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Abstract 

The two communities of Symbolic Computation and Satisfiability Checking 
have recently found themselves tackling similar problems and having a grow-
ing interest in each other’s technology. This special issue presents articles 
whose contribution is of interest to, and is influenced by, both communities. 
Given the context of this journal we start this editorial with a more thorough 
overview of Satisfiability Checking, and then turn to Symbolic Computation 
and the potentials and challenges for collaboration. The collection of articles 
in this issue is evidence of the already existing fruitful work at the intersection 
of these communities. 
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1. Two Communities 

1.1. The SAT Problem 

The Satisfiability Checking community is focussed on the problem of de-
termining whether a given logical formula is satisfiable, that is, whether 
there is an interpretation of certain uninterpreted symbols that evaluates 
the formula to true. In the case where the uninterpreted symbols are all 
Boolean1 variables this becomes the classic SAT Problem, the first problem 
to be proven NP-Complete (Cook, 1971). 

Despite its theoretical complexity, today instances of the SAT problem 
involving hundreds of thousands of variables are solved routinely. This is 
usually done by dedicated SAT-solvers, many of which are available free and 
open source. SAT-solvers are now integrated in a wide variety of industrial 
domains, perhaps most notably formal verification. A textbook charting the 
rise of the SAT-solver is the Handbook of Satisfiability by Biere et al. (2009). 

Modern SAT-solvers mostly rely on a combination of enumeration, prop-
agation, and resolution. Enumeration refers to the natural solution of enu-
merating all possible variable assignments. In the case of an unsatisfiable 
formula with n variables this means checking 2n assignments. Propagation 
and resolution help tackle this exponential search space: we introduce them 
next alongside the algorithms which first employed them. 

1.1.1. The DPLL Algorithm 
Propagation was the key feature of the DPLL algorithm by Davis et al. 

(1962). We first transform2 the formula into conjunctive normal form: the 
formula becomes a conjunction of clauses, where each clause is a disjunction 
of literals (variables or their negation). We then proceed with an enumerative 
search but after each variable is set we seek implications for other variables. 
Such implications happen if the latest assignment renders a clause unit (all 

1For our purposes the term Boolean algebra refers to propositional logic. 
2Naively, this might be expensive, but the transformation of Tseitin (1983) (reprint of 

work from the 1960s) is in PTIME. The transformed formula is equi-satisfiable with the 
original (not neccessarily equivalent). 
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unassigned literals except one become false). Furthermore, if all literals in 
a clause are rendered false by an assignment, then no further analysis is 
required in this part of the search space. We instead backtrack to the last 
free decision (one made as part of the search rather than propagation). 

Example 1. Consider the formula 

(α ∨ β ∨ ¬γ) ∧ (¬α ∨ ¬β) ∧ (β ∨ γ) ∧ (¬α ∨ β ∨ ¬γ), (1) 

which is already in conjunctive normal form with the parentheses indicating 
the four clauses. An initial assignment of α to true would render the second 
clause unit and so propagation would set β to false. This in turn renders 
both the third and fourth clauses unit, however, propagating on one of them 
will give an assignment which renders the other false. So either way we 
backtrack to our choice and reassign α to false. 

This time there is no unit clause and so we have to make a choice for β. If 
we choose to assign β to true then the formula is already satisfied regardless 
of the value for γ; while if we assigned β to false then propagation would 
lead to a conflict and backtracking to pick β to be true. 

1.1.2. The CDCL Algorithm 
Propagation avoids exploring every branch of the search space but we 

may still end up replaying similar analyses in separate branches. The next 
milestone in the development of SAT-solvers was the idea of using resolution 
to avoid such repetition, as described by the conflict driven clause learning 
(CDCL) algorithm (Marques-Silva and Sakallah, 1999). 

The main idea is to use resolution to learn the reason for a conflict and 
generate a new clause from that which we add to the input formula so that 
similar conflicts are avoided later in the search. This is done by means of a 
resolvent: given two clauses, one which has x as a literal and one with ¬x, 
the resolvent is the disjunction of all the other literals from both clauses. All 
assignments that satisfy both clauses must also satisfy the resolvent (since 
one of the other literals must have been satisfied). 

Example 2. Consider a formula (1) ∧ ψ where (1) was the formula from 
Example 1 and ψ another formula in conjunctive normal form involving more 
variables than just α, β, γ. In the previous example we learnt that there was 
no satisfying solution to (1) with α assigned to true. We want to avoid 
repeating this analysis in different branches of the search space defined by 
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the other variables in ψ. Resolution would ensure this: before the initial 
backtrack in Example 1 we saw that the third and fourth clauses conflicted 
− they wanted to propagate different assignments for γ. Thus we take the 
resolvent of these clauses to form ¬α ∨ β. This in turn causes a conflict with 
the second clause and their resolvent is simply ¬α. Thus we add this to the 
input to ensure from then on that we only assign α to false. 

The process of deriving resolvent clauses by analysing conflicts is the main 
idea of the CDCL algorithm, and together with propagation, it forms the 
backbone of modern SAT solvers. In fact, the CDCL algorithm can be seen 
as an interplay between two phases, model search and proof search, which 
drive each other in a feedback loop: model search tries to find a solution for 
the input formula, by applying decisions and propagation; when a conflict 
arises, the information about which propagations were performed is used by 
the proof search phase to learn new clauses (generated via resolution), which 
in turn will drive the model search phase to explore a different portion of the 
search space. 

1.1.3. Modern SAT-solvers 
We have presented above the two most important ideas to tackle the 

SAT problem, but there are many other innovations used in modern SAT-
solvers. There is substantial engineering such as the two watched literals rule, 
heuristics for variable selection / branching (e.g. the VSIDS variable activity 
score), restart strategies, and techniques for clause database management 
(e.g. the LBD measure). Also of great importance are the preprocessing 
and inprocessing procedures, such as variable elimination, subsumption, and 
blocked clauses elimination. The best single reference for an overview of 
these topics is the Handbook of Satisfiability Biere et al. (2009). 

1.2. Satisfiability Modulo Theories 

The success of modern SAT solvers led naturally to the idea of applying 
such techniques beyond propositional calculus. The approach has been best 
formalised by the paradigm of Satisfiability Modulo Theories (SMT), which 
leads to SMT-solvers. These take as input a logical formula whose atoms are 
statements in a theory domain (or perhaps several different domains). 

The SMT-solver will usually first convert the formula to conjunctive nor-
mal form and build its Boolean skeleton by replacing each theory atom by a 
new Boolean variable. This skeleton is passed to a SAT-solver: if it is found 
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to be unsatisfiable then the conclusion can be applied to the original formula 
also. To conclude, in contrast, a satisfying solution, one must check at some 
point the validity of the solution from the SAT-solver in the theory. This is 
usually done by calling a theory solver : a procedure for deciding if the set 
of theory constraints implied by the interpretation of Boolean variables is 
consistent. If not consistent then the theory solver is expected to offer an ex-
planation: a statement that is a valid in the theory stating that a, hopefully 
small, subset of the constraints cannot hold together. This forms a new clause 
for the Boolean skeleton, generalising the inconsistency just encountered, to 
ensure future candidate solutions are not invalid in a similar manner. This 
way we are running a loop of calls to the SAT-solver and theory solver until, 
ideally, either a satisfying solution is found or unsatisfiability is concluded. 
In practice, one also admits incomplete theories and theory solvers so that 
SMT solvers possibly return unknown as a final result. 

Example 3. Consider the formula 

(x > 0 ∨ x = −1) ∧ (x 2 < 0 ∨ x 2 > 9). 

The Boolean skeleton is (a ∨ b) ∧ (c ∨ d) where new Boolean variables a, b, c, d 
represent the truth of the four sign conditions involving a theory variable x. 
A SAT-solver may propose the solution to this skeleton which sets a and c 
to true and b and d to false. A theory solver would determine that the set 
of constraints this produces is incompatible and produce the explanation that 
we cannot have both a and c true at once. Thus the clause (¬a ∨ ¬c) is 
added to the input. Further analysis by the SAT-solver may then swap the 
Boolean assignment for c and d. This time the theory solver should conclude 
the resulting set of conditions is satisfiable in the theory (by any x > 3). 

The above description is of the DPLL(T) architecture for SMT, and the 
example implemented the lazy approach, where the theory solver is only 
consulted after a full Boolean assignment has been obtained. There can be 
less lazy versions, with the theory solver consulted after each assignment. 
The chapter in the Handbook of Satisfiability by Barrett et al. (2009) is a 
key reference for this SMT paradigm. 

There are other approaches to generalising SAT-solving to theory do-
mains. The eager approach, introduced in Lahiri and Seshia (2004), trans-
lates the original formula to an equisatisfiable Boolean formula in a single 
step, which is then given to a standard SAT solver. Programmatic SAT intro-
duced by Ganesh et al. (2012) calls user specified code instead of a particular 
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theory solver. The model constructing satisfiability calculus (MCSAT) intro-
duced by de Moura and Jovanović (2013) extends propagation and resolution 
into the theory domain: it allows guesses, not only for truth values of the the-
ory constraints, but also for guesses for the actual theory variables, followed 
by propagation techniques to drive the search for other theory variables away 
from unsatisfiable parts of the search space. 

The theory solvers discussed above implement decision procedures to de-
cide whether a set of constraints is compatible in the given domain. For 
linear real arithmetic the simplex method could be used for example, while 
in linear integer arithmetic cutting planes or interval constraint propagation 
could be used. The textbook by Kroening and Strichman (2013) offers a 
good outline of the various procedures commonly employed by SMT. For 
some domains the procedures in question were developed within the field 
of Symbolic Computation and have their natural home in computer algebra 
systems. 

1.3. Symbolic Computation 

The use of computers to do exact mathematics dates back almost as far 
as computing itself with the first theses appearing in 1953. Early successes 
include algorithms to perform automatic integration which could even certify 
when something could not be integrated in closed form (Risch, 1969). New 
methods for polynomial factorisation accompanied the first general purpose 
algebraic software in the 1960s. One of the most impactful contributions to 
the field was Gröbner Bases, developed by Buchberger (1965), which allowed 
for the efficient solution of many problems for polynomials over algebraically 
closed fields. 

The scope of the field of Symbolic Computation was set out in the edito-
rial of the first volume of this journal (Buchberger, 1985) and is summarised 
as “the algorithmic solution of problems dealing with symbolic objects”. Al-
though the aforementioned editorial explicitly included both computational 
algebra and computational logic over time the Symbolic Computation field 
has seemed to focus more on the algebraic. Indeed, the implementation tools 
are almost exclusively referred to as computer algebra systems. 

Today, these vary from large commercial general purpose systems such as 
Maple, and Mathematica to free and open source alternatives such as Maxima, 
Reduce, Sage and Singular. There are also a wide variety of specialised sys-
tems dedicated to subfields including Macaulay2 for algebraic geometry, GAP 
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for group theory, CoCoA for commutative algebra, Qepcad for real quantifier 
elimination, and PariGP for number theory. 

1.4. Difficulties with Computer Algebra as Theory Solver 

The history of Symbolic Computation is longer than that of Satisfiabil-
ity Checking. The first SAT solver following modern design principles did 
not appear until the 1990s and by the time that SMT was actively devel-
oped many of today’s popular computer algebra systems were already well 
established. So it should seem natural that SMT-solvers consider using a 
computer algebra system as a theory solver. However, this did not happen, 
for a number of reasons beyond the lack of familiarity of the communities. 
Computer algebra systems tend to be large standalone systems aimed at in-
teractive problem solving with a human, while SMT-solvers tend to be made 
up from small, flexible and highly efficient libraries. Hence it is not trivial 
for an SMT-solver to share data-structures with a computer algebra system 
as it does with its typical solvers. More fundamentally though, the actual 
algorithms employed by computer algebra systems lacked in functionality 
necessary for successful use in SMT. To be SMT-compliant a theory solver 

´ ´ must satisfy a number of criteria ( Abrahám, 2015; Abrahám et al., 2016): 

• The solver should work incrementally, i.e. after determining the consis-
tency of a constraint set there should be the option to add an additional 
constraint and recheck, reusing as much computation as possible. 

• The solver should have the ability to support backtracking, i.e. after 
determining the consistency of a constraint set there should be the 
option to remove a constraint and recheck, again, reusing as much 
computation as possible. 

• In the case of unsatisfiability, the solver is expected to offer an expla-
nation as to why the constraints cannot be satisfied, e.g. a small subset 
which are on their own incompatible. 

These requirements are not commonly met by the algorithms in computer al-
gebra systems, where the intended use case is usually to perform one compu-
tation to solve a single problem. To make a Symbolic Computation algorithm 
SMT-compliant requires much work, certainly at the implementation level, 
e.g. the data-structures used, but more importantly also in the mathematical 
theory. 
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2. SC-Square 

We use SC2 (SC-Square) to refer to the collaboration between the two 
communities of Satisfiability Checking and Symbolic Computation. 

2.1. EU Project 

SC2 originates from a European Union Horizon 2020 project3 that ran 
from 2016 to 2018 with the aim of bridging the gap between these com-
munities. The project consortium consisted of: University of Bath (UK), 
RWTH Aachen (Germany), Fondazione Bruno Kessler (Italy), the University 
of Genoa (Italy), Maplesoft Europe Ltd, the University of Lorraine (France), 
Coventry University (UK), the University of Oxford (UK), the University of 
Kassel (Germany), the Max Planck Institute for Informatics (Germany), and 
Johannes Kepler University of Linz (Austria). In addition, the project had 
over 50 associates from around the world. 

The main project goals were around community building, in particular 
through the funding of workshops and summer schools. The 2017 SC2 Sum-
mer School in Saarbrücken, Germany included 12 extended lectures on the 
foundations of the two fields, key algorithms, and applications. The latter 
were presented by speakers from industry describing the use of such tech-
nology to verify software and systems in industries as diverse as automotive 
and finance. The slides and videos of some talks from the Summer School 
are available online4 . 

The existence and maintenance of a common specification language SMT-
LIB (Barrett et al., 2016), with its accompanying collections of benchmarks 
and annual competitions, is seen as an important accelerator on research in 
Satisfiability Checking. Another key output from the project was work to 
extend SMT-LIB to better support the areas of relevance to SC2 (a natu-
ral choice since there was no computer algebra alternative). The upcoming 
SMT-LIB 3.0 is set to include a variety of features relevant to Symbolic 
Computation such as new functions, quantifier elimination, real algebraic 
numbers, and optimisation. There have been 10 separate contributions of 
benchmarks linked to the SC2 project, accounting for a third of the recent 
library growth. This has included a more diverse range of applications such 
as those from the life sciences (Sturm, 2017) and economics (Mulligan et al., 

3http://www.sc-square.org/EU-CSA.html 
4http://www.sc-square.org/CSA/school/lectures.html 
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2018). Also, Maple now supports the SMT-LIB language and integration 
with SAT/SMT solvers (Forrest, 2017) as does Reduce which further, has a 
fully featured CDCL solver implemented and won the NRA category of the 
2017 SMT competition5 . 

The project also funded a variety of proof of concept studies including 
on integrations: between computer algebra system Redlog and SMT-solver 
VeriT, between computer algebra systems CoCoA and Maple and SMT-solver 
SMT-RAT, and between computer algebra system CoCoA and SMT-solver 
MathSAT; as well as development on new incremental versions of symbolic 
algorithms. 

2.2. Workshop Series 

The SC2 project initiated an annual International Workshop on Satisfia-
bility Checking and Symbolic Computation: 

• SC2 2016: 24th September 2016 in Timisoara, Romania. As part of the 
International Symposium on Symbolic and Numeric Algorithms for Sci-

´ entific Computing (SYNASC 2016). Proceedings edited by Abrahám 
and Fontaine (2016). 

• SC2 2017: 29th July 2017 in Kaiserslautern, Germany. Adjacent to 
the International Symposium on Symbolic and Algebraic Computation 
(ISSAC 2017). Proceedings edited by England and Ganesh (2017). 

• SC2 2018: 11th July 2018 in Oxford, UK. Part of the Federated Logic 
Conference (FLoC 2018). Proceedings edited by Bigatti and Brain 
(2018). 

• SC2 2019: 10th July 2019 in Bern, Switzerland. Part of the SIAM 
Conference on Applied Algebraic Geometry. Proceedings to appear, 
edited by Abbott and Griggio. 

Although the EU project finished in 2018 there is considerable effort being 
spent to continue the workshop series. A constitution has been approved 
which sets out requirements: such as the conference alternating between 
affiliation with conferences in each community; and the need for two chairs 
each year, one from each community. 

5http://smtcomp.sourceforge.net/2017/results-NRA.shtml 
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Most articles in this special issue are based on preliminary work presented 
at an SC2 workshop, or one of the other SC2 special sessions that took place 
at: the 2016 Conference on Applications of Computer Algebra (ACA 2016); 
the 2016 International Workshop on Computer Algebra in Scientific Com-
puting (CASC 2016); the 2017 International Conference on Mathematical 
Aspects of Computer and Information Sciences (MACIS 2017); and the 2018 
International Congress on Mathematical Software (ICMS 2018). 

3. Articles of this Special Issue 

The special issue comprises seven articles. A call was made following 
the 2017 SC2 workshop, and submission was open to all work on the the 
intersection of the two communities (no requirement for affiliation with the 
EU project). Of the seven articles, four have authors funded by the project 
(although all had taken part in the project workshops and special sessions). 
An average of 3.3 reviews per article was obtained with all reviewed by at least 
one expert in each of the two communities. All accepted articles underwent 
a multi-stage revision process to take into account the high standards of this 
journal. 

3.1. Non-linear real arithmetic 

SMT-LIB organises the theory solver domains into logics. From these, 
the one which has probably found the greatest intersection with Symbolic 
Computation has been non-linear real arithmetic. Here the atoms of the 
logical formulas are sign-conditions on non-linear multivariate polynomials, 
whose variables take real values. Questions in this theory are decidable, a 
result uncovered by Tarski (1948). 

The decision procedures most commonly used for non-linear real arith-
metic include (Partial) Cylindrical Algebraic Decomposition (Collins, 1975; 
Collins and Hong, 1991) and Virtual Substitution (Weispfenning, 1997; Kosta, 
2016), familiar to readers of this journal as key algorithms of Symbolic Com-
putation, developed for quantifier elimination in real closed fields. Given 
a non-linear arithmetic formula as described above which is preceded with 
quantifications on some of the variables involved, Quantifier Elimination 
(QE) means to find an equivalent unquantified version. For example, QE 
would transform ∃x, ax2 + bx + c = 0 ∧ a = 0 to the equivalent unquantified 6
statement b2 − 4ac ≥ 0. Satisfiability Checking is hence a sub-problem of QE 
for the case where all variables are existentially quantified (so the answer is 
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boolean rather than an expression in the unquantified variables). Although 
SMT-LIB is now expanding to encompass QE also. 

Two articles of the present special issue concern Cylindrical Algebraic 
Decomposition (CAD). A CAD is a decomposition of ordered Rn space into 
cells arranged cylindrically, meaning the projections of any pair of cells with 
respect to the variable ordering are either equal or disjoint. The projections 
form an induced CAD of the lower dimensional space. The cells are (semi)-
algebraic meaning each can be described with a finite sequence of polynomial 
constraints. To study a logical formula for SMT or QE a CAD must be 
produced truth-invariant to the formula (so the formula is either true or 
false on each cell). We can then check satisfiability by testing a finite 
number of sample points, and in the case of QE form the equivalent formulae 
from the cell descriptions. CAD traditionally consists of two stages: first 
projection, which identifies polynomials which will form boundaries in the 
decomposition; and then lifting, where the decomposition is produced by 
repeated use of real root isolation on these polynomials rendered univariate 
by substitution at sample points of the CAD for the space below. 

´ The article by Abrahám and Kremer describes how they have adapted 
the original CAD algorithm to satisfy the requirements for SMT-compliance 
outlined in Section 1.4. Their algorithm builds a CAD incrementally, by per-
forming one projection step at a time and then moving to lifting to perform 
the additional real root isolation and cell decomposition required by the new 
additions. They maintain a history of computation allowing for backtracking, 
developing data structures quite different to existing CAD implementations. 
Their work is implemented in their SMT-solver SMT-RAT. 

The article by England, Bradford and Davenport considers how the pro-
cess of CAD construction can be improved when the input contains equa-
tional constraints (equations which must be satisfied for the formula to hold). 
Intuitively each of these decrease the solution space by one dimension, and 
the authors show that a corresponding decrease in the theoretical complex-
ity of CAD can be achieved. The work may act as a tutorial on CAD with 
equational constraints with all necessary background and the current state 
of the art. 

The article by Brown and Vale-Enriquez presents work for a partial solver 
for non-linear real arithmetic, i.e. a solver that can sometimes decide the sat-
isfiability, and if not can at least simplify the input formula to ease the use 
of something like CAD. The partial solver is based on existing simplifica-

´ tion algorithms, which (like the CAD of Abrahám and Kremer) have had 

11 



to be heavily modified for SMT-compliance. These simplification algorithms 
have also been adapted to produce the desired explanations for unsatisfiabil-
ity required for SMT-compliance. This work is implemented in the Tarksi 
system, developed by Brown to implement the non-uniform CAD (NuCAD) 
algorithm developed by Brown (2015, 2016) which is an example of work in 
Symbolic Computation inspired by techniques from Satisfiability Checking 
(most notably those of Jovanovic and de Moura (2012)). 

3.2. Linear Arithmetic 

The article by Bromberger, Sturm and Weidenbach presents a new deci-
sion procedure for linear integer arithmetic. Although this theory is decid-
able, the authors explain that the leading solvers currently neglect termina-
tion on some classes of problems in favour of efficiency on all other problems. 
As an alternative, the authors present an extension to an existing calculus 
so it becomes complete and terminating but stays efficient. The procedure 
is based on a mixture of model-driven reasoning and quantifier elimination 
techniques. 

The article by Abbott, Bigatti, Palezzato and Robbiano concerns the 
computation of minimal polynomials in P/I where P is a polynomial ring 
and I an ideal. Such non-linear objects can capture fundamental information 
about linear algebra. The work can also improve the computation of Gröbner 
Bases, which although a technique for algebraically closed fields such as C is 
regularly used as an initial unsatisfiability check for real arithmetic, and is 
well known as a useful pre-processing for CAD (Huang et al., 2016). Their 
algorithms can also assist with polynomial factorization, useful for many pro-
cedures (notably CAD, where experience shows that it improves performance 
even when not logically necessary). The authors implement their work in the 
computer algebra system CoCoA but also CoCoALib: a free library of C++ 
code that can be particularly easily integrated with other C-like systems. 

3.3. Symbolic Computation for Better SAT-solvers 

The article by Horáček and Kreuzer is the only one in the issue to focus 
on the Boolean domain, as in Section 1.1. The idea is to use the equivalence 
between the Boolean SAT-problem and polynomial system solving over a 
finite field. The former may be attacked with SAT-solvers as described above 
while the latter by techniques such as Gröbner Bases, which originate from 
Symbolic Computation. The algebraic solver can be called to support the 
SAT-solver at selected points, or be in run in parallel, periodically exchanging 
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information. The article in this issue is focussed on the method to convert 
a formula from the conjunctive normal form (CNF) used by the SAT-solver 
to the algebraic normal form (ANF) required for the algebraic techniques. 
They develop a blockwise algorithm to producing fewer and lower degree 
polynomials. 

3.4. SC 2 Combinations for Combinatorics 

The article by Bright, Kotsireas and Ganesh investigates the Williamson 
Conjecture, an open problem in combinatorics on the existence of certain 
matrices, useful for error correcting codes. Through a combination of SAT-
solver and computer algebra system the authors are able to enumerate all 
cases up to a much larger dimension than achieved before, uncover new cases, 
and gain new insight into the distribution of these matrices. Rather than the 
standard SMT approach outlined in Section 1.2 they use programmatic SAT: 
here rather than a full CNF encoding instances can be a set of CNF clauses 
and user code that encodes constraints too cumbersome to be written in CNF. 
The authors have applied these techniques to a variety of other combinatorial 
problems: an intersection of the two communities not predicted by the EU 
grant but documented by the workshop series. 
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