪ E2 ∪ E3

and the set of vertices pairwise share one vertex

V1 ∩ V2 = {a}, V2 ∩ V3 = {b}, V3 ∩ V1 = {c}

We say that {G1, G2, G3} is a ternary decomposition ofG induced by the vertices

{a, b, c}. Figure 1a shows a graph and Figure 1b shows a ternary decomposition

induced by the vertices {a, h, f}. In what follows we will refer to this set of

vertices as triple of hinges or just as triple.

Definition 2.1. Let G = (V,E) be a graph. A ternary tree T is a tree-50

decomposition of G if
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1. G is the root of T ,

2. Each node G′ ⊆ G of T is the father of exactly three nodes, say {G′
1, G

′
2,

G′
3}, which is a ternary decomposition of G′, and

3. Each leaf node is the graph ({a, b}, {(a, b)}), that is, an edge (a, b) of E(G).55

A graph for which there is a tree-decomposition is called tree-decomposable.

In general, a tree-decomposition of a graph is not unique. Figure 2 shows

two different tree-decompositions for the graph given in Figure 1a. For the sake

of clarity, tree-decompositions only show the set of vertices within each node.

The label on each tree edge is the triple of hinges that induces the ternary60

decomposition.

2.2. Henneberg Constructions

In this section we recall Henneberg constructions. For an in-depth study

on this subject see [13, 14, 9]. Henneberg constructions include two different

construction steps defined as follows, [13].65

1. Henneberg I (vertex addition). Let G = (V,E) be a graph with two distinct

vertices v1, v2 ∈ V (G) and let G∗ = (V ∗, E∗) be the graph obtained by

attaching to G a new vertex v with edges (v, v1) and (v, v2). Then G∗ is

the graph derived from G by a Henneberg I step. See Figure 3.

2. Henneberg II (edge replacing). Let G = (V,E) be a graph with an edge e =70

(v1, v2) ∈ E(G) and a third vertex v3 ∈ V (G). The graph G∗ = (V ∗, E∗)

obtained from G by deleting the edge (v1, v2) and inserting a new vertex

v plus three edges (v, v1), (v, v2) and (v, v3) is the graph derived from G

by a Henneberg II step. See Figure 4.

In what follows Henneberg I and Henneberg II steps will be denoted as H1S75

and H2S respectively.

2.3. Henneberg Sequences as Rewrite Systems

Henneberg constructions are inductive constructions of sequences of graphs

such that each graph in a sequence is obtained from the previous one by applying

4



{j, h}{f, j} {f, g, h, i}

{f, g} {g, h, i}{i, f}

{e, f}{b, f}

{a, b, c, d, e, f, g, h, i, j, k}

{a, b}

{f, j, h}

{a, h, f}

{b, f, e}

{f, g, i}

{g, h, i}

{a, h}

{a, b, c, d, e, k}

{a, b, c, d, e, f, k}

{a, b, c}

{a, b, k}

{c, d, e}

{c, d} {d, e} {e, c}

{b, c}{a, b, k} {a, c, d, e}

{b, k} {k, a} {a, c} {c, d, e} {c, d} {g, h} {h, i} {i, g}

{a, c, d}

{f, g, h, i, j}

(a)

{a, b, c, d, e, f, g, h, i, j, k}

{a, b, c, d, e, f, k}

{a, b, k}

{a, b} {b, k} {k, a}

{f, j}

{f, g, h, i}{a, h}

{f, i}{f, g}

{g, h} {i, g}

{a, b, c, d, e, f, g, h, i, k}

{f, h, j}

{f, g, i}

{g, h, i}

{h, i}

{g, h, i}
{b, f} {a, b, c, d, e, k}

{a, b, c}

{a, b, k}

{b, c} {a, c}

{f, e}

{c, d, e}{a, b, c, k}{a, d}

{a, c, d}

{b, e, f}

{a, f, h}

{h, j}

(b)

Figure 2: Two different tree-decompositions for the graph shown in Figure 1a. Labels in tree

edges are the ternary decomposition triples.
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Figure 3: a) Graph G and new vertex v. b) Graph G∗ derived from gaph G by application of

a Henneberg I step.
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Figure 4: a) Graph G and new vertex v. b) Graph G∗ derived from graph G by the application

of a Henneberg II step.

one of the steps defined in the previous section. This idea can be formalized by80

associating a rewrite system with each Henneberg construction as follows.

Let V = {v1, v2, . . . , vn} be a set of vertices, let a, b, c be three different

vertices in V and E0 be the set of edges {(a, b), (b, c), (c, a)}. Let G be the set

of Henneberg graphs that can be built on V . Consider the graph G0 = (V,E0)

and define the set →ρ= {→1,→2} where →1 and →2 denote respectively H1S85

and H2S steps. Then the pair (G,→ρ) is a rewrite system with starting term

G0 = (V,E0) and reduction rules set →ρ, [15]. Notice that the graph G0 is the

K3 graph induced by the vertices a, b, c in V .

Definition 2.2. A derivation in (G,→ρ) is any sequence

G0 →ρ G1 →ρ G2 →ρ . . . →ρ Gk

of applications of reduction rules in →ρ.

In general a derivation in (G,→ρ) will be written as G0 →∗
ρ G∗. When90

needed, we shall refer to it as the Henneberg derivation of G∗.

2.4. Minimally Rigid Graphs

Minimally rigid graphs are the fundamental objects in 2-dimensional Rigidity

Theory. They are known as Laman, isostatic or generically minimally rigid

graphs and combinatorially capture the property that a graph, embedded on a95
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generic set of points in the plane, is infinitesimally rigid. Concerning rigidity

see, for example, [8, 16] and references therein. Minimally rigid graphs are

characterized in [17] in four equivalent different ways. Here we are interested in

the following two:

Theorem 2.1. A minimally rigid graph G = (V,E) with |V | ≥ 2 can be char-100

acterized in any of the following two equivalent ways:

1. (Laman’s theorem) If the number of vertices and edges are respectively

|V | = n and and m = |E| then G is minimally rigid if m = 2n − 3 and

every subset of k ≥ 2 vertices spans at most 2k − 3 edges.

2. (Henneberg’s theorem) There is a Henneberg construction for G.105

Figure 5 shows the construction of an example graph G with six vertices

demostrating the application of Henneberg steps. Vertices v1, v2, v3 belong to

the current graph and v is the new vertex to be added to the graph by the con-

struction step. H1S steps are applied on vertices labeled v1, v2 and v. H2S steps

are applied on vertices labeled v1, v2, v3 and v. Notice that the first graph as110

well as each graph resulting from a Henneberg step fulfills the Laman conditions

in Theorem 2.1.

3. Henneberg Constructions and Tree-Decomposability

Two different families of graphs generated by Henneberg derivations are of

special interest, [18, 19]. One family, denoted H1, includes those graphs derived115

by K3 →∗
1 G∗. The other family, denoted H, includes those graphs derived by

K3 →∗
ρ G∗. As shown in Section 2, the set of graphs H and the set of minimally

rigid graphs are the same set.

In general, minimally rigid graphs are not tree-decomposable. However we

are specifically interested on those graphs which are both minimally rigid and120

tree-decomposable. In order to achieve this goal, we identify the conditions

under which each reduction in →ρ preserves graph tree-decomposability and,

then, resulting Henneberg sequences generate graphs within the desired class.
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v1

v2

v1

v

v

v

v1
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G

Figure 5: Graph G built by a sequence of Henneberg steps. Vertices v1, v2, v3 belong to the

current graph. Vertex v is the vertex to be added to the graph. H1S constructions are applied

on vertices {v1, v2, v}. H2S constructions are applied on vertices {v1, v2, v3, v}.

3.1. H1S and Tree-Decomposability

It is easy to see that the H1S reduction preserves tree-decomposability and,125

therefore, the following result holds.

Theorem 3.1. Let G and G∗ be two graphs such that G →1 G∗. Then G∗ is

tree-decomposable if and only if G is tree-decomposable.

Proofs for results in this section have been included in Section 6. They

can also be found in [20]. Figure 6 shows a derivation, K3 →∗
1 G∗, including130

only H1S steps that yields a tree-decomposable graph. Notice that given that

K3 is trivially tree-decomposable, reversing the Henneberg sequence yields a

tree-decomposition.

3.2. H2S and Tree-Decomposability

Henneberg sequences which include H2S steps create minimally rigid graphs.135

However, these graphs are not necessarily tree-decomposable. Figure 7 shows a

Henneberg sequence for the Desargues graph, [18], where the H2S step removes

edge (a, d) and adds the new vertex f plus edges (f, a), (f, d) and (f, e). The

resulting graph is minimally rigid but is not tree-decomposable.
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minimally rigid but is not tree-decomposable.
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We start establishing the conditions under which an H2S step preserves140

graph tree-decomposability.

Theorem 3.2. Let G = (V,E) be a graph in the H1 family and G∗ be the graph

such that G →2 G∗, where the H2S step involves the edge (v1, v2) ∈ E(G) and

vertex v3 ∈ V (G). If {v1, v2, v3} is a triple of hinges for some reduction in the

derivation K3 →∗
1 G, then G∗ ∈ H1.145

Therefore, graphs created by derivations K3 →∗
1 G are tree-decomposable

whenever reductions →2 are applied under the conditions in Theorem 3.2. This

is a limited way of building tree-decomposable minimally rigid graphs. The

main result will broaden the scope of this result.

The statement of the main result requires the concept of lowest common150

ancestor of a set of leaf nodes in a tree-decomposition. First we recall from graph

theory the concept of lowest common ancestor of two vertices in a tree, [21],

then we adapt this concept to our needs.

Let T be a rooted tree. A vertex u ∈ T is an ancestor of a vertex v ∈ T if

the path from the root of T to v goes through u. A vertex w ∈ T is a common155

ancestor of u and v if it is an ancestor of both u and v. The lowest common

ancestor of vertices u, v ∈ T is the common ancestor of vertices u, v for which

the path from the root is maximal.

Now, with each tree-decomposable graph G = (V,E) we associate a rooted

tree T corresponding to the tree-decomposition of G. Notice that each vertex160

in T is a subgraph of G and that the root, T0, is the given graph G.

Finally, we define the lowest common ancestor of vertices u, v, w, . . . ∈ V (G)

as the lowest common ancestor of the set of leaf nodes in T which include

vertices u, v, w, . . . ∈ V (G). In what follows we shall denote the lowest common

ancestor of vertices in the tree-decomposition T as LCA(u, v, w, . . .). We do165

not allow a vertex to be a descendant of itself.

We are now ready to state our main result concerning the H2S step. Refer

to Figure 8.
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Figure 8: a) Given graph G. The triple {v1, v2, x} induces the decomposition G1, G2, G3 and

{v1, v2, w} is a triple for G1. b) Graph G∗ created by the reduction G →2,{v1,v2,v3,u} G∗.

G∗
1
, G∗

2
, G∗

3
is a decomposition induced in G∗ by the triple {v1, v2, w}.

Theorem 3.3. Let G = (V,E) be a tree-decomposable minimally rigid graph

with T the associated tree-decomposition. Let G∗ be the grah created by the170

derivation K3 →ρ G′ →ρ G →2 G∗ where →2 is applied on edge (v1, v2) ∈

E(G′) ⊂ E(G) and vertex v3 ∈ V (G′) ⊂ V (G). Let Ĝ1, Ĝ2, Ĝ3 be a decomposi-

tion of LCA(v1, v2, v3) with (v1, v2) ∈ E(Ĝi) for some 1 ≤ i ≤ 3. Then G∗ is

tree-decomposable if one of the following two holds:

1. Ĝi = ({v1, v2}, {(v1, v2)}).175

2. There are two vertices x,w ∈ V (G) such that {v1, v2, x} is a triple for G

and there is a vertex w ∈ V (Ĝi) such that {v1, v2, w} is a triple for Ĝi.

To further illustrate Theorem 3.3 consider the Henneberg sequence in Figu-

re 7 that creates the Desargues graph. Figure 9 shows a tree decomposition, T,

for the graph created after the second H1S reduction. Then the H2S reduction is180

applied on edge (a, d), vertex e and the new vertex f . Therefore LCA(a, d, e) =

{a, b, c, d, e} is the root of T in this case. Notice that {b, d, e} is the only triple

for the current graph and that there is no vertex w 6= e in LCA(a, d, e) such

that {b, d, w} is a triple of hinges for LCA(a, d, e). Thus the final graph is not

tree-decomposable.185
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{a, b, c, d, e}

{a, c}{b, c}{a, b}

{a, b, c} {a, d}{c, d}

{b, e} {a, b, c, d}{d, e}

Figure 9: Tree-decomposition for the graph created in Figure 9 after the second H1S reduction,

→1, is applied.

Now consider the Henneberg sequences in Figure 10. In both sequences,

the reduction H2S is applied on edge (a, d) and the new vertex is f . In the

sequence at the top, the third vertex in V (G) chosen to apply the construction

is c and LCA(a, d, c) = {a, b, c, d}. Notice that {a, d, c} is a triple of hinges

for LCA(a, d, c). In the sequence at the bottom, the third vertex considered190

is b. Again LCA(a, d, b) = {a, b, c, d} and {a, d, c} is a triple of hinges for

LCA(a, d, b). Consequently both sequences create tree-decomposable graphs.

Corollary 3.1. Let G = (V,E) be a tree-decomposable graph and (v1, v2) be

an arbitrary edge in E(G). Then there is always a vertex v3 ∈ V (G) different

from v1 and v2 such that the reduction G →2 G∗ involving the edge (v1, v2) and195

vertex v3 creates a tree-decomposable graph G∗.

b
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b
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c

d1d

e
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e

c
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b

a f

e
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Figure 10: Two Henneberg sequences in H2S that create tree-decomposable minimally rigid

graphs.
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(a)

{a, b} {b, c} {c, a}

{a, b, c}

(b)

Figure 11: a) Triangle. b) Triangle tree-decomposition.

This result means that any Henneberg derivation K3 →∗
ρ G where G is mini-

mally rigid and tree-decomposable can be extended to build a tree-decomposable

minimally rigid graph with an arbitrary order.

4. Algorithm200

In this section we describe an algorithm to build tree-decomposable mini-

mally rigid graphs of arbitrary order using Henneberg sequences. To speed up

the search for candidates of vertices to be included in the graph, the algorithm

dynamically manages a tree-decomposition of the current graph.

4.1. Creating Tree-decomposable Minimally Rigid Graphs205

The algorithm to build tree-decomposable minimally rigid graphs computes

the required graph G = (V,E) as the Henneberg sequence K3 →∗
ρ G. The

H1S step is implemented following Theorem 3.1. The H2S step is implemented

following Corollary 3.1. Graphs output by the algorithm belong to the H family.

The procedure is described in Algorithm 1. There we assume that the input210

data is the set of vertices on which a tree-decomposable minimally rigid graph

must be built.

4.2. Updating the Tree Decomposition

We consider tree-decomposable graphs created by Henneberg sequences with

the triangle K3 as the starting term, that is, K3 →∗
H

G. Notice that the tree215

decomposition of K3, shown in Figure 11, is trivial.
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Algorithm 1 Building a tree-decomposable minimally rigid graph on a given

set of vertices
⊲ INPUT

⊲ V : given set of vertices

⊲ OUTPUT

⊲ G : a tree-decomposable minimally rigid graph, G = (V,E)

procedure generate Graph(V)

G(V’, E) = K3(V
′, E3) randomly generated with V ′ ⊆ V

V = V - V’

T = Tree-decomposition of G(V’,E)

while V 6= ∅ do

hs = Randomly select a step type among H1S and H2S

if hs == H1S then

Randomly select two vertices v1, v2, from V’

Randomly extract a vertex v from V ⊲ (v is no longer in V)

V’= V’ ∪ {v}

E = E ∪ {(v, v1), (v, v2)}

T = updateT H1S(T)

else

Randomly select an edge e from E to be removed

G = predecessor of e in T

G2, G3 = sons of G and brothers of e

Randomly select a vertex v from V(G2) ∪ V(G3) with v not in e

V’= V’ ∪ {v}

E = (E - {(v1, v2)}) ∪ {(v, v1), (v, v2), (v, v3)}

T = updateT H2S(T)

return G = (V’, E)

14



Ĝ

Ĝ1 Ĝ2 {v1, v2}

(a)

{v1, v2}

Ĝ1 Ĝ2 Ĝ3

{v3, v2}

Ĝ

{v3, v1}

(b)

Figure 12: An H1S step applied on vertices v1, v2 and the new vertex v3. Edge (v1, v2) is

a leaf node of T. a) Tree-decompositon before applying the H1S step. b) Updated tree-

decomposition.

As the Henneberg sequence evolves creating new and larger graphs, when an

H2S step is applied, the tree-decomposition of the current graph plays a central

role to identify candidate vertices on which the reduction generates a new tree-

decomposable graph. Thus it is convenient to keep the tree decomposition220

properly updated. Next we consider how to update the tree decomposition

depending on whether the last construction applied is either H1S or H2S, that

is, procedures updateT H1S() and updateT H2S() in Algorithm 1.

4.2.1. Procedure updateT H1S

Assume that a H1S step is applied, G →1 G∗, over the vertices v1, v2225

and that the new vertex is v3. We distinguish two different situations. In

the first one, vertices v1, v2 bound an edge which is a leaf node in T. That

is, in the tree-decomposition there is a node Ĝ decomposed into Ĝ1, Ĝ2 and

({v1, v2}, {(v1, v2)}) as depicted in Figure 12a. T is updated in two steps as

follows. Refer to Figure 12b.230

1. Replace the leaf node graph ({v1, v2}, {(v1, v2)}) with the tree rooted

at the graph Ĝ3 = ({v1, v2, v3}, {(v1, v2), (v3, v1), (v3, v2)}) which is de-

composed as Ĝ′
1 = ({v1, v2}, {(v1, v2)}), Ĝ′

2 = ({v3, v1}, {(v3, v1)}), and

Ĝ′
3 = ({v3, v2}, {(v3, v2)}).

2. Propagate vertex v3 and edges (v3, v1), (v3, v2) through T up to the root.235

15



Ĝ = LCAT (v1, v2)

Ĝ1 Ĝ2 Ĝ3

(a)

Ĝ = LCA(v1, v2)

{u, v1} {u, v2}

Ĝ1 Ĝ2 Ĝ3

Ĝ1 ∪ Ĝ2 ∪ Ĝ3

(b)

Figure 13: An H1S step applied on vertices v1, v2 and the new vertex v3. Vertices v1 and v2

belong to different branches of the subtree of T rooted at LCA(v1, v2). a) Tree-decomposition

before applying the H1S step. b) Updated tree-decomposition.

In the second situation vertices v1, v2 belong to different branches of the

subtree of T rooted at LCA(v1, v2), that is, they do not bound an edge in

a tree-decomposition leaf. The update procedure now takes five steps. See

Figure 13.

1. Identify Ĝ = LCA(v1, v2) and let Ĝ1, Ĝ2, Ĝ3 be the decomposition of Ĝ240

with, say, v1 ∈ V (Ĝi) and v2 ∈ V (Ĝj) and i 6= j.

2. Replace Ĝ1 with a tree rooted at Ĝ1 ∪ Ĝ2 ∪ Ĝ3 whose decomposition is

Ĝ1, Ĝ2, Ĝ3.

3. Replace Ĝ2 with ({v3, v1}, {(v3, v1)}).

4. Replace Ĝ3 with ({v3, v2}, {(v3, v2)}).245

5. Propagate vertex v3 and edges (v3, v1), (v3, v2) through T up to the root.

4.2.2. Procedure updateT H2S

Now assume that the reduction to be applied is an H2S, G →2 G∗, where

the edge and vertex involed are (v1, v2) and v3 respectively. Let u be the new

vertex. Notice that edge (v1, v2) and vertex v3 necessarily belong to different250

branches in the current tree-decomposition T. The algorithm has the following

steps:

1. Identify Ĝ = LCA(v1, v2, v3) and let Ĝ1, Ĝ2, Ĝ3 be the decomposition of

Ĝ with, say, (v1, v2) ∈ E(Ĝ1) and v3 ∈ V (Ĝ2).
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2. Replace Ĝ1 with ({u, vi}, {(u, vi)}) where vi is either v1 or v2.255

3. Replace Ĝ2 with the new graph Ĝ′
2 such that V (Ĝ′

2) = V (Ĝ2) ∪ {u, vj}

and E(Ĝ′
2) = (E(Ĝ1) ∪ E(Ĝ2)) − {(v1, v2)}) ∪ {(u, vj), (u, v3)}, where vj

is either v1 or v2 and vj 6= vi with vi the vertex chosen in step 2.

4. Propagate vertex u and edges (u, v1), (u, v2), (u, v3) through T up to the

root.260

4.3. Complexity

We analize the complexity of our algorithm as the worst case running time

by applying the usual unit-cost operations, unbounded memory random access

machine computational model which have unit cost for read and write access to

all of its memory cells, [22]. The input size for the measures will be the number265

of nodes |V | on which the output graph should be built.

Let G′ = (V ′, E′) be the current tree-decomposable minimally rigid graph

built and T the associted tree-decomposition. Assuming that nodes in T store a

pointer to its predecessor, all the computations in the algorithm run in constant

time except those that update the current tree-decomposition T according to270

the Henneberg step applied.

The starting graph for the Henneberg sequence is K3. Let T be the asso-

ciated tree-decomposition. The number of nodes in T is n = 4, the number of

edges is m = 3 and the tree height is h = 1, as shown in Figure 11. Notice that

each leaf in T stores one graph with just one edge and its bounding vertices.275

Consider now the running time of propagating vertices and edges in T. No-

tice that in both H1S and H2S steps, propagating entails visiting the ancestors

of nodes starting in the LCA of the vertices involved in the Henneberg step up

to the root of T. Therefore the number of vertices to be visited is given by

the current tree-decomposition height. A tree-decomposition with the tallest280

height for a given number of nodes is illustrated in Figure 14. Given that each

tree level includes four edges except the first one that includes three, the tree-

decomposition height is h ≤ |E′|. But E′ ≤ 2|V ′| − 3 because the current
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graph G′ = (V ′, E′) is minimally rigid, thus the tree-decomposition height is

h ≤ 2|V ′| − 3. Consequently propagation takes at most O(|V ′|) time.285

Consider now the time needed to identify the LCA in the current tree-decom-

position T. First, let us see how the number of nodes in T changes depending

on the Henneberg step type applied. Let n be the number of nodes in T and

apply one H1S step on vertices v1, v2 and a new vertex v3. Consider the case

where (v1, v2) is an edge in G′ = (V ′, E′). The update results in a new tree-290

decomposition T where the number of nodes is n + 2 (Figure 12). Similarly,

when vertices v1 and v2 do not bound an edge and thus belong to different

branches of the subtree of T rooted at LCA(v1, v2), the number of nodes in the

updated tree-decomposition is n+4 (Figure 13). Finally, the application of one

H2S step does not change the number of nodes in T.295

After applying m Henneberg steps, and considering the largest increment in

the number of tree-decomposition nodes, we have that the number of nodes is

n ≤
m∑

i=1

4i = 4
m(1 +m)

2

Recall that each Henneberg step consumes one vertex from the input set of

vertices V . Thus m ≤ |V | and n ≤ 2|V |(1 + |V |). That is, n = O(|V |2).

According to [23], to identify the LCA(v1, v2) in a tree takes constant time

in the number of nodes of the tree, after a linear preprocessing of the input tree.

In our algorithm, T changes as the generated graph evolves, thus we need to300

apply the preprocess after each tree-decomposition update. Therefore the work

done while identifying the LCA(v1, v2) is O(|V |2).

The main loop in the algorithm visits each vertex in V − V (K3) just once.

Thus completing the loop takes O(|V |) time. The fact that the number of

vertices in the current graph, |V ′|, is at most the number of total nodes, |V |,305

completes the proof that the algorithm’s worst case running time is O(|V |3).

5. Conclusion

We have described an algorithm to build tree-decomposable minimally rigid

graphs on a given set of vertices, say V . The algorithm is based on Henneberg
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Figure 14: Tree-decomposition of a minimally rigid graph with a maximum height.

constructions where the H2S is applied under conditions that guarantee to pre-310

serve graph tree-decomposability. We have formalized these conditions and have

shown that they are sound. The algorithm worst case running time has been

shown to be O(|V |3).

As described, the input to the algorithm is a set of vertices on which the

tree-decomposable minimally rigid graph is built and the starting term for the315

Henneberg sequence is the graph K3. No upper limit on the number of input

vertices is imposed.

The algorithm can be easily adapted to deal with other initial conditions.

For example, if the starting graph is an egde and the vertices that bound it,

say G = ({a, b}, {(a, b)}), we just need to start the Henneberg sequence with an320

H1S step.

Our approach can be applied to solve the completion problem, [24]. Here

the input is a tree-decomposable graph, say G0 = (V,E0), with |E0| < 2|V |− 3.

The goal is to define a set of additional edges E over V such that the graph

G = (V,E0 ∪ E) is tree-decomposable and minimally rigid. Now the starting325

graph in our approach K3 should be replaced with the subgraph G′ induced in

G0 by E0 and the starting set of vertices would be V − V (G′).

In the current implementation, the algorithm randomly selects the H1S or
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H2S step type to be applied. An avenue to explore is to study different strate-

gies to select the type of the next construction step to be applied. In geometric330

constraint solving, strategies could be based on either technological rules con-

venient for the specific design at hand or the kind of geometric elements on

which the new constraint should be defined. Similarly, vertices and edges al-

ready included in the graph under construction that are involved in the next

construction step are selected at random among all the candidates. Strategies335

to select vertices and edges, when more than one candidate can be found, would

be of great interest to explore the space of tree-decomposable minimally rigid

graphs induced by the given set of vertices. In geometric constraint solving

these strategies could be defined, for example, taking into account the nature

of the geometric elements associated to the constraint graph vertices.340

Successful approaches to solve these issues would be of help, for example,

in the development of techniques to explore different ways for building rigid

frameworks from smaller ones in engineering.

6. Proof of Theorems

In this section we develop proofs for the claims in the manuscript. Here Hen-345

neberg sequences will be considered as rewrite systems. Recall from Section 3

that →1 and →2 denote respectively the reductions corresponding to the H1S

and the H2S constructions and that →ρ denotes de set {→1,→2}. An arbitrary

sequence of reductions in →ρ is denoted by →∗
ρ. When the sequence includes

just one of the two reductions we will denoted it as either →∗
1 or →∗

2.350

We will be interested in establishing a difference between reductions depend-

ing on the geometric elements involved. An H1S reduction which adds the new

vertex u and two edges, (u, v1) and (u, v2), will be denoted as
v1,v2,u

−−−−−−−−→1. An

H2S reduction which adds the new vertex u, removes edge (v1, v2) and adds

three new edges (u, v1), (u, v2) and (u, v3) will be denoted as
v1,v2,v3,u

−−−−−−−−→2.355

Theorem 3.1. Let G and G∗ be two graphs such that G →1 G∗. Then G∗ is

tree-decomposable if and only if G is tree-decomposable.
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Proof. Assume that G is a tree-decomposable graph and consider the reduction

G
v1,v2,u

−−−−−−−−→1 G∗. Then

G∗ = (V (G) ∪ {u}, E(G) ∪ {(v1, u), (v2, u)})

and the graphs G, G1 = ({v1, u}, {(v1, u)}) and G2 = ({v2, u}, {(v2, u)}) define

a tree-decomposition for G∗ with G tree-decomposable. Assume now that G∗

is tree-decomposable. For the same reason, G is tree-decomposable.360

Theorem 3.2. Let G = (V,E) be a graph in the H1 family and G∗ be the graph

such that G →2 G∗, where the H2S step involves the edge (v1, v2) ∈ E(G) and

vertex u ∈ V (G). If {v1, v2, u} is a triple of hinges for some reduction in the

derivation K3 →∗
1 G, then G∗ ∈ H1.

Proof. Assume that G ∈ H1, then the derivation K3 →∗
1 G is a Henneberg

sequence for G. If we assume that {v1, v2, u} is a triple on which a H1S step

has been applied, the derivation for G can be rewritten in general as

K3 →
∗
1 G′

v1,v2,u

−−−−−−−−→1 G′′ →∗
1 G (1)

By definition, reduction →1 does not remove graph edges and always connects

a new vertex to the bounds of a single edge in E(G′) with two new edges. Thus

after applying reductions
v1,v2,u

−−−−−−−−→1 and→∗
1, edges (v1, v2), (u, v1) and (u, v2)

are in E(G) and clearly v1, v2, u are in V (G). Consider the derivation

K3 →
∗
1 G′

v1,v2,u

−−−−−−−−→1 G′′ →∗
1 G

v1,u,v2,w

−−−−−−−−→2 G∗ (2)

built by extending the derivation (1) with the H2S reduction
v1,u,v2,w

−−−−−−−−→2. Then

V (G∗) = V (G) ∪ {w}

with v1, v2, u ∈ V (G) and

E(G∗) = (E(G) − {(u, v1)}) ∪ {(w, v1), (w, u), (w, v2)} (3)
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Reductions in derivation (1) belong to the H1S class and vertices v1, v2, u ∈

V (G) and edges (v1, v2), (u, v1), (u, v2) ∈ E(G). Hence the derivation

K3 →∗
1 G′

v1,v2,u

−−−−−−−−→1 G′′ →∗
1 G

v2,u,w

−−−−−−−−→1 G∗′

(4)

is well defined. Then

V (G∗′

) = V (G) ∪ {w}

with v1, v2, u ∈ V (G) and

E(G∗′

) = E(G) ∪ {(w, v2), (w, u)} (5)

Let E′ denote the set of edges added to E(G) by G′′ →∗
1 G in the deriva-

tion (1). Then

E(G) = E(G′) ∪ {(u, v1), (u, v2)} ∪ E′

Replacing E(G) in equation (3) we have (See Figure 15 Top),365

E(G∗) = (E(G′) ∪ E′ ∪ {(u, v2)}) ∪ {(w, v1), (w, u), (w, v2)}

= E(G′) ∪ E′ ∪ {(u, v2), (w, v1), (w, u), (w, v2)}

Replacing E(G) in equation (5) we have (See Figure 15 Bottom),

E(G∗′

) = (E(G′) ∪ E′ ∪ {(u, v1), (u, v2)}) ∪ {(w, v2), (w, u)}

= E(G′) ∪ E′ ∪ {(u, v1), (u, v2), (w, v2), (w, u)}

A proper relabeling of vertices u and w shows that E(G∗) = E(G∗′

). This along

with the fact that V (G∗) = V (G∗′

) lead to G∗ = G∗′

. Thus graph G∗ belongs

to H1 because derivation (4) is in H1S.

In the proof of the main theorem we shall make use of the following two370

lemmas.

Lemma A1. Let G = (V,E) be a tree-decomposable Laman graph for which

G1, G2, G3 is a decomposition induced by the triple {v1, v2, x} and such that

Gi = ({v1, v2}, {(v1, v2)}) for some 1 ≤ i ≤ 3. Then the graph G∗ created by

the reduction G →2 G∗ involving the edge (v1, v2) ∈ E(G) and vertex v3 ∈ V (G)375

is tree-decomposable.
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v1

v2

G′′

u

v2

G∗

u

w v1

v1

v2

G′

u

v2

G∗

w

u v1
−−−−−−−−−→

1

−→∗
1

−−−
−−−

−−−
→2

Figure 15: Derivation −→∗
1

preserves edges. Top) Reduction
v1,u,v2,w

−−−−−−−−−→2 removes egde

(v1, u) and adds edges (w, v1), (w, u) and (w, v2). Bottom) Reduction
v2,u,w

−−−−−−−−−→1 preserves

edges plus adds edges (w, v2) and (w, u).

Proof. Refer to Figure 16. Without loss of generality, assume that the given

graph G is decomposed into G1, G2, G3 with G1 = ({v1, v2}, {(v1, v2)}), v3, v1 ∈

V (G3) and v2 ∈ V (G2).

The graph G∗ created by the reduction G →2,{v1,v2,v3,u} G∗ is such that380

V (G∗) = V (G)∪{u} and E(G∗) = (E(G)−{(v1, v2)})∪{(u, v1), (u, v2), (u, v3)}.

Then G∗ can be decomposed into three subgraphs, G∗
1 = ({u, v2}, {(u, v2)}),

G∗
2 = G2 and, G∗

3 = (V (G3) ∪ {u}, E(G3) ∪ {(u, v1), (u, v3)}). Subgraph G∗
1 is

a leaf node in a tree-decomposition. Subgraph G∗
2 is clearly tree-decomposable.

The triple {u, v1, v3} decomposes the graph G∗
3 into G3, ({u, v1}, {(u, v1)}) and385

({u, v3}, {(u, v3)}). The fact that, by hypothesis, G3 is tree-decomposable com-

pletes the proof.

Lemma A2. Let G = (V,E) be a tree-decomposable Laman graph for which

G1, G2, G3 is a decomposition induced by the triple {v1, v2, x} and such that

edge (v1, v2) ∈ E(Gi) for some 1 ≤ i ≤ 3. If there is a vertex w ∈ V (Gi)390

such that the triple {v1, v2, w} decomposes Gi, then the graph G∗ created by
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G1

G3

(a)

v3

u

v2

G∗
2

v1

x

G∗
1

G∗
3

(b)

Figure 16: a) The given graph G = G1 ∪ G2 ∪ G3 with G1 = ({v1, v2}, {(v1, v2)}). b)

Decomposition for the graph G∗ created by reduction G
v1,v2,v3,u

−−−−−−−−−→2 G∗.

the reduction G →2 G∗ involving edge (v1, v2) ∈ E(G) and a third vertex

v3 ∈ V (G) is tree-decomposable.

Proof. Let G1, G2, G3 be the decomposition induced by the triple {v1, v2, x} ∈

V (G) in the tree-decomposable graph G, as depicted in Figure 8a. Without loss

of generality, assume that egde (v1, v2) ∈ E(G1) and that V (G1)∩V (G2) = {v2},

V (G2) ∩ V (G3) = {x} and V (G3) ∩ V (G1) = {v1}. By hypothesis G is tree-

decomposable, hence G1 is also tree-decomposable. In particular, assume that

there is a vertex w ∈ V (G1) such that the triple {v1, v2, w} decomposes G1 into

G′
1, G

′
2, G

′
3 with, say, G′

1 = ({v1, v2}, {(v1, v2)}). See Figure 8a. Now consider

the reduction G →2,{v1,v2,v3,u} G∗ and, in G∗, define the graphs

G∗
1 = (V (G2) ∪ V (G3) ∪ {u}, E(G2) ∪ E(G3) ∪ {(u, v1), (u, v2), (u,v3)})

G∗
2 = G′

2, G∗
3 = G′

3

Clearly, G∗
1, G

∗
2, G

∗
3 is a decomposition induced in G∗ by the triple {v1, v2, w}.

G∗
2 and G∗

3 are tree-decomposable because G′
2 and G′

3 are tree-decomposable.395

Consider the graph G∗
1 as the graph created by an H2S step on edge (v1, v2)

and vertex v3 on the graph G1 ∪G2. See Figure 8b. Apply Lemma A1 to show

that G∗
1 is tree-decomposable. Thus G∗ is tree-decomposable.
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Elements and concepts occuring in the statement of our main result are

depicted in Figure 8.400

Theorem 3.3. Let G = (V,E) be a tree-decomposable minimally rigid graph

with T the associated tree-decomposition. Let G∗ be the grah created by the

derivation K3 →ρ G′ →ρ G →2 G∗ where →2 is applied on edge (v1, v2) ∈

E(G′) ⊂ E(G) and vertex v3 ∈ V (G′) ⊂ V (G). Let Ĝ1, Ĝ2, Ĝ3 be a decompo-

sition of LCA(v1, v2, v3) with (v1, v2) ∈ E(Ĝi) for some 1 ≤ i ≤ 3. Then G∗ is405

tree-decomposable if one of the following two holds:

1. Ĝi = ({v1, v2}, {(v1, v2)}).

2. There are two vertices x,w ∈ V (G) such that {v1, v2, x} is a triple for G

and there is a vertex w ∈ V (Ĝi) such that {v1, v2, w} is a triple for Ĝi.

Proof. Consider a tree-decomposable graphG = (V,E) with T as the associated410

tree-decomposition and denote the graph LCA(v1, v2, v3) ⊂ G as Ĝ. Ĝ is tree-

decomposable because so is G. Let Ĝ1, Ĝ2, Ĝ3 denote this decomposition.

First, without loss of generality, assume that Ĝ1 = ({v1, v2}, {(v1, v2)}) and

that v3 ∈ V (Ĝ3), Ĝ1 ∩ Ĝ2 = {v2}, Ĝ2 ∩ Ĝ3 = {x} and Ĝ3 ∩ Ĝ1 = {v1}.

Reduction
v1,v2,v3,u

−−−−−−−−→2 in the derivation K3 →∗
H

G′ →∗
H

G →2 G∗ only415

affects edges and vertices in Ĝ. Hence the reduction Ĝ
v1,v2,v3,u

−−−−−−−−→2 Ĝ∗ is well

defined. Moreover, by Lemma A1, the graph Ĝ∗ is tree-decomposable by the

triple {u, v2, x}.

Let T̂∗ be the tree-decomposition associated to the graph Ĝ∗ and let T∗ be

the tree-decomposition resulting from replacing in T the tree rooted at node420

LCA(v1, v2, v3) with T̂∗, as illustrated in Figure 17. Clearly the resulting tree

is a tree decomposition for G∗. Therefore G∗ is tree-decomposable.

Now, assume that v3 ∈ V (Ĝ3), Ĝ1 ∩ Ĝ2 = {v2}, Ĝ2 ∩ Ĝ3 = {x}, Ĝ3 ∩ Ĝ1 =

{v1}, edge (v1, v2) is in E(Ĝ1) and there is a vertex w ∈ V (Ĝ1) such that

{v1, v2, w} is a triple for Ĝ1. Lemma A2 along with the rationale above show425

that G∗ is tree-decomposable.

Corollary 3.1. Let G = (V,E) be a tree-decomposable graph and (v1, v2) be
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T

v1 v2 v3

T̂

LCA(v1, v2, v3)

G

(a)

v3uv2v1

T̂
∗

LCA(v1, v2, v3, u)

G∗

T
∗ = (T− T̂) ∪ T̂

∗

(b)

Figure 17: Illustration for Theorem 3.3. a) Tree-decomposition T for the given graph G and

tree-decomposition T̂ for the subgraph rooted at LCA(v1, v2, v3). b) Tree-decomposition T
∗

resulting after replacing the tree-decomposition T̂ in T with T̂
∗. T

∗ is a tree-decomposition

for the graph G∗.

an arbitrary edge in E(G). Then there is always a vertex u ∈ V (G) different

from v1 and v2 such that the derivation G →2 G∗ involving the edge (v1, v2)

and vertex u creates a tree-decomposable graph G∗.430

Proof. Let G = (V,E) be the given graph and T the associated tree decom-

position. Let Ĝ be the node in T such that it is decomposed into Ĝ1, Ĝ2 and

({v1, v2}, {(v1, v2)}). Apply Theorem 3.3 to the reduction G →2,v1,v2,u,w G∗

with u ∈ {V (Ĝ1) ∪ V (Ĝ)2} and u /∈ {v1, v2}.
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