
A TEST FOR MONOMIAL CONTAINMENT

SIMON KEICHER AND THOMAS KREMER

Abstract. We present an algorithm to decide whether a given ideal in the

polynomial ring contains a monomial without using Gröbner bases, factoriza-
tion or sub-resultant computations.

1. Introduction

Let K be a field. Given an ideal I ⊆ K[T1, . . . , Tr], the monomial containment
problem is to decide whether I contains a monomial. Equivalently, one is interested
in whether the intersection V (I) ∩ Tr of the zero set V (I) ⊆ Kr with the algebraic

torus Tr := (K∗)r is empty. The monomial containment problem occurs frequently
when determining tropical varieties [4] or when determining GIT-fans [10]. The
usual approach is via Gröbner bases: I contains a monomial if and only if the
saturation I : (T1 · · ·Tr)∞ contains 1 ∈ K[T1, . . . , Tr]. This can also be decided by

a radical membership test: I contains a monomial if and only if T1 · · ·Tr ∈
√
I.

In the present paper, we provide a direct approach involving neither Gröbner
basis computations nor (sub-)resultants or factorization of polynomials. We con-
sider more generally the following problem: given a polynomial g ∈ K[T1, . . . , Tr],

prove or disprove the existence of an element x ∈ Kr such that

f(x) = 0 for all f ∈ I, g(x) 6= 0.(1)

Clearly, setting g := T1 · · ·Tr ∈ K[T1, . . . , Tr] in (1), the existence of such x is
equivalent to the monomial containment problem. Our algorithm, Algorithm 4.1,
proceeds in three steps:

(i) Compute finite subsets S1, . . . , Sm ⊆ K[T1, . . . , Tr] that are in triangu-
lar shape and polynomials g1, . . . , gm such that the solutions of (1) are
preserved, i.e., the zero sets satisfy

V (I) \ V (g) =
⋃
V (Si) \ V (gi) ⊆ Kr.

(ii) Making certain variables Tj invertible, we obtain a function field L and
an embedding ι : K[T1, . . . , Tr] → L[Tk1 , . . . , Tks ] such that the embedded
equations ι(Si) are dense, i.e., each variable Tkj corresponds to an equa-
tion.

(iii) Then an element x ∈ Kr satisfying (1) exists if and only if the minimal

polynomial of the class ι(gi) ∈ L[Tk1 , . . . , Tks ]/〈Si〉 is not a monomial for
some i.

Experiments with our implementation of Algorithm 4.1 suggest that it is compet-
itive for certain classes of input; for instance, it usually beats the Gröbner basis
approach when a solution exists, i.e., the ideal is monomial-free.

Note that the idea behind step (i) of the algorithm is quite common and similar
concepts have been used by several authors for a more explicit study or even the
explicit computation of solutions. See, e.g., [1, 2, 5, 8, 17] for a series of papers with
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2 S. KEICHER AND T. KREMER

Gröbner basis-free algorithms for systems of equations. The methods of Wang [16],
Thomas [13, 14] as well as Bächler, Gerdt, Lange-Hegermann and Robertz [3] can
also deal with systems of equations and inequalities. They determine the solutions
of such systems by means of certain triangular sets called simple systems; their
computation involves sub-resultant computations. All algorithms, including ours in
step (i), share the concept of triangular sets, certain finite subsets Si ⊆ K[T1, . . . , Tr]
such that V (I) =

⋃
V (Si) holds. The Si then give insight into the structure of the

solution set V (I) ⊆ Kr. As we are only interested in solvability of (1), we will
only need triangular sets with weaker properties but which can be computed more
efficiently.

The structure of this paper is as follows. In Section 2, we show how to decom-
pose the given ideal into a list of triangular sets with sufficient properties for our
solvability test; this is step (i) in the previous list. Section 3 is devoted to steps
(ii) and (iii), i.e., we show how to reduce the problem to a dense system over a
function field and how to determine the solvability of such a system by means of
minimal polynomial computations. Explicit algorithms are given in each section.
In Section 4, we present our algorithm for the monomial containment problem.
We compare the experimental running time of the perl implementation [12] of the
algorithm to the Gröbner basis approach as well as to the methods of [3, 16].

This paper builds on [11]. We would like to thank Jürgen Hausen for helpful
discussions.

2. Triangular shape

In this section, we treat item (i) of the list on page 1, i.e., we decompose a system
as in (1) with an ideal I ⊆ K[T1, . . . , Tr] and a polynomial g ∈ K[T1, . . . , Tr] into
a list of finite sets of polynomials that are in triangular shape. We show how to
compute this decomposition by iteratively applying a set of operations that do not
change the solvability of (1).

We first define the notion of triangular shape. In the literature, they are also
called triangular sets [1, 2, 7, 9].

Definition 2.1. Fix the lexicographical ordering T1 > . . . > Tr on K[T1, . . . , Tr].
We call polynomials f1, . . . , fs ∈ K[T1, . . . , Tr] of triangular shape if for each fj ,
there is 1 ≤ k(fj) ≤ r such that

(i) we have k(f1) < . . . < k(fs),
(ii) fj ∈ K[Tk(fj), . . . , Tr] \K[Tk(fj)+1, . . . , Tr] holds for each 1 ≤ j ≤ s.

We denote by degTi
(f) the (Ti-)degree of a polynomial f ∈ K[T1, . . . , Tr] considered

as an element of the univariate polynomial ring K[Tj ; j 6= i][Ti]. Moreover, we write

LCk(fi)(fi) ∈ R<k(fi) := K
[
Tk(fi)+1, . . . , Tr

]
.

for the leading coefficient of the polynomial fi considered in the ring R<k(fi)[Tk(fi)].

We now introduce the concept of (semi-) triangular systems. Assume I is gen-
erated by polynomials f1, . . . , fs ∈ K[T1, . . . , Tr]. We sort them into two sets (and
keep track of the inequality g): polynomials that are already in triangular shape
FC and remaining polynomials F�.

Definition 2.2. A semi-triangular system (of equations) is a tuple (F�,FC, k, g)
consisting of finite subsets F�, FC ⊆ K[T1, . . . , Tr], an integer 0 ≤ k ≤ r and a
polynomial g ∈ K[T1, . . . , Tr] such that

(i) FC is of triangular shape,
(ii) we have LCk(f)(f) | g for all f ∈ FC,

(iii) the set {1, . . . , k} contains {k(f); f ∈ FC},
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(iv) for all f ∈ F� and each 1 ≤ i ≤ k we have degTi
(f) = 0.

Moreover, we call a semi-triangular system (F�,FC, k, g) a triangular system if
F� ⊆ K holds.

Example 2.3. Define in K[T1, T2, T3] the subsets F� := ∅ and FC := {f1, f2, f3}
where the fi and k(fi) are

f1 := T 2
1 − (T2 + T3)T1, k(f1) = 1,

f2 := T 2
2 − T3 , k(f2) = 2,

f3 := T 2
3 − T3, k(f3) = 3.

Then FC is of triangular shape and (F�,FC, 3, T1T2T3) is a triangular system.

Definition 2.4. A list S of semi-triangular systems is called a triangle mush. Two
triangle mushes S and S ′ are equivalent if we have V (S) = V (S ′) with the solutions

V (S) :=
⋃

(F�,FC,k,g)∈S

V (F� ∪ FC) \ V (g) ⊆ Kr.

For the case of a single element S = {S}, we will use the same notions for S instead
of S.

Example 2.5. Consider the triangle mush S := {(F�, ∅, 0, g)} in K[T1, . . . , T4]
where g := T1T2T3 and F� consists of the two polynomials

f1 := (T3 − T1)(T3 − T2)T2, f2 := (T1 + T2 − T3)T4.

Going through the different cases, one directly verifies that V (S) ⊆ K4
consists of

all points (x1, x2, x1, 0) and (x1, x2, x2, 0) ∈ K4
where xi ∈ K∗. We will continue

this example in 4.3.

Given a triangle mush S, we are interested in operations that transform S into
an equivalent triangle mush S ′ that consists of triangular systems.

Construction 2.6 (Solution-preserving operations). Let S := {(F�,FC, k, g)}
consist of a semi-triangular system. Each of the following operations produces an
equivalent triangle mush S ′.

(i) Case-by-case analysis: If f ∈ K[Tk+1, . . . , Tr] and h ∈ K[T1, . . . , Tr] are
such that g | h and h | fg, then one may choose

S ′ := {(F� ∪ {f},FC, k, g), (F�,FC, k, h)} .

(ii) Polynomial division: Consider f, h ∈ F� and b ∈ K[T1, . . . , Tr] with b | g.
Assume that for some j ∈ Z≥0 we have

bjf = ah+ u, a, u ∈ K[Tk+1, . . . , Tr]

where b := LCTk+1
(h) and degTk+1

(u) < degTk+1
(h). Then we choose the

triangle mush

S ′ := {(F� \ {f} ∪ {u},FC, k, g)}.

(iii) Unused variable: If k < r and degTk+1
(f) = 0 holds for each f ∈ F�, then

we may choose

S ′ := {(F�,FC, k + 1, g)}.

(iv) Sort polynomial : If k < r holds and there is exactly one polynomial f ∈ F�
with degTk+1

(f) 6= 0 and LCk(f)(f) | g, then we may choose

S ′ := {(F� \ {f},FC ∪ {f}, k + 1, g)} .
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(v) Last polynomial : Assume k < r and there is exactly one polynomial f ∈
F� with degTk+1

(f) 6= 0. For −1 ≤ j ≤ d, we write

f =

d∑
i=0

aiT
i
k+1, fj :=

j∑
i=0

aiT
i
k+1 ∈ R<k+1[Tk+1],

F jC := FC ∪ {fj}, F j� := (F� \ {f}) ∪ {aj+1, . . . , ad}.
Then we may choose

S ′ :=
{

(F1
�,F1

C, k + 1, ga1), . . . , (Fd�,FdC, k + 1, gad),

(F−1� ,FC, k + 1, g)
}
.

Proof. One directly checks that in all cases S ′ is a triangle mush. For (i), each
x ∈ V (S) either satisfies f(x) = 0 and g(x) 6= 0 or we have f(x) 6= 0 and h | fg
implies h(x) 6= 0, i.e., x ∈ V (S ′). The inclusion V (S ′) ⊆ V (S) is clear from g | h.
We come to (ii). Each x ∈ V (S) satisfies

u(x) = b(x)jf(x)− a(x)h(x) = 0.

For the reverse inclusion, we use b | g to obtain b(x) 6= 0. Consequently, we may
infer f(x) = 0 from

b(x)jf(x) = (bjf)(x) = a(x)h(x) + u(x) = 0.

Operations (iii) and (iv) are clear. For (v), we define the following triangle mushes
for 0 ≤ l ≤ d:

Sl := {(F l� ∪ {fl},FC, k, g)}, Dl := {(F j�,F
j
C, k + 1, gaj); l < j ≤ d)}.

Observe that by an application of operation (i), we obtain an equality of solutions

V (Sl) = V
({(
F l−1� ∪ {fl},FC, k, g

)
,
(
F l� ∪ {fl},FC, k, gal

)})
.

As the ideal 〈F l−1� ∪{fl}〉 equals 〈F l−1� ∪{fl−1}〉 and by an application of operation
(iv), we obtain

V (Sl) = V
({(
F l−1� ∪ {fl−1},FC, k, g

)
,
(
F l�,F lC, k + 1, gal

)})
= V (Sl−1 ∪ (Dl−1 \ Dl)) .

Adding the equations stored in Dl on both sides does not change the solution set,
i.e., V (Sl ∪ Dl) is equal to V (Sl−1 ∪ Dl−1). Iteratively, we obtain V (Sd ∪ Dd) =
V (S0 ∪ D0). Moreover, because of f0 = a0 and operation (iii):

V (S0) = V
(
(F−1� ,FC, k, g)

)
= V

(
(F−1� ,FC, k + 1, g)

)
.

We conclude that V (S) equals V (Sd ∪Dd) = V (S0 ∪D0) which in turn is the same
as the solution set V (S ′). �

The next algorithm transforms a triangle mush into an equivalent triangle mush
consisting only of triangular systems. Given a triangular system (F�,FC, k, g), the
idea is to reduce Tk+1-degrees of an element f of the unsorted polynomials F�
by successive polynomial divisions; afterwards, we move f into the set of sorted
polynomials FC.

Given a finite set of polynomials F ⊆ K[T1, . . . , Tr], its reduction is a finite subset
red(F) ⊆ K[T1, . . . , Tr] such that

LT(f1) - LT(f2) for all f1, f2 ∈ red(F�),

〈LT(F)〉 ⊆ 〈red(LT(F))〉, 〈F〉 = 〈red(F)〉

where we denote by LT(f) or LT(M) the leading term of a polynomial f or set of
polynomials M with respect to the ordering defined in Section 2. Computing the
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reduction of F means successively applying the division algorithm to the elements
of F , see, e.g., [6].

Algorithm 2.7 (MakeTriangular). Input: a triangle mush S in K[T1, . . . , Tr].

• While there is S := (F�,FC, k, g) ∈ S with k < r, do:
– Replace F� by its reduction red(F�).
– If there is f ∈ F� with degTk+1

(f) > 0, then:

∗ If there is h ∈ F� \ {f} with degTk+1
(h) > 0, then:

· Perform a polynomial division of f by h in the univariate
polynomial ring R := K(Tk+2, . . . , Tr)[Tk+1] to obtain

f = a′h+ u′ ∈ R.

· Set b := LCk+1(h) ∈ K[Tk+2, . . . , Tr] and j := degTk+1
(h)+

1 ∈ Z≥0. With a := bja′ and u := bju′ ∈ K[Tk+1, . . . , Tr]
we then have

bjf = ah+ u ∈ K[Tk+1, . . . , Tr].

· Redefine S := (S \ {S}) ∪ {S′, S′′} where

S′ := (F� \ {f} ∪ {u},FC, k, bg),

S′′ := (F� ∪ {b},FC, k, g).

∗ Otherwise, if there is no such h, then:
· Redefine S := (S \ {S}) ∪ {S′, S1, . . . , Sd} where with the

notation of Construction 2.6 (v):

S′ :=
(
F−1� ,FC, k + 1, g

)
,

Sj :=
(
F j�,F

j
C, k + 1, gaj

)
.

– Otherwise, if there is no such f , then:
∗ Redefine S := (S \ {S}) ∪ {S′} where S′ := (F�,FC, k + 1, g).

• Define S ′ := S.

Output: S ′. Then S ′ is a triangle mush that is equivalent to S and consists of
triangular systems.

Proof. Note that we use only operations described in Construction 2.6; for in-
stance, the replacement of S by (S \ {S}) ∪ {S′, S′′} is an application of, first,
operation (i) and then operation (ii). Therefore, S ′ is equivalent to S. As each
S := (F�,FC, k, g) ∈ S ′ satisfies k = r, each element of F� is constant, i.e., S is
triangular.

It remains to show that Algorithm 2.7 terminates. To this end, consider the
infinite digraph G′ = (V ′, E′) where V ′ is the set of all semi-triangular systems
over K[T1, . . . , Tr] and, given vertices S1, S2 ∈ V , the edge (S1, S2) ∈ E′ exists if
and only if Algorithm 2.7 replaces S1 within a single iteration of the while-loop by
a triangle mush S ′ with S2 ∈ S ′. Let G = (V,E) be the subgraph induced by all
semi-triangular systems that are reachable by a path starting in S.

Consider a path (S1, S2, . . .) in G, i.e., Si ∈ V and (Si, Si+1) ∈ E for all i. We
write Si = (F i�,F iC, ki, gi). By construction, ki ≤ ki+1 ≤ r holds for all i. This
means there is i1 ∈ Z≥1 such that ki+1 = ki for all i ≥ i1 and Algorithm 2.7 will
perform the polynomial division bjf = ah+u, i.e., operation (ii) of Construction 2.6,
for each such Si. Since always degTki+1

(b) = 0 holds, we have degTki+1
(f) >

degTki+1
(u) and the reduction step only reduces Tki+1-degrees, the sequence

(Ni)i≥i1 , Ni :=
∑
f∈Fi

�

degTki+1
(f) ∈ Z≥0



6 S. KEICHER AND T. KREMER

is monotonically decreasing. As Ni ∈ Z≥0 holds, this sequence either is finite or
becomes stationary. Assume the latter holds, i.e., there is i2 ∈ Z≥i1 such that
Ni = Ni+1 is valid for all i ≥ i2. This implies, that for all i ≥ i2 in the polynomial
division step only the “b-part” will be added, i.e.,

F i+1
� = F i� ∪ {b}.

In particular, the ideal 〈LT(F i�)〉 is contained in 〈LT(F i+1
� )〉 for each i ≥ i2. As

K[T1, . . . , Tr] is noetherian, the chain〈
LT
(
F i2�
)〉
⊆
〈
LT
(
F i2+1
�

)〉
⊆ . . .

becomes stationary, i.e., there is i3 ∈ Z≥1 such that 〈LT(F i�)〉 = 〈LT(F i+1
� )〉 holds

for all i ≥ i3. Moreover, as b = LCk+1(h) holds and h ∈ red(F i�), we have

LT(b) /∈
〈
LT
(
red
(
F i�
))〉
⊇
〈
LT
(
F i�
)〉
.

Then b cannot be an element of F i+1
� for i ≥ i3, a contradiction. Thus, the sequence

(Ni)i is finite. In turn, this forces the (S1, S2, . . .) to be finite and acyclic.
Since each vertex S ∈ V is adjacent to only finitely many vertices, the previous

argument shows thatG is a finite tree. In particular, the while-loop in Algorithm 2.7
will be executed at most |G| times for each vertex S ∈ V , i.e., the algorithm
terminates. �

Remark 2.8. Algorithm 2.7 is similar to the decomposition into simple systems
used in [3]. Note, however, that they are interested in special properties (e.g., dis-
jointness) of this decomposition whereas ours is weaker but needs not use operations
like gcd or subresultant computations.

An example computation with Algorithm 2.7 will be performed at the end of the
next section in Example 4.3.

3. Solvability

We now come to steps (ii) and (iii) in the list on page 1: as before, we as-
sume we are given an ideal I = 〈f1, . . . , fs〉 ⊆ K[T1, . . . , Tr] and a polynomial

g ∈ K[T1, . . . , Tr] and want to answer the question whether there is x ∈ Kr satisfy-
ing (1).

Using Algorithm 2.7 of the previous section with input I and g, we obtain an
equivalent triangle mush S that consists of triangular systems. Note that we can
replace each system (F�,FC, k, g) ∈ S with F� = {0} by the equivalent system
(∅,FC, k, g); systems with F� ∩ K∗ 6= ∅ clearly are not solvable. Then (1) can be

rephrased as the question, whether there is x ∈ Kr such that

f(x) = 0 for all f ∈ FC, g(x) 6= 0

holds for some (∅,FC, k, g) ∈ S. Consequently, it suffices to present methods for
the case S = {S} of a single triangular system. Here is an overview of the steps to
test whether V (S) 6= ∅ holds:

K[T1, . . . , Tr] L[Tk1 , . . . , Tks ] L[Tk1 , . . . , Tks ] L[Tk1 , . . . , Tks ]/〈F ′
C〉

⊆ ⊆ ⊆ ∈

S
� 3.1 // ι(S) � 3.3 // (∅,F ′

C, k
′, g′)

� 3.8 // g′

dense dense, monic min. polyn. monomial?

Here, L is a suitable function field. The following proposition reduces the treat-
ment of a triangular system in K[T1, . . . , Tr] to a triangular, dense system in
L[Tk1 , . . . , Tks ], i.e., a triangular system (∅, {f1, . . . , fs}, k, g) such that the set
{k1, . . . , ks} coincides with {k(f1), . . . , k(fs)}.
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Proposition 3.1 (Swap the field). Consider a triangular system S := (∅,FC, k, g)
in K[T1, . . . , Tr]. Write FC = {f1, . . . , fs} and let ki := k(fi) ∈ Z≥1 be as in
Definition 2.1. Under the canonical embedding

ι : K[T1, . . . , Tr] → L[Tk1 , . . . , Tks ], L := K (Ti; i 6∈ {k1, . . . , ks})

we obtain a triangular system ι(S) := (∅, ι(FC), s, ι(g)) that is dense in the polyno-
mial ring L[Tk1 , . . . , Tks ]. Moreover, we have

V (S) 6= ∅ ⇐⇒ V (ι(S)) 6= ∅.

For the proof of Proposition 3.1 we recall from [18, Ch. VI] the generalization of
evaluation homomorphisms; we will need this to control the elements in L. A place
is a K-homomorphism ε : Rϕ → K with a subring Rε ⊆ L such that

x ∈ L \Rε =⇒ x−1 ∈ Rε and ε(x−1) = 0.

Given x ∈ Kr−s, denote by ε′x : K[Ti; i /∈ {k1, . . . , ks}] → K the evaluation
homomorphism. According to [18, Thm. 5 in VI.4], we have

K[Ti; i /∈ {k1, . . . , ks}] ⊆

ε′x
((

Rεx ⊆

εx
��

L

K

with a place εx : Rεx → K extending ε′x. Moreover, we define the domain of t =

(t1, . . . , ts) ∈ Ls as the intersection

Dom(t) :=

s⋂
i=1

Dom(ti), Dom(ti) :=
{
y ∈ Kr−s; ti ∈ Rεy

}
.

Lemma 3.2. In the situation of Proposition 3.1, assume we have k1 = 1, . . . , ks =
s. Then the following claims hold.

(i) Consider x ∈ Kr−s and t1, . . . , tn ∈ L satisfying εx(t1 · · · tn) = 0. Then
there is 1 ≤ j ≤ n such that εx(tj) = 0.

(ii) For each t ∈ V (ι(S)) ⊆ Ls and each x ∈ Dom(t) ⊆ Kr−s, we have

(εx(t1), . . . , εx(ts), x) ∈ V (S) where the closure is taken in Kr.
(iii) Given x ∈ V (S) ⊆ Kr, write x = (x′′, x′) with x′ ∈ Kr−s, x′′ ∈ Ks. Then

there is t ∈ V (ι(S)) ⊆ Ls such that

x′ ∈ Dom(t) ⊆ Kr−s and (εx′(t1), . . . , εx′(ts)) = x′′.

Proof. For (i), we relabel t1, . . . , tn such that there is k ∈ Z≥0 with ti ∈ Rεx for all

i ≤ k and ti /∈ Rεx for i > k. By definition of places, εx(t−1i ) = 0 for all i > k and
thus

k∏
i=1

εx(ti) = εx

(
n∏
i=1

ti

n∏
i=k+1

t−1i

)
= εx

(
n∏
i=1

ti

)(
n∏

i=k+1

εx
(
t−1i
))

= 0.

For (ii), given f ∈
√
〈FC〉 : g, we have ι(f) ∈

√
〈ι(FC)〉 : ι(g), which means

ι(f)(t) = 0. Write f =
∑
ν aνT

ν . From

f(εx(t1), . . . , εx(ts), x) =
∑
ν

aν

s∏
i=1

εx(ti)
νi

r∏
j=s+1

x
νj
j−s = εx (ι(f)(t)) = 0

we infer that (εx(t1), . . . , εx(ts), x) ∈ Kr is an element of the closure V (S) =

V (
√
〈FC〉 : g) in Kr.
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We come to (iii). We first show by (finite) induction on 0 ≤ m ≤ s, that there
are tm+1, . . . , ts ∈ L such that for the evaluation homomorphism

θm : K[T1, . . . , Tr] → L[T1, . . . , Tm], Tj 7→

{
tj , m < j ≤ s,
Tj , else

we have 〈fm+1, . . . , fs〉 ⊆ ker(θm) and εx′(tj) = xj holds for each m < j ≤ s.
Nothing is to prove for m = s. Assume now that this claim holds for a fixed
1 ≤ m ≤ s; we show that it also holds for m − 1. Since we have LCm(fi) | g,
g(x) 6= 0 and εx′(tj) = xj for m < j ≤ s, setting a := LCm(fm), we obtain

εx′ (θm(a)) = a(x)
∣∣ εx(g) = g(x) 6= 0.

In particular, θm(a) 6= 0. Therefore, the non-zero univariate polynomial f ′m :=
θm(fm) ∈ L[Tm] can be decomposed into linear factors

f ′m = c

n∏
j=1

(Tm − tmj) with tmj ∈ L, c ∈ L∗.

Note that c = θm(a) holds and thus εx′(c) 6= 0. Moreover, using again εx′(tj) = xj
for j > m and f ′m = θm(fm), we have εx′(f ′m(xm)) = fm(x) = 0 where the vanishing
is due to x ∈ V (S). The identity

0 = εx′(f ′m(xm)) = εx′

c n∏
j=1

(xm − tmj)


together with statement (i) provide us with 1 ≤ j ≤ n such that εx′(tmj) =

xm. Defining tm := tmj , the elements tm, . . . , ts ∈ L satisfy the claims: we have
〈fm, . . . , fs〉 ⊆ ker(θm−1) since θm−1(fm) = f ′m(tm) = 0 and εx′(tm) = xm holds.

Using this argument, we now have a map θ0 such that both 〈FC〉 ⊆ ker(θ0) and
εx′(tm) = xm hold. Setting t := (t1, . . . , ts), we obtain

t ∈ V (FC) \ V (g) = V (ι(S)) ⊆ L

because fm(t) = θ0(tm) = 0 for each 1 ≤ m ≤ s and εx′(θ0(t)) = g(x) 6= 0 implies
in particular that θ0(t) = g(t) 6= 0. By construction, εx′(t) = x′′ holds. �

Proof of Proposition 3.1. Clearly, the system is dense. By Lemma 3.2 (iii), V (S) 6=
∅ implies that also V (ι(S)) is non-empty. If for each t ∈ V (ι(S)), there is x ∈
Dom(t), then Lemma 3.2 (ii) ensures V (S) 6= ∅ and therefore V (S) 6= ∅.

It thus remains to prove that Dom(t) 6= ∅. Let 1 ≤ j ≤ s be an integer. If tj = 0

holds, clearly Dom(tj) = Kr−s \ V (1) is non-empty. If tj 6= 0, we consider the
product f of the minimal polynomial of tj over L with its common denominator
and thereby obtain a polynomial h:

f =

m∑
i=0

aiX
i, h =

m∑
i=0

am−iX
i ∈ K [Tj ; j 6∈ {k1, . . . , ks}] [X]

where h(t−1j ) = t−mj f(tj) = 0. By definition, each x ∈ Kr−s with x /∈ Dom(tj)

must satisfy εx(t−1j ) = 0. For all i > 0, from am−i ∈ K [Tj ; j 6∈ {k1, . . . , ks}] we

know that am−i ∈ Rεx holds and therefore obtain εx(am−it
−i
j ) = 0. We have

εx(am) = εx

(
h(t−1j )−

m∑
i=1

am−it
−i
j

)
= 0,
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from which we infer that am(x) = 0 and therefore x ∈ V (am) ⊆ Kr−s hold; note

that the inclusion V (am) ( Kr−s is proper since am 6= 0. In other words,

Dom(tj) ⊇ Kr−s \ V (am) 6= ∅.

As finite intersection of supersets of non-empty open subsets, also the set Dom(t) =
Dom(t1) ∩ . . . ∩Dom(ts) is non-empty; this completes the proof. �

For the remainder of this section, we write L for a field as in Proposition 3.1;
note, however, that the following claims also hold for any field L.

The next step is to make all coefficients of a dense triangular system monic. We
will call a triangular system (∅,FC, k, g) in L[T1, . . . , Tr] monic if LCk(f)(f) = 1
for all f ∈ FC. For instance, the system in Example 2.3 is monic.

Proposition 3.3 (Make monic). Consider a triangular system S := (∅,FC, k, g)
in the ring L[T1, . . . , Tr] that is dense in L[Tn, . . . , Tr] for a 1 ≤ n ≤ r. Assume
there is f ∈ FC with k(f) = n such that F := FC \ {f} is monic. Then the class
h ∈ R := L[Tn+1, . . . , Tr]/〈F〉 of h := LCTn

(f) is annihilated by a polynomial

p = bXj + fXj+1 ∈ L[X] \ {0} with f ∈ L[X], b ∈ L∗

where j ∈ Z≥0 is maximal with Xj | p. Moreover, writing f = hTmn + c with
m ∈ Z≥0 and c ∈ L[Tn, . . . , Tr] such that degTn

(c) < m, we have a monic dense
triangular system S′ that is equivalent to S:

S′ := (∅,F ∪ {f ′}, k, g) with f ′ := Tmn −
f(h)

b
c ∈ L[Tn, . . . , Tr].

Lemma 3.4. (i) Consider a triangular system S := (∅,FC, k, g) in the ring
L[T1, . . . , Tr] that is dense in L[Tn, . . . , Tr] for a 1 ≤ n ≤ r. Setting
R := L[Tn, . . . , Tr]/〈FC〉, the ring extension L ⊆ R is integral.

(ii) Let L ⊆ R be a ring extension, I ⊆ R an ideal and h ∈ R such that

h ∈ R/I is integral over L. Define J :=
√
I : h ⊆ R and let

p = bXj + fXj+1 ∈ L[X] with f ∈ L[X], b ∈ L∗

be the minimal polynomial of h where j ∈ Z≥0 is maximal with Xj | p.
Then h′ := −f(h)/b ∈ R yields hh′ − 1 ∈ J .

Proof. For (i), we write FC = {fn, . . . , fr} and assume k(fi) = i. Define Rj :=
L[Tn, . . . , Tr]/〈fj , . . . , fr〉 for n ≤ j ≤ r and Rr+1 = L. The canonical projection

π : Rj+1[Tj ] → Rj = Rj+1[Tj ]/〈fj〉, f 7→ f + 〈fj〉

gives us π(fj(Tj)) = fj(Tj) = 0. Since Rj = Rj+1[Tj ] and fj ∈ Rj+1[X] is monic,

the generator Tj is integral over Rj+1 and non-zero. This shows that in the chain
R = Rn ⊇ . . . ⊇ Rr+1 = L each ring extension is integral, and so is R ⊇ L.

We come to (ii). Note that p(h) ∈ I and I ⊆ J ensures p(h + J) = 0 + J . We
have

p(h) =
(
hf(h) + b

)
h
j

= 0 ∈ R/J.

Observe that h is not a zero-divisor: for each x ∈ R with xh ∈
√
I : h, already

x ∈
√
I : h holds. That is hf(h) + b = 0. Setting h′ := −f(h)/b, we obtain

h′h− 1 ∈ J from

h′h− 1 = −f(h)

b
h− 1 = −f(h)h+ b

b
= 0 ∈ R/J. �

Proof of Proposition 3.3. Note that the system (∅,F , k, g) in L[T1, . . . , Tr] is dense
in L[Tn+1, . . . , Tr]. By Lemma 3.4 (i), the residue class h ∈ R is integral over L,
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i.e., p exists. Using the inclusion of the ideal
√
〈F〉 : h ⊆ L[Tn+1, . . . , Tr] in the

ideal
√
〈F〉 : g ⊆ L[T1, . . . , Tr], we obtain

hh′ − 1 ∈
√
〈F〉 : h ⊆

√
〈F〉 : g with h′ :=

−f(h)

b
∈ L[Tn+1, . . . , Tr]

from the second statement of Lemma 3.4. One directly verifies the equality of ideals√
〈FC〉 : g =

√
〈F〉+ 〈f〉 : g =

√
〈F〉+ 〈f ′〉 : g.

In particular, V (S) = V (S′) holds with the dense triangular system S′. Moreover,
LC1(f ′) = 1 by choice of f ′ and S′ is monic. �

In order to make Proposition 3.3 computational, we first show how one can
compute the required minimal polynomials.

Algorithm 3.5 (MinimalPolynomial). Input: an element g ∈ R where L ⊆ R is
an integral ring extension of finite dimension d := dimL(R).

• Choosing a suitable L-vector space basis ofR, we considerM := [g0, . . . , gd]
as a d× (d+ 1) matrix over L.

• Compute the kernel K := ker(M) 6= {0}.
• Choose q ∈ K ⊆ Ld+1 such that max(1 ≤ j ≤ d; qj 6= 0) is minimal.
• Define pg := q0X

0 + . . .+ qdX
d ∈ L[X].

Output: pg ∈ L[X]. This is the minimal polynomial of g ∈ R.

Proof. By construction, we have p(g) = Mq = 0. For the minimality, let p′ =∑d
j=0 q

′
jX

j ∈ L[X] be the minimal polynomial of g. Then Mq′ =
∑d
j=0 q

′
jh
j =

p′(h) = 0, i.e., q′ ∈ K. By choice of q, we have

deg(p′) = max(1 ≤ j ≤ d; q′j 6= 0) ≥ max(1 ≤ j ≤ d; qj 6= 0) = deg(p). �

Remark 3.6. In Algorithm 3.5, the element q ∈ K can be computed using Gauss-
ian elimination.

Algorithm 3.7 (Make monic). Input: a triangular system S := (∅,FC, k, g) that
is dense in L[T1, . . . , Tr]. We assume FC = {f1, . . . , fr} with k(fi) = i.

• For n = r down to 1, do:
– Set FnC := {fi; i > n} ⊆ L[Tn+1, . . . , Tr] and define the dense trian-

gular system (∅,FnC, k, g).
– Decompose fn = hT dn + c with d ∈ Z≥1 and h ∈ L[Tn+1, . . . , Tr],
c ∈ L[Tn, . . . , Tr] such that degTn

(c) < d.
– Use Algorithm 3.5 to compute the monic minimal polynomial ph ∈

L[X] of h ∈ L[Tn+1, . . . , Tr]/〈FnC〉.
– Decompose ph = bXj+1 + aXj with b ∈ L[X], a ∈ L∗ by choosing
j ∈ Z≥0 maximal with Xj | ph.

– Define h′ := −b(h)/a. This yields hh′ − 1 ∈
√
〈FnC〉 : h.

– Redefine fn as T dn+h′c ∈ L[Tn, . . . , Tr]. Then S′ := (∅,FnC∪{fn}, k, g)
is a monic triangular system that is dense in L[Tn, . . . , Tr].

Output: S′. Then S′ is a monic triangular system that is dense in L[T1, . . . , Tr]
and is equivalent to S.

Proof. Note that the minimal polynomial ph exists by Lemma 3.4 (i) since the

system is dense. By Lemma 3.4 (ii), h ∈ L[Tn+1, . . . , Tr]/
√
〈FnC〉 : h is invertible.

The remaining steps are correct by Proposition 3.3. �

We now show that the existence of solutions of a monic, dense triangular system
can be tested by determining a minimal polynomial.
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Proposition 3.8 (Solvability). Let S := (∅,FC, k, g) be a monic triangular system
that is dense in L[T1, . . . , Tr]. Set R := L[T1, . . . , Tr]/〈FC〉. Then L ⊆ R is an
integral extension and with the minimal polynomial pg ∈ L[X] of the residue class
g ∈ R we have

V (S) 6= ∅ ⇐⇒ pg ∈ L[X] is not a monomial.

Lemma 3.9. In the situation of Proposition 3.8, let p ∈ L[X] be a polynomial with

p(g) ∈
√
〈FC〉. Then there is k ∈ Z≥0 such that pg | pk.

Proof. By assumption, there is k ∈ Z≥1 such that p(g)k ∈ 〈FC〉, i.e., pk(g) = 0 ∈ R.
The monic greatest common denominator a := gcd(pk, pg) ∈ L[X] satisfies f(g) =
0 ∈ R since pk(g) = pg(g) = 0. By minimality of pg, we obtain pg = a | pk. �

Proof of Proposition 3.8. Given x ∈ V (FC) ⊆ Lr, the corresponding evaluation
homomorphism εx fits into the commutative diagram

L[T1, . . . , Tr]
εx //

f 7→f
%%

L

R

ϕx

@@

The fact, that L ⊆ R is integral is Lemma 3.4 (i). Assume now pg = Xn holds
for some n ∈ Z≥0, i.e., g ∈ R is nilpotent. By the diagram, g(x) = ϕx(g) then also

is nilpotent for each x ∈ V (FC) ⊆ Lr. This means g(x) = 0.

For the reverse direction, assume g(x) = 0 holds for each x ∈ V (FC) ⊆ Lr, i.e.,
by the diagram, we have p′(g(x))) = 0 with p′ := X ∈ L[X]. By Lemma 3.9, there
is k ∈ Z≥0 such that pg | (p′)k = Xk. �

We now put the previous propositions and algorithms together to obtain an
algorithm to check the existence of solutions of a triangular system. This completes
steps (ii) and (iii) of the list on page 1.

Algorithm 3.10 (IsSolvable). Input: a triangular system S = (F�,FC, k, g) in
the ring K[T1, . . . , Tr].

• If F� ∩K∗ is non-empty, then:
– return false.

• Consider the triangular system ι(S) that is dense in L[Tk1 , . . . , Tks ] as in
Proposition 3.1.

• Use Algorithm 3.7 with input ι(S) to obtain a monic, dense and equivalent
system S′ = (∅,F ′C, k′, g′) in L[Tk1 , . . . , Tks ].

• Use Algorithm 3.5 to determine the minimal polynomial pg′ ∈ L[X] of the

residue class g′ ∈ L[Tk1 , . . . , Tks ]/〈F ′C〉.
• If pg′ is a monomial, then:

– return false.
• return true.

Output: true if V (S) 6= ∅ and false otherwise.

Proof. By Proposition 3.1, Algorithm 3.5 and Algorithm 3.7, S′ is equivalent, monic
and dense. Proposition 3.8 delivers the stated solvability criterion. �

4. Monomial containment test and efficiency

Putting together steps (i)–(iii) listed on page 1, we are now able to test whether a
given ideal I ⊆ K[T1, . . . , Tr] contains some monomial T ν , ν ∈ Zr≥0. Afterwards, we

explore the experimental running time of the second author’s implementation [12] of
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the algorithm in perl on a series of random polynomials and compare it with Buch-
berger’s algorithm. Moreover, we compare its efficiency on the examples polsys50
from [15] to algorithms listed in [3, Tab. 1].

Algorithm 4.1 (ContainsMonomial). Input: generators f1, . . . , fs for an ideal
I ⊆ K[T1, . . . , Tr].

• Define the semi-triangular system S := (F�, ∅, 0, g) where g := T1 · · ·Tr,
and F� := {f1, . . . , fs}.

• Let S be the output of Algorithm 2.7 applied to {S}.
• For each S ∈ S, do:

– If Algorithm 3.10 returns true, then
∗ Return false.

• Return true.

Output: true if Tµ ∈ I for some µ ∈ Zr≥0. Returns false otherwise.

Remark 4.2. In the second line of Algorithm 4.1 it is more efficient to modify
Algorithm 2.7 such that it checks for solutions immediately after determining a
new semi-triangular system.

Example 4.3. In the setting of Example 2.5, we apply Algorithm 4.1 with Re-
mark 4.2 to test whether the ideal I := 〈f1, f2〉 ⊆ K[T1, . . . , T4] contains a mono-
mial. To this end, we apply Algorithm 2.7 to the triangle mush S0. It will first
choose the polynomial division for (f, h) := (f1, f2) to obtain

T4f1 = (T2 − T3)T2f2 − u, u = (T 3
2 − T3T 2

2 )T4.

This yields a new triangle mush S1 := {S′, S′′} where S′ := ({f2, u}, ∅, 0, gT4) and
S′′ := ({f1, f2, T4}, ∅, 0, g). In the next step, we obtain triangle mushes

S2 := {({u}, {f2}, 1, T4g), ({f1, f2, T4}, ∅, 0, g)} ,
S3 := {(∅, {f2, u}, 4, T4g), ({f1, f2, T4}, ∅, 0, g)} .

Algorithm 3.10 verifies that the zero-set V (f2, u)\V (T4g) is empty by the follow-
ing steps: first, Algorithm 3.7 with input (∅, {f2, u}, 4, T4g) will return the monic
system

(∅, {f2, f3}, 4, T4g) , f3 := (T2 − T3)T 2
2 .

As k(f2) = 1 and k(f3) = 2, we set L := K(T3, T4) and the ringR := L[T1, T2]/〈f2, f3〉
is integral over L with L-basis (1, T2, T2

2
). We have

T4g = (T3 − T2)T2T3T4 ∈ R, T4g
2

= (T3 − T2)2T 2
2 T

2
3 T

2
4 = 0 ∈ R,

By Proposition 3.8, the algorithm may remove this triangular set, i.e., it remains
to consider

S4 := {({f1, f2, T4}, ∅, 0, g)} .

The reduction step will remove the redundant equation f2. The next steps provides
us with

S5 := {(∅, {f1, T4}, 4, u′g), ({f1, T4, u′}, ∅, 0, g)} , u′ := (T2 − T3)T2.

By Algorithm 3.10, the system S := (∅, {f1, T4}, 4, u′g) has a solution: similar to
before, Algorithm 3.7 returns the monic system

(∅, {f4, T4}, 4, u′g) , f4 := T1 − T3
with k(f4) = 1 and k(T4) = 4. Setting L := K(T2, T3), the ring extension L ⊆ R :=
L[T1, T4]/〈f4, T4〉 is integral with L-basis (1). Since

u′g = (T2 − T3)T1T 2
2 T3 = (T2 − T3)T 2

2 T
2
3 ∈ R
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is non-zero, its minimal polynomial p = X − (T2 − T3)T 2
2 T

2
3 ∈ L[X] is not a

monomial, i.e., V (S) 6= ∅ by Proposition 3.8. Thus, S0 has a solution as we already
witnessed in Example 2.5. In particular, I contains no monomial, i.e., the algorithm
returns false.

The remainder of this note is devoted to experimental running times. We ap-
ply the perl implementation [12] of Algorithm 4.1 to a series of random ideals
〈f1, . . . , fs〉 ⊆ K[T1, . . . , Tr] for fixed 2 ≤ s ≤ 5 and running 1 ≤ r ≤ 10. Moreover,
setting F := {f1, . . . , fs}, we distinguish the cases V (F) = ∅ and V (F) 6= ∅.

To make the experimental running times better comparable to Buchberger’s
Gröbner basis algorithm [6], we have reimplemented the latter in perl in two vari-
ants: the first one is the classical version whereas the second one stops as soon
as a monomial could be found. Both algorithms as well as the testing sets F are
available at [12]. The following graphics show the averages over the successful tests.
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On the given set of polynomials, Algorithm 4.1 seems to be competitive when
V (F) 6= ∅ whereas, for V (F) = ∅, the classical Buchberger’s algorithm usually
needs less time.
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Additionally, we have applied Algorithm 4.1 to the set of examples polsys50

from [15]; its running time as well as the number of performed additions on a 2.66
GHz machine with time bound 300 seconds and at most 1 GB of RAM is listed in
the left-hand side part of the following table. We write “n/a” if the computation
was unsuccessful either due to time reasons or because it was out of memory.

Moreover, in the right-hand part of the table, we list some of the running times
listed in [3, Table 1] on the same examples. We want to stress the fact that the two
sides of this table are only marginally comparable: not only is the goal different
([3] deduces more information on the solutions whereas we test the existence of
solutions), also the machines and maximal running times / memory are different.

no. time 4.1 result add.s time RC1 time DW1 time AT1

1 > 300 n/a n/a 3.5 0.4 3.0
2 > 300 n/a n/a 7.4 7.6 7.1
3 30.89 1 4956 > 3h 985.7 7538.0
4 > 300 n/a n/a > 4 GB > 4 GB 0.2
5 0.62 0 2449
6 2.25 1 4239 0.4 0.1 0.2
7 > 1 GB n/a n/a > 3h 7352.6 > 4 GB
8 0.14 1 214
9 11.75 1 10149

10 0.21 1 517
11 0.17 1 361
12 0.74 1 1909 0.5 0.3 0.4
13 0.15 1 214
14 0.23 1 442 0.5 > 3h 1.5
15 29.82 1 6655
16 > 300 n/a n/a 0.9 1.4 1.8
17 > 300 n/a n/a 6.5 4.7 75.5
18 2.34 1 4324 0.3 0.1 0.1
19 > 300 n/a n/a 419.9 0.4 0.4
20 0.25 1 668
21 > 300 n/a n/a 1.6 86.6 4.5
22 > 300 n/a n/a 0.6 1.2 1.5
23 > 300 n/a n/a 0.4 0.1 29.5
24 > 300 n/a n/a 1.2 1.3 1.0
25 0.25 1 537 1.2 > 3h > 4 GB
26 1.07 0 4610
27 1.47 1 2320
28 9.89 1 6632
29 0.15 1 297 0,3 0,3 0,3
30 > 300 n/a n/a > 4 GB > 4 GB 45.3
31 > 1 GB n/a n/a > 4 GB > 4 GB > 3h
32 0.41 1 1200
33 > 1 GB n/a n/a 3.4 1.3 3.5
34 > 300 n/a n/a 911.5 > 3h > 4 GB
35 > 300 n/a n/a 1.5 1.2 1.7
36 0.13 1 160
37 0.27 1 633
38 11.10 1 6878
39 > 300 n/a n/a 0.6 1.2 0.6
40 > 300 n/a n/a
41 > 300 n/a n/a 1.5 1.5 7.0
42 0.35 1 1028
43 > 1 GB n/a n/a 0.7 3.1 0.2
44 > 300 n/a n/a 24.5 3.4 1.2
45 > 300 n/a n/a
46 > 300 n/a n/a
47 16.40 1 10465 1.3 2.8 13.0
48 0.23 1 563
49 > 300 n/a n/a 0.3 610.2 0.5
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Tübingen, Germany
E-mail address: keicherα©mail.mathematik.uni-tuebingen.de

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076
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