

Symbolic computation and
satisfiability checking

Davenport, J. H., England, M., Griggio, A., Sturm, T. & Tinelli, C.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Davenport, JH, England, M, Griggio, A, Sturm, T & Tinelli, C 2020, 'Symbolic
computation and satisfiability checking', Journal of Symbolic Computation, vol. 100,
pp. 1-10.
https://dx.doi.org/10.1016/j.jsc.2019.07.017

DOI 10.1016/j.jsc.2019.07.017
ISSN 0747-7171

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
Journal of Symbolic Computation. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version
was subsequently published in Journal of Symbolic Computation, 100, (2020)
DOI: 10.1016/j.jsc.2019.07.017

© 2020, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/10.1016/j.jsc.2019.07.017
http://creativecommons.org/licenses/by-nc-nd/4.0/

Symbolic Computation and Satisfiability Checking
Editorial

James H. Davenport

Faculty of Science, University of Bath, UK

Matthew England

Faculty of Engineering, Environment and Computing, Coventry University, UK

Alberto Griggio

Embedded Systems Unit, Fondazione Bruno Kessler, Italy

Thomas Sturm

CNRS, Inria, and the University of Lorraine,France;

MPI Informatics and Saarland University, Germany

Cesare Tinelli

Department of Computer Science, University of Iowa, USA

Abstract

The two communities of Symbolic Computation and Satisfiability Checking
have recently found themselves tackling similar problems and having a grow-
ing interest in each other’s technology. This special issue presents articles
whose contribution is of interest to, and is influenced by, both communities.
Given the context of this journal we start this editorial with a more thorough
overview of Satisfiability Checking, and then turn to Symbolic Computation
and the potentials and challenges for collaboration. The collection of articles
in this issue is evidence of the already existing fruitful work at the intersection
of these communities.

Email addresses: J.H.Davenport@bath.ac.uk (James H. Davenport),
Matthew.England@coventry.ac.uk (Matthew England), Griggio@fbk.eu (Alberto
Griggio), thomas@thomas-sturm.de (Thomas Sturm), cesare-tinelli@uiowa.edu
(Cesare Tinelli)

Preprint submitted to Journal of Symbolic Computation July 16, 2019

mailto:cesare-tinelli@uiowa.edu
mailto:thomas@thomas-sturm.de
mailto:Griggio@fbk.eu
mailto:Matthew.England@coventry.ac.uk
mailto:J.H.Davenport@bath.ac.uk

Keywords: satisfiability checking, symbolic computation, community
integration

1. Two Communities

1.1. The SAT Problem

The Satisfiability Checking community is focussed on the problem of de-
termining whether a given logical formula is satisfiable, that is, whether
there is an interpretation of certain uninterpreted symbols that evaluates
the formula to true. In the case where the uninterpreted symbols are all
Boolean1 variables this becomes the classic SAT Problem, the first problem
to be proven NP-Complete (Cook, 1971).

Despite its theoretical complexity, today instances of the SAT problem
involving hundreds of thousands of variables are solved routinely. This is
usually done by dedicated SAT-solvers, many of which are available free and
open source. SAT-solvers are now integrated in a wide variety of industrial
domains, perhaps most notably formal verification. A textbook charting the
rise of the SAT-solver is the Handbook of Satisfiability by Biere et al. (2009).

Modern SAT-solvers mostly rely on a combination of enumeration, prop-
agation, and resolution. Enumeration refers to the natural solution of enu-
merating all possible variable assignments. In the case of an unsatisfiable
formula with n variables this means checking 2n assignments. Propagation
and resolution help tackle this exponential search space: we introduce them
next alongside the algorithms which first employed them.

1.1.1. The DPLL Algorithm
Propagation was the key feature of the DPLL algorithm by Davis et al.

(1962). We first transform2 the formula into conjunctive normal form: the
formula becomes a conjunction of clauses, where each clause is a disjunction
of literals (variables or their negation). We then proceed with an enumerative
search but after each variable is set we seek implications for other variables.
Such implications happen if the latest assignment renders a clause unit (all

1For our purposes the term Boolean algebra refers to propositional logic.
2Naively, this might be expensive, but the transformation of Tseitin (1983) (reprint of

work from the 1960s) is in PTIME. The transformed formula is equi-satisfiable with the
original (not neccessarily equivalent).

2

unassigned literals except one become false). Furthermore, if all literals in
a clause are rendered false by an assignment, then no further analysis is
required in this part of the search space. We instead backtrack to the last
free decision (one made as part of the search rather than propagation).

Example 1. Consider the formula

(α ∨ β ∨ ¬γ) ∧ (¬α ∨ ¬β) ∧ (β ∨ γ) ∧ (¬α ∨ β ∨ ¬γ), (1)

which is already in conjunctive normal form with the parentheses indicating
the four clauses. An initial assignment of α to true would render the second
clause unit and so propagation would set β to false. This in turn renders
both the third and fourth clauses unit, however, propagating on one of them
will give an assignment which renders the other false. So either way we
backtrack to our choice and reassign α to false.

This time there is no unit clause and so we have to make a choice for β. If
we choose to assign β to true then the formula is already satisfied regardless
of the value for γ; while if we assigned β to false then propagation would
lead to a conflict and backtracking to pick β to be true.

1.1.2. The CDCL Algorithm
Propagation avoids exploring every branch of the search space but we

may still end up replaying similar analyses in separate branches. The next
milestone in the development of SAT-solvers was the idea of using resolution
to avoid such repetition, as described by the conflict driven clause learning
(CDCL) algorithm (Marques-Silva and Sakallah, 1999).

The main idea is to use resolution to learn the reason for a conflict and
generate a new clause from that which we add to the input formula so that
similar conflicts are avoided later in the search. This is done by means of a
resolvent: given two clauses, one which has x as a literal and one with ¬x,
the resolvent is the disjunction of all the other literals from both clauses. All
assignments that satisfy both clauses must also satisfy the resolvent (since
one of the other literals must have been satisfied).

Example 2. Consider a formula (1) ∧ ψ where (1) was the formula from
Example 1 and ψ another formula in conjunctive normal form involving more
variables than just α, β, γ. In the previous example we learnt that there was
no satisfying solution to (1) with α assigned to true. We want to avoid
repeating this analysis in different branches of the search space defined by

3

the other variables in ψ. Resolution would ensure this: before the initial
backtrack in Example 1 we saw that the third and fourth clauses conflicted
− they wanted to propagate different assignments for γ. Thus we take the
resolvent of these clauses to form ¬α ∨ β. This in turn causes a conflict with
the second clause and their resolvent is simply ¬α. Thus we add this to the
input to ensure from then on that we only assign α to false.

The process of deriving resolvent clauses by analysing conflicts is the main
idea of the CDCL algorithm, and together with propagation, it forms the
backbone of modern SAT solvers. In fact, the CDCL algorithm can be seen
as an interplay between two phases, model search and proof search, which
drive each other in a feedback loop: model search tries to find a solution for
the input formula, by applying decisions and propagation; when a conflict
arises, the information about which propagations were performed is used by
the proof search phase to learn new clauses (generated via resolution), which
in turn will drive the model search phase to explore a different portion of the
search space.

1.1.3. Modern SAT-solvers
We have presented above the two most important ideas to tackle the

SAT problem, but there are many other innovations used in modern SAT-
solvers. There is substantial engineering such as the two watched literals rule,
heuristics for variable selection / branching (e.g. the VSIDS variable activity
score), restart strategies, and techniques for clause database management
(e.g. the LBD measure). Also of great importance are the preprocessing
and inprocessing procedures, such as variable elimination, subsumption, and
blocked clauses elimination. The best single reference for an overview of
these topics is the Handbook of Satisfiability Biere et al. (2009).

1.2. Satisfiability Modulo Theories

The success of modern SAT solvers led naturally to the idea of applying
such techniques beyond propositional calculus. The approach has been best
formalised by the paradigm of Satisfiability Modulo Theories (SMT), which
leads to SMT-solvers. These take as input a logical formula whose atoms are
statements in a theory domain (or perhaps several different domains).

The SMT-solver will usually first convert the formula to conjunctive nor-
mal form and build its Boolean skeleton by replacing each theory atom by a
new Boolean variable. This skeleton is passed to a SAT-solver: if it is found

4

to be unsatisfiable then the conclusion can be applied to the original formula
also. To conclude, in contrast, a satisfying solution, one must check at some
point the validity of the solution from the SAT-solver in the theory. This is
usually done by calling a theory solver : a procedure for deciding if the set
of theory constraints implied by the interpretation of Boolean variables is
consistent. If not consistent then the theory solver is expected to offer an ex-
planation: a statement that is a valid in the theory stating that a, hopefully
small, subset of the constraints cannot hold together. This forms a new clause
for the Boolean skeleton, generalising the inconsistency just encountered, to
ensure future candidate solutions are not invalid in a similar manner. This
way we are running a loop of calls to the SAT-solver and theory solver until,
ideally, either a satisfying solution is found or unsatisfiability is concluded.
In practice, one also admits incomplete theories and theory solvers so that
SMT solvers possibly return unknown as a final result.

Example 3. Consider the formula

(x > 0 ∨ x = −1) ∧ (x 2 < 0 ∨ x 2 > 9).

The Boolean skeleton is (a ∨ b) ∧ (c ∨ d) where new Boolean variables a, b, c, d
represent the truth of the four sign conditions involving a theory variable x.
A SAT-solver may propose the solution to this skeleton which sets a and c
to true and b and d to false. A theory solver would determine that the set
of constraints this produces is incompatible and produce the explanation that
we cannot have both a and c true at once. Thus the clause (¬a ∨ ¬c) is
added to the input. Further analysis by the SAT-solver may then swap the
Boolean assignment for c and d. This time the theory solver should conclude
the resulting set of conditions is satisfiable in the theory (by any x > 3).

The above description is of the DPLL(T) architecture for SMT, and the
example implemented the lazy approach, where the theory solver is only
consulted after a full Boolean assignment has been obtained. There can be
less lazy versions, with the theory solver consulted after each assignment.
The chapter in the Handbook of Satisfiability by Barrett et al. (2009) is a
key reference for this SMT paradigm.

There are other approaches to generalising SAT-solving to theory do-
mains. The eager approach, introduced in Lahiri and Seshia (2004), trans-
lates the original formula to an equisatisfiable Boolean formula in a single
step, which is then given to a standard SAT solver. Programmatic SAT intro-
duced by Ganesh et al. (2012) calls user specified code instead of a particular

5

theory solver. The model constructing satisfiability calculus (MCSAT) intro-
duced by de Moura and Jovanović (2013) extends propagation and resolution
into the theory domain: it allows guesses, not only for truth values of the the-
ory constraints, but also for guesses for the actual theory variables, followed
by propagation techniques to drive the search for other theory variables away
from unsatisfiable parts of the search space.

The theory solvers discussed above implement decision procedures to de-
cide whether a set of constraints is compatible in the given domain. For
linear real arithmetic the simplex method could be used for example, while
in linear integer arithmetic cutting planes or interval constraint propagation
could be used. The textbook by Kroening and Strichman (2013) offers a
good outline of the various procedures commonly employed by SMT. For
some domains the procedures in question were developed within the field
of Symbolic Computation and have their natural home in computer algebra
systems.

1.3. Symbolic Computation

The use of computers to do exact mathematics dates back almost as far
as computing itself with the first theses appearing in 1953. Early successes
include algorithms to perform automatic integration which could even certify
when something could not be integrated in closed form (Risch, 1969). New
methods for polynomial factorisation accompanied the first general purpose
algebraic software in the 1960s. One of the most impactful contributions to
the field was Gröbner Bases, developed by Buchberger (1965), which allowed
for the efficient solution of many problems for polynomials over algebraically
closed fields.

The scope of the field of Symbolic Computation was set out in the edito-
rial of the first volume of this journal (Buchberger, 1985) and is summarised
as “the algorithmic solution of problems dealing with symbolic objects”. Al-
though the aforementioned editorial explicitly included both computational
algebra and computational logic over time the Symbolic Computation field
has seemed to focus more on the algebraic. Indeed, the implementation tools
are almost exclusively referred to as computer algebra systems.

Today, these vary from large commercial general purpose systems such as
Maple, and Mathematica to free and open source alternatives such as Maxima,
Reduce, Sage and Singular. There are also a wide variety of specialised sys-
tems dedicated to subfields including Macaulay2 for algebraic geometry, GAP

6

for group theory, CoCoA for commutative algebra, Qepcad for real quantifier
elimination, and PariGP for number theory.

1.4. Difficulties with Computer Algebra as Theory Solver

The history of Symbolic Computation is longer than that of Satisfiabil-
ity Checking. The first SAT solver following modern design principles did
not appear until the 1990s and by the time that SMT was actively devel-
oped many of today’s popular computer algebra systems were already well
established. So it should seem natural that SMT-solvers consider using a
computer algebra system as a theory solver. However, this did not happen,
for a number of reasons beyond the lack of familiarity of the communities.
Computer algebra systems tend to be large standalone systems aimed at in-
teractive problem solving with a human, while SMT-solvers tend to be made
up from small, flexible and highly efficient libraries. Hence it is not trivial
for an SMT-solver to share data-structures with a computer algebra system
as it does with its typical solvers. More fundamentally though, the actual
algorithms employed by computer algebra systems lacked in functionality
necessary for successful use in SMT. To be SMT-compliant a theory solver

´ ´ must satisfy a number of criteria (Abrahám, 2015; Abrahám et al., 2016):

• The solver should work incrementally, i.e. after determining the consis-
tency of a constraint set there should be the option to add an additional
constraint and recheck, reusing as much computation as possible.

• The solver should have the ability to support backtracking, i.e. after
determining the consistency of a constraint set there should be the
option to remove a constraint and recheck, again, reusing as much
computation as possible.

• In the case of unsatisfiability, the solver is expected to offer an expla-
nation as to why the constraints cannot be satisfied, e.g. a small subset
which are on their own incompatible.

These requirements are not commonly met by the algorithms in computer al-
gebra systems, where the intended use case is usually to perform one compu-
tation to solve a single problem. To make a Symbolic Computation algorithm
SMT-compliant requires much work, certainly at the implementation level,
e.g. the data-structures used, but more importantly also in the mathematical
theory.

7

2. SC-Square

We use SC2 (SC-Square) to refer to the collaboration between the two
communities of Satisfiability Checking and Symbolic Computation.

2.1. EU Project

SC2 originates from a European Union Horizon 2020 project3 that ran
from 2016 to 2018 with the aim of bridging the gap between these com-
munities. The project consortium consisted of: University of Bath (UK),
RWTH Aachen (Germany), Fondazione Bruno Kessler (Italy), the University
of Genoa (Italy), Maplesoft Europe Ltd, the University of Lorraine (France),
Coventry University (UK), the University of Oxford (UK), the University of
Kassel (Germany), the Max Planck Institute for Informatics (Germany), and
Johannes Kepler University of Linz (Austria). In addition, the project had
over 50 associates from around the world.

The main project goals were around community building, in particular
through the funding of workshops and summer schools. The 2017 SC2 Sum-
mer School in Saarbrücken, Germany included 12 extended lectures on the
foundations of the two fields, key algorithms, and applications. The latter
were presented by speakers from industry describing the use of such tech-
nology to verify software and systems in industries as diverse as automotive
and finance. The slides and videos of some talks from the Summer School
are available online4 .

The existence and maintenance of a common specification language SMT-
LIB (Barrett et al., 2016), with its accompanying collections of benchmarks
and annual competitions, is seen as an important accelerator on research in
Satisfiability Checking. Another key output from the project was work to
extend SMT-LIB to better support the areas of relevance to SC2 (a natu-
ral choice since there was no computer algebra alternative). The upcoming
SMT-LIB 3.0 is set to include a variety of features relevant to Symbolic
Computation such as new functions, quantifier elimination, real algebraic
numbers, and optimisation. There have been 10 separate contributions of
benchmarks linked to the SC2 project, accounting for a third of the recent
library growth. This has included a more diverse range of applications such
as those from the life sciences (Sturm, 2017) and economics (Mulligan et al.,

3http://www.sc-square.org/EU-CSA.html
4http://www.sc-square.org/CSA/school/lectures.html

8

2018). Also, Maple now supports the SMT-LIB language and integration
with SAT/SMT solvers (Forrest, 2017) as does Reduce which further, has a
fully featured CDCL solver implemented and won the NRA category of the
2017 SMT competition5 .

The project also funded a variety of proof of concept studies including
on integrations: between computer algebra system Redlog and SMT-solver
VeriT, between computer algebra systems CoCoA and Maple and SMT-solver
SMT-RAT, and between computer algebra system CoCoA and SMT-solver
MathSAT; as well as development on new incremental versions of symbolic
algorithms.

2.2. Workshop Series

The SC2 project initiated an annual International Workshop on Satisfia-
bility Checking and Symbolic Computation:

• SC2 2016: 24th September 2016 in Timisoara, Romania. As part of the
International Symposium on Symbolic and Numeric Algorithms for Sci-

´ entific Computing (SYNASC 2016). Proceedings edited by Abrahám
and Fontaine (2016).

• SC2 2017: 29th July 2017 in Kaiserslautern, Germany. Adjacent to
the International Symposium on Symbolic and Algebraic Computation
(ISSAC 2017). Proceedings edited by England and Ganesh (2017).

• SC2 2018: 11th July 2018 in Oxford, UK. Part of the Federated Logic
Conference (FLoC 2018). Proceedings edited by Bigatti and Brain
(2018).

• SC2 2019: 10th July 2019 in Bern, Switzerland. Part of the SIAM
Conference on Applied Algebraic Geometry. Proceedings to appear,
edited by Abbott and Griggio.

Although the EU project finished in 2018 there is considerable effort being
spent to continue the workshop series. A constitution has been approved
which sets out requirements: such as the conference alternating between
affiliation with conferences in each community; and the need for two chairs
each year, one from each community.

5http://smtcomp.sourceforge.net/2017/results-NRA.shtml

9

Most articles in this special issue are based on preliminary work presented
at an SC2 workshop, or one of the other SC2 special sessions that took place
at: the 2016 Conference on Applications of Computer Algebra (ACA 2016);
the 2016 International Workshop on Computer Algebra in Scientific Com-
puting (CASC 2016); the 2017 International Conference on Mathematical
Aspects of Computer and Information Sciences (MACIS 2017); and the 2018
International Congress on Mathematical Software (ICMS 2018).

3. Articles of this Special Issue

The special issue comprises seven articles. A call was made following
the 2017 SC2 workshop, and submission was open to all work on the the
intersection of the two communities (no requirement for affiliation with the
EU project). Of the seven articles, four have authors funded by the project
(although all had taken part in the project workshops and special sessions).
An average of 3.3 reviews per article was obtained with all reviewed by at least
one expert in each of the two communities. All accepted articles underwent
a multi-stage revision process to take into account the high standards of this
journal.

3.1. Non-linear real arithmetic

SMT-LIB organises the theory solver domains into logics. From these,
the one which has probably found the greatest intersection with Symbolic
Computation has been non-linear real arithmetic. Here the atoms of the
logical formulas are sign-conditions on non-linear multivariate polynomials,
whose variables take real values. Questions in this theory are decidable, a
result uncovered by Tarski (1948).

The decision procedures most commonly used for non-linear real arith-
metic include (Partial) Cylindrical Algebraic Decomposition (Collins, 1975;
Collins and Hong, 1991) and Virtual Substitution (Weispfenning, 1997; Kosta,
2016), familiar to readers of this journal as key algorithms of Symbolic Com-
putation, developed for quantifier elimination in real closed fields. Given
a non-linear arithmetic formula as described above which is preceded with
quantifications on some of the variables involved, Quantifier Elimination
(QE) means to find an equivalent unquantified version. For example, QE
would transform ∃x, ax2 + bx + c = 0 ∧ a = 0 to the equivalent unquantified 6
statement b2 − 4ac ≥ 0. Satisfiability Checking is hence a sub-problem of QE
for the case where all variables are existentially quantified (so the answer is

10

boolean rather than an expression in the unquantified variables). Although
SMT-LIB is now expanding to encompass QE also.

Two articles of the present special issue concern Cylindrical Algebraic
Decomposition (CAD). A CAD is a decomposition of ordered Rn space into
cells arranged cylindrically, meaning the projections of any pair of cells with
respect to the variable ordering are either equal or disjoint. The projections
form an induced CAD of the lower dimensional space. The cells are (semi)-
algebraic meaning each can be described with a finite sequence of polynomial
constraints. To study a logical formula for SMT or QE a CAD must be
produced truth-invariant to the formula (so the formula is either true or
false on each cell). We can then check satisfiability by testing a finite
number of sample points, and in the case of QE form the equivalent formulae
from the cell descriptions. CAD traditionally consists of two stages: first
projection, which identifies polynomials which will form boundaries in the
decomposition; and then lifting, where the decomposition is produced by
repeated use of real root isolation on these polynomials rendered univariate
by substitution at sample points of the CAD for the space below.

´ The article by Abrahám and Kremer describes how they have adapted
the original CAD algorithm to satisfy the requirements for SMT-compliance
outlined in Section 1.4. Their algorithm builds a CAD incrementally, by per-
forming one projection step at a time and then moving to lifting to perform
the additional real root isolation and cell decomposition required by the new
additions. They maintain a history of computation allowing for backtracking,
developing data structures quite different to existing CAD implementations.
Their work is implemented in their SMT-solver SMT-RAT.

The article by England, Bradford and Davenport considers how the pro-
cess of CAD construction can be improved when the input contains equa-
tional constraints (equations which must be satisfied for the formula to hold).
Intuitively each of these decrease the solution space by one dimension, and
the authors show that a corresponding decrease in the theoretical complex-
ity of CAD can be achieved. The work may act as a tutorial on CAD with
equational constraints with all necessary background and the current state
of the art.

The article by Brown and Vale-Enriquez presents work for a partial solver
for non-linear real arithmetic, i.e. a solver that can sometimes decide the sat-
isfiability, and if not can at least simplify the input formula to ease the use
of something like CAD. The partial solver is based on existing simplifica-

´ tion algorithms, which (like the CAD of Abrahám and Kremer) have had

11

to be heavily modified for SMT-compliance. These simplification algorithms
have also been adapted to produce the desired explanations for unsatisfiabil-
ity required for SMT-compliance. This work is implemented in the Tarksi
system, developed by Brown to implement the non-uniform CAD (NuCAD)
algorithm developed by Brown (2015, 2016) which is an example of work in
Symbolic Computation inspired by techniques from Satisfiability Checking
(most notably those of Jovanovic and de Moura (2012)).

3.2. Linear Arithmetic

The article by Bromberger, Sturm and Weidenbach presents a new deci-
sion procedure for linear integer arithmetic. Although this theory is decid-
able, the authors explain that the leading solvers currently neglect termina-
tion on some classes of problems in favour of efficiency on all other problems.
As an alternative, the authors present an extension to an existing calculus
so it becomes complete and terminating but stays efficient. The procedure
is based on a mixture of model-driven reasoning and quantifier elimination
techniques.

The article by Abbott, Bigatti, Palezzato and Robbiano concerns the
computation of minimal polynomials in P/I where P is a polynomial ring
and I an ideal. Such non-linear objects can capture fundamental information
about linear algebra. The work can also improve the computation of Gröbner
Bases, which although a technique for algebraically closed fields such as C is
regularly used as an initial unsatisfiability check for real arithmetic, and is
well known as a useful pre-processing for CAD (Huang et al., 2016). Their
algorithms can also assist with polynomial factorization, useful for many pro-
cedures (notably CAD, where experience shows that it improves performance
even when not logically necessary). The authors implement their work in the
computer algebra system CoCoA but also CoCoALib: a free library of C++
code that can be particularly easily integrated with other C-like systems.

3.3. Symbolic Computation for Better SAT-solvers

The article by Horáček and Kreuzer is the only one in the issue to focus
on the Boolean domain, as in Section 1.1. The idea is to use the equivalence
between the Boolean SAT-problem and polynomial system solving over a
finite field. The former may be attacked with SAT-solvers as described above
while the latter by techniques such as Gröbner Bases, which originate from
Symbolic Computation. The algebraic solver can be called to support the
SAT-solver at selected points, or be in run in parallel, periodically exchanging

12

information. The article in this issue is focussed on the method to convert
a formula from the conjunctive normal form (CNF) used by the SAT-solver
to the algebraic normal form (ANF) required for the algebraic techniques.
They develop a blockwise algorithm to producing fewer and lower degree
polynomials.

3.4. SC 2 Combinations for Combinatorics

The article by Bright, Kotsireas and Ganesh investigates the Williamson
Conjecture, an open problem in combinatorics on the existence of certain
matrices, useful for error correcting codes. Through a combination of SAT-
solver and computer algebra system the authors are able to enumerate all
cases up to a much larger dimension than achieved before, uncover new cases,
and gain new insight into the distribution of these matrices. Rather than the
standard SMT approach outlined in Section 1.2 they use programmatic SAT:
here rather than a full CNF encoding instances can be a set of CNF clauses
and user code that encodes constraints too cumbersome to be written in CNF.
The authors have applied these techniques to a variety of other combinatorial
problems: an intersection of the two communities not predicted by the EU
grant but documented by the workshop series.

Acknowledgements

Much of the editorial work for this special issue, as well as the work for
many of the articles, was supported by EU H2020-FETOPEN-2016-2017-
CSA project SC2 (712689). The editors thank all the external reviewers for
their detailed and thoughtful comment on the articles in this special issue.

13

References

´ Abrahám, E., 2015. Building bridges between symbolic computation and satisfiability
checking. In: Proceedings of the 2015 International Symposium on Symbolic and Alge-
braic Computation. ISSAC ’15. ACM, pp. 1–6.
URL https://doi.org/10.1145/2755996.2756636

´ Abrahám, E., Abbott, J., Becker, B., Bigatti, A., Brain, M., Buchberger, B., Cimatti,
A., Davenport, J., England, M., Fontaine, P., Forrest, S., Griggio, A., Kroening, D.,
Seiler, W., Sturm, T., 2016. SC2: Satisfiability checking meets symbolic computation.
In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (Eds.), Intelli-
gent Computer Mathematics: Proceedings CICM 2016. Vol. 9791 of Lecture Notes in
Computer Science. Springer International Publishing, pp. 28–43.
URL https://doi.org/10.1007/978-3-319-42547-4_3

´ Abrahám, E., Fontaine, P. (Eds.), 2016. Proceedinds of the 1st Workshop on Satisfiability
Checking and Symbolic Computation (SC2 2016). No. 1804 in CEUR Workshop Pro-
ceedings. Springer.
URL http://ceur-ws.org/Vol-1804/

Barrett, C., Fontaine, P., Tinelli, C., 2016. The Satisfiability Modulo Theories Library
(SMT-LIB). Online Resource. URL http://www.SMT-LIB.org.

Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C., 2009. Satisfiability modulo theories.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (Eds.), Handbook of Satisfiability
(Volume 185 Frontiers in Artificial Intelligence and Applications), Chapter 26. IOS
Press, pp. 825–885.

Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T., 2009. Handbook of Satis-
fiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands.

Bigatti, A., Brain, M. (Eds.), 2018. Proceedinds of the 3rd Workshop on Satisfiability
Checking and Symbolic Computation (SC2 2018). No. 2189 in CEUR Workshop Pro-
ceedings. Springer.
URL http://ceur-ws.org/Vol-2189/

Brown, C., 2015. Open non-uniform cylindrical algebraic decompositions. In: Proceedings
of the 2015 International Symposium on Symbolic and Algebraic Computation. ISSAC
’15. ACM, pp. 85–92.
URL https://doi.org/10.1145/2755996.2756654

Brown, C., 2016. Bridging two communities to solve real problems. In: 18th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
’16). IEEE, pp. 11–14.
URL https://doi.org/10.1109/SYNASC.2016.015

14

https://doi.org/10.1109/SYNASC.2016.015
https://doi.org/10.1145/2755996.2756654
http://ceur-ws.org/Vol-2189
http:http://www.SMT-LIB.org
http://ceur-ws.org/Vol-1804
https://doi.org/10.1007/978-3-319-42547-4_3
https://doi.org/10.1145/2755996.2756636

Buchberger, B., 1965. Ein algorithmus zum auffinden der basiselemente des restklassen-
rings nach einem nulldimensionalen polynomideal. (an algorithm for finding the basis
elements of the residue class ring of a zerodimensional polynomial ideal). PhD thesis,
Mathematical Institute, University of Innsbruck, see (Buchberger, 2006) for an English
translation.

Buchberger, B., 1985. Symbolic computation (an editorial). Journal of Symbolic Compu-
tation 1 (1), 1 – 6.
URL https://doi.org/10.1016/S0747-7171(85)80025-0

Buchberger, B., 2006. Bruno Buchberger’s PhD thesis (1965): An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal
of Symbolic Computation 41 (3-4), 475–511.
URL https://doi.org/10.1016/j.jsc.2005.09.007

Caviness, B., Johnson, J., 1998. Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts & Monographs in Symbolic Computation. Springer-Verlag.
URL https://doi.org/10.1007/978-3-7091-9459-1

Collins, G., 1975. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proceedings of the 2nd GI Conference on Automata Theory and
Formal Languages. Springer-Verlag (reprinted in the collection Caviness and Johnson
(1998)), pp. 134–183.
URL https://doi.org/10.1007/3-540-07407-4_17

Collins, G., Hong, H., 1991. Partial cylindrical algebraic decomposition for quantifier elim-
ination. Journal of Symbolic Computation 12, 299–328.
URL https://doi.org/10.1016/S0747-7171(08)80152-6

Cook, S. A., 1971. The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. STOC ’71. ACM, New York,
NY, USA, pp. 151–158.
URL http://doi.acm.org/10.1145/800157.805047

Davis, M., Logemann, G., Loveland, D., 1962. A machine program for theorem-proving.
Commun. ACM 5 (7), 394–397.
URL https://doi.org/10.1145/368273.368557

de Moura, L., Jovanović, D., 2013. A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (Eds.), Verification, Model Checking, and Ab-
stract Interpretation (Proc. VMCAI 2013). Springer Berlin Heidelberg, pp. 1–12.

England, M., Ganesh, V. (Eds.), 2017. Proceedinds of the 2nd Workshop on Satisfiability
Checking and Symbolic Computation (SC2 2017). No. 1974 in CEUR Workshop Pro-
ceedings. Springer.
URL http://ceur-ws.org/Vol-1974/

15

http://ceur-ws.org/Vol-1974
https://doi.org/10.1145/368273.368557
http://doi.acm.org/10.1145/800157.805047
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1016/S0747-7171(85)80025-0

Forrest, S., 2017. Integration of smt-lib support into maple. In: England, M., Ganesh, V.
(Eds.), Proceedings of the 2nd International Workshop on Satisfiability Checking and
Symbolic Computation (SC2 2017). No. 1974 in CEUR Workshop Proceedings. p. 6.
URL http://ceur-ws.org/Vol-1974/

Ganesh, V., O’Donnell, C. W., Soos, M., Devadas, S., Rinard, M. C., Solar-Lezama, A.,
2012. Lynx: A programmatic sat solver for the rna-folding problem. In: Cimatti, A.,
Sebastiani, R. (Eds.), Theory and Applications of Satisfiability Testing – SAT 2012.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 143–156.
URL https://doi.org/10.1007/978-3-642-31612-8_12

Huang, Z., England, M., Davenport, J., Paulson, L., 2016. Using machine learning to
decide when to precondition cylindrical algebraic decomposition with Groebner bases.
In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC ’16). IEEE, pp. 45–52.
URL https://doi.org/10.1109/SYNASC.2016.020

Jovanovic, D., de Moura, L., 2012. Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (Eds.), Automated Reasoning: 6th International Joint Conference (IJ-
CAR). Vol. 7364 of Lecture Notes in Computer Science. Springer, pp. 339–354.
URL https://doi.org/10.1007/978-3-642-31365-3_27

Kosta, M., 2016. New concepts for real quantifier elimination by virtual substitution.
Ph.D. thesis, Saarland University. Available at: http://scidok.sulb.uni-saarland.
de/volltexte/2016/6716.

Kroening, D., Strichman, O., 2013. Decision Procedures: An Algorithmic Point of View.
Springer, New York.

Lahiri, S. K., Seshia, S. A., 2004. The UCLID decision procedure. In: Alur, R., Peled, D. A.
(Eds.), Computer Aided Verification, 16th International Conference, CAV 2004, Boston,
MA, USA, July 13-17, 2004, Proceedings. Vol. 3114 of Lecture Notes in Computer
Science. Springer, pp. 475–478.
URL https://doi.org/10.1007/978-3-540-27813-9_40

Marques-Silva, J., Sakallah, K., 1999. GRASP: A search algorithm for propositional sat-
isfiability. Computers, IEEE Transactions on 48 (5), 506–521.
URL https://doi.org/10.1109/12.769433

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S., 2001. Chaff: Engineering an
Efficient SAT Solver. In: Proceedings 38th Design Automation Conference. pp. 530–535.

Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z., 2018. Non-linear real
arithmetic benchmarks derived from automated reasoning in economics. In: Bigatti,
A., Brain, M. (Eds.), Proceedings of the 3rd Workshop on Satisfiability Checking and
Symbolic Computation (SC2 2018). No. 2189 in CEUR Workshop Proceedings. pp. 48–
60.
URL http://ceur-ws.org/Vol-2189/

16

http://ceur-ws.org/Vol-2189
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-540-27813-9_40
http://scidok.sulb.uni-saarland
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1007/978-3-642-31612-8_12
http://ceur-ws.org/Vol-1974

Risch, R., 1969. The problem of integration in finite terms. Trans. A.M.S. 139, 167–189.

Sturm, T., 2017. A survey of some methods for real quantifier elimination, decision, and
satisfiability and their applications. Mathematics in Computer Science 11 (3), 483–502.
URL https://doi.org/10.1007/s11786-017-0319-z

Tarski, A., 1948. A Decision Method For Elementary Algebra And Geometry. RAND
Corporation, Santa Monica, CA, see (Tarski, 1998) for a readily available reprint.

Tarski, A., 1998. A decision method for elementary algebra and geometry. In: Caviness, B.,
Johnson, J. (Eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition.
Texts and Monographs in Symbolic Computation. Springer-Verlag, pp. 24–84.
URL https://doi.org/10.1007/978-3-7091-9459-1_3

Tseitin, G., 1983. On the complexity of derivation in propositional calculus. In: Siekmann,
J., Wrightson, G. (Eds.), Automation of Reasoning: 2: Classical Papers on Computa-
tional Logic 1967–1970. Springer Berlin Heidelberg, pp. 466–483.
URL https://doi.org/10.1007/978-3-642-81955-1_28

Weispfenning, V., 1997. Quantifier elimination for real algebra — the quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8 (2), 85–
101.
URL https://doi.org/10.1007/s002000050055

17

https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/s11786-017-0319-z

	Symbolic cs
	Editorial

