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Abstract

We consider several notions of genericity appearing in algebraic geometry and
commutative algebra. Special emphasis is put on various stability notions which
are defined in a combinatorial manner and for which a number of equivalent
algebraic characterisations are provided. It is shown that in characteristic zero
the corresponding generic positions can be obtained with a simple deterministic
algorithm. In positive characteristic, only adapted stable positions are reachable
except for quasi-stability which is obtainable in any characteristic.

1. Introduction

Genericity appears in many places in algebraic geometry and commutative
algebra, as many results considerably simplify, if one assumes that the consid-
ered ideal is in a sufficiently generic position. While genericity is well studied
theoretically, its algorithmic side has been treated much less. There are two
natural questions related to a generic position. To apply the corresponding
theoretical results in a concrete computation, one must firstly be able to ver-
ify effectively whether a given ideal is in the considered generic position. If
this is not the case, one would secondly like to find a (preferably sparse) linear
transformation into generic position.

From a theoretical point of view, the second goal is easily achieved by apply-
ing a random transformation. In practise, this will destroy all sparsity typically
present in problems of interest. Therefore we will study here deterministic al-
gorithms that give us a reasonable chance to render a position generic with a
fairly sparse transformation. We make no claims of getting an optimal solution
for this problem. In one of the very few articles dealing with such questions,
Eisenbud and Sturmfels (1994) argue that different notions of optimality exist.
Furthermore, they showed that various related problems are NP-complete.
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Our main emphasis is on generic positions related to Gröbner bases where the
leading ideal exhibits certain favourable properties. The most famous generic
position here is of course the one where the leading ideal is the generic initial
ideal. However, both above mentioned problems are very hard for this position
and all computer algebra implementations we know of use random transforma-
tions without a check that they have really obtained the generic initial ideal.

One of the main points of this work lies in studying generic positions –
mainly of a combinatorial nature and related to stability – that share as many
properties with the generic initial ideal as possible but which are still effectively
verifiable and constructable. We will present an algorithm to achieve deter-
ministically any stable position via a sequence of elementary moves. The basic
idea is due to Hausdorf and Seiler (2002) in the context of differential equations
(the original proof contained a gap and was later corrected by Seiler (2009b)).
There only the case of quasi-stability was considered and the required moves
were selected via a comparison of Pommaret and Janet multiplicative variables.
Here we present now a version where the selection criterion is directly based
on the combinatorial characterisation of the various stability notions and which
is therefore no longer restricted to quasi-stability. While the algorithm itself is
very simple, the termination proof is rather long and technical.

In practise, we face here a conflict: the closer we get to the generic ini-
tial ideal, the harder it becomes to obtain deterministically the corresponding
generic position (meaning the more coordinate transformations are typically
needed). This observation explains why we consider so many different kinds of
stable positions. They allow us to make a trade-off: we go for a generic position
that is just enough for the intended application. One possible application is
given by the computation of many fundamental invariants like the depth, the
Castelnuovo-Mumford regularity or the reduction number which becomes sig-
nificantly simpler, if the ideal is in a sufficiently generic position. For lack of
space, we cannot discuss here details, but refer e. g. to (Hashemi, 2010, 2012;
Hashemi et al., 2012, 2014; Seiler, 2009b, 2012) and references therein. Coordi-
nate transformations to various stable positions also play a crucial role in recent
approaches to determine explicit equations for Hilbert and Quot schemes – see
Albert (2017) and references therein.

The Castelnuovo-Mumford regularity nicely exemplifies these considerations.
Bayer and Stillman (1987a) proved that generically the degree of the Gröbner
basis for the degree reverse lexicographic order is the regularity. But no effective
criterion is known to verify whether or not a given ideal is in generic position
and random transformations are the only way to obtain such a position. (Seiler,
2009b, Ex. 9.9) gives a concrete example where the degree of the Gröbner basis
is first smaller than the regularity and then becomes larger after a certain linear
coordinate transformation. Thus the result of Bayer and Stillman does not even
provide a bound. If the ideal is in quasi-stable position, then it possesses a finite
Pommaret basis the degree of which is the regularity. Now the existence of the
finite Pommaret basis provides an effective proof of the genericity of the used
coordinates and the deterministic algorithm provided in this work effectively
constructs such coordinates.
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This article is structured as follows. The next section recalls briefly some
notions and tools; this concerns in particular Pommaret bases and Gröbner
systems. Section 3 discusses the classical combinatorial concept of stability. We
will introduce a total of nine different variants of it and provide for all of them
equivalent algebraic characterisations. Furthermore, we discuss the role of the
characteristic of the base field and componentwise stability. In Section 4, we
study four other generic positions. We first show that the classical Noether
position coincides with one of our variants of stability. To the best of our
knowledge, this represents the first combinatorial characterisation of Noether
position. Then we very briefly recall some facts about Borel-fixed ideals and
their relation to stability. We also provide a deterministic method to compute
the generic initial ideal via Gröbner systems. While we are sure that many
people are aware of this method, we could not find it anywhere in the literature.
Finally, we introduce the new concept of β-maximal position and show that it
corresponds to the genericity notion underlying the generic annihilator numbers.

Section 5 provides a large number of examples demonstrating that the vari-
ous genericity notions are indeed all distinct. Section 6 contains the main result
of this article from a computational point of view: a deterministic algorithm to
achieve any variant of stability over fields with characteristic zero. In positive
characteristic only the positions related to quasi-stability are effectively reach-
able (for sufficiently large fields). For all other stability notions only adapted
“p-versions” can be used which, however, lack the algebraic properties of the
standard versions. Finally, we present the results of some preliminary experi-
ments with the proposed algorithm.

2. Preliminaries

We begin by fixing our basic notations and assumptions. P = k[x] with
x = {x1, . . . , xn} will always be the underlying polynomial ring over a base
field k. Some of our results will require k to be infinite (or at least sufficiently
large), some will depend on whether or not the characteristic of k is positive.
The set of all terms in P is called T. For a non-constant term xµ ∈ T, we
denote by m (xµ) the maximal index k such that µk 6= 0. If xµ = 1, then
we set m (xµ) = 1. For simplicity, we consider exclusively homogeneous ideals
I⊳P and thus always assume that all considered polynomials are homogenous,
too. The homogeneous maximal ideal in P is denoted by m = 〈x1, . . . , xn〉 and
the saturation of an ideal I ⊳ P by Isat = I : m∞. Given a finite set F of
polynomials, we briefly write degF for the maximal degree of an element of F .

A term order ≺, i. e. a total order on T which is multiplicative and a well-
order, defines for any polynomial 0 6= f ∈ P its leading term lt f as the maximal
term in the support of f with respect to ≺ and we call for any ideal I E P the
monomial ideal lt I = 〈lt f | f ∈ I〉 its leading ideal. If not explicitly stated
otherwise, we will use throughout the degree reverse lexicographic order (with
x1 ≻ x2 ≻ · · · ≻ xn) for choosing leading terms, as it has a special relation
to the stability notions studied here. The use of this order is crucial for the
correctness of our algorithm.
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A finite polynomial set G ⊂ I is a Gröbner basis of the ideal I ⊳ P , if
〈ltG〉 = lt I. Given a term xµ ∈ T with m (xµ) = k, we call the variables
xk, . . . , xn (Pommaret) multiplicative for it and denote them by xP (x

µ). The
non-multiplicative variables form simply the complement: xP (x

µ) = x\xP (x
µ).

A finite setH ⊂ T of terms is a Pommaret basis1 of the monomial ideal I = 〈H〉
they generate, if I can be written as the direct sum I =

⊕
h∈H k[xP (h)] · h.

A finite set H ⊂ P of polynomials is a Pommaret basis of I = 〈H〉, if all its
elements possess pairwise distinct leading terms and ltH is a Pommaret basis
of lt I. Obviously, any Pommaret basis is a (generally not reduced) Gröbner
basis but not vice versa.

There is a natural action of GL(n,k) on the polynomial ring P via linear co-
ordinate transformations: xi 7→

∑n
j=1 aijxj = (A ·x)i for a non-singular matrix

A = (aij) ∈ k
n×n. If we consider the effect of such coordinate transformations,

we always assume that term orders are defined via exponent vectors and that
we use the same term order before and after the transformation.

For analysing the effect of this GL(n,k)-action on a given ideal I, it is useful
to recall the notion of a Gröbner system introduced by Weispfenning (1992) as
part of his theory of comprehensive Gröbner bases. Let P̃ = P [a] = k[a][x] be
a parametric polynomial ring with parameters a = {a1, . . . , am}. Given term
orders ≺a and ≺x for terms in the respective variables, we denote by ≺x,a the
corresponding block elimination order with precedence to the variables x.

Definition 2.1. Let Ĩ E P̃ be a parametric ideal. A Gröbner system for Ĩ

for the term order ≺x,a is a finite set of triples
{
(G̃i, Ni,Wi)

}ℓ

i=1
with finite

sets G̃i ⊂ P̃ and Ni,Wi ⊂ k[a] such that for every index 1 ≤ i ≤ ℓ and every
specialization homomorphism σ : k[a] → k with σ(g) = 0 for every g ∈ Ni and
σ(h) 6= 0 for every h ∈ Wi the set σ(G̃i) is a Gröbner basis of σ(Ĩ) E P with
respect to the order ≺x and such that for any point b ∈ km an index 1 ≤ i ≤ ℓ
exists with b ∈ V(Ni) \ V(

∏
f∈Wi

f).

(Weispfenning, 1992, Theorem 2.7) proved that such a Gröbner system exists
for every parametric ideal Ĩ E P and can be effectively computed. By now,
there exists a number of algorithms and implementations for this task (e. g.
Kapur et al., 2010; Montes, 2012; Montes and Wibmer, 2010). While it is
not part of the definition, every published algorithm for computing Gröbner
systems produces systems with an additional property: if two specialisations
σ, τ belong to the same triple (G̃i, Ni,Wi), then they yield the same leading
terms ltσ(G̃i) = lt τ(G̃i). In the sequel, we will always assume that we are
dealing with Gröbner systems possessing this property. We also note that it is
always possible to prescribe already at the beginning of the computation some
equations or inequations that the parameters must satisfy.

1See (Seiler, 2009a) or (Seiler, 2010) for a general introduction to involutive bases, a special
kind of Gröbner bases with additional combinatorial properties to which Pommaret bases
belong. The second reference also contains some historical remarks.

4



Remark 2.2. Interpreting the entries of a matrix A = (aij) ∈ GL(n,k) as

parameters, we can compute a Gröbner system
{
(G̃i, Ni,Wi)

}ℓ

i=1
of the para-

metric ideal Ĩ = A · I E k[aij ][x1, . . . , xn] imposing at the start the condition
that det (A) 6= 0. As such a system is finite by definition, we conclude that
under linear coordinate transformations any ideal I E P possesses only finitely
many different leading ideals (for a fixed term order).

3. Generic Positions Related To Stability

Stability is a classical combinatorial concept playing an important role in
the theory of monomial ideals and depending on the numbering of the variables.
There are three basic notions—quasi-stability, stability and strong stability—
forming a natural hierarchy. For each of them, we introduce two new weaker
versions leading to a total of nine different stability notions following ideas
developed in (Hashemi, 2012; Hashemi et al., 2014). The extension to arbitrary
ideals is straightforward via a term order.

Definition 3.1. Let J ⊳ P be a monomial ideal, q the maximal degree of a
minimal generator of J and 0 ≤ ℓ < n an integer.

(i) The ideal J is quasi-stable, if for every term xµ ∈ J and every index
j < m = m(xµ) the term xqjx

µ/xµm
m also lies in J . The ideal is ℓ-

quasi-stable, if the above condition is satisfied for all terms xµ ∈ J with
m (xµ) ≥ n− ℓ, and weakly ℓ-quasi-stable, if the condition is satisfied with
the additional restriction that j ≤ n− ℓ.

(ii) The ideal J is stable, if for every term xµ ∈ J and every index j < m =
m(xµ) the term xjx

µ/xm also lies in J . The ideal is ℓ-stable, if the above
condition is satisfied for all terms xµ ∈ J with m (xµ) ≥ n− ℓ, and weakly
ℓ-stable, if the condition is satisfied with the additional restriction that
j ≤ n− ℓ.

(iii) The ideal J is strongly stable, if for every term xµ ∈ J , and every index
pair i > j such that xi | x

µ the term xjx
µ/xi also lies in J . The ideal is

ℓ-strongly stable, if the above condition is satisfied for all terms xµ ∈ J
with m (xµ) ≥ n− ℓ and all indices i ≥ n− ℓ, and weakly ℓ-strongly stable,
if the condition is satisfied with the additional restriction that j ≤ n− ℓ.

If I⊳P is an arbitrary polynomial ideal, then we say that I is in a stable position
for some term order ≺ if its leading ideal lt I is stable. The same terminology
is used for any above introduced variant of stability.

It is well-known that the three classical notions of stability are generic (see
e. g. (Seiler, 2010, Prop. 4.3.8, Cor. 4.3.16) for the case of quasi-stability). Trivial
adaptions of the proofs show that all above considered variants are generic, too.
It should be noted that in the literature sometimes strongly stable ideals are
simply called stable. Quasi-stable ideals are also called ideals of nested type by
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Bermejo and Gimenez (2006), ideals of Borel type by Herzog et al. (2003) or
weakly stable ideals by Caviglia and Sbarra (2005). In the above definition, we
require that all terms in the monomial ideal J satisfy certain conditions. It is
straightforward to show that it suffices to verify that all minimal generators of
J satisfy these conditions. Furthermore, we note the obvious hierarchy

strongly stable =⇒ stable =⇒ quasi-stable .

3.1. Quasi-Stability

Proposition 3.2. Let J ⊳P be a monomial ideal with dim (P/J ) = D. Then
the following statements are equivalent:

(i) J is quasi-stable.

(ii) If xµ is a term in J with µj > 0 for some 1 < j ≤ n, then for each
exponent 0 < r ≤ µj and each index 1 ≤ i < j an exponent s ≥ 0 exists
such that xsix

µ/xrj lies in J .

(iii) For all 0 ≤ j ≤ n− 1 we have

J : x∞n−j = J : 〈x1, . . . , xn−j〉
∞ . (1)

(iv) xn is not a zero divisor on P/J sat and xn−j is not a zero divisor on
P/〈J , xn, . . . , xn−j+1〉

sat for all 0 < j < D.

(v) J : x∞n = J sat and for all 0 < j < D we have

〈J , xn, . . . , xn−j+1〉 : x
∞
n−j = 〈J , xn, . . . , xn−j+1〉

sat . (2)

(vi) We have an ascending chain J : x∞n ⊆ J : x∞n−1 ⊆ · · · ⊆ J : x∞n−D+1 and

for each 1 ≤ j ≤ n−D there exists a term x
ℓj
j ∈ J .

(vii) J has a finite monomial Pommaret basis.

(viii) Let B = {t1, . . . , tr} be the minimal basis of J sorted degree reverse
lexicographically with t1 the largest generator. For each index 1 ≤ i ≤ r
set Ji = 〈t1, . . . , ti−1〉 : ti and Pi = k[x1, . . . , xm(ti)−1]. Then all the

ideals Ĵi = Ji ∩ Pi E Pi are zero-dimensional.

(ix) Every associated prime ideal of P/J is of the form 〈x1, x2, . . . , xj〉 for
some index 1 ≤ j ≤ n−D.

Proof. Most equivalences are well known and their proofs can e. g. be found in
(Bermejo and Gimenez, 2006, Prop. 3.2), (Herzog et al., 2003, Prop. 2.2), (Seiler,
2009b, Prop. 4.4), (Seiler, 2012, Lem. 3.4). Only the characterisations (v) and
(viii) are new with (viii) inspired by ideas of (Caviglia, 2004, Sect. 4.1). We
therefore prove now first that (iii) entails (v), then that conversely (v) entails
(iv) and finally that (vii) and (viii) are equivalent.
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Assume that the monomial t ∈ P satisfies txsn−j ∈ 〈J , xn, . . . , xn−j+1〉 for
some integer s > 0 and an index 0 ≤ j ≤ D. If m (t) > n− j, then we have

t ∈ 〈xn, . . . , xn−j+1〉 ⊆ 〈J , xn, . . . , xn−j+1〉 ⊆ 〈J , xn, . . . , xn−j+1〉
sat .

Otherwise txsn−j ∈ J and thus t ∈ J : x∞n−j = J : 〈x1, . . . , xn−j〉
∞ by (iii).

Hence we also find t ∈ 〈J , xn, . . . , xn−j+1〉
sat. This proves that (v) is a conse-

quence of (iii).
Now assume for the second step that xn−j defines a zero divisor in the

ring P/〈J , xn, . . . , xn−j+1〉
sat for some index 1 ≤ j ≤ D − 1. This means

that a polynomial f /∈ 〈J , xn, . . . , xn−j+1〉
sat must exist such that xn−jf ∈

〈J , xn, . . . , xn−j+1〉
sat which in turn entails the existence of an integer s such

that xs+1
n−jf ∈ 〈J , xn, . . . , xn−j+1〉 and thus by (v) that f ∈ 〈J , xn, . . . , xn−j+1〉 :

x∞n−j = 〈J , xn, . . . , xn−j+1〉
sat which contradicts the choice of f . Hence (iv)

follows from (v).
For the proof of the equivalence of (vii) and (viii), we write Ci for the set

of all terms in Pi which are not contained in Ji and ki for m (ti). Thus (viii)
is equivalent to the fact that all these sets are finite. We will now prove that if
this is the case, then the Pommaret basis of J is given by the finite set

H = B ∪

r⋃

i=1

{sti | s ∈ Ci} . (3)

Obviously, H generates I and thus we only have to prove that it is involutive for
the Pommaret division. Consider a term r ∈ C̄i = {ti}∪{sti | s ∈ Ci}; obviously,
m (r) = ki. We choose an index 1 ≤ j < ki which is thus non-multiplicative
for r. If xjr ∈ C̄i, then there is nothing to prove. Otherwise write r = sti
with s = 1 or s ∈ Ci. Then xjr /∈ C̄i is equivalent to xjs /∈ Ci which in turn
implies that xjr ∈ 〈t1, . . . , ti−1〉. Let 1 ≤ ℓ < i be the smallest index such
that tℓ | xjsti and write xjr = rmrnmtℓ with terms rm ∈ k[xkℓ

, . . . , xn] and
rnm ∈ k[x1, . . . , xkℓ−1]. Because of the minimality of the index ℓ, we must have
that rnm ∈ Cℓ. Hence rnmtℓ is an element of H and an involutive divisor of xjr
so that we are done. �

The following two results generalise some of the characterisations in Proposi-
tion 3.2 to the above introduced weaker forms of quasi-stability and thus provide
also for these algebraic interpretations.

Proposition 3.3. Let J ⊳ P be a monomial ideal and ℓ an integer. Then the
following statements are equivalent.

(i) J is ℓ-quasi-stable.

(ii) If xµ ∈ J satisfies m(xµ) ≥ n − ℓ and µj > 0 for some n − ℓ ≤ j ≤ n,
then for each 0 < r ≤ µj and 1 ≤ i < j an integer s ≥ 0 exists such that
xsix

µ/xrj ∈ J .
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(iii) For all 0 ≤ j ≤ ℓ we have

J : x∞n−j = J : 〈x1, . . . , xn−j〉
∞ . (4)

Proof. Assume first that J is ℓ-quasi-stable and denote by B its minimal
basis. Let xµ ∈ J be a term with µj > 0 for some n − ℓ ≤ j ≤ n and r an
integer with 0 < r ≤ µj . Hence k = m(xµ) ≥ j. We want to prove (ii) by

showing that xdegB
i xµ/xrj lies in J for all integers i < j. By the definition of

ℓ-quasi-stability, xdegB
i xµ/xµk

k ∈ J for i < k. Therefore there exists a term

xν(1)

∈ B with

xν(1)

| xdegB
i

xµ

xµk

k

(5)

and k1 = m(xν(1)

) ≤ m(xdegi Bxµ/xµk

k ) < k. Obviously, ν
(1)
α ≤ µα for all

i 6= α < k and ν
(1)
i ≤ µi + degB. Again it follows from the assumed ℓ-quasi-

stability that xdegB
i xν(1)

/x
ν
(1)
k1

k1
∈ J and thus there exists a term xν(2)

∈ B

with xν(2)

| xdegi Bxν(1)

/x
ν
(1)
k1

k1
and m (xν(2)

) = k2 < k1. Furthermore by (5),

xν(2)

| x2·degB
i xµ/x

ν
(1)
k1

k1
xµk

k and—since deg (xν(2)

) ≤ degB and ν
(1)
k1
≤ µk1—this

entails

xν(2)

| xdegB
i

xµ

x
µk1

k1
xµk

k

. (6)

We go on like this until we end up with a term xν(ω)

∈ B such that xν(ω)

|

xdegB
i xν(ω−1)

/x
ν
(ω−1)
kω−1

kω−1
and m (xν(ω)

) = kω < · · · < k1 < k such that kω−1 = j.
Hence the following holds:

• ν
(ω)
α = 0 for all α ≥ j > kω.

• ν
(ω)
α ≤ ν

(ω−1)
α ≤ · · · ≤ ν

(1)
α ≤ µα for all i 6= α < j.

• ν
(ω)
i ≤ ν

(ω−1)
i ≤ · · · ≤ ν

(1)
i ≤ µi + degB.

Analogously to (5) and (6), we have

xν(ω)

| xdegB
i

xµ

x
µj

j x
µkω−2

kω−2
· · ·x

µk1

k1
xµk

k

which entails that xν(ω)

divides xdegB
i

x
µ

xr
j

and we are done.

Now assume (ii) and let t be a term such that xrn−jt ∈ J for some ex-
ponent r and index 0 ≤ j ≤ ℓ. Since m (xrn−jt) ≥ n − j ≥ n − ℓ, it fol-
lows from (ii) that for all i < n − j ≤ m(xrn−jt) there is an integer si such
that the term xsii x

r
n−jt/x

r
n−j = xsii t lies in J . Hence we have the inclusion

t〈x1, . . . , xn−j〉
(s1+···+sn−j−1+r)(n−j) ⊆ J entailing t ∈ J : 〈x1, . . . , xn−j〉

∞

which shows (iii).
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Finally assume that the equality (4) holds and consider a term xµ ∈ J
such that m (xµ) = n − j with j ≤ ℓ. Because of (4), we have xµ/x

µn−j

n−j ∈
J : x∞n−j = J : 〈x1, . . . , xn−j〉

∞. Hence there is an integer s such that

(xµ/x
µn−j

n−j )〈x1, . . . , xn−j〉
s ⊆ J . But this inclusion means that for every index

1 ≤ i < n− j a minimal generator ti of J exists which divides xsix
µ/x

µn−j

n−j ∈ J .
Because of degxi

ti ≤ degB, it is clear that we may choose s ≤ degB which
finally shows that J is ℓ-quasi-stable. �

Corollary 3.4. Let J EP be a monomial and ℓ-quasi-stable ideal. If ℓ ≥ D−1
where D = dim (P/J ), then J is even quasi-stable.

Proof. Since the equality I : x∞n−j = I : 〈x1, . . . , xn−j〉
∞ for all 0 < j < D

implies that also 〈I, xn, . . . , xn−j+1〉 : x
∞
n−j = 〈I, xn, . . . , xn−j+1〉

sat for all 0 <
j < D, the assertion follows from Propositions 3.2 and 3.3.

For low-dimensional ideals, this observation significantly reduces the com-
putational costs of checking quasi-stability. However, its straightforward ap-
plication requires the knowledge of the dimension of the ideal. The following
simple Algorithm 1 verifies whether a given monomial ideal is D-quasi-stable
without a priori knowledge of D. It is an adaption of a similar algorithm for
checking D-stability presented in (Hashemi et al., 2014, Alg. 1). We will prove
its correctness later (Proposition 4.5).

Algorithm 1 DQS-Test: Test for D-quasi-stability

Input: minimal basis G = {t1, . . . , tr} of monomial ideal J ⊳ P
Output: The answer to: is J D-quasi-stable?
1: ℓ← smallest j such that xdegG

α ∈ I for α = 1, . . . , n− j
2: for all xµ ∈ G with k = m(xµ) ≥ n− ℓ do
3: for i = 1, . . . , k − 1 do
4: if xdegG

i
x
µ

x
µk
k

/∈ 〈G〉 then

5: return false
6: end if
7: end for
8: end for
9: return true

With minor adaptions of the proof given above, one obtains the following
version of Proposition 3.3 for the weakly ℓ-quasi-stable case. In Section 4.1, we
will relate this notion of stability to Noether position.

Proposition 3.5. Let J ⊳ P be a monomial ideal and ℓ an integer. Then the
following statements are equivalent.

1. J is weakly ℓ-quasi-stable

2. If xµ in J with m(xµ) ≥ n− ℓ and µj > 0 for some n− ℓ ≤ j ≤ n, then
for each 0 < r ≤ µj and 1 ≤ i ≤ n − ℓ an integer s ≥ 0 exists such that
xsi

x
µ

xr
j

lies in J .
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3. For all 0 ≤ j ≤ ℓ holds

J : x∞n−j ⊆ J : 〈x1, . . . , xn−ℓ〉
∞ . (7)

3.2. Stability

A study of the problem of characterising algebraically the various variants
of stability has already been started by Hashemi et al. (2014) because of its
relevance for computing reduction numbers. For completeness, we first recall
without proof the following result about ℓ-stability.

Proposition 3.6 ((Hashemi et al., 2014, Prop. 3.5)). The monomial ideal
J E P is ℓ-stable, if and only if it satisfies for all 0 ≤ j ≤ ℓ

〈J , xn, . . . , xn−j+1〉 : xn−j = 〈J , xn, . . . , xn−j+1〉 : m . (8)

Hashemi et al. (2014) showed furthermore that D-stability implies quasi-
stability whereas this is not the case for weak D-stability. The following novel
result provides an analogous characterisation of weak ℓ-stability.

Proposition 3.7. Let J EP be a monomial ideal. If J is weakly ℓ-stable, then
it satisfies for all 0 ≤ j ≤ ℓ the equality

〈J , xn, . . . , xn−ℓ+1〉 : xn−j = 〈J , xn, . . . , xn−ℓ+1〉 : m . (9)

Proof. Assume first that J is weakly ℓ-stable and let t be a term such that
xn−jt ∈ 〈J , xn, . . . , xn−ℓ+1〉 for some j ≤ ℓ. If m (t) > n − ℓ, then t ∈
〈xn, . . . , xn−ℓ+1〉 and nothing is to be proven. Otherwise, we have xn−jt ∈
J and m (xn−jt) = n − j ≥ n − ℓ. The weak ℓ-stability now entails that

xit = xi
xn−jt
xn−j

∈ J for all i ≤ n − ℓ. Hence t〈x1, . . . , xn−ℓ〉 ⊆ J implying

tm ⊆ 〈J , xn, . . . , xn−ℓ+1〉. Thus we have shown the inclusion “⊆” and the
converse one is trivial. �

3.3. Componentwise Stability

Herzog and Hibi (1999) introduced the notion of a componentwise linear
ideal as a generalisation of the notion of a stable monomial ideal to polynomial
ideals. Such ideals have many special properties, in particular concerning their
Betti numbers. If I ⊳ P is a homogeneous ideal, then we denote the ideal gen-
erated by the homogeneous component Id by I〈d〉 = 〈Id〉. One can now extend
every stable position defined above to a componentwise stable position by requir-
ing that all ideals I〈d〉 with d ≥ 0 are simultaneously in the corresponding stable
position. For monomial ideals, componentwise (strong) stability is equivalent to
ordinary (strong) stability, as the defining criterion involves only terms of the
same degree. By contrast, componentwise quasi-stability is a stronger condition
than the ordinary version. As for polynomial ideals we do not simply consider
their leading ideals but the (polynomial) component ideals I〈d〉, for them com-
ponentwise (strongly) stable position is generally also a stronger condition than
its ordinary counterpart.
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We will concentrate in the sequel on componentwise quasi-stability, as it
appears to be the most important notion for applications. For example, if a
componentwise linear ideal is in componentwise quasi-stable position, then all
its Betti numbers can be directly read off from its Pommaret basis, as this basis
induces the minimal resolution of the ideal (Seiler, 2009b, Thm. 9.12). Another
quite remarkable fact about this position is that it is of all the generic positions
considered in this work the only one which is not automatically implied by
the GIN position (see Definition 4.8 below). Example 5.23 provides a concrete
counter example.

The following elementary result implies that it is not really necessary to
work componentwise which requires to treat many and rather large bases and
thus is computationally very inefficient. In the case of (strongly) stable position
only the only-if-part remains true. However, for the subsequent results only this
direction is needed so that appropriately adapted versions can be provided.

Lemma 3.8. Let I ⊳ P be a homogeneous polynomial ideal. The ideal I〈d〉 =
〈Id〉 is in quasi-stable position, if and only if the ideal I[d] = 〈

⋃
r≤d Ir〉 is in

quasi-stable position.

Proof. Obviously, I〈d〉 =
(
I[d]

)
≥d

. Now the claim follows immediately from

(Seiler, 2009b, Lemma 2.2). �

We now develop a sufficient criterion for an ideal I to be in componentwise
quasi-stable position which does not require the consideration of the component
ideals I〈d〉 (or equivalently I[d]). Such a criterion is important for deciding
componentwise linearity. Assuming that the ideal I is already in quasi-stable
position (so that it possesses a Pommaret basis), we can derive one based on
the first syzygies of I.

If the set H = {h1, . . . , hs} is a Pommaret basis of I and xk is a non-
multiplicative variable for the generator hα ∈ H, then the product xkhα pos-
sesses a unique involutive standard representation

xkhα =

s∑

β=1

P
(α;k)
β hβ (10)

where each non-vanishing coefficient P
(α;k)
β depends only on variables which

are multiplicative for hβ and satisfies lt (P
(α;k)
β hβ) � lt (xkhα). Seiler (2009b)

showed that the corresponding syzygies form a Pommaret basis of the first
syzygy module of I (for the Schreyer order induced by H). Given a degree
d ≥ 0 such that Id 6= 0, we introduce two subsets of the Pommaret basis H:
the set Hd = {h ∈ H | deg h ≤ d} collects all generators up to degree d and

the set Ĥd = {ĥ ∈ H | ∃h ∈ Hd : lth | lt ĥ} contains in addition all higher
order generators which have a leading term divisible by the leading term of an
element of Hd.
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Proposition 3.9. Let I ⊳ P be a homogeneous ideal in quasi-stable position
and d ≥ 0 a degree such that Id 6= 0. The ideal I[d] is in quasi-stable position, if

in every involutive standard representation (10) with hα ∈ Ĥd all generators hβ

with P
(α;k)
β 6= 0 also lie in Ĥd. In this case, Ĥd is the Pommaret basis of I[d].

Proof. We first note that obviously I[d] = 〈Hd〉. Then we denote by Î the ideal

generated by Ĥd. If the condition on the involutive standard representations is
satisfied, then Ĥd is the Pommaret basis of Î. As obviously, I[d] ⊆ Î, it suffices

to show that I[d] cannot be a proper subset of Î. Assume that this was the case.

Then there must exist a generator ĥ ∈ Ĥd which is not contained in I[d]. Let ĥ be
among all such generators the one with the smallest leading term with respect to
the used term order. By construction, there exists h ∈ Hd such that lt ĥ = xν lth
for some term xν . We consider the polynomial g = lc (h)ĥ − lc (ĥ)xνh ∈ Î. It
possesses an involutive standard representation with respect to the Pommaret
basis Ĥd of the form g =

∑
f̂∈Ĥd

Pf̂ f̂ . Every generator f̂ with Pf̂ 6= 0 must have

a leading term smaller than ĥ, as by construction lt g ≺ lt ĥ, and thus must lie
in I[d] according to our choice of ĥ. But this implies that ĥ ∈ I[d] contradicting

our assumption. Hence Î = I[d] and I[d] is in quasi-stable position. �

Remark 3.10. The same statement holds for the componentwise (strongly)
stable case. The only difference is that now we must assume that the ideal I
is already in (strongly) stable position; the criterion itself does not change. As
in this case the leading terms ltH form even the minimal basis of lt I, we find
that Ĥd = Hd which simplifies the application of the criterion.

As a simple corollary, we find that componentwise quasi-stability is generic,
too, as the intersection of finitely many Zariski open subsets is still Zariski open.

Corollary 3.11. For verifying that a homogeneous ideal I ⊳ P in quasi-stable
position is even in a componentwise quasi-stable position, it suffices to consider
only finitely many ideals I〈d〉. If the degree reverse lexicographic order is used,
then we may restrict to d ≤ reg I.

Proof. It follows from the previous proposition that it suffices to restrict to
d ≤ q where q is the maximal degree of a generator in the Pommaret basis of I.
If the degree reverse lexicographic order is used, then q = reg I. �

Example 3.12. The criterion of Proposition 3.9 is not necessary. Consider the
ideal I = 〈x51, x1x

4
2, x

3
1x

3
2〉⊳ k[x1, x2]. It is quasi-stable and its Pommaret basis

is given by H =
{
x51, x1x

4
2, x

3
1x

3
2, x

2
1x

4
2, x

4
1x

3
2

}
. The first two generators form the

setH5, adding the fourth one yields Ĥ5. Our criterion is not satisfied, as we find
as involutive standard representation x1h4 = x2h3 and h3 /∈ Ĥ5. Nevertheless,
one easily verifies that I〈5〉 = I[5] = 〈x

5
1, x1x

4
2〉 is quasi-stable.
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3.4. Positive Characteristic

In principle, all above introduced notions of stability are independent of
the characteristic of the base field. However, when we will discuss in Section
6 how to transform a given polynomial ideal into one of these positions, the
characteristic will play a role. The simplest restriction will be that for finite
base fields we will have to assume that the field is sufficiently large (the precise
meaning of this will become apparent below). A more serious restriction will be
that in positive characteristic, we can only guarantee that one can always reach
the various variants of a quasi-stable position. For stability and strong stability
only adapted “p-versions” can be reached generally. The reason is simply that in
positive characteristic many binomial coefficients vanish and hence many terms
cannot be produced via linear transformations.

In order to define these “p-versions”, we need the following notations – see
e. g. (Eisenbud, 1995, §15.9.3). Let p be an arbitrary prime number. For two
natural numbers k, ℓ, we say k ≺p ℓ, if

(
ℓ
k

)
6≡ 0 mod p. Given a term xµ and

natural numbers i > j such that µi > 0, we define for any natural number

s ≤ µi the sth elementary move as the term e
(s)
i,j (x

µ) = xsjx
µ/xsi and this move

is p-admissible, if and only if s ≺p µi.
The following definition of “p-versions” covers only the classical stability

notions. Of course, it is trivial to extend it to ℓ- and weak versions.

Definition 3.13. Assume that chark = p is positive. Then a monomial ideal
J EP = k[x] is p-stable, if for every term xµ ∈ J in it every p-admissible move

e
(s)
i,j (x

µ) with j < i = m(xµ) and s ≤ µi yields again a term in J . The ideal J
is strongly p-stable, if in the definition above every index i with µi > 0 can be
considered.

As above, it is sufficient to verify the conditions on some finite generating
set of J . It is easy to see that Definition 3.1 is equivalent to requiring that
all elementary moves, i. e. without any condition on the exponent s, stay inside
the ideal. Thus (strong) p-stability is a weaker notion than “ordinary” (strong)
stability, as it simply ignores certain elementary moves.

4. Other Generic Positions

We now consider three classical generic positions and introduce a new fourth
one. The material in the Subsections 4.2 and 4.3 is well-known and included
only for the sake of completeness. Our main point in all cases is the relationship
to the stability positions considered in the previous section.

4.1. Noether Position

Definition 4.1. The D-dimensional ideal I ⊳ P is in Noether position, if the
variables x1, . . . , xD induce a Noether normalisation of I.

Noether position is a classical concept in commutative algebra. The following
well-known result provides a simple effective test via Gröbner bases.
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Lemma 4.2 (e. g. (Bermejo and Gimenez, 2001, Lem. 4.1)). Let I ⊳ P
be a D-dimensional ideal. Then the following statements are equivalent:

(i) I is in Noether position.

(ii) There are integers si such that xsii ∈ lt I for all 1 ≤ i ≤ n−D.

(iii) dim (P/〈I, xn−D+1, . . . , xn〉) = 0.

(iv) dim (P/ lt 〈I, xn−D+1, . . . , xn〉) = 0.

Remark 4.3. Bermejo and Gimenez (2006) proved that an ideal I is quasi-
stable, if and only if I and all primary components of lt I are simultaneously in
Noether position. In fact, it is easy to see that quasi-stability implies Noether
position (Seiler, 2009b, Prop. 4.1), which immediately implies that the latter is
a generic position, too.

Almost all algorithms proposed so far to get an ideal into Noether position
are probabilistic – see e. g. (Greuel and Pfister, 2002, Algo. 3.4.5). An excep-
tion is the approach of Robertz (2009) using Janet bases. Furthermore, (Seiler,
2009b, Sect. 2) contains a method to obtain deterministically quasi-stable posi-
tion and as mentioned above this entails Noether position. However, the result
of Bermejo and Gimenez mentioned in Remark 4.3 shows that quasi-stability
is stronger than Noether position. To the best of our knowledge, the following
result represents the first combinatorial characterisation of Noether position.
In particular, it implies that Noether position can also be achieved with the
deterministic methods which will be presented in Section 6.

Theorem 4.4. Let I ⊳ P be a D-dimensional ideal. It is in Noether position,
if and only if it is in weakly D-quasi-stable position.

Proof. We first note the following simple consequence of the definition of
weak D-quasi-stability for a monomial ideal J with minimal basis B. If the
term xµ ∈ J lies in the ideal, then J also contains any term of the form
xµ1+ν1
1 · · ·x

µn−ℓ+νn−ℓ

n−ℓ with exponents νi that are multiples of degB satisfying
ν1 + · · ·+ νn−ℓ = k degB where k = #{µj | j > n−D ∧ µj > 0}.

Assume now that J = lt I is a weakly D-quasi-stable ideal. If there exists
a term xµ ∈ J ∩k[xn−D+1, . . . , xn], then we can immediately invoke the obser-
vation above to conclude that for each 1 ≤ i ≤ n−D a term xsii is contained in
J , as µ1 = · · · = µn−D = 0. Thus I is in Noether position by Lemma 4.2.

If the intersection J ∩ k[xn−D+1, . . . , xn] is empty, then the D-dimensional
cone 1 · k[xn−D+1, . . . , xn] lies completely in the complement of J . As for a
D-dimensional ideal it is not possible that the complement contains a (D + 1)-
dimensional cone, the intersection J ∩k[xi, xn−D+1, . . . , xn] must be non-empty
for any index 1 ≤ i ≤ n − D. But if xµ is a term in this intersection, then it
follows again from the introductory remark that also a term xsii lies in J and
thus that I is in Noether position. �
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With the help of Theorem 4.4, we can now provide the postponed proof that
Algorithm 1 for testing D-quasi-stability is indeed correct.

Proposition 4.5. Algorithm 1 is correct.

Proof. We distinguish three cases:

1. J is D-quasi-stable.

2. J is not D-quasi-stable, but in Noether position.

3. J is neither D-quasi-stable nor in Noether position.

In the first case, Theorem 4.4 entails that J is in Noether position. Hence the
number ℓ computed in Line 1 equals D by Lemma 4.2 and we will never reach
Line 5 by the definition of D-quasi-stability. In the second case, we find again
ℓ = D by the same argument. But as J is not D-quasi-stable there must be an
obstruction that leads us correctly to Line 5. In the last case, ℓ is greater than D
(we know that ℓ 6= D, since J is not in Noether position; the assumption ℓ < D
leads to a contradiction, since then D ≤ n− (n− ℓ) = ℓ < D). As J is not D-
quasi-stable, there exists a term xµ ∈ G with k = m(xµ) ≥ n−D > n− ℓ such

that xdegG
i

x
µ

x
µk
k

/∈ J for some i < k. Our algorithm will detect this obstruction

and thus gives again the right answer. �

4.2. Borel-Fixed Position

The next generic position which we consider is distinguished from all the
other ones by the fact that it is the only one which depends on the characteristic
of the underlying field k. Recall that the subgroup B ⊆ GL(n,k) of all lower
triangular invertible n × n matrices is called the Borel group. For any integer
0 ≤ ℓ < n, we introduce the ℓ-Borel group as the subgroup Bℓ ≤ B consisting
of all matrices A ∈ B such that for i < n − ℓ we have aii = 1 and aij = 0 for
i 6= j (obviously, Bn−1 = B).

Definition 4.6. The monomial ideal J ⊳ P is ℓ-Borel-fixed for an integer 0 ≤
ℓ < n, if A ·J = J for all A ∈ Bℓ. The polynomial ideal I⊳P is in ℓ-Borel-fixed
position for a term order ≺, if lt I is ℓ-Borel-fixed. If ℓ = n − 1, then we drop
the suffix ℓ and simply speak of a Borel-fixed ideal and position, respectively.

It is a classical result (e. g. Herzog and Hibi, 2011, Prop. 4.2.4) that any
strongly stable ideal is Borel-fixed (which implies that we deal indeed with
a generic position). In characteristic zero the converse is true, too. If the
characteristic is a positive prime p, then 〈xp1, x

p
2〉⊳k[x1, x2] is a simple example

of a Borel-fixed ideal which is not strongly stable. However, it is easy to see
that in any characteristic a Borel-fixed ideal is quasi-stable (Bayer and Stillman,
1987b, Cor. 2). (Hashemi et al., 2014, Prop. 9) generalised these assertions: in
characteristic zero a monomial ideal J is ℓ-Borel-fixed for some integer 0 ≤
ℓ < n, if and only if J is strongly ℓ-stable. In positive characteristic only one
direction is true.
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4.3. GIN Position

A classical result proven first by Galligo (1974) in characteristic zero and
then later by Bayer and Stillman (1987b) in arbitrary characteristic asserts that
almost all linear changes of coordinates applied to an ideal I E P lead to the
same leading ideal which is then called the generic initial ideal ginI of I. Again
by Galligo (1979) in characteristic zero and by Bayer and Stillman (1987b) in
arbitrary characteristic, it was shown that gin I is always Borel-fixed.

Theorem 4.7 (Galligo). For any ideal IEP, there exists a nonempty Zariski
open subset U ⊆ GL(n,k) such that lt (A · I) = lt (B · I) for all A,B ∈ U .

Definition 4.8. The ideal I E P is in GIN position (for a term order ≺), if
lt I = ginI.

GIN position is the strongest notion of genericity that we consider in this
work. It implies all other positions with one exception: componentwise quasi-
stability is an independent property (see Example 5.23 below). While the GIN
position is very popular among theorists, as in it I and lt I share many invari-
ants, it should be noted that neither a simple effective criterion nor a simple
deterministic algorithm is known for it. As far as we know, all computer alge-
bra systems use a probabilistic approach to determine gin I by applying simply
one or more random transformations. Such a computation may become quite
expensive, as it inevitably leads to dense polynomials for which a Gröbner basis
must be computed. Furthermore, it cannot be easily tested whether or not the
result really is gin I.

If one uses a parametric coordinate transformation instead of a random
one, the computation becomes of course even more expensive, but the result is
guaranteed to be the correct generic initial ideal. Let A = (aij) be an n × n
parametric matrix and k(aij) the field of fractions of k[aij ]. We consider the

ideal Î = A·IEk(aij)[x1, . . . , xn]. It follows from Theorem 4.7 that lt Î = gin I.

Hence a Gröbner basis of Î yields immediately ginI.
Alternatively, we consider Ĩ = Î ∩ P̃ where P̃ = k[aij ][x1, . . . , xn] and

compute a Gröbner system for Ĩ E P̃ imposing at the start the condition that
det (A) 6= 0. Again by Theorem 4.7, the generic branch (the only one for which
the set Ni is empty) yields as leading ideal gin I. Note that for finding the
generic branch it is not necessary to determine the whole Gröbner system. It
suffices to follow at each case distinction the “not equal zero” branch. This
is equivalent to a fraction-free form of computing a Gröbner basis of Î and in
practise probably more efficient.

Obviously, this approach requires to work with n2 parameters. If one is
interested in the generic initial ideal for the degree reverse lexicographic term
order, then a slight optimisation is possible. In this case, it suffices to take for
A a lower triangular matrix with all diagonal entries equal to 1 and thus one
can reduce the number of parameters to n(n− 1)/2. Indeed, any regular matrix
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A can be written as a product2 A = UDL where L is a lower triangular, U an
upper triangular and D a diagonal matrix and where both L and U have only
ones on the diagonal. While the transformation induced by D does trivially not
change the leading term of any polynomial for arbitrary term orders, it follows
from the definition of the degree reverse lexicographic order that here also the
transformation induced by U does not affect any leading term. Hence we find
that lt (A · I) = lt (L · I) and it suffices to work with the matrix L.

4.4. β-Maximal Position

Given a homogeneous ideal I ⊳ P and a degree q with Iq 6= 0, we denote

by Bq(I) = (lt I)q ∩T the monomial k-linear basis of (lt I)q . We set β
(k)
q (I) =

#{t ∈ Bq(I) | m(t) = k}. Then the β-vector of I at degree q is defined as

βq(I) =
(
β(1)
q (I), . . . , β(n)

q (I)
)
∈ Nn

0 . (11)

Remark 4.9. The β-vector provides a convenient way to compare the asymp-
totic behaviour of Hilbert polynomials. We call the set

〈Bq(I)〉P =
⊕

t∈Bq(I)

k[xP (t)] · t ⊆ 〈Bq(I)〉

the Pommaret span of Bq(I) and define hPI,q(s) = dim
k

(
〈Bq(I)〉P

)
s
. If hI,q

denotes the Hilbert function of the monomial ideal 〈Bq(I)〉, then obviously
hPI,q(s) ≤ hI,q(s) for all degrees s and we have hPI,q = hI,q, if and only if
Bq(I) is the Pommaret basis of the ideal it generates. (Seiler, 2010, Prop. 8.2.6)
showed that3

hPI,q(q + r) =

n−1∑

i=0

(n−1∑

k=i

s
(k)
k−i(0)

k!
β(n−k)
q (I)

)
ri (12)

where the modified Stirling numbers s
(j)
i (ℓ) are positive integers (see (Seiler,

2010, App. A.4) for more details). Thus hPI,q is polynomial beyond degree q.

If we write it as
∑

i hir
i, then its coefficient hn−i is a linear combination of

β
(1)
q , . . . , β

(i)
q with positive coefficients. This simple observation entails that if I

and J are two homogeneous ideals such that βq(I) ≺lex βq(J ), then h
P
J ,q(s) <

hPI,q(s) for all sufficiently large degrees s, and motivates the following novel
generic position.

Definition 4.10. The homogeneous ideal I ⊳ P is in β-maximal position (for
a given term order ≺), if we have for all matrices A ∈ GL(n,k) and all degrees
q ≥ 0 with Iq 6= 0 the inequality

βq(I) �lex βq(A · I) . (13)

2Classically, one uses decompositions A = LDU . But such a decomposition for the inverse
A−1 yields immediately a decomposition of our form for A.

3Strictly speaking, (Seiler, 2010, Prop. 8.2.6) covered a slightly different situation than
we consider here. In particular, it is there assumed that one deals with a Pommaret basis.
However, the adaption to our case here is trivial.
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We will now first show that β-maximality implies quasi-stability and then
that the generic initial ideal has at all degrees the same β-vector as an ideal in
β-maximal position (implying that β-maximality is a generic position). In both
cases, the converse statement is not true. In particular, β-maximal position
does not imply GIN position (see for instance Example 5.21 below).

Proposition 4.11. The polynomial ideal I ⊳ P is in quasi-stable position, if
and only if the following inequality holds for all matrices A ∈ GL(n,k) and all
degrees q ≥ reg lt I:

βq(I) �lex βq(A · I) (14)

Proof. Let us assume first that I is in quasi-stable position. Then for any
degree q ≥ reg I = reg lt I the truncation I≥q is even in stable position (Seiler,
2009b, Prop. 9.6). Hence Bq(I) is a Pommaret basis of the ideal it generates
and we find that hPI,q = hI,q which immediately implies (14) by Remark 4.9.

For the converse, note that (14) implies hPI,q = hI,q, since there always exists
a matrix A such that A · I is in quasi-stable position. These Hilbert functions
coincide beyond degree q, if and only if Bq(I) generates a stable ideal and thus
if I≥q is in stable position (Seiler, 2009b, Prop. 9.6). But then the original ideal
I is in quasi-stable position (Seiler, 2009b, Lemma 2.2). �

Corollary 4.12. Any polynomial ideal I⊳P in β-maximal position is in quasi-
stable position, too.

Proposition 4.13. If the polynomial ideal I ⊳P is in GIN position, then I is
also in β-maximal position. In particular, if I is in β-maximal position, then
βq(gin I) = βq(I) for all degrees q with Iq 6= 0.

Proof. We exploit a result derived in the proof of Galligo’s Theorem 4.7
presented by (Green, 1998, Thm. 1.27). For a given degree q, let the terms
{t1, . . . , tsq} be a k-basis of Pq ordered according to the degree reverse lexico-
graphic order: t1 ≻ t2 ≻ · · · ≻ tsq . Then there exists a Zariski open subset
U ⊆ GL(n,k) such that for all matrices A ∈ U , all degrees q ≥ 0 and all indices
m ≤ sq the dimension of the k-linear space

Vq,m(A) = 〈lt (A · I)q〉k ∩ 〈t1, . . . , tm〉k

takes its maximal possible value (thus if B /∈ U , then for at least some values of q
andm we have dim

k

Vq,m(B) < dim
k

Vq,m(A) for any A ∈ U). Now let a k-basis

of Bq(gin I) be given by the terms {t̃1, . . . , t̃ℓ} and of Bq(Â · I) for an arbitrarily

chosen matrix Â ∈ GL(n,k) by {t̂1, . . . , t̂ℓ}, respectively. In both cases, we
assume again that the bases are ordered by the degree reverse lexicographic
order. Then the above maximality condition implies that t̃i ≻ t̂i for all 1 ≤
i ≤ ℓ. By definition of the degree reverse lexicographic order, we thus find that
m (t̃i) ≤ m(t̂i) for all indices i which is equivalent to βq(gin I) �lex βq(Â · I).�
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Remark 4.14. In principle, these results provide us with a deterministic test
for β-maximality. We first check whether or not we are in a quasi-stable position.
If this is not the case, the position cannot be β-maximal by Corollary 4.12.
Otherwise, we determine ginI deterministically (as discussed in Section 4.3)
and then it suffices by Propositions 4.11 and 4.13 to compare the β-vectors
βq(I) and βq(gin I) for the finitely many degrees 0 ≤ q < regI. Obviously,
such a test is rather expensive. So far, no deterministic algorithm for finding a
β-maximal position is known. One can only apply random transformations and
then perform the above described check.

The ideal I1 = 〈x21, x1x2 + x22, x1x3〉 ⊳ k[x1, x2, x3] was already considered
by (Green, 1998, Ex. 1.28) as an example where the leading ideal is strongly
stable but nevertheless not the generic initial ideal. Indeed one finds lt I1 =
〈x21, x1x2, x1x3, x

3
2, x

2
2x3〉, whereas ginI1 = 〈x21, x1x2, x

2
2, x1x

2
3〉. It is easy to see

that these two monomial ideals have different β-vectors and hence I1 is not in β-
maximal position. On the other hand, I2 = lt I1 is strongly stable which implies
ginI2 = I2 and thus I2 is in β-maximal position. This observation shows that
two ideals I1 and I2 may have the same leading ideal and yet behave differently
with respect to β-maximality. We conclude that there cannot exist a “simple”
deterministic algorithm—meaning an algorithm solely based on the analysis of
leading terms like the one developed in Section 6 for the various notions of
stability—that produces a β-maximal position for arbitrary ideals.

In the context of a Pommaret basis of I, one can roughly interpret β-
maximality as a condition that generators with more multiplicative variables
should have lower degrees (note, however, that componentwise quasi-stability
admits the same rough interpretation and is nevertheless independent of β-
maximality—see Examples 5.4 and 5.5 below). We will now show that this
observation can be related to results by (Herzog and Hibi, 2011, Sect. 4.3) on
the annihilator numbers of graded modules. In particular, we will prove that
the genericity concept underlying their notion of generic annihilator numbers is
exactly β-maximality.

Definition 4.15. A linear form y ∈ P1 is called quasi-regular4 for the graded
P-module M, if the graded module 0 :M y = {m ∈ M | ym = 0} is of finite
length (i. e. if only finitely many graded components are non-vanishing). An
ordered sequence (y1, . . . , yk) ⊂ P1 is quasi-regular forM, if yi is quasi-regular
forM/〈y1, . . . , yi−1〉M for 1 ≤ i ≤ k.

In the sequel, we will concentrate for notational simplicity on the case that
M = P/I for a homogeneous ideal I. However, all results can be straight-
forwardly extended to finitely presented modules M = Pm/U with a graded

4Following Aramova and Herzog (2000), Herzog and Hibi use the terminology almost regu-
lar. However, the same concept was introduced under the name quasi-regularity much earlier
in a rather unknown letter of Serre appended to (Guillemin and Sternberg, 1964). Later, the
same notion was reinvented by Schenzel et al. (1978) under the name filter-regular.
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submodule U . The following result by Seiler (2007) shows that quasi-regularity
is actually just a different way to view quasi-stability and that quasi-regular
sequences of lengths up to n = dimP always exist.

Proposition 4.16 ((Seiler, 2007, Thm. 5.2)). The sequence (xn, . . . , x2, x1)
is quasi-regular for M = P/I, if and only if I is in quasi-stable position.

Given a quasi-regular sequence y = (y1, . . . , yn) of length n for the graded
moduleM = P/I, we introduce the graded modules

Ai−1(y;M) = 0 :M/〈y1,...,yi−1〉M yi
∼=

(
〈I, y1, . . . , yi−1〉 : yi

)
/〈I, y1, . . . , yi−1〉

and define the annihilator numbers of M with respect to the sequence y as
αij(y;M) = dim

k

Ai−1(y;M)j for all indices 0 ≤ i < n and j ≥ 0. The
definition of quasi-regularity implies immediately that only finitely many of
these numbers are non-zero. The following result shows that the annihilator
numbers simply encode how the elements of the Pommaret basis of I for the
degree reverse lexicographic order distribute over the different degrees and the
different numbers of multiplicative variables.

Theorem 4.17. Let the finite set H be the Pommaret basis of the homogeneous
ideal I⊳P for the degree reverse lexicographic term order andM = P/I. Then
for all admissable indices i, j

αij(xn, . . . , x1;M) = #
{
h ∈ H | m(lth) = n− i ∧ deg (h) = j + 1

}
. (15)

Proof. Consider the projection π : P = k[x1, . . . , xn] → P̃ = k[x1, . . . , xn−1]
defined by π(f) = f |xn=0. It is easy to see that if H is the Pommaret basis of I
for the degree reverse lexicographic order, then π(H)\{0} is the Pommaret basis
of π(I) for the same term order (we find π(h) = 0, if and only if m (lt h) = n).
Because of the obvious isomorphism P/〈I, xn〉 ∼= P̃/π(I), it thus suffices to
consider the case i = 0; the assertion for all other values of the index i follows
by an easy induction.

The case i = 0 requires the analysis of the homogeneous polynomials f ∈ (I :
xn)j \ Ij . For any such polynomial the product xnf ∈ Ij+1 possesses a unique
involutive standard representation (Seiler, 2009a, Thm. 5.4): xnf =

∑
h∈H Phh

with coefficients Ph ∈ k[xP (h)] satisfying lt (Phh) � lt (xnf). For any generator
h ∈ H with m (lt h) < n, we must have Ph ∈ 〈xn〉 whereas m (lt h) = n entails
Ph ∈ k[xn]. The assumption f /∈ Ij implies that for at least one generator
h ∈ H with m (lth) = n the coefficient Ph is a non-vanishing constant (which is
only possible if deg h = j+1), as otherwise we could divide the above involutive
standard representation by xn and would obtain a standard representation of
f . But this observation proves immediately our claim for i = 0. �

Exploiting properties of Pommaret bases, we obtain the following two results
of (Herzog and Hibi, 2011, Prop. 4.3.4, Thm. 4.3.6) as trivial corollaries.
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Corollary 4.18. Let I⊳P be a homogeneous ideal in quasi-stable position and
setM = P/I.

(i)
∑

j≥0 αij(xn, . . . , x1;M) = 0, if and only if i < depth I.

(ii) There exists a Zariski open subset U ⊆ GL(n,k) such that for all matrices
B ∈ U the transformed ordered sequence y = Bx is again quasi-regular and
for all admissible indices i, j we have the equality αij(yn, . . . , y1;M) =
αij(xn, . . . , x1;P/ ginI).

Proof. The first assertion follows immediately from Theorem 4.17 and the fact
that depth I = n−t with t the maximal value of m (lth) for a generator h in the
Pommaret basis of I for the degree reverse lexicographic order (Seiler, 2009b,
Prop. 3.19). The second assertion follows from Proposition 4.13. �

(Herzog and Hibi, 2011, Def. 4.3.9) call both a quasi-regular sequence y as
in Corollary 4.18(ii) and the corresponding annihilator numbers generic. Ac-
cording to Proposition 4.13, a generic quasi-regular sequence thus defines a β-
maximal position and vice versa. (Herzog and Hibi, 2011, Sect. 4.3.2) conclude
their discussion of the annihilator numbers by studying their relationship to the
Betti numbers ofM. All these results follow again immediately from Theorem
4.17 and the resolution induced by a Pommaret basis (Seiler, 2009b, Thm. 6.1).
In particular, the estimate given by (Herzog and Hibi, 2011, Prop. 4.3.12) is
simply a bigraded version of the one contained in (Seiler, 2009b, Thm. 6.1).

5. Examples

The results in the previous sections entail certain relations between the above
introduced generic positions. They are depicted in the diagram in Figure 1. In
order to demonstrate that all positions are indeed different, we compile a series of
examples separating them (for a field of characteristic zero). The numbers shown
in the various fields of the diagram correspond to the numbering of the examples.
The used abbreviations should be largly self-explanatory. “D” represents the
dimension D = dim I, thus DS denotes D-stable ideals and WDS weakly D-
stable ideals. Similarly, “C” stands for componentwise and “Q” for quasi.

Example 5.1. I = 〈x21, x
2
2, x1x4〉Ek[x1, x2, x3, x4] is not quasi-stable, because

x23
x1x4

x4
= x1x

2
3 /∈ I. D = 2 and I is not weakly D-stable, as x2

x1x4

x4
= x1x2 /∈ I.

Since gin I = 〈x21, x1x2, x
2
2, x1x

2
3〉, we see that I is not in β-maximal position as

β2(I) = (1, 1, 0, 1) ≺lex (1, 2, 0, 0) = β2(gin I) .

Example 5.2. I = 〈x1x2, x
3
1〉 E k[x1, x2] is quasi-stable, but not component-

wise, as I〈2〉 = 〈x1x2〉 is not quasi-stable. D = 1 and I is not weakly D-stable,
as x1

x1x2

x2
= x21 /∈ I. Since ginI = 〈x21, x1x

2
2〉, we see that I is not in β-maximal

position, as
β2(I) = (0, 1) ≺lex (1, 0) = β2(gin I) .
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Figure 1: “Map of Positions”

Example 5.3. I = 〈x21, x1x3〉 E k[x1, x2, x3] is not quasi-stable, as x22
x1x3

x3
=

x1x
2
2 /∈ I. D = 2 and I is not D-stable, as x2

x1x3

x3
= x1x2 /∈ I. Since

ginI = 〈x21, x1x2〉, we see that I is not in β-maximal position, as

β2(I) = (1, 0, 1) ≺lex (1, 1, 0) = β2(gin I) .

Example 5.4. For I = 〈x21, x
2
2, x

2
3〉E k[x1, x2, x3] we have D = 0 and I is not

weakly D-stable, as x1
x2
3

x3
= x1x3 /∈ I. gin I = 〈x21, x1x2, x

2
2, x1x

2
3, x2x

2
3, x

4
3〉

implies that I is not in β-maximal position, as

β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I)

Example 5.5. For I = 〈x31, x1x
2
2 + x22x3, x

4
2〉 E k[x1, x2, x3], we have lt I =

〈x31, x1x
2
2, x

4
2, x

2
2x

3
3〉 and D = 1. lt I is not weakly D-stable, as x1

x1x
2
2

x2
= x21x2 /∈
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lt I, and lt I〈3〉 = 〈x
3
1, x1x

2
2, x

2
2x

3
3〉 is not quasi-stable. I is in β-maximal position,

as ginI = 〈x31, x
2
1x2, x1x

3
2, x

4
2, x1x

2
2x

2
3, x

2
1x

4
3〉 and

β3(I) = (1, 1, 0) = β3(gin I) ,

β4(I) = (1, 4, 2) = β4(gin I) ,

β5(I) = (1, 5, 8) = β5(gin I) .

Example 5.6. For I = 〈x21, x
2
2〉Ek[x1, x2] we have D = 0 and I is not weakly

D-stable, as x1
x2
2

x2
= x1x2 /∈ I. gin I = 〈x21, x1x2, x

3
2〉 implies that I is in

β-maximal position, as

β2(I) = (1, 1) = β2(gin I) .

Example 5.7. For I = 〈x21, x1x2, x
2
2+x

2
3, x1x4〉Ek[x1, x2, x3, x4] we have lt I =

〈x21, x1x2, x
2
2, x1x4, x1x

2
3〉 and D = 2. lt I is not D-stable, as x3

x1x4

x4
= x1x3 /∈ I.

ginI = 〈x21, x1x2, x
2
2, x1x3, x1x

2
4〉 entails that I is not in β-maximal position, as

β2(I) = (1, 2, 0, 1) ≺lex (1, 2, 1, 0) = β2(gin I) .

Example 5.8. For the ideal I = 〈x31 + x1x
2
3, x

2
1x2 + x2x

2
4, x1x

2
2, x

3
2, x

2
2x

2
3, x2x

3
3〉

E k[x1, x2, x3, x4] we have

lt I = 〈x31, x
2
1x2, x1x

2
2, x

3
2, x1x2x

2
3, x

2
2x

2
3, x2x

3
3, x

2
2x

2
4, x1x2x3x

2
4,

x2x
2
3x

2
4, x1x2x

4
4, x2x3x

4
4, x2x

6
4〉

and D = 2. lt I is not D-stable, as x3
x2
2x

2
4

x4
= x22x3x4 /∈ lt I. Since lt I〈3〉 =

〈x31, x
2
1x2, x1x

2
2, x

3
2, x1x2x

2
3, x

2
2x

2
4, x2x

2
3x

2
4〉 is not quasi-stable, I is not in compo-

nentwise quasi-stable position.

gin I = 〈x31, x
2
1x2, x1x

2
2, x

3
2, x

2
1x

2
3, x1x2x

2
3, x1x

3
3, x

2
1x3x4, x1x2x3x

2
4,

x1x
2
3x

2
4, x

2
1x

3
4, x1x2x

4
4, x1x3x

4
4, x1x

6
4〉

entails that I is in β-maximal position as

β3(I) = (1, 3, 0, 0) = β3(ginI) ,

β4(I) = (1, 4, 7, 5) = β4(ginI) ,

β5(I) = (1, 5, 12, 20) = β5(ginI) ,

β6(I) = (1, 6, 18, 40) = β6(ginI) .

Example 5.9. For I = 〈x21, x1x2, x
2
2, x1x4, x1x

2
3〉Ek[x1, x2, x3, x4] we have that

I〈2〉 = 〈x
2
1, x1x2, x

2
2, x1x4〉 is not quasi-stable and thus I is not in componentwise

quasi-stable position. D = 2 and lt I is not D-stable, as x3
x1x4

x4
= x1x3 /∈ I.

ginI = 〈x21, x1x2, x
2
2, x1x3, x1x

2
4〉 entails that I is not in β-maximal position as

β2(I) = (1, 2, 0, 1) ≺lex (1, 2, 1, 0) = β2(gin I) .
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Example 5.10. Let I = 〈x31, x
2
1x2, x1x

2
2, x

3
2, x

2
2x

2
3, x

2
2x

2
4〉Ek[x1, x2, x3, x4]. Then

D = 2 and I is not D-stable since x3
x2
2x

2
4

x4
= x22x3x4 /∈ I. As ginI =

〈x31, x
2
1x2, x1x

2
2, x

3
2, x

2
1x

2
3, x

2
1x3x4, x

2
1x

3
4〉, we see that I is in β-maximal position

since
β3(I) = (1, 3, 0, 0) = β3(ginI) ,
β4(I) = (1, 4, 5, 5) = β4(ginI) .

Example 5.11. Let I = 〈x22, x1x3, x2x3, x
2
3, x

3
1〉 E k[x1, x2, x3]. Then I〈2〉 =

〈x22, x1x3, x2x3, x
2
3〉 is not quasi-stable, hence I is not in componentwise quasi-

stable position. Furthermore, I is not stable, as x1
x2
2

x2
= x1x2 /∈ I. Since

ginI = 〈x21, x1x2, x1x3, x
2
2, x2x

2
3, x

4
3〉, we see that I is not in β-maximal position,

as β2(I) = (0, 1, 3) ≺lex (1, 2, 1) = β2(gin I).

Example 5.12. Let I = 〈x21, x1x
2
2 + x2x

2
3, x

5
2, x

4
2x3, x

3
2x

2
3, x

2
2x

3
3〉E k[x1, x2, x3].

Then lt I〈3〉 = 〈x31, x
2
1x2, x1x

2
2, x

2
1x3, x1x2x

2
3, x2x

4
3〉 is not quasi-stable, hence I

is not in componentwise quasi-stable position. Furthermore,

lt I = 〈x21, x1x
2
2, x1x2x

2
3, x

5
2, x

4
2x3, x

3
2x

2
3, x

2
2x

3
3, x2x

4
3〉

is not strongly stable, as x1
x1x2x

2
3

x2
= x21x

2
3 /∈ I. Since

ginI = 〈x21, x1x
2
2, x

4
2, x

3
2x

2
3, x1x2x

3
3, x

2
2x

3
3, x1x

4
3〉 ,

I is not in β-maximal position, as β4(I) = (1, 3, 5) ≺lex (1, 4, 4) = β4(ginI)

Example 5.13. Let I = 〈x21, x1x2 + x2x3, x1x3, x
3
2, x

2
2x3〉Ek[x1, x2, x3]. Then

lt I〈2〉 = 〈x
2
1, x1x2, x1x3, x2x

2
3〉 is not quasi-stable, hence I is not in component-

wise quasi-stable position. Furthermore, lt I = 〈x21, x1x2, x1x3, x2x
2
3, x

3
2, x

2
2x3〉 6=

〈x21, x1x2, x
2
2, x1x

2
3, x2x

2
3〉 = gin I and so we see that I is not in β-maximal po-

sition, as β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I).

Example 5.14. Let I = 〈x31, x
3
2, x1x

2
3, x2x

2
3, x

3
3〉 E k[x1, x2, x3]. Then I is not

stable, as x1
x3
2

x2
= x1x

2
2 /∈ I. Since

ginI = 〈x31, x
2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x2x

2
3, x

2
2x

2
3, x1x

4
3, x2x

4
3, x

6
3〉 ,

I is not in β-maximal position, as β3(I) = (1, 1, 3) ≺lex (1, 3, 1) = β3(ginI).

Example 5.15. Let I = 〈x31, x1x
2
2 + x22x3, x

4
2, x1x

3
3, x

4
3, x2x

3
3〉 E k[x1, x2, x3].

Then lt I〈3〉 = 〈x1x
2
2, x

3
1, x

2
2x

3
3〉 is not quasi-stable, hence I is not in componen-

twise quasi-stable position. lt I = 〈x31, x1x
2
2, x

4
2, x2x

3
3, x1x

3
3, x

4
3〉 is not stable, as

x1
x1x

2
2

x2
= x21x2 /∈ lt I. With

ginI = 〈x31, x
2
1x2, x1x

3
2, x

4
2, x1x

2
2x3, x

3
2x3, x

2
1x

2
3, x1x2x

3
3, x

2
2x

3
3, x1x

4
3, x2x

5
3, x

6
3〉 ,

we see that I is in β-maximal position, since

β3(I) = (1, 1, 0) = β3(gin I) ,
β4(I) = (1, 4, 5) = β4(gin I) ,
β5(I) = (1, 5, 13) = β5(gin I) .
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Example 5.16. Let

I = 〈x31, x1x
2
2, x

3
2, x

2
1x2x3, x

2
1x

2
3, x1x2x

2
3, x

2
2x

2
3, x1x

3
3, x2x

3
3, x

4
3〉E k[x1, x2, x3] .

Then I is not stable, as x1
x1x

2
2

x2
= x21x2 /∈ I. Since

gin I = 〈x31, x
2
1x2, x1x

2
2, x

4
2, x

3
2x3, x

2
1x

2
3, x1x2x

2
3, x

2
2x

2
3, x1x

3
3, x2x

3
3, x

4
3〉 ,

we see that I is in β-maximal position, as β3(I) = (1, 2, 0) = β3(gin I).

Example 5.17. Let I = 〈x31, x
2
1x2 + x32, x

2
1x3, x

4
2〉 E k[x1, x2, x3]. Then lt I =

〈x31, x
2
1x2, x

2
1x3, x1x

3
2, x

4
2, x

3
2x3〉 is not strongly stable, as x1

x3
2x3

x2
= x1x

2
2x3 /∈

lt I. Since ginI = 〈x31, x
2
1x2, x1x

2
2, x

4
2, x

2
1x

2
3〉, we see that I is not in β-maximal

position, as β3(I) = (1, 1, 1) ≺lex (1, 2, 0) = β3(gin I).

Example 5.18. Let I = 〈x21, x1x2+x2x3, x
3
2, x

2
2x3〉Ek[x1, x2, x3]. Then lt I〈2〉 =

〈x21, x1x2, x2x
2
3〉 is not quasi-stable, hence I is not in componentwise quasi-stable

position. Furthermore, lt I = 〈x21, x1x2, x
3
2, x

2
2x3, x2x

2
3〉 is not strongly stable,

as x1
x2x

2
3

x2
= x1x

2
3 /∈ lt I. Since ginI = 〈x21, x1x2, x

3
2, x

2
2x3, x1x

2
3〉, we see that I

is in β-maximal position, as β2(I) = (1, 3, 4) = β2(gin I).

Example 5.19. Let I = 〈x21, x1x
2
2, x

3
2, x

2
2x

2
3〉 E k[x1, x2, x3]. Then I is not

strongly stable, as x1
x2
2x

2
3

x2
= x1x2x

2
3 /∈ I. Since gin I = 〈x21, x1x

2
2, x

3
2, x1x2x

2
3〉,

we see that I is in β-maximal position, as

β2(I) = (1, 0, 0) = β2(gin I)
β3(I) = (1, 3, 1) = β3(gin I) .

Example 5.20. Let I = 〈x21, x1x2+x2x3, x
3
2, x

2
2x3〉Ek[x1, x2, x3]. Then lt I =

〈x21, x1x2, x1x3, x
3
2, x

2
2x3〉 6= 〈x

2
1, x1x2, x

2
2, x1x

2
3〉 = ginI and so we see that I is

not in β-maximal position, as β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I).

Example 5.21. Consider I = 〈x31, x
2
1x2+x2x

2
3, x1x

3
2, x

4
2, x1x

2
2x3, x

2
1x

2
3, x1x

4
3〉E

k[x1, x2x3]. Then lt I〈3〉 = 〈x
3
1, x

2
1x2, x1x2x

2
3, x2x

4
3〉 is not quasi-stable, hence I

is not in componentwise quasi-stable position. Furthermore,

lt I = 〈x31, x
2
1x2, x1x

3
2, x

4
2, x1x

2
2x3, x

2
1x

2
3, x1x2x

2
3, x

3
2x

2
3, x

2
2x

3
3, x1x

4
3, x2x

4
3〉

does not equal

ginI = 〈x31, x
2
1x2, x1x

3
2, x

4
2, x1x

2
2x3, x

3
2x3, x

2
1x

2
3, x1x2x

3
3, x

2
2x

3
3, x1x

4
3, x2x

4
3〉 ,

but I is in β-maximal position, as

β3(I) = (1, 1, 0) = β3(gin I) ,
β4(I) = (1, 4, 5) = β4(gin I) .
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Example 5.22. Let K = 〈x2x3− x1x4, x
3
1 − x

2
2x4, x

3
2 − x1x

2
3〉Ek[x1, x2, x3, x4]

and I = Ψ2Ψ1(K) with Ψ1 : (x3 7→ x3 + x1) and Ψ2 : (x2 7→ x2 + x1). Then

lt I = 〈x21, x1x
2
2, x

3
2, x1x2x

2
3, x1x

3
3, x

2
2x

3
3, x2x

4
3〉 6=

〈x21, x1x
2
2, x

3
2, x1x2x

2
3, x

2
2x

2
3, x1x

4
3, x2x

4
3〉 = gin I ,

but I is in β-maximal position, as

β2(I) = (1, 0, 0, 0) = β2(ginI) ,
β3(I) = (1, 3, 1, 1) = β3(ginI) ,
β4(I) = (1, 4, 7, 6) = β4(ginI) .

Example 5.23. Let I = 〈x31, x
2
1x2+x1x2x3, x1x

3
2, x1x

2
2x3, x

2
1x

2
3〉Ek[x1, x2, x3].

Then lt I〈3〉 = 〈x31, x
2
1x2, x1x2x

2
3〉 is not quasi-stable, hence I is not in compo-

nentwise quasi-stable position. Furthermore,

lt I = 〈x31, x
2
1x2, x1x

3
2, x1x

2
2x3, x

2
1x

2
3, x1x2x

2
3〉 = ginI

and so I is in β-maximal position.

Example 5.24. The final ideal that is in any position is simply 〈x1〉E k[x1].

6. A Deterministic Algorithm for Stable Positions

6.1. Description of the Algorithm

We discuss now the main computational result of this article: a determin-
istic algorithm that for a coefficient field of characteristic zero incrementally
transforms into any of the generic positions related to stability5 and for a field
of positive characteristic p into any of the corresponding p-variants. It performs
at each step an elementary move, i. e. for a single pair (k, ℓ) of indices with
ℓ < k we transform xk 7→ xk +xℓ with all other variables unchanged, so that we
obtain a fairly sparse transformation if not too many steps are necessary. Such
a move transforms any term xµ containing xk into a linear combination of terms
of which xµ is the smallest with respect to the degree reverse lexicographic order
(for this reason it is crucial that this order is used). While the algorithm itself
is thus fairly simple, it turns out that quite some work is required to prove that
it always terminates after a finite number of transformations.

The termination proof is based on the following simple observation. We
proceed as in the above discussion of a deterministic way to compute gin I: a
linear coordinate transformation with undetermined coefficients is performed
and then a Gröbner system is computed with the coefficients as parameters. By
Remark 2.2, any ideal possesses only finitely many different leading ideals under
arbitrary linear transformations. We define now an ordering on the set of these
leading ideals and then show that our algorithm produces a strictly ascending
sequence of leading ideals. Obviously, this implies termination.

5With the help of the criterion of Proposition 3.9, this also includes componentwise quasi-
stability—see Remark 6.5 below for more details.
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Definition 6.1. Let F ⊂ P be a finite set of polynomials with leading terms
ltF = {t1, . . . , tℓ} such that t1 ≻revlex · · · ≻revlex tℓ where now ≺revlex denotes
the pure reverse lexicographic order.6 Then we denote the ordered tuple of
these leading terms by L (F ) = (t1, . . . , tℓ). If F, F̃ ⊂ P are two finite sets of
polynomials with L (F ) = (t1, . . . , tℓ) and L (F̃ ) = (t̃1, . . . , t̃ℓ̃), then we define
an ordering by setting

L (F ) ≺L L (F̃ ) ⇐⇒

{
∃ j ≤ min (ℓ, ℓ̃) ∀ i < j : ti = t̃i ∧ tj ≺revlex t̃j or

∀ j ≤ min (ℓ, ℓ̃) : tj = t̃j ∧ ℓ < ℓ̃ .

For notational simplicity, we present our Algorithm 2 for the special case
of strongly stable position. If the algorithm terminates, then its correctness is
obvious, as the condition in Line 2 just encodes the definition of a strongly stable
ideal. The only not so obvious part of the algorithm is the while loop in Line 5.
It will become later evident why we need it. In fact, it only works, if chark = 0.
We will discuss later the modifications required for positive characteristic.

Algorithm 2 SS-Trafo: Transformation to strongly stable position

Input: reduced Gröbner basis G of homogeneous ideal I E P
Output: a linear change of coordinates Ψ such that lt Ψ(I) is strongly stable
1: Ψ := id;
2: while ∃ g ∈ G, 1 ≤ j ≤ n, 1 ≤ i < j : xj | lt g ∧ xi

lt g
xj

/∈ 〈ltG〉 do

3: ψ := (xj 7→ xj + xi); Ψ = ψ ◦Ψ

4: G̃ := ReducedGröbnerBasis
(
ψ(G)

)

5: while L (G) �L L (G̃) do
6: ψ := (xj 7→ xj + xi); Ψ = ψ ◦Ψ

7: G̃ := ReducedGröbnerBasis
(
ψ(G̃)

)

8: end while
9: G := G̃

10: end while
11: return Ψ

To apply the algorithm for a different notion of stability, one only has to
modify the condition in Line 2 so that it encodes the corresponding stability
criterion. Then again the correctness is obvious and the precise nature of the
stability criterion will play no role in the termination proof below.

Example 6.2. Let I = 〈x31, x
3
2, x

2
2x3〉 E k[x1, x2, x3]. I is not strongly stable,

as x1
x2
2x3

x3
= x1x

2
2 /∈ I. We perform the coordinate transformation Ψ1 : (x3 7→

x3 + x1) and obtain

ltΨ1(I) = 〈x
3
1, x1x

2
2, x

3
2, x

2
2x

3
3〉 .

6Note that opposed to the degree reverse lexicographic order, ≺revlex is not a term order.
Since we are, however, exclusively considering homogeneous polynomials, we may always
pretend that the leading term has been selected via ≺revlex.
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Since (x31, x
3
2, x

2
2x3) ≺L (x31, x1x

2
2, x

3
2, x

2
2x

2
3), we do not enter the while loop in

Line 5. But lt Ψ1(I) is still not strongly stable, as x1
x1x

2
2

x2
= x21x2 /∈ lt (Ψ1(I)).

Thus we perform as second coordinate transformation Ψ2 : (x2 7→ x2 + x1)
leading to

ltΨ2

(
Ψ1(I)

)
= 〈x31, x

2
1x2, x1x

2
2, x

4
2, x

2
1x

3
3〉 .

Again we do not enter the inner while loop, as this time (x31, x1x
2
2, x

3
2, x

2
2x

2
3) ≺L

(x31, x
2
1x2, x1x

2
2, x

4
2, x

2
1x

3
3). Now there are no obstructions left, i. e. ltΨ2

(
Ψ1(I)

)

is strongly stable (in this case we even have ltΨ2

(
Ψ1(I)

)
= ginI).

The next example shows explicitly that the result of Algorithm 2 is not
unique. More precisely, in the outer while loop one finds generally more than
one obstruction (i, j) and each choice will lead to a different transformations.

Example 6.3. Let I = 〈x21, x1x2, x2x3, x
3
2〉Ek[x1, x2, x3]. Since both x1

x2x3

x2
=

x1x3 and x2
x2x3

x3
= x22 are not contained in I, we have the choice to perform

either Ψ1 : (x2 7→ x2 + x1) or Ψ2 : (x3 7→ x3 + x1). Since

ltΨ1(I) = 〈x21, x1x2, x1x3, x
3
2, x

2
2x3〉

ltΨ2(I) = 〈x21, x1x2, x
3
2, x2x3〉 ,

we see that applying Ψ1 directly leads to a strongly stable ideal whereas ltΨ2(I)

is still not strongly stable (x1
x2x

2
3

x2
= x1x

2
3 is not contained). But

lt Ψ1

(
Ψ2(I)

)
= 〈x21, x1x2, x

2
2, x1x

2
3〉

is strongly stable and not equal to lt Ψ1(I).

Remark 6.4. Although in this article we are only concerned with the principal
question of deterministically obtaining generic positions, we want to comment
briefly on some efficiency issues. In a concrete computer realisation of Algo-
rithm 2, any optimisation will aim at reducing either the number of checks for
obstructions or the total number of transformations. One can think of quite a
number of natural strategies to achieve these goals. However, for each of them
one can provide counter examples (Schweinfurter, 2016, Sect. 2.3), so that none
of them is always successful. The relative merits of these strategies can thus be
assessed only in extensive benchmarks.

We consider here only one particularly natural strategy, namely to attack
always the obstructions of lowest degree. The logic behind this strategy is the
expectation that no transformation introduces obstructions in lower degrees
and thus that each degree must be considered only once. However, this ex-
pectation is wrong, as the following example demonstrates. Consider the ideal
I = 〈x31, x

2
1x2 + x32, x

2x3〉E k[x1, x2, x3] with leading ideal

lt I = 〈x31, x
2
1x2, x

2
1x3, x1x

3
2, x

3
2x3, x

5
2〉 .
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There are no obstructions in degree 3, which is the lowest degree of a generator.

But since x2
x3
2x3

x3
= x42 /∈ lt I, there exists one in degree 4. We can remove it by

applying the transformation Ψ : (x3 7→ x3 + x2). The new leading ideal

ltΨ(I) = 〈x31, x
2
1x2, x

3
2, x

2
1x

3
3〉

has no obstructions in degree 4 or 5, which is the highest degree of a minimal
generator. But ltΨ(I) is not strongly stable, since now an obstruction appears

in degree 3: x1
x3
2

x2
= x1x

2
2 /∈ ltΨ(I).

Remark 6.5. The definition of a componentwise quasi-stable position is quite
different from the one of a quasi-stable position, as it uses the component ideals
I〈d〉 (which are truly polynomial) instead of the monomial ideal lt I. Thus a
straightforward algorithm for obtaining a componentwise quasi-stable position
would analyse all these ideals simultaneously which is very expensive. Our
results in Section 3.3 allow us to modify Algorithm 2 in such a way that it can
be directly used for this task.

First of all, we use the obvious variant of Algorithm 2 to put I into a quasi-
stable position. Then we start Algorithm 2 again with the condition in Line 2
replaced by the sufficient criterion derived in Proposition 3.9. The implemen-
tation of this criterion requires two further modifications: Instead of reduced
Gröbner bases we compute Pommaret bases in the Lines 4 and 7 (their finiteness
is ensured, as we are in a quasi-stable position) and this computation must be
performed in such a way that we also obtain all the syzygies corresponding to
the involutive standard representations (10).

As already mentioned in Remark 3.10, we can similarly transform into a
componentwise (strongly) stable position. We only have to put I in the first
step into a (strongly) stable position. Then we can use the same modified
algorithm as for a componentwise quasi-stable position.

6.2. The Termination Proof

Let F = {f1, . . . , fℓ} ⊂ P be a finite set of polynomials. We call F completely
autoreduced, if no term contained in the support of a polynomial fi is divisible
by a leading term lt fj with j 6= i. F is head autoreduced, if no leading term lt fi
is divisible by another leading term lt fj . By an obvious algorithm, any set F
can be rendered either completely or head autoreduced. We denote the results
by FN and by F△, respectively. Furthermore, if 0 6= f ∈ P is an arbitrary non-
vanishing polynomial and t ∈ supp (f) a term appearing in it, then we denote
the coefficient of t in f by Cf(t).

Lemma 6.6. Let F ⊆ P be a completely autoreduced set of polynomials. Let
Ψ : (xj 7→ xj + axi) be a linear coordinate transformation with i < j and a
parameter a ∈ k×. If the field k possesses more than 2 degF elements, then
there exists a value a such that

L (F ) �L L
(
Ψ(F )△

)
.
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If k is an infinite field, then this inequality will hold for any (Zariski) generic
choice of the parameter a.

Proof. We order F = {f1, . . . , fℓ} such that lt fk ≺revlex lt fl whenever k > l.
Furthermore we set tk = lt fk and sk = ltΨ(fk) for each k. Without loss of
generality, we assume that lc fk = 1 for each k. It is easy to see that tk �revlex sk
for all k, as i < j. If tk = sk for all k, then there is nothing to prove, since
then ltF = ltΨ(F ) = ltΨ(F )∆. Otherwise let α be the smallest index such
that tα 6= sα. In other words: tk = sk for all k < α, tα ≺revlex sα and
tk �revlex sk for all k > α. Let hα be the remainder of Ψ(fα) after reducing
it by the set

{
Ψ(f1), . . . ,Ψ(fα−1)

}
— note that this set is head but in general

not completely autoreduced. We want to show that tα ∈ supp (hα), as then
obviously lthα �revlex tα.

If hα = Ψ(fα), we are done, since then tα ∈ supp
(
Ψ(fα)

)
. Otherwise there

exists an index β < α such that sβ = tβ divides sα. So the question arises
whether or not tα remains in the support of

hβ = Ψ(fα)−
CΨ(fα)(sα)sα

CΨ(fβ)(tβ)tβ
Ψ(fβ) .

Let us assume that this was not the case. Hence in Ψ(fβ) a monomial
mβ = CΨ(fβ)(tmβ

)tmβ
exists which causes the cancellation of tα. Clearing de-

nominators, we arrive thus at the equality

CΨ(fα)(tα)CΨ(fβ)(tβ)tαtβ = CΨ(fα)(sα)CΨ(fβ)(tmβ
)sαtmβ

. (16)

We analyse now the appearing coefficients as elements of k[a], i. e. as polynomials
in the parameter a. Because of the form of the transformation Ψ, the term 1
is contained in both supp

(
CΨ(fα)(tα)

)
and supp

(
CΨ(fβ)(tβ)

)
and hence also in

supp
(
CΨ(fα)(tα)CΨ(fβ)(tβ)

)
. But our assumption sα ≻revlex tα implies that 1 /∈

supp
(
CΨ(fα)(sα)

)
and thus 1 /∈ supp

(
CΨ(fα)(sα)CΨ(fβ)(tmβ

)
)
. This argument

shows that as polynomials in a the two decisive coefficients CΨ(fα)(tα)CΨ(fβ)(tβ)
and CΨ(fα)(sα)CΨ(fβ)(tmβ

) cannot be equal. For any value a outside the set

V
(
CΨ(fα)(tα)CΨ(fβ)(tβ)− CΨ(fα)(sα)CΨ(fβ)(tmβ

)
)
⊆ k

therefore the equality (16) cannot hold which contradicts our assumption that
tα /∈ supp (hβ). Each coefficient in Ψ(fα) is a polynomial in a with its degree
bounded by deg fα and analogously for Ψ(fβ). Thus there are at most 2 degF
“bad” values a and for a sufficiently large field k we can always find a “good”
one.

Clearing denominators in the equation for the coefficient of tα in hβ , we
obtain the equality

CΨ(fβ)(tβ)Chβ
(tα) = CΨ(fβ)(tβ)CΨ(fα)(tα)− CΨ(fα)(sα)CΨ(fβ)(tmβ

) .

With the arguments from above, we find 1 ∈ supp
(
CΨ(fβ)(tβ)Chβ

(tα)
)
and thus

1 ∈ supp
(
Chβ

(tα)
)
. (17)
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If already hβ = hα, we are done. Otherwise there exists an index γ < α such
that sγ = tγ divides lt hβ = thβ

. The existence of such a divisor shows that thβ

cannot be equal to tα since F is a completely autoreduced set—note that we
could not argue like this if F was only head autoreduced—and therefore

thβ
≻revlex tα . (18)

As above we must show that tα remains in the support of

hγ = hβ −
Chβ

(thβ
)thβ

CΨ(fγ)(tγ)tγ
Ψ(fγ) .

Let us assume that this was not the case. Hence in Ψ(fγ) a monomial mγ =
CΨ(fγ)(tmγ

)tmγ
exists such that—after clearing denominators—

Chβ
(tα)CΨ(fγ )(tγ)tαtγ = Chβ

(thβ
)CΨ(fγ)(tmγ

)thβ
tmγ

. (19)

Let us again analyse the coefficients. As above, we immediately find that 1 ∈
supp

(
CΨ(fγ)(tγ)

)
because of the form of the transformation Ψ. In (17) we

already saw that 1 ∈ supp
(
Chβ

(tα)
)
, hence 1 ∈ supp

(
Chβ

(tα)CΨ(fγ )(tγ)
)
. We

are done, if we are able to show that

1 /∈ supp
(
Chβ

(thβ
)
)
, (20)

as then 1 /∈ supp
(
Chβ

(thβ
)CΨ(fγ)(tmγ

)
)
and so again the equality (19) cannot

hold for all values a in a sufficiently large field k.
To show (20), we recall the construction of hβ,

hβ = Ψ(fα)−
CΨ(fα)(sα)sα

CΨ(fβ)(tβ)tβ
Ψ(fβ) ,

which implies the equality

Chβ
(thβ

)CΨ(fβ)(tβ) = CΨ(fα)(thβ
)CΨ(fβ)(tβ)− CΨ(fα)(sa)CΨ(fβ)(thβ

) . (21)

On one hand we note that 1 /∈ supp
(
CΨ(fα)(t)

)
for all terms t ∈ supp

(
Ψ(fα)

)

with t ≻revlex tα. Thus, since thβ
≻revlex tα by (18), it follows that if thβ

∈

supp
(
Ψ(fα)

)
, then 1 /∈ supp

(
CΨ(fα)(thβ

)
)
and therefore

1 /∈ supp
(
CΨ(fα)(thβ

)CΨ(fβ)(tβ)
)
.

On the other hand, 1 /∈ supp
(
CΨ(fα)(sα)

)
as we have seen above and so

1 /∈ supp
(
CΨ(fα)(sa)CΨ(fβ)(thβ

)
)
.

Since at least one of the coefficients CΨ(fα)(thβ
) and CΨ(fβ)(thβ

) must be nonzero,

we conclude from (21) that 1 /∈ supp
(
Chβ

(thβ
)CΨ(fβ)(tβ)

)
. Now (20) follows

from the fact that 1 ∈ supp
(
CΨ(fβ)(tβ)

)
.
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We can repeat this procedure for each reduction step until we end up at the
final result hα and the arguments imply then that tα ∈ supp (hα). Hence either
tα ≺revlex thα

or tα = thα
. Let us first assume that tα ≺revlex thα

. It is not clear
that the set

{
Ψ(f1), . . . ,Ψ(fα−1), hα

}
is head autoreduced, as it could happen

that there is an index δ < α such that thα
divides sδ = tδ. Since thα

6= tδ by the
construction of hα, we know that thα

≻revlex tδ. In this case we check whether
or not the set

{
Ψ(f1), . . . ,Ψ(fδ−1), hα

}
is head autoreduced. If it is not, then

there is an index ǫ < δ such that thα
divides sǫ = tǫ and we check again whether

or not the set
{
Ψ(f1), . . . ,Ψ(fǫ−1), hα

}
is head autoreduced. We continue like

this until we reach an index ζ < ǫ such that the set
{
Ψ(f1), . . . ,Ψ(fζ−1), hα

}

is head autoreduced. It is still not clear whether this set is a subset of Ψ(F )∆,
but we can see that lt fζ ≺revlex lthα and thus

L (f1, . . . , fζ) ≺L L
(
Ψ(f1), . . . ,Ψ(fζ−1), hα

)
.

If Ψ(F )∆ = {f̂1, . . . , f̂m̂}, then of course

L
(
Ψ(f1), . . . ,Ψ(fζ−1), hα

)
�L L (f̂1, . . . , f̂ζ)

and this inequality suffices to prove our claim L (F ) ≺L L (Ψ(F )∆).
There remains the case tα = thα

. Now we have to look for the smallest index
α′ > α such that tα′ 6= sα′ . Then we reduce Ψ(fα′) by the set

{
Ψ(f1), . . . ,Ψ(fα−1), hα,Ψ(fα+1), . . . ,Ψ(fα′−1)

}
(22)

to the polynomial hα′ in the same way as above — note that (22) is head autore-
duced since the leading terms did not change in comparison to the completely
autoreduced set F . It is clear that if we go on like this, then we will either end up
at Ψ(F )∆ with lt f̂k = lt fk for all k which would mean that L (F ) = L (Ψ(F )∆)
or we find a generator hω with tω ≺revlex thω

which finishes our proof. �

Lemma 6.7. Let I E P be an ideal and G its reduced Gröbner basis. Let Ψ :
(xj 7→ xj+axi) be a linear coordinate transformation with i < j and a parameter

a ∈ k×. Furthermore, let G̃ be the reduced Gröbner basis of the transformed
ideal Ψ(I). Then

L
(
Ψ(G)∆

)
�L L (G̃) .

Proof. Suppose that L (Ψ(G)∆) = (t1, . . . , tℓ) and L (G̃) = (t̃1, . . . , t̃ℓ̃). By
definition of a Gröbner basis, there exists for any leading term tk ∈ lt

(
Ψ(G)∆

)
⊆

lt 〈Ψ(G)∆〉 = 〈lt G̃〉 a generator g̃k ∈ G̃ such that lt g̃k divides tk and therefore7

lt g̃k �revlex tk. Now we compare the two lists beginning with the first entry.
Let lt g̃1 = t̃α. If α > 1, we are done since then t̃1 ≻revlex t̃α = lt g̃1 �revlex t1.

So we assume lt g̃1 = t̃1. We are again done, if t̃1 ≻revlex t1. Thus we further

7As ≺revlex is not a term order, it shows a quite different behaviour compared to the partial
order defined by divisibility: s | t trivially implies s �revlex t.
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assume that t1 = t̃1 and go on with the next entry. We note that g̃1 6= g̃2,
since otherwise t1 = t̃1 = lt g̃1 = lt g̃2 divides t2 which contradicts Ψ(G)∆ being
head autoreduced. Now we have to check which position lt g̃2 = t̃β has in the

list L (G̃). Since G̃ is reduced lt g̃1 6= lt g̃2 and therefore β > 1. If β > 2,
we again have the situation t̃2 ≻revlex t̃β = lt (g̃2) �revlex t2 and are done.
Otherwise β = 2 and so either t̃2 ≻revlex t2 or t̃2 = t2. In the first case, our
assertion follows and in the second one we go on with the next entry. Thus
sooner or later we either find an index ω with t̃ω ≻revlex tω which shows that
L (Ψ(G)∆) ≺L L (G̃) or

t̃k = tk for all k ≤ min(ℓ̃, ℓ) (23)

Assuming that (23) holds, we note that since G̃ is a Gröbner basis of 〈Ψ(G)∆〉
and both Ψ(G)∆ and G̃ are reduced sets we must have ℓ ≤ ℓ̃. Hence it follows
that L (Ψ(G)∆) = L (G̃) if ℓ = ℓ̃ and L (Ψ(G)∆) ≺L L (G̃) if ℓ < ℓ̃. �

The next, rather elementary lemma studies the effect of our basic coordi-
nate transformations on a polynomial. It encapsulates the dependence of our
approach on the characteristic of the base field k and shows why for a positive
characteristic in general only the p-version of our stability notions are reachable:
some terms simply cannot be generated by linear coordinate transformations.

Lemma 6.8. Let f ∈ P \ k be a non-constant polynomial and Ψ : (xj 7→
xj+axi) a linear coordinate transformation with i < j and a parameter a ∈ k×.
Furthermore, let xµ ∈ supp(f) be a term in the support of f with µj > 0. If

chark = 0, then, for a generic choice of a, all terms of the form x
µj−s
i xµ/x

µj−s
j

with 1 ≤ s ≤ µj appear in the support of Ψ(f). If chark = p > 0 and k has
more then deg f elements, then for each term of this form with s ≺p µj at least
one value of a exists such that the term appears in supp

(
Ψ(f)

)
.

Proof. An arbitrary term xν ∈ supp f is transformed into the polynomial

Ψ(xν) =

νj∑

s=0

(
νj
s

)
aνj−sx

νj−s
i

xν

x
νj−s
j

. (24)

Thus all terms in the transformed polynomial Ψ(f) have as coefficients polyno-
mials in k[a] of degree at most deg f . Now we analyse the coefficients of the

terms x
µj−s
i xµ/x

µj−s
j . Each of these terms appears in Ψ(xµ) with coefficient

aµj−s. If such a term also appears in Ψ(xν) with ν 6= µ, then the exponent
vector ν must satisfy νk = µk for all k 6= i, j and νi+ νj = µi+µj. This implies
that the coefficient aνj−s is different from aµj−s. Hence none of the terms we
consider has a zero polynomial as coefficient. It is now straightforward to verify
our assertion. �

Proposition 6.9. Let I E P be an ideal and G its reduced Gröbner basis. As-
sume that for a generator g ∈ G with lt g = xµ there exist indices i, j with i < j
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and µj > 0 and an exponent 1 ≤ s ≤ µj (satisfying additionally s ≺p µj if
chark = p > 0) such that

x
µj−s
i

lt g

x
µj−s
j

/∈ lt I . (25)

If chark > 0, assume in addition that k contains more than deg g elements.
Finally, let Ψ : (xj 7→ xj + axi) be a linear coordinate transformation with a

parameter a ∈ k× and G̃ the reduced Gröbner basis of the transformed ideal
Ψ(I). Then there exists at least one value a ∈ k× such that

L (G) ≺L L (G̃) .

In the case of an infinite coefficient field k, this estimate holds for a (Zariski)
generic choice of a.

Proof. Lemmata 6.6 and 6.7, respectively, assert that

L (G) �L L
(
Ψ(G)∆

)
�L L (G̃) .

To prove our assertion, we show that (25) implies that L (G) 6= L
(
Ψ(G)∆

)

for a suitable choice of the parameter a. Let us assume that this was not the
case. Further let G = {g1, . . . , gℓ} and Ψ(G)∆ = {ĝ1, . . . , ĝℓ}. Without loss
of generality, suppose that lt gk ≺revlex lt gl and lt ĝk ≺revlex lt ĝl if k > l.
Our assumption implies that lt gk = lt ĝk for all k. Suppose that g = gr with
lt gr = xµ and denote t = x

µj−s
i lt gr/x

µj−s
j . For s = µj the term t was equal

to lt gr ∈ lt I contradicting (25). Thus we may assume s < µj and then for the
reverse lexicographic order lt gr ≺revlex t.

Lemma 6.8 asserts that for a suitable choice of a every term of the form

x
µj−ŝ
i lt gr/x

µj−ŝ
j with 0 ≤ ŝ ≤ µj lies in the support of Ψ(gr), in particular

t ∈ supp
(
Ψ(gr)

)
. Since lt gr = lt ĝr, any term in Ψ(gr) that is greater than lt gr

must be reduced. Since t is one of these terms, there must be an element in
{lt g1, . . . , lt gℓ} that divides t. But this means that t ∈ 〈lt g1, . . . , lt gℓ〉 = lt I
which is a contradiction to (25). �

Remark 6.10. Proposition 6.9 encapsulates the central part of our termina-
tion proof. As mentioned above, it is formulated for the case of strongly stable
position. Indeed, (25) simply represents an obstruction to strong stability of the
leading ideal lt I (for chark = p > 0 to strong p-stability). With suitable adap-
tions, one easily obtains analogous propositions for any of the stable positions
introduced in Section 3.

Theorem 6.11. If chark = 0, then Algorithm 2 terminates after finitely many
steps and returns a coordinate transformation Ψ such that Ψ(I) is in strongly
stable position.

Proof. Let I be the given ideal and G its reduced Gröbner basis. According
to Remark 2.2, I has only finitely many different leading ideals under linear
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coordinate transformations. We denote the minimal bases of these leading ideals
by B1, . . . , Bℓ and assume without loss of generality that

L (B1) ≺L · · · ≺L L (Bℓ) .

In particular, there must be an index 1 ≤ α ≤ ℓ such that lt I = 〈Bα〉 and thus
L (G) = L (Bα).

If lt I is not strongly stable, there exists a generator g ∈ G and integers
i, j ∈ {1, . . . , n} with i < j such that xj divides lt g = xµ and xi lt (g)/xj /∈ lt I.

Consider the transformation Ψ1 : (xj 7→ xj + xi) and let G̃1 be the reduced
Gröbner basis of the transformed ideal Ψ1(I). There is an index 1 ≤ β ≤ ℓ such
that lt Ψ1(I) = 〈Bβ〉 and thus L (G̃1) = L (Bβ). If a = 1 is a generic value
in Proposition 6.9, then α < β. Otherwise, we enter the while loop in line 5
and perform the transformation Ψ1 a second time. The two transformations
together are equivalent to the single transformation (xj 7→ xj + 2xi). Thus the
effect of the inner while loop is that we try for the parameter a consecutively
the values 1, 2, 3, . . . We know from Proposition 6.9 that there are only a finite
number of “bad” values of a and thus after finitely many iterations we will reach
a “good” one. Hence there is an integer r such that the reduced Gröbner basis
G̃r of Ψr

1(I) satisfies L (G̃r) = L (Bγ) with α < γ ≤ ℓ.
Since there are only finitely many different leading ideals possible, it is ob-

vious that also the outer while loop is iterated only a finite number of times.
However, the termination of this loop is equivalent to the fact that the final
transformed ideal is in a strongly stable position. �

Example 6.12. In the situation of the proof of Theorem 6.11 one could be
tempted to think that if Bδ is the minimal basis of a strongly stable leading
ideal, then all bases Bǫ with ǫ > δ also generate strongly stable ideals. This is,
however, not true. Consider the ideal

I = 〈x31, x
2
1x2 + x1x

2
2 + x1x

2
3, x

2
1x3, x

2
1x4〉E k[x1, x2, x3, x4] .

Its leading ideal

lt I = 〈x31, x
2
1x2, x

2
1x3, x

2
1x4, x1x

3
2, x1x

2
2x3, x1x

2
2x4〉

is strongly stable. After the transformation Ψ : (x3 7→ x3 + x2), we find

lt Ψ(I) = 〈x31, x
2
1x2, x1x

2
2, x

2
1x4, x

2
1x

2
3〉

which is no longer strongly stable, as x3(x
2
1x4)/x4 = x21x3 /∈ ltΨ(I). However,

lt I ≺L ltΨ(I).

6.3. An Algorithm for Positive Characteristic

The adaption of Algorithm 2 to a field k of positive characteristic p faces
two problems. Firstly, the strategy for the choice of the parameter a realised
by the inner while loop is no longer valid, as it obviously fails as soon as the
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loop is iterated the pth time. If k is an infinite field, then one uses simply an
enumeration of a countable subset of k, i. e. a procedure that returns for each
natural number ℓ ∈ N a different element aℓ ∈ k. In the case of a finite field, one
uses an enumeration of the whole field. Then the transformation Ψ1 in the proof
of Theorem 6.11 is defined as (xj 7→ xj + a1xi) and in the loop we do not apply
the same transformation again and again, but instead of the transformation Ψℓ

1

we use (xj 7→ xj + aℓxi) in the ℓth iteration.
Secondly, in positive characteristic all our auxiliary statements require that

the base field is sufficiently large (this also affects the modified strategy for the
inner while loop where one needs for each iteration a new field element). In each
of the statements, it was straightforward to specify precisely what the minimal
required size is and this number could be easily read off from the input data.
In the context of Algorithm 2, one can still easily state a bound: the maximal
degree of a generator in one of the minimal bases Bi. However, since we do not
compute the Gröbner system, we do not know this number. On the other hand,
the bounds in the various lemmata and propositions are worst case estimates
and will in practice almost never be realised. Hence in an implementation one
simply checks in the inner while loop whether one still has new field elements
to try. If this is not the case, one must perform a field extension.

These two modifications lead to Algorithm 3 for transforming an ideal over a
base field k of characteristic p into strongly p-stable position (i. e. into p-Borel-
fixed position). It uses an enumeration procedure enum for generating new field
elements as discussed above. The proof of its correctness and termination for a
sufficiently large field is now completely analogous to the one of Theorem 6.11
and therefore omitted. Again it is straightforward to adapt the algorithm to
other notions of p-stability.

Remark 6.13. We mentioned without justification in Section 3 that one does
not need a p-version of quasi-stability. The reason is simply that even in positive
characteristic one can always reach a quasi-stable position. Indeed, if one con-
siders the behaviour of a single term under the simple transformations we use,
i. e. (24), then the idea underlying our algorithms is to replace the old term xν

by one of the new terms appearing in Ψ(xν). For obtaining a (strongly) stable
position, the relevant term is generally one “in the middle” of Ψ(xν) and thus is
multiplied by a binomial coefficient which may be zero in positive characteristic
(the “p-versions” are defined in exactly such a way that these terms never be-
come relevant). For obtaining a quasi-stable position, we always need the last
term whose binomial coefficient is one. Thus even in positive characteristic we
never encounter a problem, provided the field k is sufficently large.

6.4. Implementations and Experiments

An efficient implementation of the algorithm described in this work is highly
non-trivial, as many aspects have to be considered. A first point concerns the
strategy by which the next transformation is chosen, as often several obstruc-
tions exist simulataneously and each may propose a different elementary move.
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Algorithm 3 BF-Trafo: Transformation to p-Borel-fixed position with
chark = p > 0

Input: Reduced Gröbner basis G of ideal I E P
Output: a linear change of coordinates Ψ such that lt Ψ(I) is p-Borel-fixed
1: Ψ := id
2: while ∃ g ∈ G, 1 ≤ j ≤ n, 1 ≤ i < j, 1 ≤ s ≤ µj :

xj | lt g = xµ ∧

(
µj

u

)
6≡ 0 mod p ∧ xi

lt g

xj
/∈ 〈ltG〉 do

3: k := 1; ψ :=
(
xj 7→ xj + enum(k)xi

)

4: G̃ := ReducedGröbnerBasis
(
ψ(G)

)
;

5: while L (G) �L L (G̃) do
6: k := k + 1
7: if k > |k| then
8: error: field too small
9: else

10: ψ :=
(
xj 7→ xj + enum(k)xi

)

11: G̃ := ReducedGröbnerBasis
(
ψ(G)

)
;

12: end if
13: end while
14: Ψ := ψ ◦Ψ; G := G̃
15: end while
16: return Ψ

Then one must decide whether one performs in each iteration only one elemen-
tary move or whether one combines several moves into a larger transformation.
Obviously, the first approach gives a better chance to preserve sparsity while
the second approach might reduce the number of Gröbner bases computations.
These two points will require extensive experiments. We have mentioned already
above that to many natural strategies one can construct counter examples where
it fares badly. Hence only by experiments one can study the average behaviour
for classical examples typical for applications.

Finally, one must discuss how these repeated Gröbner bases computations
can be done most efficiently. One should note that one always considers the same
ideal, however, in different coordinates. Thus the question arises how a Gröbner
(or involutive) basis of an ideal in one coordinate system can be efficiently
transformed into one for the same ideal expressed in another coordinate system.
In particular from an involutive basis, many invariants of the ideal like its Hilbert
function can be easily read off and, in principle, one even knows a basis of the
first syzygy module (Seiler, 2009b). Thus ideas like a Hilbert-driven Buchberger
algorithm (Traverso, 1996) or exploiting syzygies for the detection of reductions
to zero (Möller et al., 1992) (see more generally (Eder and Faugère, 2017) for
a recent survey on signature based algorithms) can significantly increase the
efficiency. Binaei et al. (2016) report on some preliminary results in particular
concerning the first point.
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As the design of a new specialised algorithm for computing Gröbner or in-
volutive bases is outside of the scope of this work, we only briefly describe
the results of four small test computations performed with a prototype imple-
mentation8 of our algorithm in Maple. In this simple implementation at each
iteration the first found elementary move is taken (with the leading terms sorted
according to our term order). Instead of the strategy described here, a random
integer value between −2 and 2 is chosen for the parameter a (in our experience
this suffices for small examples as considered here).

The following examples are taking from standard test suites for Gröbner
bases computations. They can e. g. be found at http://invo.jinr.ru/ginv/.
To demonstrate the flexibility of the algorithm, we go in each example for a
different generic position.

Example 6.14. The Butcher ideal is generated by seven polynomials in eight
variables with degrees up to 4 and of dimension 3. Our implementation finds
that the single elementary move x8 7→ x8−x4 transform it into Noether position.
By comparison, Magma’s command NoetherNormalisation delivers the much
denser linear change of coordinates x6 7→ x6 − 2x1 − x2 − x3, x7 7→ x7 + 3x2 +
x3+x5, x8 7→ x8−3x1+4x2−2x4+2x5+x6+x7 using the probabilistic method
of (Greuel and Pfister, 2002).

Example 6.15. The Vermeer ideal is generated by four polynomials in six vari-
ables with degrees up to 5 and of dimension 3. Our implementation finds a single
elementary move x6 7−→ x6+x3 to transform it into quasi-stable position where
one could immediately read off many of its invariants from a Pommaret basis.

Example 6.16. The Noon ideal is generated by four polynomials in five vari-
ables of degree 3 and of dimension 1. For putting it into stable position, our
implementation produces the following sequence of seven elementary moves:
x4 7→ x4 + x1, x4 7→ x4 + 2x3, x3 7→ x3 + x1, x3 7→ x3 + 2x2, x4 7→ x4 + 2x3,
x5 7→ x5 − 2x1, x5 7→ x5 − x4. In total this corresponds to a linear change with
the matrix

A =




1 0 0 0 0
0 1 0 0 0
1 2 1 0 0
2 4 4 1 0
−1 4 4 −1 1



.

Thus here we obtain an almost dense lower triangular matrix which more or less
represents the worst case for our algorithm. At least the coefficients are very
small. By contrast, a call of CoCoA’s command gin yields usually a linear
transformation which consists of a dense lower triangular matrix where each
non-zero entry is an integer with five to six digits. This is a typical behaviour
for probabilistic approaches.

8The code and the used examples are available at http://amirhashemi.iut.ac.ir/

software.html (we therefore refrain from giving explicitly the generators). To be consistent
with the assumptions of this article, we homogenised all examples.
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Example 6.17. The Weispfenning94 ideal is generated by three polynomials
in four variables with degrees up to 5 and of dimension 2. For putting it into
strongly stable position, our implementation produces the following sequence
of four elementary moves: x2 7→ x2 − x1, x4 7→ x4 − 2x3, x3 7→ x3 + x1,
x4 7→ x4 + 2x3. In total this corresponds to a linear change with the matrix

A =




1 0 0 0
−1 1 0 0
1 0 1 0
2 0 0 1


 .

Thus this time we end up with a fairly sparse transformation. A probabilistic
computation indicates that it actually even yields ginI.
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Gröbner systems. In W. Koepf, editor, Proc. ISSAC 2010, pages 29–36. ACM
Press, 2010.
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Sendra and C. Villarino, editors, Proc. EACA 2012, pages 135–138. Univer-
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