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Ranks and Symmetric Ranks

of Cubic Surfaces

Anna Seigal

Abstract

We study cubic surfaces as symmetric tensors of format 4× 4× 4. We consider the
non-symmetric tensor rank and the symmetric Waring rank of cubic surfaces, and show
that the two notions coincide over the complex numbers. The corresponding algebraic
problem concerns border ranks. We show that the non-symmetric border rank coincides
with the symmetric border rank for cubic surfaces. As part of our analysis, we obtain
minimal ideal generators for the symmetric analogue to the secant variety from the
salmon conjecture. We also give a test for symmetric rank given by the non-vanishing
of certain discriminants. The results extend to order three tensors of all sizes, implying
the equality of rank and symmetric rank when the symmetric rank is at most seven,
and the equality of border rank and symmetric border rank when the symmetric border
rank is at most five. We also study real ranks via the real substitution method.

1 Introduction

A cubic surface is the zero set in P3 of a homogeneous cubic polynomial in four variables,

f = c3000x
3

1
+ c2100x

2

1
x2 + c1200x1x

2

2
+ c0300x

3

2
+ c2010x

2

1
x3 + · · ·+ c0003x

3

4
.

Such a polynomial has 20 coefficients, hence the space of cubic surfaces is 19-dimensional.
Cubic surfaces are a central topic of study in classical algebraic geometry, and a motivating
example for more modern topics. Most prominently, the discovery of the 27 lines on the
cubic surface in 1849 is celebrated as the beginning of modern algebraic geometry [19, 26].

We study cubic surfaces from the perspective of tensors, the multidimensional general-
ization of matrices. A symmetric tensor T of size 4×4×4 has entries Tijk, for 1 ≤ i, j, k ≤ 4,
which satisfy the symmetry relations Tijk = Tikj = Tjik = Tjki = Tkij = Tkji. The space of
4 × 4 × 4 symmetric tensors up to scale is also 19-dimensional. Homogeneous quaternary
cubics and symmetric 4× 4× 4 tensors are in bijection via the correspondence

f(x1, x2, x3, x4) =
4

∑

i,j,k=1

Tijkxixjxk.

More generally, homogeneous polynomials of degree d in n variables are in bijection with
symmetric tensors of size n × · · · × n (d times). It is a question of classical interest to find
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the shortest decomposition of a degree d polynomial f ∈ K[x1, . . . , xn] into a sum of powers,
f =

∑r

i=1
λil

d
i , where each li ∈ K[x1, . . . , xn] is a linear form and λi ∈ K. The minimal

number of summands in such a decomposition is the Waring rank of f over K. Equivalently,
the Waring rank is the symmetric rank of the tensor corresponding to f , the length r of its
shortest decomposition as a sum of symmetric rank one tensors, T =

∑r

i=1
λiu

⊗d
i . The vector

ui ∈ K
n lists the coefficients of the linear form li. There is also the notion of (non-symmetric)

rank over K. This is the length of the shortest decomposition of a tensor into a sum of rank
one tensors, T =

∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ wi, where ui, vi, . . . , wi are d vectors in Kn. In the

context of tensors the degree d is called the order.
The set of tensors of rank ≤ r is not closed whenever it is a proper subset of the space

of tensors and r > 1. The same holds for the space of symmetric tensors of symmetric
rank ≤ r [10]. In light of this, each of the above notions of rank have closed analogues called
border ranks. For a given notion of rank, and tensor T , the border rank is the smallest r

such that T lies in the closure of the rank r tensors.
The rank of a tensor depends on the field K over which the decomposition is taken. In

this article, we focus on the case of ranks defined over the complex numbers, K = C, and
also consider the real rank case K = R. When the field is not specified, we are referring to
the usual complex case. The real and complex rank of a tensor need not agree. It follows
from the definitions that complex rank is bounded above by real rank, border rank is less
than or equal to rank, and non-symmetric rank is less than or equal to symmetric rank. For
matrices the real and complex ranks agree, and also rank and border rank are the same.
This is not true for tensors, as we see in the following two examples.

Example 1.1 (The cubic surface x2

1
x2 + x3

3
− x3x

2

4
). The monomial x2

1
x2 has (complex or

real) border rank two, and (complex or real) rank three. Evaluating the hyperdeterminant of
x3

3
−x3x

2

4
shows that it has complex rank two and real rank three [20], and its rank and border

rank are equal. Since the variables from the two parts of the sum are disjoint, and Strassen’s
Conjecture [16, §5.7] holds here, the cubic surface has complex border rank four, real border
rank five, complex rank five and real rank six.

Example 1.2 (The cubic threefold x1(x1x2+x2

3
)+x2

4
−x4x

2

5
). The cubic curve x1(x1x2+x2

3
)

is a conic and tangent line. It has (real or complex) border rank three and (real or complex)
rank five [3]. Hence, using the previous example, the cubic threefold has complex border rank
five, real border rank six, complex rank seven and real rank eight.

Tensors and symmetric tensors arise in applications such as complexity theory, multi-
variate statistics, medical imaging, multiway factor analysis, numerical analysis, and signal
processing (see [10, 15, 16] and references therein). Just as for a matrix, the rank of a tensor
is one of its fundamental properties. For a tensor of data, the rank is the number of ‘signals’
which are combined in the data. A key result from linear algebra says that a symmetric ma-
trix of rank r can be written as a sum of r rank one symmetric matrices. The generalization
of this result to tensors is a topic of ongoing study.

Comon’s conjecture states the equality of the rank and symmetric rank of a symmetric
tensor. First posed 10 years ago [10], it has been conjectured for complex rank, complex
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border rank, real rank and real border rank. The conjecture has been proved in many special
cases: when the symmetric rank is at most two [10], when the rank is less than or equal to
the order [27], and when the rank is at most the flattening rank plus one [12]. Furthermore,
the conjecture has been proved to generically hold in certain families of tensors [2]. On the
other hand, a counter-example to Comon’s conjecture for complex rank has been found by
Shitov [22], a tensor of size 800 × 800 × 800. It is an open problem to characterize which
tensors have the same rank and symmetric rank, for different notions of rank.

In this article, we study the smallest tensor format for which the agreement of rank and
symmetric rank was not known: cubic surfaces, or symmetric 4× 4× 4 tensors. There does
not exist a finite list of normal forms in this case, because the dimension of the general
linear group PGL4 is 15, whereas the space of cubic surfaces is 19-dimensional. We prove
the following result.

Theorem 1.3. The rank and symmetric rank agree for cubic surfaces.

The conclusion extends to arbitrary tensors of format n× n× n, by giving larger ranges
of ranks among which all tensors have agreement of rank and symmetric rank.

Corollary 1.4. The rank and symmetric rank of a cubic polynomial in n variables (order
three symmetric tensor) are the same, whenever the symmetric rank is at most seven.

We make the following contributions for border ranks over the complex numbers.

Theorem 1.5. The border rank and symmetric border rank agree for cubic surfaces.

Corollary 1.6. The rank and symmetric border rank of a cubic polynomial are the same
whenever the symmetric border rank is at most five.

We also consider ranks over the real numbers. We show that real rank and real border
rank agree for generic cubic surfaces, and we study special cases in greater detail.

The notion of flattening rank is useful in our study. The flattening ranks of a tensor (see
e.g. [16]) are the ranks of its flattening matrices, the reshapings of its entries into matrix
format. General tensors have a tuple of flattening ranks, one for each distinct flattening. In
the n× n× n symmetric case the flattening rank is a single number, the rank of the n× n2

flattening matrix. Since the flattening ranks are ranks of matrices, they inherit properties
possessed by matrix rank (such as being closed, equivalence of real and complex rank, and
equivalence of non-symmetric and symmetric rank). From the definition, the flattening rank
cannot exceed any of the ranks described above; the flattening rank of T =

∑r

i=1
v⊗d
i is the

dimension of the span of the vectors {v1, . . . , vr}, which is less than or equal to r.
The space of symmetric n×n×· · ·×n (d times) tensors with entries in a field K is denoted

Sd(Kn). The analogous space of (not necessarily symmetric) tensors isKn⊗· · ·⊗Kn (d times).

The rest of this article is organized as follows. We prove the results in Theorem 1.3 and
Corollary 1.4 concerning complex rank in Section 2. We prove the complex border rank
results in Theorem 1.5 and Corollary 1.6 in Section 3. We discuss real ranks in Section 4.
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2 Ranks of cubic surfaces

In this section we prove Theorem 1.3, that the rank and symmetric rank coincide for a
cubic surface over the complex numbers. We use the following three results, as well as the
classification of non-singular cubic surfaces in [19].

Theorem 2.1 (Sylvester’s Pentahedral Theorem (1851), see [19, §84]). A generic cubic
surface can be decomposed uniquely as the sum of five cubes of linear forms, f = l3

1
+ l3

2
+

l3
3
+ l3

4
+ l3

5
where each li ∈ C[x1, x2, x3, x4] is a linear form.

Theorem 2.2 ([12, Theorem 1.1]). Let K be a field with at least three elements. Consider
a tensor T ∈ Sd(Kn) whose rank is bounded above by its flattening rank plus one. Then the
rank and symmetric rank of T defined over K coincide.

It follows from Theorem 2.2 that, if the symmetric rank is bounded above by the flattening
rank plus two, then the rank and symmetric rank coincide: the alternative is that the rank is
strictly less than the symmetric rank, which means it satisfies the hypothesis of the theorem.

Theorem 2.3 (The substitution method, e.g. [15, §5.3.1]). Let T ∈ Cn1 ⊗ Cn2 ⊗ Cn3 be a
tensor of rank r. We write T =

∑n1

i=1
ei ⊗Mi, where {ei : 1 ≤ i ≤ n1} are the elementary

basis vectors, and the Mi are n2×n3 matrices, known as the slices of the tensor. Reordering
indices to ensure that Mn1

6= 0, there exist constants λ1, . . . , λn1−1 such that the following
(n1 − 1)× n2 × n3 tensor has rank at most r − 1:

n1−1
∑

i=1

ei ⊗ (Mi − λiMn1
).

If the matrix Mn1
has rank one, the tensor above has rank exactly r − 1.

In the following four subsections we prove equality of rank and symmetric rank for the
family of cubic surfaces in the title. Together the subsections prove Theorem 1.3.

2.1 Cones over cubic curves

Cones over cubic curves have a natural characterization in terms of tensors: they have
sub-generic flattening rank, and parametrize the subspace variety [16, §7.1] defined by the
vanishing of the 4×4 minors of the flattening. In this section we prove Theorem 1.3 for cubic
surfaces with sub-generic flattening rank. The defining polynomials of such cubic surfaces
have a change of basis that removes one of the four variables. We change coordinates by an
element M of the general linear group GL4 to obtain a tensor T ′ with non-zero entries only
in its upper-left 3× 3× 3 block. Its entries are expressed in terms of T and M as

T ′

ijk =

4
∑

a,b,c=1

TabcMaiMbjMck.
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Rank is invariant under general linear group action, hence T ′ has the same rank as T . Given
an expression for T ′ as a sum of rank one tensors, setting the fourth entry of all vectors that
appear in the decomposition to zero gives a valid expression with the same number of terms.

Hence, to study ranks of cones over cubic curves it suffices to study ranks of plane cubic
curves as symmetric 3× 3× 3 tensors. It is known that the rank and symmetric rank agree
for cubic curves of sub-generic flattening rank (2 × 2× 2 tensors and rank one tensors) e.g.
via their normal forms. Cubic curves have a generic flattening rank of three. Theorem 2.2
says that the rank and symmetric rank coincide provided that the symmetric rank is at most
five. The classification of cubic curves in [19, §96] shows that five is the maximum possible
symmetric rank. This concludes the proof for cones over cubic curves.

2.2 Non-singular cubic surfaces

Based on the previous subsection, it remains to consider cubic surfaces with flattening rank
four. When the rank is at most five, Theorem 2.2 implies that the rank and symmetric rank
coincide. This leaves the cubic surfaces that are not expressible as a sum of five linear powers,
those for which Theorem 2.1 fails to give a decomposition. There are two such families of
non-singular cubic surfaces, see [19, §94], with equations

(x3

1
+ x3

2
+ x3

3
) + x2

4
(λ1x1 + λ2x2 + λ3x3 + λ4x4),

µ1x
3

1
+ x3

2
+ x3

3
− 3x1(µ2x1x2 + x1x3 + x2

4
).

(1)

The parameters λi, µj are arbitrary subject to maintaining non-singularity. The failure
of Sylvester’s Pentahedral Theorem for these surfaces is due to the non-genericity of their
Hessian quartic surface, which has fewer than 10 distinct singular points. These cubics have
symmetric rank six [19, §97]. The non-symmetric rank cannot be five or less by Theorem 2.2.

2.3 Cubic surfaces with infinitely many singular points

We begin with the reducible cubic surfaces, followed by the irreducible cubic surfaces with
infinitely many singular points. The three normal forms of reducible cubic surfaces are given
in [9]. They are x1(x

2

1
+x2

2
+x2

3
+x2

4
), x1(x

2

2
+x2

3
+x2

4
), and x1(x1x2+x2

3
+x2

4
). The first two

have symmetric rank six [9], hence by Theorem 2.2 they also have rank six. The third has
symmetric rank seven [19]. We show that the rank of this normal form is seven, and hence
that its rank and symmetric rank agree.

Proposition 2.4. The cubic surface f = x1(x1x2 + x2

3
+x2

4
) has non-symmetric rank seven.

Proof. The polynomial f can be written up to scale as the symmetric 4× 4× 4 tensor

e1 ⊗









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









+ e2 ⊗









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









+ e3 ⊗









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









+ e4 ⊗









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









.
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We apply Theorem 2.3 iteratively to the second, third, and fourth slices of f . The slices
are linearly independent 4 × 4 matrices. No linear combination of them can be subtracted
from the first slice to give a vanishing determinant. These two observations imply that the
rank of f is bounded from below by 4 + 3 = 7. Since the symmetric rank is seven, the
non-symmetric rank cannot exceed seven.

There are two normal forms of irreducible cubic surfaces with infinitely many singular
points [19, §97], with representatives x1x

2

2
+x3x

2

4
, which has symmetric rank six, and x2

1
x2+

x1x3x4+ x3

3
with symmetric rank at most seven. In the former case the non-symmetric rank

is also six, using Theorem 2.2. In the latter case we follow an approach as in Proposition 2.4.

Proposition 2.5. The cubic surface x2

1
x2 + x1x3x4 + x3

3
has non-symmetric rank seven.

Proof. The polynomial f is the symmetric 4× 4× 4 tensor

e1 ⊗









0 1

3
0 0

1

3
0 0 0

0 0 0 1

6

0 0 1

6
0









+ e2 ⊗









1

3
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0









+ e3 ⊗









0 0 0 1

6

0 0 0 0
0 0 1 0
1

6
0 0 0









+ e4 ⊗









0 0 1

6
0

0 0 0 0
1

6
0 0 0

0 0 0 0









.

The second, third, and fourth slices are linearly independent. No linear combination of them
can be subtracted from the first slice to give a vanishing determinant. Hence the rank is at
least 4 + 3 = 7. The symmetric rank is at most seven hence both ranks are seven.

2.4 Cubic surfaces with finitely many singular points

We introduce a test to show that a cubic surface f has symmetric rank at most five. The
test checks that f does not lie on two discriminant loci which contain the tensors of higher
rank. We use it to prove Theorem 1.3 for cubic surfaces with finitely many singular points.

The singular cubic surfaces lie on the discriminant hypersurface [23]. Non-singular cubic
surface, on the complement of the hypersurface, have symmetric rank at most five unless they
are of the form in equation (1). The surfaces in (1) are contained in a second discriminant
locus, which we describe. Our test is the following: if neither discriminant vanishes at f , it
has symmetric rank at most five.

We now explain how to construct the second discriminant. The determinant of a 4 × 4
symmetric matrix of indeterminates defines a hypersurface with 10 singular points, where
the 3 × 3 minors vanish. The 4 × 4 symmetric matrices of linear forms whose determinant
hypersurface has fewer than 10 singular points lie on the Hurwitz form of the variety of
rank two 4×4 symmetric matrices [24]. Applying [24, Theorem 1.1] shows that the Hurwitz
form in this setting is an irreducible hypersurface of degree 30 in the Plücker coordinates of
codimension six linear spaces, since the sectional genus is six. The Hurwitz form has degree
120 in the coordinates of the indeterminates, since each Plücker coordinate has degree four.

The Hessian matrix of a cubic surface is a 4 × 4 symmetric matrix of linear forms, the
second order partial derivatives. The determinant of the matrix is the defining equation of
the Hessian surface, which generically has 10 singular points at which the 3 × 3 minors of
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the matrix vanish. The cubic surfaces in (1) are special in that their Hessian surfaces have
fewer than 10 distinct singular points. Hence they lie on the specialization of the Hurwitz
form above to Hessian matrices of cubic surfaces. This is a discriminant hypersurface in the
space of cubic surfaces, which we call the Hessian discriminant. It divides the specialization
of the Hurwitz form. The above paragraph implies the following.

Proposition 2.6. The Hessian discriminant is a hypersurface of degree at most 120 in the
20 coefficients of the cubic surfaces.

We obtain a test for a cubic surface having symmetric rank at most six as follows. If
there exists a linear form l such that f + l3 has symmetric rank at most five, then f has
symmetric rank at most six. To check that f has symmetric rank at most six, it suffices to
check that neither discriminant vanishes identically on the set of cubic surfaces of the form
f + l3, as l ranges over the linear forms. We first prove this for the discriminant of singular
cubics via the following result, which is stated without proof in [19, §97].

Lemma 2.7. Let f ∈ C[x1, x2, x3, x4] be a cubic surface with finitely many singular points.
Then for a generic linear form l ∈ C[x1, x2, x3, x4] the cubic surface f + l3 is non-singular.

Proof. A generic l satisfies l(p) 6= 0 at all singular points of f , since the plane perpendicular
to the coefficients of l needs to avoid finitely many points. A singular point of g = f + l3

at which l(p) 6= 0 must satisfy g(p) = 0, and
(

∂f

∂x1
|p : ∂f

∂x2
|p : ∂f

∂x3
|p : ∂f

∂x4
|p
)

= (l1 : l2 : l3 : l4).

The partial derivatives of f as p varies over g = 0 parametrize a subset of P3 of dimension at
most two. Hence for generic l this equation will not be satisfied at any p on the surface g.

Remark 2.8. Lemma 2.7 can fail for surfaces with infinitely many singular points, such as
x1(x1x2+x2

3
+x2

4
) from Proposition 2.4. It is singular at (x1 : x2 : x3 : x4) = (0 : t1 : t2 : ±it2)

for (t1 : t2) ∈ P1. Every linear form l vanishes at a non-zero singular point of f and at that
point f + l3 is also singular.

We now prove the following result concerning the Hessian discriminant, which uses com-
putations in the computer algebra systems Macaulay2, Magma and Maple.

Lemma 2.9. For all cubic surfaces with finitely many singular points, except those of sin-
gularity type E6, there exists a linear form l such that f + l3 does not lie on the Hessian
discriminant.

Proof. We refer to the classification of cubic surfaces with finitely many singular points
in [7, 18, 21]. There are infinitely many normal forms, which fall into 20 classes according to
the structure of the singularities. Thirteen classes have a single normal form representative.
For these, we compute in Macaulay2 the ideal of singular points of the Hessian of f + l3 for
random linear form l. For 12 classes, all except singularity type E6, this computation gives
an ideal of degree 10 and f + l3 does not lie on the Hessian discriminant.

It remains to consider the seven classes from [18, Theorem 2] which are given in terms of
parameters, f = f(ρ). We sample linear forms li and compute the discriminant of f(ρ) + l3i .
This gives a polynomial condition in the parameters which vanishes when f(ρ)+l3i lies on the
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Hessian discriminant. We consider sufficiently many linear forms, in order that there does
not exist a choice of parameters such that the Hessian discriminant vanishes at f(ρ) + l3i for
all linear forms in the sample. We choose linear forms for which the computation to form the
discriminant is not prohibitively slow. We construct the discriminant using Macaulay2 or
Maple, and check that no parameters satisfy all discriminants using Macaulay2 or Magma.

Often a good choice of linear form is l = 0; if the Hessian discriminant does not vanish
at f then it also does not vanish at f + l3 when l has sufficiently small coefficients. In some
cases we consider enough linear forms such that the Hessian discriminant only vanishes at
all f(ρ)+ l3i for a finite number of parameters ρ, and then we check the remaining parameter
values one by one in the same way as for the single normal form representatives.

It remains to consider the singularity type E6, with normal form x2

1
x4 + x1x

2

3
+ x3

2
. Here

we show that the symmetric rank is at most six directly, since the normal form can be
re-written as a sum of six linear powers,

1

6
x3

4
+

1

6
(2x1 + x4)

3 − 1

3
(x1 + x4)

3 + x3

2
− 1

2
(x1 +

i√
3
x3)

3 − 1

2
(x1 −

i√
3
x3)

3.

Hence we have proved the following.

Theorem 2.10. Cubic surfaces with finitely many singular points have symmetric rank at
most six.

When the symmetric rank is at most six, the equality of rank and symmetric rank follows
from Theorem 2.2, hence this concludes our proof of Theorem 1.3. To conclude the section
we prove Corollary 1.4.

Proof of Corollary 1.4. By Theorem 1.3, it remains to consider tensors of flattening rank five
or more. By Theorem 2.2, the rank and symmetric rank agree when the rank is at most the
flattening rank plus one. Hence they agree up to rank six, and symmetric rank seven.

3 Border ranks of cubic surfaces

The set of rank one n× n× n tensors and the set of rank one n× n× n symmetric tensors,
up to scale, are respectively the Segre and Veronese varieties in complex projective space.
We denote them by

Sn := Seg(Pn−1 × P
n−1 × P

n−1) and Vn := ν3(P
n−1).

The rth secant variety σr(Sn) consists of all tensors of non-symmetric border rank at most r.
Likewise σr(Vn) consists of all tensors of symmetric border rank at most r [16]. The linear
subspace of symmetric tensors inside Cn ⊗ Cn ⊗ Cn is denoted Ln.

We prove Theorem 1.5, that the border rank and symmetric border rank agree for cubic
surfaces, by establishing the equality of σr(V4) and σr(S4) ∩ L4 for all r. For symmetric
n× n× n tensors, we prove Corollary 1.6, that the border rank and symmetric border rank
agree up to symmetric border rank five, by showing that σr(Vn) = σr(Sn) ∩Ln for all n and
whenever r ≤ 4.
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3.1 Border ranks of cones over cubic curves

As for the rank result, we begin by considering cones over cubic curves. For such surfaces,
we can apply a symmetric change of basis to ensure that only the top-left 3 × 3 × 3 block
contains non-zero entries. The tensors in any approximating sequence can always be chosen
to have this property, hence it suffices to consider cubic curves. The space of cubic curves is
10-dimensional. The secant varieties of the Veronese variety V3 = ν3(P

2) are not defective,
by the Alexander-Hirschowitz Theorem [1]. The dimensions are

dim(V3) = 2, dim(σ2(V3)) = 5 dim(σ3(V3)) = 8, dim(σ4(V3)) = 10.

Since the fourth secant variety fills the space S3(C3), cubic curves have border rank ≤ 4.

Lemma 3.1. The border rank and symmetric border rank of cubic curves coincide.

Proof. We compare the equations defining the secant variety σr(V3) with the symmetric
restriction of the equations defining the non-symmetric secant σr(S3), for 1 ≤ r ≤ 4. The
equations defining the Segre variety S3 are the 2×2 minors of all flattenings. Restricting these
equations to symmetric tensors gives the equations defining V3, the 2× 2 minors of the most
symmetric catalecticant. Similarly σ2(S3) is given by the vanishing of the 3×3 minors of the
flattenings. Restricting to symmetric tensors, we get the equations for σ2(V3), the 3×3 minors
of the most symmetric catalecticant. The equations defining σ3(S3) are Strassen’s commuting
conditions. Restricting these to symmetric tensors recovers the Aronhold invariant which
defines σ3(V3), see [16, Exercise 3.10.1.2].

Cubic curves outside σ3(V3) have non-symmetric border rank at least four, as they do not
lie in the symmetric restriction of σ3(S3). Their non-symmetric border rank cannot exceed
their symmetric border rank, so the non-symmetric border rank must be exactly four.

3.2 Symmetric salmon equations

Finding ideal generators for the secant variety σ4(S4) is the salmon conjecture. In [5, 13],
set-theoretic equations for the variety are found, although ideal-theoretic equations are not
known. Here we obtain the prime ideal for σ4(V4), a ‘symmetric salmon’ result.

The description for the set σ4(S4) consists of equations in degrees five, six and nine. The
degree five equations make a 1728-dimensional module. Restricting the equations in this
module to symmetric tensors yields 36 linearly independent quintics in the coefficients of the
cubic surfaces which vanish on the set σ4(V4). One of the quintics is

16c
2

1002
c0201c

2

0120
− 8c

2

1002
c0210c0120c0111 − 12c1011c1002c0201c0120c0111 + 4c1011c1002c0210c

2

0111
+ c

2

1011
c0201c

2

0111

+4c1020c1002c0201c
2

0111
+ 4c1101c1002c0120c

2

0111
− c1101c1011c

3

0111
− 2c1110c1002c

3

0111
+ c2001c

4

0111

+8c1011c1002c0210c0120c0102 + 4c
2

1011
c0201c0120c0102 − 16c1101c1002c

2

0120
c0102 − 4c

2

1011
c0210c0111c0102

−8c1020c1002c0210c0111c0102 − 4c1020c1011c0201c0111c0102 + 4c1101c1011c0120c0111c0102 + 8c1110c1002c0120c0111c0102

+2c1110c1011c
2

0111
c0102 − 8c2001c0120c

2

0111
c0102 + 8c1020c1011c0210c

2

0102
− 8c1110c1011c0120c

2

0102
+ 16c2001c

2

0120
c
2

0102

+16c
2

1002
c
2

0210
c0021 + 8c1011c1002c0210c0201c0021 − 4c

2

1011
c
2

0201
c0021 − 16c1020c1002c

2

0201
c0021 + 8c1101c1002c0201c0120c0021

−12c1101c1002c0210c0111c0021 + 4c1101c1011c0201c0111c0021 + 8c1110c1002c0201c0111c0021 + c
2

1101
c
2

0111
c0021

+4c1200c1002c
2

0111
c0021 − 8c2001c0201c

2

0111
c0021 − 4c1101c1011c0210c0102c0021 − 16c1110c1002c0210c0102c0021

+8c1101c1020c0201c0102c0021 + 16c1200c1002c0120c0102c0021 − 16c2001c0201c0120c0102c0021
−4c1110c1101c0111c0102c0021 − 4c1200c1011c0111c0102c0021 + 24c2001c0210c0111c0102c0021

+4c
2

1110
c
2

0102
c0021 − 16c1200c1020c

2

0102
c0021 − 4c

2

1101
c0201c

2

0021
− 16c1200c1002c0201c

2

0021
+ 16c2001c

2

0201
c
2

0021

+8c1200c1101c0102c
2

0021
− 16c1011c1002c

2

0210
c0012 + 16c1020c1002c0210c0201c0012 + 8c1020c1011c

2

0201
c0012

+8c1101c1002c0210c0120c0012 − 4c1101c1011c0201c0120c0012 − 16c1110c1002c0201c0120c0012 + 4c1101c1011c0210c0111c0012

+8c1110c1002c0210c0111c0012 − 4c1101c1020c0201c0111c0012 − 4c1110c1011c0201c0111c0012 − 4c
2

1101
c0120c0111c0012

−8c1200c1002c0120c0111c0012 + 24c2001c0201c0120c0111c0012 + 2c1110c1101c
2

0111
c0012 − 8c2001c0210c

2

0111
c0012

−8c1101c1020c0210c0102c0012 + 8c1110c1011c0210c0102c0012 + 8c1110c1101c0120c0102c0012 − 8c1200c1011c0120c0102c0012

−16c2001c0210c0120c0102c0012 − 4c
2

1110
c0111c0102c0012 + 16c1200c1020c0111c0102c0012 + 4c

2

1101
c0210c0021c0012

+8c1200c1011c0201c0021c0012 − 16c2001c0210c0201c0021c0012 − 4c1200c1101c0111c0021c0012

−8c1110c1101c0210c
2

0012
+ 16c2001c

2

0210
c
2

0012
+ 4c

2

1110
c0201c

2

0012
− 16c1200c1020c0201c

2

0012
+ 8c1200c1101c0120c

2

0012
.
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Proposition 3.2. The prime ideal of σ4(V4) is generated by 36 quintics.

Proof. The 36 quintics are obtained by restricting the degree five salmon equations to sym-
metric tensors. Using symbolic computations in Macaulay2, they are shown to generate an
ideal of degree at most 105 and codimension 4. Their ideal is Gorenstein, with symmetric
minimal free resolution

R1 ← R36 ← R70 ← R36 ← R1 ← 0,

where R = C[x1, x2, x3, x4]. Using the numerical methods of Bertini, the highest dimensional
component of the variety defined by the 36 quintics is shown to be irreducible, and to have
degree 105. The Gorenstein property means the unmixedness theorem applies: there cannot
be lower-dimensional components. The zero set of the 36 quintics contains the codimension
four set σ4(V4) of symmetric border rank four tensors, and hence since the codimensions
agree, and the former set is irreducible, they are equal as sets. Furthermore, the ideal
generated by the 36 quintics is prime, hence they generate the ideal of σ4(V4).

Proposition 3.3. The 36 quintics defining σ4(V4) are the irreducible module S5,4,4,2(C
4).

Proof. Proposition 3.2 shows that σ4(V4) is generated by 36 quintics. Since σ4(V4) is invariant
under GL4 action, the quintics are a GL4 module in the 42504-dimensional space of quintic
polynomials in the coefficients of cubic surfaces, S5(S3C4). The GL4 modules in S5(S3C4)
are a subset of those from (C4)⊗15. The irreducible modules of the latter are indexed by
Young diagrams with 15 boxes and no more than four rows [16]. We compute in SAGE
which GL4-modules from (C4)⊗15 occur in the decomposition of S5(S3C4), by evaluating

s = SymmetricFunctions(QQ).schur(); s[5].plethysm(s[3])

and then selecting modules whose diagrams have at most four parts. We obtain

S5,4,4,2 ⊕ S6,4,4,1 ⊕ S6,5,2,2 ⊕ S6,6,3 ⊕ S7,4,2,2 ⊕ S7,4,3,1 ⊕ S7,4,4 ⊕ S7,5,2,1

⊕S7,6,2 ⊕ S8,3,2,2 ⊕ S8,4,2,1 ⊕ S8,4,3 ⊕ S8,5,2 ⊕ S8,6,1 ⊕ S9,2,2,2 ⊕ 2S9,4,2

⊕S9,6 ⊕ S10,3,2 ⊕ S10,4,1 ⊕ S10,5 ⊕ S11,2,2 ⊕ S11,4 ⊕ S12,3 ⊕ S13,2 ⊕ S15.

The numbers labeling each module are the length of the rows of the Young diagram. A highest
weight vector analysis shows that the quintics are the 36-dimensional module S5,4,4,2C

4.
Alternatively, this is the only combination of irreducible modules of dimension 36.

3.3 Proof of border rank results

Proposition 3.4. If the border rank and symmetric border rank agree for r × r × r tensors
of border rank r, then they agree for n× n× n tensors of border rank r, for all n ≥ r.

Proof. The containment σr(Vn) ⊆ σr(Sn)∩Ln always holds. It remains to prove the opposite
containment. We use the technique of inheritance (see [16, Example 5.7.3.8 and §7.4]).
Equations for σr(Sn) consist of (r+1)× (r+1) minors of flattenings, and copies of equations

10



for σr(Sr) obtained by choosing a basis of size r in each factor C
n. The (r + 1) × (r + 1)

minors intersect with Ln to give the minors of the symmetric flattenings, while the equations
for σr(Sr) intersect with Ln to give σr(Vr) by the hypothesis of the proposition. We can then
compare with the equations for σr(Vn) given in [16, Corollary 7.4.2.3]. The equations are
the (r + 1)× (r + 1) minors of the symmetric flattenings, as well as copies of equations for
σr(Vr) given by choosing the same basis of size r in each factor Cn. All such choices of basis
are covered by the non-symmetric choices in the equations for σr(Sn), hence this proves the
reverse containment.

Proof of Theorem 1.5. By the Alexander-Hirschowitz theorem [1], the secant variety σ5(V4)
fills the space of symmetric 4× 4 × 4 tensors. As in Lemma 3.1, we compare the equations
defining the secant variety σr(V4) with the symmetric restriction of the equations defining the
non-symmetric secant σr(S4), for 1 ≤ r ≤ 5. The result for r = 1, 2, 3 follows from Lemma 3.1
combined with Proposition 3.4. When r = 4 the result follows from Proposition 3.2. Finally,
all tensors outside of σ4(V4) have symmetric complex border rank five. Proposition 3.2
implies that they must also have non-symmetric complex border rank five.

Proof of Corollary 1.6. Theorem 1.5 combined with Proposition 3.4 shows that all tensors
of border rank r also have symmetric border rank r, for 1 ≤ r ≤ 4. Consider a tensor of
symmetric border rank five. Its border rank cannot be four by Theorem 1.5. Hence the
border rank is also five.

4 Real ranks of cubic surfaces

We first prove the following, by combining results from the literature.

Proposition 4.1. Real rank and real symmetric rank coincide for generic real cubic surfaces.

Proof. A generic real cubic surface has complex rank five, f = l3
1
+ l3

2
+ l3

3
+ l3

4
+ l3

5
. The

linear forms li define five planes in P3 that comprise Sylvester’s pentahedron. The triple
intersections of the planes are the singular points of the Hessian surface. Since f has real
coefficients, so does its Hessian surface, and the singular points of the Hessian occur in
complex conjugate pairs. Hence the complex linear forms appearing in the decomposition
of f also occur in complex conjugate pairs. There can be zero, one, or two complex conjugate
pairs in the decomposition. A cubic l3 + l3, where l is complex and l its complex conjugate,
has real symmetric rank three. Hence in the first two cases the real symmetric rank is
bounded above by six. In [6], the authors show that the symmetric rank of the third case is
also at most six, and therefore that a generic real cubic surface has real symmetric rank five
or six. Generic cubic surfaces have flattening rank four, hence we can apply Theorem 2.2,
which also holds over the field R, to conclude that the real symmetric and non-symmetric
ranks coincide up to rank five, and hence up to symmetric rank six.

We consider special cubic surfaces in more detail, starting with cones over cubic curves.

Proposition 4.2. Real rank and real symmetric rank coincide for cones over cubic curves.
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Proof. Such surfaces have flattening rank at most three. We apply a general linear group
transformation to obtain a real symmetric tensor with non-zero entries only in its top-left
3× 3× 3 block, and we study the cone as a cubic curve. Using Theorem 2.2, equality of real
rank and real symmetric rank holds whenever the real symmetric rank is at most two more
than the flattening rank. To conclude the proof, we check that all real cubic curves have this
property [3, Table 1].

It remains to consider cubic surfaces of maximal flattening rank and, by Theorem 2.2,
those of real symmetric rank at least seven. Among such non-generic cubic surfaces, one
family are the reducible surfaces, for which ranges of real ranks are given in [9]. We revisit
the reducible real cubic surface from Proposition 2.4 from the perspective of real rank.

Proposition 4.3. The cubic surface f = x1(x1x2 + x2

3
+ x2

4
) has real non-symmetric rank

and real symmetric rank seven.

Proof. The surface can be written as

f = −x2

1

(

2

3
x1 − x2 + x3 + x4

)

+
1

3

(

(x1 + x3)
3 − x3

3
+ (x1 + x4)

3 − x3

4

)

.

The first term has real symmetric rank three. The remaining terms are expanded as a real
symmetric rank four decomposition. This gives an upper bound of seven. Equality follows
from the lower bound in Proposition 2.4.

We introduce a tool for obtaining lower bounds on the real non-symmetric rank of a
tensor. It is the real analogue to the substitution method in Theorem 2.3.

Theorem 4.4 (The substitution method over R). Let T ∈ Rn1⊗Rn2⊗Rn3 be a tensor of real
rank r. We can write T in terms of its slices as T =

∑n1

i=1
ei⊗Mi, where {ei : 1 ≤ i ≤ n1} are

the elementary basis vectors, and the Mi are n2 × n3 real matrices. Reordering indices such
that Mn1

6= 0, there exist real constants λ1, . . . , λn1−1 such that the following (n1−1)×n2×n3

real tensor has real rank at most r − 1:

n1−1
∑

i=1

ei ⊗ (Mi − λiMn1
).

If the matrix Mn1
has rank one, the real tensor above has real rank exactly r − 1.

Proof. Assume T has real rank r, with real rank decomposition T = T1 + · · ·+ Tr. We can
express each rank one tensor in the decomposition as Tk =

∑n1

i=1
µkiei ⊗ Lk where the µki

are real scalars and Lk is a rank one real matrix. The slices of T can then be expressed as
Mi =

∑r

k=1
µkiLk. By the assumption that Mn1

is non-zero, we can reorder the terms in the
decomposition such that µrn1

6= 0. Setting λi = µri, the tensor
∑n1−1

i=1
ei⊗ (Mi− λiMn1

) has
all slices expressible as a linear combination of L1, . . . , Lr−1, and hence it has real rank at
most r − 1. The last sentence follows from the fact that if Mn1

has rank one, subtracting
multiples of it can change the real rank by at most one.
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We illustrate Theorem 4.4 on the reducible cubic surface f = x1(x
2

1
− x2

2
− x2

3
− x2

4
). It

has real symmetric rank seven, and complex rank six [9]. Since the real and complex ranks
differ, the usual substitution method in Theorem 2.3 does not give a tight lower bound on
the real rank. We use the real substitution method to bound the real rank below by seven,
and hence to conclude that the real rank and real symmetric rank agree.

Proposition 4.5. The cubic surface f = x1(x
2

1
− x2

2
− x2

3
− x2

4
) has real rank and real

symmetric rank seven.

Proof. The statement about the symmetric rank is in [9]. For the lower bound on the non-
symmetric rank, we use Theorem 4.4. For computational convenience we scale the cubic,
leaving the rank unchanged, to x1(x

2

1
− 3x2

2
− 3x2

3
− 3x2

4
) or, as a tensor,

e1⊗









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









+e2⊗









0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0









+e3⊗









0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0









+e4⊗









0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0









.

We subtract off an arbitrary multiple of the slices of the tensor to give a 4× 4× 2, 4× 2× 2,
and finally a 2 × 2 × 2 tensor. We show that there do not exist real multiples that can be
subtracted to give a tensor of zeros. If the pairs of slices we subtract are linearly independent,
Theorem 4.4 then implies that the real non-symmetric rank of f is at least 1+2+2+2 = 7.

Subtracting off three pairs of slices of f in multiples si, ti, ui, vi, wi, xi, where i = 1, 2
denotes which of the two slices we subtract from, gives the 2× 2× 2 tensor with slices
[

s1u1 + t1v1 + t1x1 − v1x1 + 1 s2u1 + t2v1 + t2x1 − w1

s1u2 + t1v2 − v2x1 − w1 s2u2 + t2v2 − 1

]

,

[

t1x2 − v1x2 + s1 − u1 t2x2 + s2 − w2

−v2x2 − u2 − w2 0

]

.

We show that the ideal generated by the eight entries does not contain any real points.
Eliminating w1, w2, x1, x2, t1, t2 gives the hypersurface (s2u1+s1u2)

2+(s1−u1)
2+(s2+u2)

2+
(s2v1 + u2v1 + s1v2 − u1v2)

2 = 0. Over the reals, this if zero if and only if the individual
squares in the sum vanish, hence s1 = u1 and s2 = −u2. The ideal obtained by eliminating
w1, w2, x1, x2, v2 then has equation (t2u1 + t1u2)

2 + (u1u2 − t2v1)
2 + t2

1
+ t2

2
+ u2

1
+ u2

2
= −1,

which has no real solutions. This concludes the main case.
It remains to consider the case when some pairs of slices of the tensor are linearly de-

pendent. The first and second pairs of slices we subtract are always linearly independent,
taking us to a 4 × 2 × 2 tensor whose real rank is four less than that of f . The third pair
of slices are dependent only if t1 = v1 and t2 = −v2. The result then follows as above, by
choosing a different pair of slices to subtract, unless s1 = u1 and s2 = −u2. In this case, the
4× 2× 2 tensor has four slices spanned by

M1 =

[

s1u1 + t1v1 + 1 s2u1 + t2v1
s1u2 + t1v2 s2u2 + t2v2 − 1

]

and M2 =

[

0 1
1 0

]

,

with first slice a scalar multiple of M1, and the remaining three slices scalar multiples of M2.
There does not exist a real multiple of M2 that can be subtracted from M1 to give a rank
one matrix, because det(M1 − w1M2) = −(u2v1 − u1v2)

2 − u2

1
− u2

2
− v2

1
− v2

2
− w2

1
− 1 = 0

has no solutions over the reals. By Theorem 4.4, the real rank of the 4 × 2 × 2 tensor is at
least three. Hence we obtain an overall lower bound of 3 + 2 + 2 = 7 on the real rank.
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We saw above that every real cubic surface is arbitrarily close to one of real symmetric
rank five or six. The real rank five locus is separated from the real rank six locus by a degree
40 hypersurface [17]. We are interested in the real analogue of Theorem 1.5: to show that
the real border rank and real symmetric border rank agree. Generic tensors have the same
real rank as real border rank, hence their real border rank and real symmetric border rank
agree by Proposition 4.1. To conclude the paper, we prove the following result.

Proposition 4.6. Real border rank and real symmetric border rank coincide for all cubic
surfaces of sub-generic real symmetric border rank.

Proof. The set of real rank one tensors is closed, so we begin by considering a cubic surface
of real border rank two. Such cubic surfaces lie in the real rank two locus, shown in [20] to
be defined by the non-negativity of the hyperdeterminant of all 2× 2× 2 blocks. The locus
of real symmetric border rank two tensors is contained in this set, being described by the
non-negativity of the diagonal (symmetric) 2× 2× 2 blocks [20]. All diagonal combinations
occur among the non-symmetric inequalities, hence the two sets are equal.

We now consider real border rank three cubic surfaces. Since the flattening rank is
bounded above by the border rank, the flattening rank is at most three and we can change
coordinates, as in the previous sections, to consider f as a plane cubic curve. From The-
orem 1.5, it suffices to consider the orbits in [3, Table 1-2] of cubic curves whose complex
(symmetric) border rank is strictly less than their real symmetric border rank. This applies
to only one orbit, which has border rank two, hence it is covered by the first paragraph.
Finally, assume f is a cubic surface with real symmetric border rank four. The real non-
symmetric border rank cannot be strictly less than four by the above cases.

The results in this section constitute progress towards the real rank analogues of Theo-
rem 1.3 and Theorem 1.5. Completing the real rank version of Theorem 1.3 requires proving
the equality of real rank and real symmetric rank for singular irreducible cubic surfaces,
and non-singular cubic surfaces for which Theorem 2.1 fails to give a decomposition. To
prove Theorem 1.5 for real border rank, it remains to consider cubic surfaces whose rank
and border rank differ, having real border rank five or six.

We conclude the paper by posing two questions for future study. The counter-example
to Comon’s conjecture in [22] is a tensor of size 800×800×800 and symmetric rank at least
904. The result in Theorem 1.3 gives the agreement of (complex) rank and symmetric rank
for all tensors of size n×n×n where n ≤ 4. This suggests the question of finding a tensor of
size n×n×n, with n minimal, whose rank and symmetric rank differ. These results combine
to show that 5 ≤ n ≤ 800. This is relevant in determining whether rank and symmetric rank
agree for the sizes of tensors occurring in a particular application. Corollary 1.4 gives the
agreement of (complex) rank and symmetric rank for all tensors of symmetric rank at most
seven. This suggests the question of finding a tensor of symmetric rank r, with r minimal,
whose rank and symmetric rank differ. We provide a lower bound of eight while [22] implies
an upper bound of 906.
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