
ar
X

iv
:1

71
2.

01
77

3v
1

 [
m

at
h.

R
A

]
 5

 D
ec

 2
01

7

Constructive Arithmetics in Ore Localizations of Domains

Johannes Hoffmanna, Viktor Levandovskyya

aLehrstuhl D für Mathematik, RWTH Aachen University

Abstract

For a non-commutative domain R and a multiplicatively closed set S the (left) Ore localization
of R at S exists if and only if S satisfies the (left) Ore property. Since the concept has been
introduced by Ore back in the 1930’s, Ore localizations have been widely used in theory and in
applications. We investigate the arithmetics of the localized ring S−1R from both theoretical and
practical points of view. We show that the key component of the arithmetics is the computation of
the intersection of a left ideal with a submonoid S of R. It is not known yet, whether there exists an
algorithmic solution of this problem in general. Still, we provide such solutions for cases where S is
equipped with additional structure by distilling three most frequently occurring types of Ore sets.
We introduce the notion of the (left) saturation closure and prove that it is a canonical form for
(left) Ore sets in R. We provide an implementation of arithmetics over the ubiquitous G-algebras
in Singular:Plural and discuss questions arising in this context. Numerous examples illustrate
the effectiveness of the proposed approach.

Contents

1 Basics of left Ore localization 3

2 A brief introduction to the left saturation closure 4

3 A constructive approach to the left Ore condition 7

3.1 The kernel technique . 7
3.2 The class of G-algebras . 8
3.3 A partial classification of Ore localizations . 9

4 Case study: localizations of the first Weyl algebra 10

4.1 Characteristic zero case . 10
4.2 Positive characteristic case . 11

5 Computing the intersection of a left ideal and a left Ore set 11

5.1 Monoidal localizations . 11
5.2 Geometric localizations of Weyl algebras . 13
5.3 Rational localizations . 15

6 Further algorithmic aspects 16

6.1 The right side analogon . 16
6.2 The left-right conundrum . 16

Preprint submitted to Elsevier October 11, 2018

http://arxiv.org/abs/1712.01773v1

6.3 Basic arithmetic . 16
6.4 Computing inverses . 16
6.5 Canceling a fraction . 17

7 Implementation 19

7.1 Setting, conventions and restrictions . 19
7.2 Data structure . 20
7.3 Procedures . 20
7.4 Examples . 21

8 Conclusion and future work 22

9 Acknowledgements 23

Introduction

In the beginning of the 1930’s Øystein Ore introduced several algebraic concepts [23, 24], which
have seriously influenced the development of algebra and its applications. One of them, an Ore
extension of a ring, proved to be a very useful generalization of the construction of commutative
rings. Another one is Ore localization, which is utilized very widely from ring theory to algebras
of operators, arising in algebraic analysis and algebraic combinatorics. The very formalism of Ore
localization was theoretically constructive in its appearance. While computations with finitely
presented algebras form a part of computer algebra, traditionally assisted by (non-commutative)
Gröbner bases, localization in general allows us to recognize the structure of objects in a variety
of non finitely presented algebras. The latter has been intensively used in algebraic geometry
and commutative algebra, also accompanied by algorithms and implementations from the 1980’s,
see e.g. [8]. It is natural to apply the same philosophy to non-commutative rings, and with
this paper we present our investigations for domains. The major task, which we call our Ore

Dream, consists in the following: provide procedures and, ideally, algorithms and computer-assisted
tools for manipulating left or right fractions in an Ore localization of a domain with respect to a
(multiplicatively closed) Ore set S.

We investigate this task in detail for a domain R and identify a key problem for algorithmic
computations: the intersection of a left ideal with a submonoid S of R. To the best of our knowledge
no algorithmic solution to this problem exists if only the monoid structure of S is taken into account.
We propose to specify a type of an Ore set according to the presence of additional algebraic structure
and address three common types which appear most frequently in applications. For each of these
we provide a solution to the key problem and discuss the occuring limitations.

The need for Gröbner bases over domains and, in particular, of elimination and syzygies inspired
the restriction of the rings under consideration to the broad class of ubiquitous G-algebras (cf.
Section 3.2).

Historically, perhaps the first connection between the arithmetic operations in the quotient field
(which is an example of Ore localization) of a Noetherian domain R and syzygies over R was the
paper [2] by Apel and Lassner. They have analyzed the case where R is a universal enveloping
algebra of a finitely dimensional Lie algebra. Notably, the extension of these results to the whole
class of PBW algebras was completed in [4].

We analyze the approach to arithmetics of fractions in an Ore localization from the point of
view of computability. Moreover, we present an implementation olga.lib in the computer algebra

2

system Singular:Plural [7]. To the best of our knowledge, apart from olga.lib and JAS ([17]),
which performs similar computations even over parametric solvable polynomial rings [16], no other
package can offer constructive computations on that level of generality. However, the price we pay
for this is high: generally, Gröbner bases over related rings are invoked for manipulations with
fractions both in Plural and in JAS.

There are several packages for computer algebra systems dealing with similar situations, most
notably OreTools [1] and OreAlgebra [5] in MAPLE, ore_algebra [12] in SAGE, and
HolonomicFunctions [13] in MATHEMATICA. These work over predefined algebras, such as
univariate algebras of operators (differential, difference and q-difference among most prominent ones,
cf. [5]) over a field of rational functions as coefficient domain (these rings are also Ore localizations).
In such situations, as investigated e.g. in [9, 25], one can even estimate the complexity of operations.
In contrast our development serves a general purpose; in the future one could develop specialized
better algorithms for new algebras and/or their Ore subsets.

This paper is an extended, expanded and enhanced version of the paper [10], which appeared
at ISSAC 2017 in Kaiserslautern, Germany. Proofs have been either restored from the abridged
version or expanded in details. A new part on the simplifying procedure for fractions has been
added. We enhanced presented examples and added a new Section 4 devoted to a lively case study.
We updated the exposition with recent results and publications in the area. In the meantime our
implementation olga.lib also has been significantly improved.

1. Basics of left Ore localization

In this section we recall the classical material based on Ore’s original paper [23] following a
modern exposition inspired by [4]:

Definition 1.1. Let R be a domain. A subset S of R is called multiplicatively closed if 1 ∈ S, 0 /∈ S
and for all s, t ∈ S we have s · t ∈ S. Furthermore, S is called a left Ore set if it is multiplicatively
closed and satisfies the left Ore condition: for all s ∈ S and r ∈ R there exist s̃ ∈ S and r̃ ∈ R such
that s̃r = r̃s.

Any subset B of R \ {0} has a minimal multiplicatively closed superset [B], which consists of
all finite products of elements of B, where the empty product represents 1.

Definition 1.2. Let S be a multiplicatively closed subset of a domain R. A ring RS together with
an injective homomorphism ϕ : R → RS is called a left Ore localization of R at S if:

1. For all s ∈ S, ϕ(s) is a unit in RS .

2. For all x ∈ RS there exist s ∈ S and r ∈ R such that x = ϕ(s)−1ϕ(r).

One can show that the Ore localization of R at S exists if and only if S is a left Ore set in R.
In this case, the localization is unique up to isomorphism. The classical construction is given by
the following:

Theorem 1.3. Let S be a left Ore set in a domain R. The relation ∼ on S ×R, given by

(s1, r1) ∼ (s2, r2) ⇔ ∃s̃ ∈ S ∃r̃ ∈ R : s̃s2 = r̃s1 and s̃r2 = r̃r1,

is an equivalence relation. Now S−1R := ((S ×R)/ ∼,+, ·) becomes a ring via

(s1, r1) + (s2, r2) := (s̃s1, s̃r1 + r̃r2),

3

where s̃ ∈ S and r̃ ∈ R satisfy s̃s1 = r̃s2, and

(s1, r1) · (s2, r2) := (s̃s1, r̃r2),

where s̃ ∈ S and r̃ ∈ R satisfy r̃s2 = s̃r1. Together with the injective structural homomorphism

ρS,R : R → S−1R, r 7→ (1, r),

(S−1R, ρS,R) is the left Ore localization of R at S.

The elements of S−1R are called left fractions and are denoted by s−1r or, by abuse of notation,
again by (s, r). Some basic facts concerning the localization are collected below:

Lemma 1.4. Let S be a left Ore set in a domain R and (s, r) ∈ S−1R.

(a) 0S−1R = (1R, 0R) and 1S−1R = (1R, 1R).

(b) (s, r) = 1 if and only if s = r.

(c) (s, r) = 0 if and only if r = 0.

(d) Let t ∈ R. If ts ∈ S, then (s, r) = (ts, tr).

(e) −(s, r) = (s,−r).

(f) S−1R is a domain.

According to the previous lemma, additive inverses of left fractions are quite easy to find, but
what about multiplicative inverses? If r ∈ S, then the inverse of (s, r) is given by (r, s). But there
might be other invertible left fractions whose numerators do not belong to S, a phenomenon that
even occurs in commutative localizations:

Example 1.5. Consider the localizationK[x]x2 := [x2]−1K[x], then x /∈ [x2], but (1, x) is invertible
with inverse (x2, x).

We turn to the theory of left saturation closure to find a complete description of the invertible
elements of the localization.

2. A brief introduction to the left saturation closure

From this point on we present new results unless stated otherwise.
In this section let R be a domain.

Definition 2.1. A subset S of R with 0 /∈ S is called left (resp. right) saturated, if for all a, b ∈ R,
a · b ∈ S implies b ∈ S (resp. a ∈ S). Furthermore, S is called saturated if it is both left and right
saturated.

While the notion of multiplicative closure only depends on the multiplication and is unchanged
under embedding R into a larger ring, being saturated involves factorization and thus heavily
depends on the context: the set S := Z \ {0} is both multiplicatively closed and saturated in Z. In
Q it is still multiplicatively closed, but no longer saturated, since 2 · 1

2 = 1 ∈ S, but 1
2 /∈ S.

Definition 2.2. Let S be a multiplicatively closed subset of R. The left saturation closure of S is

LSat(S) := {r ∈ R | ∃w ∈ R : wr ∈ S}.

4

Since 1 ∈ S ⊆ R we have S ⊆ LSat(S), in particular 1 ∈ LSat(S). Furthermore, 0 /∈ LSat(S)
since 0 /∈ S.

The following lemma justifies the name “left saturation closure”.

Lemma 2.3. Let S be a multiplicatively closed subset of R.

(a) LSat(S) is left saturated.

(b) S is left saturated if and only if S = LSat(S).

(c) LSat(S) is the smallest left saturated superset of S with respect to inclusion.

Proof. (a) Let a, b ∈ R such that ab ∈ LSat(S), then there exists w ∈ R such that wab ∈ S, thus
b ∈ LSat(S).

(b) Let r ∈ LSat(S), then there exists w ∈ R such that wr ∈ S. If S is left saturated this implies
r ∈ S, thus S = LSat(S).
For the reverse implication note that LSat(S) is left saturated by the previous result. If S =
LSat(S), then so is S.

(c) Let Q ⊆ R be a left saturated set such that S ⊆ Q ⊆ LSat(S). Let r ∈ LSat(S), then there
exists w ∈ R such that wr ∈ S ⊆ Q. Since Q is left saturated we have r ∈ Q and thus
Q = LSat(S).

Denote the set of units of R by U(R). Now we answer the question posed at the end of the last
section concerning invertible elements:

Proposition 2.4. Let S be a left Ore set in R and (s, r) ∈ S−1R. Then the following are equivalent:

(1) (s, r) ∈ U(S−1R).

(2) (1, r) ∈ U(S−1R).

(3) r ∈ ρ−1
S,R(U(S−1R)) ⇔ (1, r) = ρS,R(r) ∈ U(S−1R).

(4) r ∈ LSat(S).

Proof. Statements (2) and (3) are equivalent since ρS,R(r) = (1, r). Furthermore, (s, r) = (s, 1) ·
(1, r), where (s, 1) ∈ U(S−1R) with inverse (1, s), which shows the equivalence of (1) and (2).

Starting from (2), let (1, r) ∈ U(S−1R), then there exists (s, w) ∈ S−1R such that 1 = (s, w) ·
(1, r) = (s, wr), which implies wr = s ∈ S, thus r ∈ LSat(S) and we have reached (4).

For the reverse implication, let r ∈ LSat(S), then there exists w ∈ R such that wr ∈ S. Now
(wr,w) · (1, r) = (wr,wr) = 1 implies that (1, r) ∈ U(S−1R).

This implies that the left saturation closure of left Ore sets is actually saturated on both sides:

Lemma 2.5. Let S be a left Ore set in R. Then LSat(S) is saturated.

Proof. Let a, b ∈ R such that a · b ∈ LSat(S). Then (1, ab) is a unit in S−1R by the previous result.
Now (1, a) · (1, b) = (1, ab) implies that both (1, a) and (1, b) are also units in S−1R since S−1R is
a domain, thus a, b ∈ LSat(S) again by the previous result.

Therefore a left Ore set S is saturated if and only if S = LSat(S).
Apart from this characterization, the left saturation closure has even more interesting applica-

tions. For a start we see that LSat preserves and reflects the left Ore condition:

5

Lemma 2.6. Let S be a multiplicatively closed subset of R. Then S satisfies the left Ore condition
in R if and only if LSat(S) satisfies the left Ore condition in R.

Proof. Let x ∈ LSat(S), r ∈ R and w ∈ R such that wx ∈ S. If S satisfies the left Ore condition,
then there exist s̃ ∈ S and r̃ ∈ R such that s̃r = r̃wx. Since s̃ ∈ S ⊆ LSat(S) and r̃w ∈ R this
implies that LSat(S) satisfies the left Ore condition.

For the other implication, let r ∈ R and s ∈ S ⊆ LSat(S). If LSat(S) satisfies the left Ore
condition, then there exist x ∈ LSat(S) and r̃ ∈ R such that xr = r̃s. Let w ∈ R such that
ŝ := wx ∈ S and define r̂ := wr̃ ∈ R, then ŝr = wxr = wr̃s = r̂s shows that S satisfies the left Ore
condition.

While the left saturation closure of multiplicatively closed sets is not multiplicatively closed in
general, the left Ore condition is sufficient to overcome this problem.

Proposition 2.7. Let S be a left Ore set in R. Then LSat(S) is a left Ore set in R and S−1R ∼=
LSat(S)−1R.

Proof. For the first part it remains to show that LSat(S) is multiplicatively closed: let x, y ∈
LSat(S), then there exist a, b ∈ R such that ax, by ∈ S. By the left Ore condition on S there
exist s̃ ∈ S and r̃ ∈ R such that s̃b = r̃ax. Now w := r̃a ∈ R and wxy = s̃by ∈ S shows that
xy ∈ LSat(S). For the second part, consider the map

ψ : S−1R → LSat(S)−1R, (s, r) 7→ (s, r),

which can be shown to be an injective homomorphism of rings with standard Ore-style calculations.
To see surjectivity, consider a fraction (x, r) ∈ LSat(S)−1R and w ∈ R such that wx ∈ S, then
(x, r) = ψ((wx,wr)).

From this we immediately get a sufficient condition for two localizations of R being isomorphic:

Corollary 2.8. Let S, T be left Ore sets in a domain R. If LSat(S) = LSat(T), then S−1R ∼= T−1R.

Lemma 2.9. Let S, T be multiplicatively closed sets in R. Then S ⊆ LSat(T) if and only if
LSat(S) ⊆ LSat(T).

Proof. Let S ⊆ LSat(T) and x ∈ LSat(S), then there exists w ∈ R such that wx ∈ S ⊆ LSat(T).
But then vwx ∈ T for some v ∈ R, which implies x ∈ LSat(T) and thus LSat(S) ⊆ LSat(T). The
other implication is obvious from S ⊆ LSat(S).

Remark 2.10. From a theoretical viewpoint the left saturation closure is a powerful tool that
gives us a canonical form of left Ore sets with respect to the corresponding localization. For
instance, in Proposition 2.4 we have seen that knowing LSat(S) is equivalent to knowing U(S−1R).
Unfortunately, the left saturation closure is - depending on the situation - difficult or maybe even
impossible to compute or even represent in finite terms. In Section 4 we discuss a left Ore set,
generated by two elements, which has a infinitely (though countably) generated left saturation
closure. In general we do not even expect the saturation closure to be countably generated.

In our opinion, these facts need not be perceived as “bad news”, but rather as an indication that
the objects we are dealing with are intrinsically complicated.

6

3. A constructive approach to the left Ore condition

Given a left Ore set S in a domain R and (s, r) ∈ S × R, we are interested in constructively
finding solutions of the left Ore condition. We will consider the following sub-problems:

(1) Find s̃ ∈ S such that there exists r̃ ∈ R satisfying s̃r = r̃s.

(2) Find the set of all s̃ ∈ S such that there exists r̃ ∈ R satisfying s̃r = r̃s.

(3) Given s̃ ∈ S such that there exists r̃ ∈ R satisfying s̃r = r̃s, find such r̃.

From a theoretic viewpoint, all solutions of the left Ore condition are equivalent in the sense of
Theorem 1.3:

Lemma 3.1. Let S be a left Ore set in a domain R and (s, r) ∈ S × R. Furthermore, let
(s1, r1), (s2, r2) ∈ S ×R such that s1r = r1s and s2r = r2s, then (s1, r1) ∼ (s2, r2).

Proof. Let ŝ ∈ S and r̂ ∈ R such that ŝs1 = r̂s2, then

ŝr1s = ŝs1r = r̂s2r = r̂r2s

implies ŝr1 = r̂r2 and thus (s1, r1) ∼ (s2, r2).

Nevertheless, the algorithms presented later strive to compute a solution to problem (2) above,
since even checking the equivalence of two left fractions is a non-trivial task.

As a last observation, note that the solution to problem (3) is unique: if there exist r1, r2 ∈ R
such that r2s = s̃r = r1s, then (r1 − r2)s = 0, which implies r1 = r2 since R is a domain and s 6= 0.

3.1. The kernel technique

Let S be a multiplicatively closed subset of a domain R. To the best of our knowledge there is
no algorithm to decide whether S is a left Ore set in R. Usually such facts are established by the
means of theoretical proofs.

To deal with this issue, consider the map

ϕs,r : R
·r
−→ R/Rs, x 7→ xr +Rs.

It is a homomorphism of left R-modules and the intersection of its kernel with S is exactly the
solution of (2) from above. This immediately gives us the following characterization of the left Ore
property:

Proposition 3.2. The following are equivalent:

(1) S satisfies the left Ore condition in R.

(2) For all (s, r) ∈ S ×R, ker(ϕs,r) ∩ S 6= ∅.

Remark 3.3. Provided we can check algorithmically whether ker(ϕs,r) ∩ S is empty, Proposition
3.2 also allows us to constructively prove that a given set S is not a left Ore set in R, if we (correctly)
suspect s and r to violate the Ore condition (see Example 5.8).

After choosing a s̃ ∈ ker(ϕs,r) ∩ S, r̃ is the unique solution of the equation s̃r = r̃s. These
considerations are combined in the procedure LeftOre.

7

Algorithm 1: LeftOre

Input: (s, r) ∈ S ×R.
Output: (s̃, r̃) ∈ S ×R such that s̃r = r̃s.

1 begin

2 let ϕ : R→ R/Rs, x 7→ xr −Rs;
3 compute ker(ϕ);
4 compute any s̃ ∈ ker(ϕ) ∩ S;
5 compute the unique solution r̃ ∈ R of the equation s̃r = r̃s;
6 return (s̃, r̃)

7 end

Remark 3.4. Instead of ϕs,r one could also consider the seemingly similar map

ψs,r : R
·s

−→ R/Rr, x 7→ xs+Rr.

Here we avoid intersecting ker(ψs,r) with S at first, but the kernel may contain numerous false
candidates for r̃: although there exists y ∈ R such that yr = r̃s, there is no guarantee that we can
find such y in S. Therefore we need to intersect M := {(r̃, s̃) ∈ ker(ψs,r)×R | r̃s = s̃r} with R×S,
which poses the same problems as intersecting ker(ϕs,r) with S directly. For this reason we prefer
to work with ϕs,r.

To be able to actually carry out the computations from the procedure LeftOre and turn it
into an algorithm we need to work in a computation-friendly setting in which all intermediate steps
can be carried out.

3.2. The class of G-algebras

Definition 3.5. For a field K, n ∈ N and 1 ≤ i < j ≤ n consider non-zero constants cij ∈ K and
polynomials dij ∈ K[x1, . . . , xn]. Suppose that there exists a monomial total well-ordering < on
K[x1, . . . , xn], such that for any 1 ≤ i < j ≤ n either dij = 0 or the leading monomial of dij with
respect to < is smaller than xixj . The K-algebra

A := K〈x1, . . . , xn | {xjxi = cijxixj + dij : 1 ≤ i < j ≤ n}〉

is called a G-algebra, if {xα1

1 · . . . · xαn
n : αi ∈ N0} is a K-basis of A.

G-algebras [20, 18] are also known as algebras of solvable type [11, 16, 15] and as PBW algebras
[4]. G-algebras are left and right Noetherian domains that occur naturally in various situations and
encompass algebras of linear functional operators modeling difference and differential equations.

Example 3.6. Let K be a field, qi ∈ K \{0} and n ∈ N. Common G-algebras include the following
examples, where only the relations between non-commutating variables are listed:

• The commutative polynomial ring K[x1, . . . , xn].

• The n-th Weyl algebra An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 with ∂ixi = xi∂i +1 for all 1 ≤ i ≤ n.

• The n-th shift algebra Sn := K〈x1, . . . , xn, s1, . . . , sn〉 with sixi = xisi + si = (xi + 1)si for
all 1 ≤ i ≤ n.

8

• The n-th q-shift algebra S
(q)
n := K〈x1, . . . , xn, s1, . . . , sn〉 with sixi = qixisi for all 1 ≤ i ≤ n.

• The n-th q-Weyl algebra A
(q)
n := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 with ∂ixi = qixi∂i + 1 for all

1 ≤ i ≤ n.

• The n-th integration algebra K〈x1, . . . , xn, I1, . . . , In〉 with Iixi = xiIi + I2i for all 1 ≤ i ≤ n.

Furthermore, there exists a well-developed Gröbner basis theory for G-algebras which is close
to the commutative case and not only allows us to explicitly compute ker(ϕs,r) (which is finitely
generated), but also to solve the equation s̃r = r̃s for r̃ via division with remainder. Details can be
found in [18].

Note that the basic concept of LeftOre can be adapted to other, yet more general settings.

3.3. A partial classification of Ore localizations

The only remaining problem to solve is the intersection of a left ideal with a left Ore set. Unfor-
tunately, due to their multiplicative nature, left Ore sets are seldom finitely generated as monoids,
therefore we have to single out interesting classes of Ore sets and deal with them individually. To
this end, we propose the following partial classification of left Ore localizations:

Definition 3.7. Let K be a field and R a K-algebra and a domain.

• Let S be a left Ore set in R that is generated as a multiplicative monoid by at most countably
many elements. Then S−1R is called a monoidal localization.

• Let n ∈ N, K[x] := K[x1, . . . , xn] a subring of R and p a prime ideal in K[x], then S :=
K[x] \ p is multiplicatively closed. If S is a left Ore set in R, then S−1R is called a geometric
localization.

• Let T be a K-subalgebra of R, then S := T \ {0} is multiplicatively closed. If S is a left Ore
set in R, then S−1R is called a (partial) rational localization.

All three types of localizations have commutative counterparts:

Example 3.8. Let R be a commutative domain and K a field.

• Let f ∈ R \ {0}, then Rf = [f]−1R = {fk | k ∈ N0}
−1R is a monoidal localization.

• Let p be a prime ideal in the polynomial ring K[x], then K[x]p = (K[x] \ p)−1K[x] is a
geometric localization.

• Quot(R) = (R\{0})−1R is a rational localization, as well as K(x)[y] = (K[x]\{0})−1K[x, y].

An important instance of rational localization is the following generalization of the classical
quotient field construction:

Definition 3.9. If S := R \ {0} is a left Ore set in a domain R, then R is called a left Ore domain.
The localization S−1R is called left quotient (skew) field of R and denoted Quot(R).

Therefore, any left Ore domain can be embedded into a division ring. This holds in particular
for any G-algebra.

9

4. Case study: localizations of the first Weyl algebra

In this section we want to explore at an example how one can utilize left saturation not only to
gain theoretical insight but also as a preprocessing step before attempting any computations in a
computer algebra system. To this end we will consider a field K and A1 = A1(K) = K〈x, ∂ | ∂x =
x∂ + 1〉, the first Weyl algebra over K.

We are now interested in making x and ∂ invertible, which means finding a left Ore set in A1

that contains V := [x, ∂]. By the forthcoming Proposition 5.7 we have that [x] and [∂] already are
left Ore sets in A1, thus V := [[x] ∪ [∂]] is indeed a left Ore set in A1 as a multiplicatively closed
set generated by left Ore sets (Lemma 4.1 in [14]).

The Euler operator in A1 is defined as θ := x · ∂ ∈ A1. The following “commutation rules” can
be proven by induction:

Lemma 4.1. For all m,n ∈ N0 and all z ∈ K we have

(θ + z)mxn = xn(θ + z + n)m and ∂n(θ + z)m = (θ + z + n)m∂n.

Now we are able to compute the left saturation closure of V with some additional knowledge
about factorizations:

Proposition 4.2. Let p := char(K) ∈ P ∪ {0}. Then

LSat(V) = [{x, ∂} ∪ (θ + ((Z/pZ) \ {0, 1})) ∪ (K \ {0})].

Proof. Let w ∈ Z/pZ and S be the right-hand side of the equation in the claim. First consider
the case p = 0: if w ∈ N0, then xw(θ + w) = θxw = x∂xw ∈ V , if −w ∈ N, then ∂−w(θ + w) =
(θ + w − w)∂−w = θ∂−w = x∂1−w ∈ V . If p > 0 we can always find n ∈ N0 such that w = n+ pZ
and we get xn(θ + w) = θxn ∈ V . In any case we see that θ + w ∈ LSat(V). Furthermore, for any
k ∈ K \ {0} we have k−1 · k = 1 ∈ V , thus S ⊆ LSat(V).
Now let r ∈ LSat(V), then there exists w ∈ A1 such that wr ∈ V , thus wr =

∏n
i=1 si for some

n ∈ N0 and si ∈ {x, ∂}. Using the commutation rules from Lemma 4.1 we can rewrite wr into
wr = p · q · tm, where t ∈ {x, ∂}, m ∈ N0, p ∈ [θ + ((Z/pZ) \ {0, 1})] and q ∈ [θ, θ + 1] (note that
θ + w1 and θ + w2 commute for w1, w2 ∈ K). According to Lemma 2.6 in [6] any other non-trivial
factorization of wr (like wr itself) can be derived by using the commutation rules and rewriting θ
resp. θ+1 as x∂ resp. ∂x. But all factors that can be created in this way are already contained in
S, thus r ∈ S and therefore LSat(V) ⊆ S.

We will now see that this localization behaves fundamentally different depending on p. We need
the notion of the Gelfand-Kirillov dimension (GKdim, see [14, 22]), which is defined for both rings
and modules with respect to a fixed field K. Over Noetherian domains its behavior is somewhat
similar to that of Krull dimension (Krdim) over commutative rings.

Note that for any field K one has GKdimK(A1(K)) = 2.

4.1. Characteristic zero case

Lemma 4.3. Let K be an algebraically closed field of characteristic p = 0. Then

(a) GKdim(V −1A1) = 3,

(b) GKdim(Quot(A1)) = ∞.

10

Proof. The first claim follows from Example 4.11 in [14], while the second result is due to Makar-
Limanov, who showed in [21] that Quot(A1) contains a free subalgebra generated by two elements.

In particular, we have GKdim(A1) < GKdim(V −1A1) < GKdim(Quot(A1)).

4.2. Positive characteristic case

In positive characteristic the Weyl algebra has centerK[xp, ∂p], while in the case of characteristic
zero the center is just K.

Lemma 4.4. Let K be of characteristic p > 0. Then

(a) GKdim(V −1A1) = 2,

(b) GKdim(Quot(A1)) = 2.

In particular, any localization of A1 has Gelfand-Kirillov dimension 2.

Proof. Though the first claim follows from the second, we give a direct proof of it, which illustrates
an important technique. Let T := [xp, ∂p], then clearly LSat(V) = LSat([x, ∂]) = LSat([xp, ∂p]) =
LSat(T). Since T is contained in the center of A1 it is also a left Ore set in A1, thus V −1A1

∼= T−1A1

by Corollary 2.8. By Proposition 4.2 in [14] the Gelfand-Kirillov dimension does not change when
passing from A1 to a central localization of A1 like T−1A1, which implies

GKdim(V −1A1) = GKdim(T−1A1) = GKdim(A1) = 2.

Now we proceed with the second claim. Consider Z = K[xp, ∂p], the center of A1(K), then
GKdim(Z) = Krdim(Z) = 2 by Corollary 4.4 in [14] since Z is a commutative domain. Moreover,
the latter also implies that Z \ {0} is an Ore set in A1(K). We claim that (Z \ {0})−1A1 =
(A1 \ {0})−1A1 = Quot(A1), in other words, LSat(Z \ {0}) = A1 \ {0}. It is enough to show that
any left ideal {0} 6= L ⊂ A1 has a non-zero intersection with Z. Suppose that there is L such that
L ∩ Z = {0}. By Lemma 8.5 in [14] it follows that then GKdim(A1/L) ≥ GKdim(Z) holds. Thus
2 = GKdim(A1) ≥ GKdim(A1/L) ≥ 2 and therefore by Corollary 8.6 in [14] L = {0} follows.

5. Computing the intersection of a left ideal and a left Ore set

This section provides the theory and algorithms to compute a representation of the intersection
of a left ideal I with a left Ore set S, where S belongs to one of the three types stated above, within
the setting of a G-algebra A over a field K. To avoid rather trivial cases we will assume that I is
neither the zero ideal nor the whole algebra, i.e. {0} (I (A.

5.1. Monoidal localizations

Monoidal localization allows us to adjoin inverses of certain elements, which for example de-
scribes the transition from the polynomial ring K[x] to the Laurent polynomial ring K[x, x−1].

For now, let S = [g] for some g ∈ A \ K. To the best of our knowledge it is not possible in
general to decide whether I ∩ S is empty, but in some cases we can give a positive answer:

11

Remark 5.1. Since A is a domain so is K[S] = K[g] ⊆ A, the K-monoid algebra of S. Assume
that we are able to compute L := I ∩ K[S]1. If L = {0}, then in particular I ∩ S = ∅ since
I ∩ S = L ∩ S.

In the following we will assume I ∩ S 6= ∅. For our purposes this is not a restriction since we
are mostly interested in the case where I = ker(ϕs,r) for some s ∈ S and r ∈ R. Then I ∩ S 6= ∅
follows from Proposition 3.2.

If I ∩ S is non-empty it has the structure of a principal monoid ideal:

Lemma 5.2. Let g ∈ A \K. If I ∩ [g] 6= ∅, then there exists m ∈ N such that I ∩ [g] = gm · [g].

Proof. If I ∩ [g] 6= ∅, then there exists a minimal m ∈ N such that gm ∈ I and gk /∈ I for all k < m.
Now gj = gj−m · gm ∈ I for any j ≥ m, thus I ∩ [g] = gm · [g].

The natural thing to do is to iterate over the natural numbers to find the smallest m among
them such that gm ∈ I. This membership test can be done by computing normal forms in the
Gröbner sense: in the algorithm MonoidalIntersection, NF(gm|F) denotes the normal form of
gm with respect to F .

To avoid unnecessary expensive normal form computations we use another fact from Gröbner
basis theory: the leading monomial of any element of I must be divisible by the leading monomial
of an element of a Gröbner basis of I. Since we know that at least one power of g is contained in I,
we find the minimal m such that lm(gm) is divisible by the leading monomial of any basis element,
which can be done by comparing the leading exponents.

Algorithm 2: MonoidalIntersection

Input: Gröbner basis F = {f1, . . . , fk} of I and g ∈ R \K with I ∩ [g] 6= ∅.
Output: m ∈ N such that I ∩ [g] = gm · [g].

1 begin

2 foreach 1 ≤ i ≤ k do

3 mi := min{k ∈ (N ∪ {∞}) : lm(fi)| lm(g)k};
4 end

5 m := min{mi | 1 ≤ i ≤ k};
6 while NF(gm|F) 6= 0 do

7 m := m+ 1;
8 end

9 return m;

10 end

While multiplicatively closed sets generated by infinitely many elements are out of scope for
computational purposes, we still have to deal with finite sets of generators. To reduce this to the case
of one generator, we generalize the following classical result: let f1, . . . , fk ∈ K[x] := K[x1, . . . , xn],
S := [f1, . . . , fk] and T = [f1 · . . . · fk], then S−1K[x] ∼= T−1K[x].

Lemma 5.3. Let R be a domain and g1, . . . , gk ∈ R \ {0} such that gigj = gjgi for all i and j.
Consider S = [g1, . . . , gk] and T = [g] for g := g1 · . . . · gk.

1See [19] for conditions and further details.

12

(a) S is a left Ore set in R if and only if T is a left Ore set in R.

(b) If S and T are left Ore sets, then S−1R ∼= T−1R.

Proof. By construction, S and T are multiplicatively closed sets such that T ⊆ S. Since the gi
commute we have

(g1 · . . . · gj−1 · gj+1 · . . . · gk)gj = g ∈ T

which implies gj ∈ LSat(T) and thus S ⊆ LSat(T), since the gj generate S as a monoid. Together
with T ⊆ S ⊆ LSat(S) we get LSat(S) = LSat(T) by applying Lemma 2.9 twice. Now the first
part follows from Lemma 2.6, the second from Proposition 2.7.

5.2. Geometric localizations of Weyl algebras

Let n ∈ N and p be a prime ideal in R := K[x1, . . . , xn] (An. Then R \ p is a left Ore set in
An and we can consider the geometric localization (R \ p)−1An. The most common occurrence of
this localization is the special case where we replace p by the maximal ideal mp in R corresponding
to a point p ∈ Kn. The result is the so-called local (algebraic) Weyl algebra An,p := (R \mp)

−1An,
which is important in D-module theory.

The main theoretical result in this paragraph is that the Weyl algebras contain a multitude of
left Ore sets. To prove this we first need some technical results. Note that due to the relations in
An we have f∂j = ∂jf + ∂f

∂xj
for all f ∈ R.

Lemma 5.4. Let f ∈ R and j ∈ {1, . . . , n}. For all i ∈ N0 we have

f i+1∂j =

(

∂jf − (i+ 1)
∂f

∂xj

)

f i.

Proof. Induction on i ∈ N0: let i = 0, then f1∂j = f∂j = ∂jf − ∂f
∂xj

=
(

∂jf − 1 · ∂f
∂xj

)

f0. Assume

that the claim holds for i ∈ N0, then we have

f i+2∂j = ff i+1∂j = f

(

∂jf − (i + 1)
∂f

∂xj

)

f i =

(

f∂jf − (i+ 1)f
∂f

∂xj

)

f i

=

(

f∂j − (i + 1)
∂f

∂xj

)

f i+1

(

∂jf −
∂f

∂xj
− (i + 1)

∂f

∂xj

)

f i+1

=

(

∂jf − (i + 2)
∂f

∂xj

)

f i+1.

Lemma 5.5. Let f ∈ R, i ∈ N0 and β ∈ Nn
0 such that i + 1 ≥ |β|. Then there exists vi+1,β ∈ An

such that

(i) tdeg∂(vi+1,β) < |β|,

(ii) vi+1,β only contains partial derivatives of f of the form ∂|α|f
∂xα , where β − α ∈ Nn

0 and

(iii) f i+1∂β = (∂βf |β| + vi+1,β)f
i+1−|β|.

13

Proof. Induction on |β| ∈ N0: if |β| = 0, then β = 0. Set vi+1,0 := 0, then

f i+1∂β = f i+1 = (∂βf |β| + vi+1,0)f
i+1−|β|.

Now let β ∈ Nn
0 \ {0} and assume the claim holds for all α ∈ Nn

0 with |α| < |β|. Then β = α + ej
for some j ∈ {1, . . . , n} and α ∈ Nn

0 with |α| < |β|. Now

f i+1∂β = f i+1∂α∂j(∂
αf |α| + vi+1,α)f

i+1−|α|∂j = ∂αf i+1∂j + vi+1,αf
i+1−|α|∂j

= ∂α
(

∂jf − (i+ 1)
∂f

∂xj

)

f i + vi+1,α

(

∂jf − (i+ 1− |α|)
∂f

∂xj

)

f i−|α|

=

(

∂α∂jf
1+|α| − (i+ 1)∂α

∂f

∂xj
f |α| + vi+1,α∂jf − (i+ 1− |α|)vi+1,α

∂f

∂xj

)

f i−|α|

= (∂βf |β| + vi+1,β)f
i+1−|β|,

where vi+1,β := −(i + 1)∂α ∂f
∂xj

f |α| + vi+1,α∂jf − (i + 1 − |α|)vi+1,α
∂f
∂xj

satisfies the conditions

above.

Lemma 5.6. Let f ∈ R, r ∈ An, d := tdeg∂(r) and k ∈ N0. Then there exist r̃, r̂ ∈ An such that

fd+k · r = r̃ · fk and r · fd+k = fk · r̂.

Proof. Let r =
∑

β∈Nn
0

bβ∂
β, where bβ ∈ R. Since d + k ≥ |β| for all β such that bβ 6= 0, by

Lemma 5.5 there exist vd+k,β ∈ An such that

fd+k∂β = (∂βf |β| + vd+k,β)f
d+k−|β| = (∂βf |β| + vd+k,β)f

d−|β|fk.

Define

r̃ :=
∑

β∈Nn
0

bβ(∂
βf |β| + vd+k,β)f

d−|β|,

then

fd+k · r = fd+k ·
∑

β∈Nn
0

bβ∂
β =

∑

β∈Nn
0

bβf
d+k∂β =

∑

β∈Nn
0

bβ(∂
βf |β| + vd+k,β)f

d−|β|fk = r̃ · fk.

The other statement can be shown analogously using a right-sided version of Lemma 5.5.

Proposition 5.7. Let S be a multiplicatively closed set in R = K[x1, . . . , xn] and T a multiplica-
tively closed set in K[∂1, . . . , ∂n]. Then S and T are left and right Ore sets in An.

Proof. Since S is a multiplicatively closed set in R it is also a multiplicatively closed set in An. Let
r ∈ An and s ∈ S. By Lemma 5.6 there exist r̃, r̂ ∈ An such that sd+1 · r = r̃ · s and r · sd+1 = s · r̂,
where d := tdeg∂(r). Since S is multiplicatively closed we have sd+1 ∈ S, therefore S satisfies the
left and the right Ore condition in An, thus S is a left and right Ore set in An. The statement for
T follows from analogous calculations.

This implies that any multiplicatively closed set in R is a left and right Ore set in An, in
particular we have that geometric localization of An is possible at the complement of any prime
ideal p in R. But even in closely related G-algebras like the shift algebra this does not need to hold,
as the following example demonstrates:

14

Example 5.8. Consider the prime ideal p = 〈x + 1〉 in K[x] ⊆ S1, then for the pair (x, s) ∈
(K[x] \ p)× S1 a simple computation delivers ker(ϕx,s) = 〈x+1〉 = p. Therefore ker(ϕx,s)∩S = ∅,
so K[x] \ p is not a left Ore set in S1 by Proposition 3.2.

Thus the main application of the geometric type is localizing the n-th Weyl algebra An at the
left Ore set S := R \ p, where p is a prime ideal in R.

In contrast to the two other types of localizations, the intersection of I and S has no exploitable
additional structure: while it is a multiplicatively closed set without 1, it need not be finitely
generated.

Therefore, in the algorithm GeometricIntersection, we return essentially the intersection
of I and R, which can be computed via Gröbner-driven elimination of variables.

Algorithm 3: GeometricIntersection

Input: A left ideal I of An, S, R and p as above.
Output: A left ideal J in R such that I ∩ S = J \ p.

1 begin

2 compute Ĩ := I ∩R = 〈m1, . . . ,mk〉;
3 foreach 1 ≤ i ≤ k do

4 let m̃i be the normal form of mi with respect to p;
5 end

6 return J := 〈m̃1, . . . , m̃k〉;

7 end

An element f ∈ I ∩ R is an element of I ∩ S if and only if f /∈ p, which can be checked by
computing the normal form of f with respect to p.

Proposition 5.9. In the situation of the algorithm GeometricIntersection, I ∩ S = ∅ if and
only if m̃i = 0 for all i.

Proof. By construction, m̃i = 0 for all i if and only if mi ∈ p for all i, which is equivalent to
I ∩R ⊆ p. From

I ∩R = I ∩ ((R \ p) ∪ p) = I ∩ (S ∪ p) = (I ∩ S) ∪ (I ∩ p)

we can see that this is equivalent to I ∩ S = ∅, since I ∩ S ⊆ R \ p.

Thus, if I ∩S 6= ∅, a member of this intersection can be found among the non-zero generators of J .

5.3. Rational localizations

In algebras of linear operators, rational localization provides the formal mechanism of passing
from polynomial to rational coefficients, for example from the polynomial Weyl algebra A1 to the
first rational Weyl algebra (K[x] \ {0})−1A1.

To set the scene, let A be generated as a G-algebra by the variables x1, . . . , xn and let V ⊆
{1, . . . , n} such that {xi | i ∈ V } generate a subalgebra B of A and S := B \ {0} is a left Ore set
in A. If we can eliminate the variables {xi | i ∈ {1, . . . , n} \ V } with Gröbner-driven elimination2,
then the algorithm RationalIntersection computes the intersection of S and I.

2In contrast to the commutative case, this is not always possible, see [19, 18].

15

Algorithm 4: RationalIntersection

Input: A left ideal I of A, B as above.
Output: The intersection I ∩ S.

1 begin

2 compute J := I ∩B via elimination;
3 return J \ {0};

4 end

6. Further algorithmic aspects

6.1. The right side analogon

While we concentrate mostly on the left-sided version of non-commutative structures, the right-
sided analogues of the given definitions and results hold as well, which can also be seen by considering
opposite structures:

Definition 6.1. Let (R,+, ·) be a ring, then the opposite ring of R is Rop := (R,+, ∗), where
a ∗ b := b · a for all a, b ∈ R.

In particular, a right Ore set in R is a left Ore set in Rop. Most algorithms for non-commutative
structures in Singular:Plural are only implemented for the left-sided versions, while right-sided
computations are carried out in a left-sided setting in the opposite ring. Note that there are special
tools for handling opposite rings and the process of creating opposite objects.

6.2. The left-right conundrum

Another classical result in the theory of Ore localization is the following: if a multiplicative
subset S of a domain R is both left and right Ore, then the left Ore localization S−1R is isomorphic
to the right Ore localization RS−1 via

RS−1 → S−1R, rs−1 7→ s̃−1r̃,

where s̃r = r̃s. Given a right fraction rs−1 ∈ RS−1, finding a corresponding left fraction s̃−1r̃ ∈
S−1R is therefore just another application of the left Ore condition, while computing the inverse
image of a left fraction requires the right Ore condition.

6.3. Basic arithmetic

If we examine Theorem 1.3 closely we can see that addition and multiplication in S−1R only
consist of computing one instance of the left Ore condition as well as some basic additions and
multiplications in the base ring R, which directly gives us algorithms for addition and multiplication.

6.4. Computing inverses

Additive inverses are given by −(s, r) = (s,−r), but, as we have seen earlier, multiplicative
inverses are immensely more complicated. Proposition 2.4 tells us that a fraction (s, r) is invertible
if and only if r ∈ LSat(S), thus deciding invertibility of a fraction is not harder than computing
LSat(S). After Remark 2.10 we do not expect LSat(S) to be presentable in finite terms. However,
in the case of geometric localizations at a prime ideal p we are in the fortunate situation that S is
already saturated:

16

Lemma 6.2. Let p be a prime ideal in R := K[x1, . . . , xn]. Then both R \ {0} and S := R \ p are
saturated in An.

Proof. For the first part, consider a global monomial ordering where ∂i > xj for all i, j. Let a, b ∈ An

such that a · b ∈ R \ {0}, then a and b are non-zero, thus tdeg∂(a) + tdeg∂(b) = tdeg∂(a · b) = 0.
Therefore both a and b are contained in R \ {0}.

Now let a · b ∈ S ⊆ R \ {0}, then by the first part we have a, b ∈ R \ {0}. Since a ∈ p and b ∈ p

both imply a · b ∈ p, we have a, b ∈ R \ p = S.

Thus we have that a fraction (s, r) in a geometric localization of An at p is invertible if and
only if r ∈ K[x1, . . . , xn] \ p; the latter condition can be checked algorithmically with commutative
Gröbner methods.

Unfortunately, S will not be saturated in general when we consider the other localization types.
A closer look at the definition of left saturation closure yields the following insight:

Lemma 6.3. Let S be a left Ore set in a domain R and r ∈ R. Then r ∈ LSat(S) if and only if
Rr ∩ S 6= ∅.

Therefore we can decide invertibility of a given fraction if we can decide non-emptiness of the
intersection of S with a principal left ideal. For rational localizations this can be checked with the
usual Gröbner tools, but for monoidal localizations this is still an open problem as stated before.
Some non-units might be identified with the technique described in Remark 5.1.

6.5. Canceling a fraction

Given a representation (s, r) of a fraction it is a natural question to ask whether there is a
simpler representation (s′, r′) of the same fraction, for example a representation where the total
degree of the denominator s′ is smaller than the one of s. Canceling a fraction between other
computation steps can have a significant impact on the total computation time. Given that we are
not in a unique factorization domain there may be many different representations that we could
call simpler than the initial one, thus it is also of interest to find all simpler representations.

We present two approaches to this problem. To this end, let (s, r) ∈ S ×R be a representation
of a fraction in a left Ore localization S−1R of a G-algebra R. We want to compute (at least)

Cs,r := {(ŝ, r̂) ∈ S ×R | ∃f ∈ R : f ŝ = s and f r̂ = r},

the set of all representations of (s, r) that can be constructed from (s, r) by left canceling.

6.5.1. Syzygy-based canceling

The first approach is based on computing right and left syzygies (denoted RSyz resp. LSyz
below), which can be done with Gröbner-driven algorithms. Let

M := RSyz(
[

s r
]

) = {
[

a b
]T

∈ R2×1 | sa+ rb = 0}.

Note that M 6= {0} since any G-algebra is right Noetherian and thus a right Ore domain. For any
[

a b
]T

∈M let Na,b := LSyz(
[

a b
]T

) = {
[

q p
]

∈ R1×2 | qa+ pb = 0}. We also have Na,b 6= {0}

since
[

s r
]

∈ Na,b.

Lemma 6.4. Let
[

a b
]T

∈M \ {0}.

17

(a) We have Cs,r ⊆ Na,b.

(b) Let (q, p) ∈ Na,b with q ∈ S. Then (q, p) = (s, r) in S−1R.

Proof. (a) Let
[

ŝ r̂
]

∈ Cs,r, then there exists f ∈ R \ {0} such that s = f ŝ and r = f r̂. Since
[

a b
]

∈M we have 0 = sa+ rb = f ŝa+ f r̂b = f(ŝa+ r̂b), which implies ŝa+ r̂b = 0 and thus
[

ŝ r̂
]

∈ Na,b.

(b) By the left Ore condition on S there exist s̃ ∈ S and r̃ ∈ R such that s̃q = r̃s. Now we have
s̃pb = −s̃qa = −r̃sa = r̃rb. Since b = 0 would imply the contradiction a = 0 we can infer that
s̃p = r̃r, which implies (q, p) = (s, r) in S−1R.

Thus Ña,b := Na,b ∩ (S × R) is a superset of Cs,r consisting of representations of (s, r), which
immediately leads to the algorithm SyzCancel.

Algorithm 5: SyzCancel

Input: A left fraction (s, r) ∈ S−1R.
Output: A set of representations of (s, r) containing Cs,r.

1 begin

2 compute M := RSyz(
[

s r
]

) = {
[

a b
]T

∈ R2×1 | sa+ rb = 0};

3 choose any non-zero
[

a b
]T

∈M ;

4 compute N := LSyz(
[

a b
]T

) = {
[

q p
]

∈ R1×2 | qa+ pb = 0};

5 compute Ñ := N ∩ (S ×R);

6 return Ñ ;

7 end

6.5.2. Factorization-based canceling

Since G-algebras are finite factorization domains ([3]) there are only finitely many factorizations
of the denominator s. Thus we can compute Cs,r as follows:

1. Set M := ∅.

2. Compute all factorizations of s ∈ S (R of the form s = fisi, where fi is irreducible, si a non-
unit and i ∈ I, where I is a suitable index set for keeping track of these different factorizations.
If I = ∅ return {(s, r)}.

3. Compute the index set J := {i ∈ I | ∃ri ∈ R : r = firi}, where ri can be obtained by right
division: j ∈ J if and only if the right normal form rightNF(r, fj) = 0. This can only be the
case if tdeg(r) ≥ tdeg(fj). If J = ∅ return {(s, r)}.

4. For every j ∈ J apply the procedure recursively to (sj , rj) and add the results to M .

After finitely many steps we obtain a list of all fully canceled representations of (s, r). Apart
from (s, r) itself they all have denominators with total degree strictly smaller than tdeg(s), since
tdeg(si) = tdeg(s)− tdeg(fi) ≤ tdeg(s)− 1. Still there can be several representatives with minimal
total degree of the denominator:

18

Example 6.5. Consider again the localization LSat(V)−1A1 from Section 4. Then (x2, x∂ − 1)
and (x∂ + 2, ∂2) represent the same fraction in LSat(V)−1A1 since

(x2, x∂ − 1) = (∂x2, ∂(x∂ − 1)) = (x(x∂ + 2), x∂2) = (x∂ + 2, ∂2).

Both denominators have total degree 2 and cannot be canceled further.

7. Implementation

In this section we outline the structure of olga.lib3 (short for “Ore localization in G-algebras”),
our implementation of the algorithms developed above in the computer algebra system Singu-

lar:Plural.

7.1. Setting, conventions and restrictions

For now olga.lib can perform computations in the following situations:

• For monoidal localizations, consider a G-algebra A generated by the variables x1, . . . , xn and
let 1 ≤ k ≤ n such that R := K[x1, . . . , xk] is a commutative polynomial subring of A.
Further, let g1, . . . , gt ∈ R \ {0} such that S := [g1, . . . , gt] is a left Ore set in A.

• Geometric localizations are only implemented for Weyl-like algebras A, consisting of 2n vari-
ables, where the first n variables x1, . . . , xn generate a commutative polynomial subring
R := K[x1, . . . , xn] of A: let p be a prime ideal in R (A and set S := R \ p.

• For rational localizations, consider a G-algebra A generated by the variables x1, . . . , xn and let
1 ≤ i1 < . . . < ik ≤ n such that xi1 , . . . , xik generate a sub-G-algebra B of A and S := B \{0}
is a left Ore set in A.

In any of these cases we can perform basic arithmetic in the localization at S constructively.

Remark 7.1. In the monoidal case, the restriction for g1, . . . , gt to be contained in a commutative
polynomial ring is due to the existence of a unique factorization into irreducible elements there,
which easily allows to check whether a given element s is contained in S or not. For the computation
of the left Ore condition it suffices if the gi commute pairwise, see Lemma 5.3.

All computations will actually be carried out in the localization at [g], where g is the square-free
part of g1 · . . . · gt, which is isomorphic to the localization at S = [g1, . . . , gt] again by Lemma 5.3.

Remark 7.2. In the rational case we also need the existence of an elimination ordering for the
variables not indexed by i1, . . . , ik to compute the intersection of ker(ϕs,r) with the subalgebra
B. This technical condition is satisfied in many applications, especially in the transition from
polynomial to rational coefficients in the setting of linear functional operators. Total rational
localizations, that is, computations in the quotient field of a G-algebra, also satisfy this condition
since no elimination is required.

3The latest version can be found at www.math.rwth-aachen.de/~Johannes.Hoffmann/singular.html and will also
be included in a later version of Singular.

19

www.math.rwth-aachen.de/~Johannes.Hoffmann/singular.html

Remark 7.3. While we know that geometric localization is well-defined at any prime ideal p in
the Weyl setting, in the other situations we have no automatic way to check if the given input
indeed represents a left Ore set in A. If it is not left Ore, then the behaviour of the algorithms is
unspecified: computations may yield a plausible result or fail with an error.

Remark 7.4. Computing a left representation from a right representation is based on the computa-
tion of a left Ore condition. Analogously, computing a right representation from a left representation
requires the right Ore property. If the respective Ore property does not hold, the corresponding
algorithms might fail.

7.2. Data structure

A non-commutative fraction x is represented by a vector [s, r, p, t] with entries of type poly,
where (s, r) = s−1r is a representation of x as a left fraction, while (p, t) = pt−1 is a representation
of x as a right fraction. If s = 0 or t = 0 then the corresponding representation is considered as
not yet known. If both are zero, the fraction is not valid. If both s and t are non-zero, the two
representations have to agree, that is, rt = sp. A vector adhering to this specifications will be
called a fraction vector below.

To interpret x in the context of a localization we have to specify a localization type, which is
an int with value 0 for monoidal, 1 for geometric and 2 for rational localization, as well as some
localization data which is stored in an object of the universal type def to accommodate the different
settings:

• Monoidal: list g1, . . . , gt with entries of type poly.

• Geometric: ideal p in K[x1, . . . , xn].

• Rational: intvec containing i1, . . . , ik.

7.3. Procedures

Apart from some auxiliary functions, olga.lib contains the following procedures, which require
two parameters specifying a left Ore S set via an int locType and a def locData as described in
the section above. If they are not mentioned explicitly they have to be appended at the end of the
parameter lists.

7.3.1. ore(poly s, poly r, int locType, def locData, int rightOre)

If rightOre is set to 0, computes (s̃, r̃, J), where s̃ ∈ S and r̃ ∈ R satisfy s̃r = r̃s and J is an
ideal describing all possible choices for s̃ as specified in Section 5. If rightOre is set to 1, computes
the right-sided analogue. This procedure will be replaced by two separate functions leftOre and
rightOre in future releases.

7.3.2. convertRightToLeftFraction(vector v)

Computes a right representation of the left fraction v.

7.3.3. convertLeftToRightFraction(vector)

7.3.4. addLeftFractions(vector a, vector b)

7.3.5. multiplyLeftFractions(vector a, vector b)

7.3.6. areEqualLeftFractions(vector a, vector b)

7.3.7. isInS(poly p)

Checks if p is contained in S.

20

7.3.8. isInvertibleLeftFraction(vector v)

Checks if v is invertible (see Section 6.4 for the interpretation of the result).

7.3.9. invertLeftFraction(vector v)

Returns the inverse of v if v is invertible according to isInvertibleLeftFraction.

7.3.10. cancelLeftFraction(vector v)

Performs steps to find an “easier” representation of v.

7.3.11. reduceLeftFraction(vector a, vector b)

Only for rational localizations: performs a Gröbner-like reduction step to reduce a with respect
to b.

7.4. Examples

The first example demonstrates a left-to-right conversion in the second rational q-shift algebra
A, which is Q(q)(x, y)〈Qx, Qy | F 〉 with the set of relations (cf. also Example 3.6)

F = {Qxg(x, y) = g(qx, y)Qx, Qyg(x, y) = g(x, qy)Qy, QyQx = QxQy | g(x, y) ∈ Q(q)(x, y)\Q(q)}.

LIB "olga.lib";

ring Q = (0,q),(x,y,Qx,Qy),dp; // comm. polynomial ring

matrix C[4][4] = UpOneMatrix(4); // sets non-comm.

C[1,3] = q; C[2,4] = q; // relations

def ncQ = nc_algebra(C,0); // creates A from Q

setring ncQ;

intvec v = 1,2;

poly f = Qx+Qy; poly g = x^2+1;

vector frac = [g,f,0,0];

vector result = convertLeftToRightFraction(frac,2,v);

Now result contains the left representation (x2 + 1)−1(Qx +Qy) of frac as well as its newly
computed right representation (q4x2Qx+x2Qy + q2Qy) · (x4 +(q2 +1)x2+ q2)−1. We can convince
ourselves that the two representations are equal and that the right denominator of result is
contained in S:

f * result[4] == g * result[3];

-> 1

isInS(result[4],2,v);

-> 1

The second example consists of the addition of two left fractions in various localizations of the
second Weyl algebra A2 = Q〈x, y, ∂x, ∂y | F 〉, where the set of relations F is as in Example 3.6 :

LIB "olga.lib";

ring R = 0,(x,y,dx,dy),dp; // comm. polynomial ring

def W = Weyl(); setring W; // creates A_2 from R

poly g1 = x+3; poly g2 = x*y+y;

21

list L = g1,g2;

frac1 = [g1,dx,0,0]; frac2 = [g2,dy,0,0];

vector resm = addLeftFractions(frac1,frac2,0,L);

Here, resm has left denominator x3y + 7x2y + 15xy + 9y and left numerator x2y∂x + 4xy∂x +
x2∂y + 3y∂x + 6x∂y + 9∂y as a fraction in the monoidal localization of A2 at S = [x+ 3, xy + y].

ideal p = y-3;

vector resg = addLeftFractions(frac1,frac2,1,p);

resg contains (x2y+4xy+3y)−1(xy∂x+y∂x+x∂y+3∂y) and belongs to the geometric localization
of A2 at S = Q[x, y] \ 〈y − 3〉.

intvec rat = 2,4;

frac1 = [y+3,dx,0,0]; frac2 = [dy-1,x,0,0];

vector resr = addLeftFractions(frac1,frac2,2,rat);

Lastly, resr has left denominator y∂2y−2y∂y+3∂2y+y−4∂y+1 and left numerator x2y∂y+∂x∂
2
y−

xy+3x∂y−2∂x∂y−x+∂x, living in the rational localization ofA2 at S = Q〈y, ∂y | ∂yy = y∂y+1〉\{0}.
Lastly, resr is given by

(y∂2y − 2y∂y + 3∂2y + y − 4∂y + 1, x2y∂y + ∂x∂
2
y − xy + 3x∂y − 2∂x∂y − x+ ∂x),

it is an element of the rational localization of A2 at S = Q〈y, ∂y | ∂yy = y∂y + 1〉 \ {0}, which can
be written as Quot(Q〈y, ∂y | ∂yy = y∂y + 1〉)〈x, ∂x | ∂xx = x∂x + 1〉, a polynomial Weyl algebra in
variables {x, ∂x} over the quotient field of a Weyl algebra in {y, ∂y}.

8. Conclusion and future work

The algorithmic framework presented here is based on a constructive approach that strives for
broad generality. At a very general level we face the major problem of intersecting a left ideal with a
submonoid S of R. We are not aware whether this problem is decidable in general. Nevertheless, we
have proposed solutions for three application-inspired situations where S has additional structure,
but even there some restrictions still apply. This should not be considered as a failure of the
approach, but rather as a hint at the high intrinsic complexity of the problem.

The proposed framework is easily expandable to include other types of left Ore sets S (R
provided the following two problems can be solved algorithmically:

1. the submonoid membership problem (i. e. whether r ∈ S for a given r ∈ R),

2. the intersection of a left ideal in R with a submonoid S.

Apart from overcoming the current restrictions already mentioned throughout the text, we are
working on the following:

The section about the left saturation closure of multiplicatively closed sets is only a special case
of a more general notion which also includes the important concept of local closure of submodules,
such as the celebrated Weyl closure in D-module theory.

Utilizing the ability to create user-defined data types introduced in Singular from version 4
on, we are working on an object-oriented interface for olga.lib to improve usability. To this end,
we also intend to turn olga.lib into a true sandbox environment for all computations associated
with Ore localization of G-algebras.

22

9. Acknowledgements

The authors are very grateful to Daniel Andres, Vladimir Bavula, Burcin Erocal, Christoph
Koutschan and Oleksander Motsak for discussions on the subject, even if some of these have hap-
pened a couple of years ago. Furthermore, we would like to thank the referees for their helpful
suggestions. The second author is grateful to the transregional collaborative research centre SFB-
TRR 195 “Symbolic Tools in Mathematics and their Application” of the German DFG for partial
financial support.

References

[1] Sergei A. Abramov, Ha Q. Le, and Ziming Li. Oretools: a computer algebra library for
univariate Ore polynomial rings. Technical report, University of Waterloo, 2003. Technical
Report CS-2003-12.

[2] Joachim Apel and Wolfgang Lassner. An extension of Buchberger’s algorithm and calculations
in enveloping fields of Lie algebras. J. Symb. Comp., 6(2-3):361–370, 1988.

[3] Jason P. Bell, Albert Heinle, and Viktor Levandovskyy. On noncommutative finite factorization
domains. Trans. Amer. Math. Soc., 369:2675–2695, 2016.

[4] Jose Bueso, Jose Gómez-Torrecillas, and Alain Verschoren. Algorithmic methods in non-
commutative algebra. Applications to quantum groups. Kluwer Academic Publishers, 2003.

[5] Frédéric Chyzak and Bruno Salvy. Non–commutative elimination in Ore algebras proves mul-
tivariate identities. J. Symb. Comp., 26(2):187–227, 1998.

[6] Mark Giesbrecht, Albert Heinle, and Viktor Levandovskyy. Factoring linear differential oper-
ators in n variables. J. Symb. Comp., 75:127–148, 2016.

[7] Gert-Martin Greuel, Viktor Levandovskyy, Oleksander Motsak, and Hans Schönemann. Plu-

ral. A Singular 4-1-0 Subsystem for Computations with Non-commutative Polynomial Al-
gebras. Centre for Computer Algebra, TU Kaiserslautern, 2016.

[8] Gert-Martin Greuel and Gerhard Pfister. A SINGULAR Introduction to Commutative Algebra.
Springer, 2nd edition, 2008.

[9] Dmitry Grigor’ev. Complexity of factoring and calculating the GCD of linear ordinary differ-
ential operators. J. Symb. Comp., 10(1):7 – 37, 1990.

[10] Johannes Hoffmann and Viktor Levandovskyy. A constructive approach to arithmetics in Ore
localizations. In Proc. ISSAC’17, pages 197–204. ACM Press, 2017.

[11] Abdelilah Kandri-Rody and Volker Weispfenning. Non-commutative gröbner bases in algebras
of solvable type. J. Symb. Comp., 9(1):1–26, 1990.

[12] Manuel Kauers, Maximilian Jaroschek, and Fredrik Johansson. Ore polynomials in Sage, 2013.

[13] Christoph Koutschan. HolonomicFunctions (user’s guide). Technical report, University of Linz,
2010. RISC Report Series No. 10-01.

23

[14] Günter R. Krause and Thomas H. Lenagan. Growth of Algebras and Gelfand-Kirillov Dimen-
sion, volume 22 of Graduate studies in mathematics. American Mathematical Society, revised
edition, 2000.

[15] Heinz Kredel. Solvable polynomial rings. Shaker, 1993.

[16] Heinz Kredel. Parametric solvable polynomial rings and applications. In Vladimir P. Gerdt,
Wolfram Koepf, Werner M. Seiler, and Evgenii V. Vorozhtsov, editors, Proc. CASC’15, pages
275–291, Cham, 2015. Springer International Publishing.

[17] Heinz Kredel. The java algebra system (jas)., since 2000.

[18] Viktor Levandovskyy. Non-commutative Computer algebra for polynomial algebras: Gröbner
bases, applications and implementation. Dissertation, Universität Kaiserslautern, 2005.

[19] Viktor Levandovskyy. Intersection of ideals with non-commutative subalgebras. In J.-G. Du-
mas, editor, Proc. ISSAC’06, pages 212–219. ACM Press, 2006.

[20] Viktor Levandovskyy and Hans Schönemann. Plural - a computer algebra system for noncom-
mutative polynomial algebras. In Proc. ISSAC’03, pages 176–183. ACM Press, 2003.

[21] Leonid Makar-Limanov. The skew field of fractions of the weyl algebra contains a free non-
commutative subalgebra. Communications in Algebra, 11(17):2003–2006, 1983.

[22] John C. McConnell and J. Chris Robson. Noncommutative Noetherian Rings, volume 30 of
Graduate studies in mathematics. American Mathematical Society, 2001.

[23] Øystein Ore. Linear equations in non-commutative fields. Annals of Mathematics, 32(3):463–
477, 1931.

[24] Øystein Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34(3):480–508,
1933.

[25] Joris van der Hoeven. On the complexity of skew arithmetic. Applicable Algebra in Engineering,
Communication and Computing, 27(2):105–122, 2016.

24

	1 Basics of left Ore localization
	2 A brief introduction to the left saturation closure
	3 A constructive approach to the left Ore condition
	3.1 The kernel technique
	3.2 The class of G-algebras
	3.3 A partial classification of Ore localizations

	4 Case study: localizations of the first Weyl algebra
	4.1 Characteristic zero case
	4.2 Positive characteristic case

	5 Computing the intersection of a left ideal and a left Ore set
	5.1 Monoidal localizations
	5.2 Geometric localizations of Weyl algebras
	5.3 Rational localizations

	6 Further algorithmic aspects
	6.1 The right side analogon
	6.2 The left-right conundrum
	6.3 Basic arithmetic
	6.4 Computing inverses
	6.5 Canceling a fraction

	7 Implementation
	7.1 Setting, conventions and restrictions
	7.2 Data structure
	7.3 Procedures
	7.4 Examples

	8 Conclusion and future work
	9 Acknowledgements

