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Abstract

The fundamental theorem of symmetric polynomials over rings is a classi-
cal result which states that every unital commutative ring is fully elementary,
i.e. we can express symmetric polynomials with elementary ones in a unique
way. The result does not extend directly to polynomials over semirings, but
we do have analogous results for some special semirings, for example, the trop-
ical, extended and supertropical semirings. These all fall into a larger class of
upper-bound semirings. In this paper we extend the known results and give
a complete characterization of fully elementary upper-bound semirings. We
further improve this characterization statement in the case of linearly ordered
upper-bound semirings.

1 Introduction

The fundamental theorem of symmetric polynomials states that any symmetric poly-
nomial in variables x1, . . . , xn over a unital commutative ring can be represented in a
unique way as a polynomial in the elementary symmetric polynomials,

eln,1(x1, . . . , xn) = x1 + . . . + xn

eln,2(x1, . . . , xn) = x1x2 + x1x3 + x2x3 + . . . + xn−1xn,

⋮
eln,n(x1, . . . , xn) = x1x2 . . . xn.

∗Electronic address: davorin.lesnik@fmf.uni-lj.si; This author was partially supported by
the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award
No. FA9550-14-1-0096.
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This theorem has an interesting history [1]: Newton already extensively studied sym-
metric root polynomials as early as the mid-1660s, and was very likely aware of the
fundamental theorem at that time. Over the course of the eighteenth century many
mathematicians seemed familiar with it and used it. For example, Lagrange claimed
it was ‘self-evident’. The existence part of the proof only appeared in 1771, when
Vandermonde stated and proved the result in terms of roots and coefficients of a
polynomial. The uniqueness aspect was still neglected at the time. The first complete
proof is due to Dedekind.

Given the long tradition and the impact of this theorem it is surprising that the ques-
tion of elementarity over semirings (i.e. the ability to express symmetric polynomials
with elementary ones) only recently started being researched. The first paper on the
topic analyzed the tropical semiring [3]. The motivation for doing that came from the
study of persistent homology [4, 2], a method which assigns a barcode, i.e. a collection
of intervals, to a finite metric space and can be used as a measurement of the shape
of data. Studying symmetric tropical functions turned out to be crucial in identifying
well-behaved coordinates on the space of barcodes [10, 12].

A positive result in the case of the tropical semiring led to a discussion about what
happens in other semirings of interest to tropical algebraists, such as the symmetrized
max-plus semiring [5], the extended tropical semiring [6], the supertropical semiring [8,
6, 9]. In [11] we proved that supertropical semirings, including the extended tropical
semiring, are elementary. The symmetrizations of the tropical and max-plus semiring,
however, are not.

All of these semirings are upper-bound, so in [11] we already presented some partial
results about elementarity for upper-bound semirings, though we have not yet ob-
tained a proper characterization result. This is one of the main contributions of this
paper.

This manuscript is organized as follows. In Section 2 we review the basic definitions
needed to state and prove theorems. In Section 3 we study elementarity in upper-
bound semirings. The central result in this section is Theorem 3.9, which gives a
complete characterization of fully elementary upper-bound semirings as the Frobenius
ones. In Section 4 we consider linearly ordered upper-bound semirings and improve
the characterization in this case. In Section 5 we consider what the scope of our
results is from the perspective of general unital commutative semirings, rather than
just the upper-bound ones.
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2 Preliminaries

Recall that (X,+,0, ⋅) is a semiring when (X,+,0) is a commutative monoid, (X, ⋅)
a semigroup, the multiplication ⋅ distributes over the addition + and 0 is an absorbing
element, i.e. 0 ⋅ x = x ⋅ 0 = 0 for all x ∈ X . A semiring is unital when it has the
multiplicative unit 1. A semiring is commutative when ⋅ is commutative. A semiring
is idempotent when + is idempotent, i.e. x + x = x for all x ∈ X . A map between
semirings is a semiring homomorphism when it preserves addition, additive unit and
multiplication. If its domain and codomain are unital semirings, it is called a unital
semiring homomorphism when it additionally preserves the multiplicative unit.

We often omit the ⋅ sign in algebraic expressions, and shorten the product of n many
factors x to xn. Also, we write X instead of (X,+,0, ⋅) (or (X,+,0, ⋅,1)) when the
operations are clear.

Given a unital semiring X , we can view any natural number1 n ∈ N as an element of
X in the usual way:

n = 1 + 1 + . . . + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.

However, this mapping (in fact, a unital semiring homomorphism) from N to X need
not be injective; for example, if (and only if) X is idempotent, we have 1 = 2 in X .

In this paper we almost exclusively deal with unital commutative semirings which
we shorten to uc-semirings.

Any commutative monoid X , and thus in particular any semiring, has an intrinsic
order ≤ (see [11] ), given by

a ≤ b ∶= ∃x ∈X .a + x = b.
The intrinsic order is a preorder (reflexive and transitive) with 0 a least element. The
operations + and ⋅ are monotone: if a ≤ b and c ≤ d, then a + c ≤ b + d and a ⋅ c ≤ b ⋅ d.
Also, any semiring homomorphism is monotone with respect to the intrinsic order.

The following are the two most crucial properties of ≤ that we use in this paper. First,
the intrinsic order is directed, in the sense that any two elements a, b ∈ X have an
upper bound, namely a+b. In other words, adding summands increases the sum. The
second crucial property for us is antisymmetry of ≤. We do not have it in general,
though, so we recall the definition [11].

Definition 2.1 A semiring is upper-bound when its intrinsic order is antisymmetric
(thus a partial order).

1We treat 0 as a natural number, so N = {0,1,2,3, . . .}.
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A simple example of an upper-bound semiring is the set of natural numbers N, where
the intrinsic order is the usual one. Note also that every idempotent semiring is
upper-bound.

Recall that any preorder ≤ defines an equivalence relation by

a ≈ b ∶= a ≤ b ∧ b ≤ a.
A preorder is (by definition) antisymmetric (hence, a partial order) when ≈ is equality.
In general, a preorder on a set X induces a partial order on the quotient set X/≈. If
X is a semiring and ≤ its intrinsic order, then ≈ is a congruence (that is, if a ≈ b and
c ≈ d, then a + c ≈ b + d and a ⋅ c ≈ b ⋅ d), meaning that we can turn any semiring into
an upper-bound semiring by taking the quotient X/≈.
There is, of course, no shortage of non-upper-bound semirings. For example, if X is a
ring, then for every a, b ∈X we have a ≤ b (and so a ≈ b). Thus the only upper-bound
ring is the trivial one {0}.
We now turn our attention to polynomials over semirings.

Definition 2.2 Let X be a uc-semiring.

• Letm,n, d1,1, . . . , dm,n be natural numbers and a1, . . . , am ∈ X . Amonomial is a

syntactic object of the form ak∏
n
j=1 x

dk,j
j . A polynomial is a sum of monomials

∑m
k=1 ak∏

n
j=1 x

dk,j
j . In this paper we only consider polynomials over commutative

semirings, so we treat polynomials as equal if they differ only in the order of
summands and/or factors.

• A polynomial function is the function Xn → X that a polynomial represents.

• A polynomial is symmetric when for each monomial ak∏
n
j=1 x

dk,j
j in it and each

permutation σ ∈ Sn the monomial ak∏n
j=1 x

dk,j

σ(j)
also appears in it, up to a change

of the order of factors.2 A polynomial function is symmetric when it can be
represented by a symmetric polynomial.

Remark 2.3 There are two reasonable definitions of when a polynomial function is
symmetric: if it is represented by a symmetric polynomial (let us say that a func-
tion is ‘syntactically symmetric’ in this case), or if its values are invariant under
arbitrary permutations of variables, that is, p(x1, . . . , xn) = p(xσ(1), . . . , xσ(1)) for all
(x1, . . . , xn) and permutations σ ∈ Sn (say that p is ‘semantically symmetric’). Every

2That is, we consider symmetry relative to commutativity of multiplication. For example, the
polynomial xy is symmetric: the transposition of variables gives yx which we identify with xy. Of
course, it would not make sense to consider xy symmetric over a non-commutative semiring.
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syntactically symmetric polynomial function is semantically symmetric, but we do
not know whether the converse holds (for more on the subject, see [11] ). For the
purposes of our theorems, a ‘symmetric polynomial function’ refers to syntactic sym-
metry (as stated in Definition 2.2), since our proofs require considering polynomials
on the syntactic level.

Let us have a more formal description of a symmetric polynomial (function). For any
n ∈ N and d = (d1, . . . , dn) ∈ Nn consider the following subset of the symmetric group
Sn:

Sd
n ∶= {π ∈ Sn ∣ ∀ i, j ∈{1, . . . , n} .((di = dj ∧ i ≤ j) Ô⇒ π(i) ≤ π(j))} .

Then define the minimal symmetric segment, corresponding to d, as

ς(d) ∶= ∑
π∈Sd

n

n

∏
j=1

x
dj

π(j)
.

The idea is that ς(d) represents the minimal polynomial which is symmetric and has
monomials in which the exponents of variables are given by d. For example, we have
ς(2,1) = x2

1x2+x2
2x1 and ς(1,1) = x1x2. However, for the sake of legibility we prefer to

use variables x, y, . . . instead of x1, x2, . . . in concrete cases such as these, so we write
for example ς(2,2,0,0) = x2y2 + x2z2 + x2w2 + y2z2 + y2w2 + z2w2.

Clearly ς(d) does not change if we permute the terms of d, so whenever necessary
we can assume without loss of generality that d is a decreasing sequence. This is
helpful since if we view ς as a map from finite decreasing sequences to polynomials,
it is injective.

So how many terms does ς(d) have? From each group of terms which differ only by
the order of factors we choose a single term (specifically, the one with the exponents
in the order, given by d, and in which among the same exponents the variables have
increasing indices). For example, ς(2,1) = x2

1x2 +x2
2x1 contains one of the terms x2

1x2,
x2x

2
1 and one of the terms x2

2x1, x1x
2
2. In essence, we are considering the permutations

of multisets. That is, if we split d into blocks of equal terms and the sizes of these
blocks are k1, . . . , kj , then ∣Sd

n∣ = n!
k1!k2!...kj !

.

The crucial observation here is the following: a polynomial (or a polynomial function)
p over a unital commutative semiring X is symmetric if and only if it can be written
as a linear combination of minimal symmetric segments, in the sense that

p(x1, . . . , xn) =
m

∑
k=1

ak ς(dk)

for some m ∈ N, a1, . . . , am ∈ X and d1, . . . , dm ∈ Nn.
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Recall that the fundamental theorem of symmetric polynomials over rings states that
every symmetric polynomial function over a ring can be represented by a polynomial
in elementary symmetric polynomials. Our main purpose in this paper is to prove a
similar version of this theorem for upper-bound semirings.

Definition 2.4 Let X be a uc-semiring.

• For any n ∈ N and k ∈ N≤n the corresponding elementary symmetric poly-
nomial is defined as

eln,k(x1, . . . , xn) ∶= ς(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k many

, 0, . . . ,0´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−k many

).

In other words, the elementary symmetric polynomials are precisely the minimal
symmetric segments, given by (decreasing) finite binary sequences.3

• Given n ∈ N, we say that X is n-elementary when for every symmetric poly-
nomial p in n variables there exists a polynomial r in n variables, such that

p(x1, . . . , xn) = r(eln,1(x1, . . . , xn), . . . ,eln,n(x1, . . . , xn))
for all x1, . . . , xn ∈X at the level of polynomial functions.

• X is fully elementary when it is n-elementary for all n ∈ N.

Obviously, any uc-semiring is 0-elementary and 1-elementary. Note that higher ele-
mentarity implies lower one.

Proposition 2.5 Let a uc-semiring X be n-elementary. Then it is also m-elementary
for all m ∈ N≤n.
Proof. It suffices to show for any n ∈ N that if X is (n + 1)-elementary, it is also
n-elementary. To this end, take any symmetric polynomial p in n variables in X ; we
can write it in the form

p(x1, . . . , xn) =
m

∑
k=1

akς(dk,1, . . . , dk,n).

Define

q(x1, . . . , xn, xn+1) ∶=
m

∑
k=1

akς(dk,1, . . . , dk,n,0).
3Note that eln,0 is the constant 1, and thus generally uninteresting in this context.
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Then q is symmetric as well, so by assumption there exists a polynomial r with

q(x1, . . . , xn+1) = r(eln+1,1(x1, . . . , xn+1), . . . ,eln+1,n+1(x1, . . . , xn+1)).
We get

p(x1, . . . , xn) = q(x1, . . . , xn,0) =
= r(eln+1,1(x1, . . . , xn,0), . . . ,eln+1,n(x1, . . . , xn,0), x1 . . . xn ⋅ 0) =

= r(eln,1(x1, . . . , xn), . . . ,eln,n(x1, . . . , xn),0) =
= s(eln,1(x1, . . . , xn), . . . ,eln,n(x1, . . . , xn))

for s(x1, . . . , xn) ∶= r(x1, . . . , xn,0).

3 Elementarity in Upper-bound Semirings

In [11] we showed that in idempotent semirings full elementarity is equivalent to the
fulfillment of Frobenius equalities, with the purpose to have a characterization of
elementarity for the tropical semiring and semirings related to it. In this section we
significantly generalize this result to upper-bound semirings.

Recall that the Frobenius equality for the exponent n ∈ N in a uc-semiring X states
that (x + y)n = xn + yn for all x, y ∈ X . The Frobenius equality for 0 states 1 = 1 + 1,
so it is equivalent to the idempotency of the semiring, but we do not want to restrict
ourselves to those. As such, we consider only the Frobenius equalities for positive
exponents.

Definition 3.1 A uc-semiring X is Frobenius when it satisfies Frobenius equalities
for all n ∈ N≥1.
Putting natural numbers into Frobenius equalities reveals some properties of a Frobe-
nius semiring. We prepare a lemma for later.

Lemma 3.2 Let X be a unital semiring.

1. If 2 = 3 in X, then 2 = 4 in X.

2. If 2 = 4 in X and X is upper-bound, then 2 = 3 in X.

3. If X is Frobenius, then 2 = 4 in X.

7



Proof.

1. Add 1 to the equality 2 = 3 and conclude 2 = 3 = 4.
2. We have 2 ≤ 2 + 1 = 3 ≤ 3 + 1 = 4 = 2. Since X is upper-bound, we infer 2 = 3.
3. Calculate 2 = 12 + 12 = (1 + 1)2 = 4.

Note that if indeed 2 = 4 in a unital semiring X , then any two m,n ∈ N≥2 are equal
whenever they have equal parity. If 2 = 3, then all m,n ∈ N≥2 are equal in X .

We can now formulate and prove the first step towards the general theorem classifying
elementarity in upper-bound uc-semirings. We calculate the product between an
elementary symmetric polynomial eln,k and a minimal symmetric segment with at
most k non-zero exponents. It is instructive to start with an example.

Example 3.3
ς(3,2,0,0) ⋅ ς(1,1,0,0) =

= (x3y2 + x3z2 + x3w2 + y3x2 + y3z2 + y3w2 + z3x2 + z3y2 + z3w2 +w3x2 +w3y2 +w3z2)⋅
⋅(xy + xz + xw + yz + yw + zw) =

(evaluate the 72 terms, collect them together to form minimal symmetric segments)

= ς(4,3,0,0) + ς(4,2,1,0) + 2 ⋅ ς(3,3,1,0) + ς(3,2,1,1) =
= ς(3 + 1,2 + 1,0,0) + ς(3 + 1,2,0 + 1,0) + 2 ⋅ ς(3,2 + 1,0 + 1,0) + ς(3,2,0 + 1,0 + 1)

The point is, the product of ς(3,2,0,0) and ς(1,1,0,0) can be expressed as a linear
combination (with natural numbers as coefficients) of minimal symmetric segments of
sequences that we get by adding the terms of permutations of (3,2,0,0) and (1,1,0,0)
and ordering the result to a decreasing sequence.

Consider now the general case. Let X be a uc-semiring, n ∈ N, k ∈ {1, . . . , n} and
d = (d1, . . . , dn) ∈ Nn a decreasing sequence, for which all non-zero terms appear
among the first k terms (meaning, either k = n or k < n and dk+1 = 0).
For each j ∈ {k, . . . , n} define Idj to be the set of those binary sequences α ∈ {0,1}n,
such that:

• α has exactly k many 1s (therefore n − k many 0s),

• the index of the last 1 in α is j,

8



• the (componentwise) sum d + α is a decreasing sequence.

Note that then for any α ∈ Idj and any i ∈ N with k < i ≤ j we have αi = 1.
Now, the polynomial ς(d) ⋅ eln,k is a product of two symmetric polynomials, and is
therefore symmetric itself, meaning that we can write it as a linear combination of
minimal symmetric segments. Consider an arbitrary term xd1

π(1)
. . . xdn

π(n)
from ς(d) and

an arbitrary term xρ(1) . . . xρ(k) from eln,k. Their product is the product of powers of
variables, n − k many of which have the exponent of the form di and the remaining k

have the exponent of the form di+1. We can always order the exponents decreasingly,
so each such product of monomials appears in ς(d + α) for some j ∈ {k, . . . , n} and
α ∈ Idj . A particular product of monomials can appear several times, but that number
is necessarily a natural number since the coefficients of monomials in ς(d) and eln,k

are all equal to 1. That is, we have

ς(d) ⋅ eln,k =
n

∑
j=k

∑
α∈Id

j

aj,α ς(d + α)

for some aj,α ∈ N. Clearly every monomial in ς(d + α) can actually be obtained, so
necessarily aj,α ≥ 1. Furthermore, note that there is only one way to get a term from
ς(d + α) when j = k, so we can write

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0) + n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α).

We summarize our conclusions in the following lemma.

Lemma 3.4 Let X be a uc-semiring, n ∈ N, k ∈ {1, . . . , n} and d = (d1, . . . , dn) ∈ Nn

a decreasing sequence, for which all non-zero terms appear among the first k terms.
Then

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0) + n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α)

for some aj,α ∈ N≥1.
We now restrict ourselves to Frobenius semirings.

Lemma 3.5 Let X be an upper-bound Frobenius semiring and n ∈ N≥2. Then
xn + xn−1y + yn = xn + yn

for all x, y ∈X.
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Proof. Since X is Frobenius, we have

xn + yn ≤ xn + xn−1y + yn ≤ n

∑
k=0

(n
k
)xn−kyk = (x + y)n = xn + yn.

Since X is upper-bound, we conclude xn + yn = xn + xn−1y + yn.

In Frobenius semirings we can symplify the formula from Lemma 3.4 significantly. To
demonstrate how, we first continue the example from before, and afterwards prove
the general result.

Example 3.6 Recall from Example 3.3 that

ς(3,2,0,0) ⋅ ς(1,1,0,0) = ς(4,3,0,0) + ς(4,2,1,0) + 2 ⋅ ς(3,3,1,0) + ς(3,2,1,1).
We claim that, assuming the Frobenius property, we can eliminate all minimal sym-
metric segments on the right-hand side save the first one. We start from the back.

The first term in ς(3,2,1,1) is x3y2zw. We also have terms x4y2z and w4y2z in the
earlier segment ς(4,2,1,0). With Lemma 3.5 we can calculate

x4y2z + x3y2zw +w4y2z = y2z(x4 + x3w +w4) = y2z(x4 +w4) = x4y2z +w4y2z.

We have managed to eliminate one term of ς(3,2,1,1) and with the same kind of
reasoning we can eliminate others as well, removing this segment altogether.

Next, consider the term x3y3z from ς(3,3,1,0). We can eliminate it with the terms
x4y3 and z4x3 from ς(4,3,0,0). The segment ς(3,3,1,0) (and in particular the term
x3y3z) is multiplied by 2, but we can just do the elimination twice. Considering also
other relevant permutations of variables, we eliminate the whole 2 ⋅ ς(3,3,1,0).
Finally, eliminate x4y2z in ς(4,2,1,0) with the help of terms x4y3 and x4z3 from
ς(4,3,0,0), and similarly for the rest of ς(4,2,1,0). In the end we get just ς(3,2,0,0) ⋅
ς(1,1,0,0) = ς(4,3,0,0).
We now tackle the general case.

Lemma 3.7 Let X be an upper-bound Frobenius semiring, n ∈ N, k ∈ {1, . . . , n} and
d = (d1, . . . , dn) ∈ Nn a decreasing sequence, for which all non-zero terms appear among
the first k terms. Then

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0).

10



Proof. By Lemma 3.4 we have

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0) + n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α)

for some aj,α ∈ N≥1. If k = n, we are done, so assume hereafter that k < n.
We claim that we can remove the summands with j ≥ k + 1, first for the largest j,
then working down. Here is one step of the procedure. Take any j with k + 1 ≤ j ≤ n
and any α ∈ Idj . Let i ∈ {1, . . . , n} denote the first index, for which αi = 0. Such i

exists because k < n, and we have i < j since j ≥ k + 1. Define β to be the same finite
binary sequence as α, except with the i-th and j-th term switched. Observe that then
β ∈ Idj−1.
Consider any monomial xd1+α1

π(1)
. . . xdn+αn

π(n)
in ς(d+α). Let ρ denote the same permuta-

tion as π, except with the i-th and j-th value switched. Then both x
d1+β1

π(1)
. . . x

dn+βn

π(n)

and x
d1+β1

ρ(1)
. . . x

dn+βn

ρ(n)
appear in ς(d + β).

Since aj−1,β ≥ 1, we can “borrow” these two terms from aj−1,β ς(d + β); denoting
P ∶= xd1+α1

π(1)
. . . xdi−1+αi−1

π(1)
⋅ xdj

π(i)
⋅ xdi+1+αi+1

π(1)
. . . x

dj−1+αj−1

π(1)
⋅ xdj

π(j)
⋅ xdj+1+αj+1

π(1)
. . . xdn+αn

π(1)

and using Lemma 3.5, we get

x
d1+β1

π(1)
. . . x

dn+βn

π(n)
+ xd1+α1

π(1)
. . . xdn+αn

π(n)
+ x

d1+β1

ρ(1)
. . . x

dn+βn

ρ(n)
=

= P ⋅ (xdi−dj+1

π(i)
+ x

di−dj
π(i)

xπ(j) + x
di−dj+1

π(j)
) = P ⋅ (xdi−dj+1

π(i)
+ x

di−dj+1

π(j)
) =

= xd1+β1

π(1)
. . . x

dn+βn

π(n)
+ x

d1+β1

ρ(1)
. . . x

dn+βn

ρ(n)
.

The term xd1+α1

π(1)
. . . xdn+αn

π(n)
has vanished! If we do that for all terms in ς(d + α), we

have effectively decreased aj,α by one, while only using terms from (j − 1)-segments
(which remained unchanged). Keep doing that for all j between k + 1 and n from
largest to smallest until all those aj,α are reduced to zero. In the end, we are left with
just

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0).

Lemma 3.8 Let X be an upper-bound Frobenius semiring, n ∈ N and d = (d1, . . . , dn) ∈
Nn a decreasing sequence. Then

ς(d) = eld1−d2n,1 ⋅ . . . ⋅ eldn−1−dnn,n−1 ⋅ eldnn,n.
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Proof. Use Lemma 3.7 as an induction step to first factor out eln,n from ς(d) as many
times as possible (which is dn many), then eln,n−1 from the remainder as many times
as possible (which is dn−1 − dn), and so on. In the end we are left with ς(0, . . . ,0),
which is equal to 1.

We are now ready to prove the central theorem in the paper.

Theorem 3.9 (Characterization of elementary upper-bound semirings) The
following statements are equivalent for any upper-bound uc-semiring X.

1. X is Frobenius.

2. X is fully elementary.

3. X is n-elementary for some n ∈ N≥2.
4. X is 2-elementary.

Proof.

• (1⇒ 2)
Any symmetric polynomial can be written as a linear combination of minimal
symmetric segments, and any such segment can be written as a product of
elementary symmetric polynomials by Lemma 3.8.

• (2⇒ 3)
By definition.

• (3⇒ 4)
By Proposition 2.5.

• (4⇒ 1)
Take any n ∈ N≥1. The polynomial xn + yn is symmetric, so by assumption we
can write

xn + yn = m

∑
k=1

ak(xy)ik(x + y)jk .
This holds for all x, y ∈ X , and we can choose to set y to 0 and replace x with
x + y which gives us

(x + y)n = ∑
k∈{1,...,m},ik=0

ak(x + y)jk .

12



Hence

xn + yn ≤ n

∑
k=0

(n
k
)xn−kyk = (x + y)n = ∑

k∈{1,...,m},ik=0

ak(x + y)jk ≤

≤ m

∑
k=1

ak(xy)ik(x + y)jk = xn + yn

(note that we needed n ≥ 1 for the first step in this chain). X is upper-bound,
so we conclude xn + yn = (x + y)n.

In short, an upper-bound uc-semiring is fully elementary if and only if it is Frobenius.
It is important that the semiring is upper-bound — we do not have the equivalence in
general. According to the fundamental theorem of symmetric polynomials over rings,
all uc-rings are elementary, but they are not Frobenius in general (take for example
the ring of real numbers R). We discuss this more in detail in Section 5.

4 Elementarity in Linearly Ordered Semirings

In the previous section we characterized the fully elementary upper-bound semirings
as the Frobenius ones. However, many interesting upper-bound semirings are linearly
ordered4 by their intrinsic order — in fact, our starting motivation was to study
elementarity in semirings such as the tropical and the extended tropical semiring,
which are linearly ordered. In this section we improve the characterization for such
semirings.

To set the stage, we first recall the basic facts about the ghost ideal [8, 6, 11], defined
for any semiring X as the subset of elements which satisfy the idempotency condition:

νX ∶= {a ∈X ∣ a = a + a} .
Clearly 0 ∈ νX and if a, b ∈ νX , then a + b ∈ νX . Also, if a ∈ νX and x ∈ X , then
x ⋅ a ∈ νX and a ⋅ x ∈ νX . In short, νX is indeed a semiring ideal in X . We can now
immediately conclude from the definition that νX is an idempotent semiring.

Define the map ν∶X → X by ν(x) ∶= x + x. Clearly ν is an additive monoid homo-
morphism, although it is not necessarily a semiring homomorphism (take for example
X = N). Also, ν is a monotone map (with regard to the intrinsic order) and we have
x ≤ ν(x) for all x ∈ X .

4Recall that X is linearly ordered by ≤ when all x, y ∈X are comparable, i.e. x ≤ y or y ≤ x.
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By definition, νX is the set of fixed points of ν. Note that if X is unital (so we have
natural numbers in X), we can write ν(x) = 2x and νX = {a ∈ X ∣ a = 2a}.
The consideration of ghost ideals arose from the study of supertropical semirings [8,
6, 11], which we will get to shortly. But first, a more general notion.

Definition 4.1 A semiring X is quasiidempotent when x + x + x + x = x + x for all
x ∈X .

Clearly ν can be used to characterize quasiidempotent semirings.

Proposition 4.2 Let X be a semiring. The following statements are equivalent.

1. X is quasiidempotent.

2. ν is a projection (i.e. ν ○ ν = ν).
3. The image of ν is νX.

4. The image of ν is an idempotent subsemiring in X.

Proof. Easy.

When we have a multiplicative unit, we can extend the characterization of quasiidem-
potent semirings.

Proposition 4.3 Let X be a unital semiring. The following statements are equiva-
lent.

1. X is quasiidempotent.

2. 2 = 4 in X.

3. ν is a semiring homomorphism.

4. νX has a multiplicative unit and the restriction ν∶X → νX is a unital semiring
homomorphism.
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Proof.

• (1⇒ 2)
Apply quasiidempotency for the unit 1.

• (2⇒ 1)
If 2 = 4, then 2x = 4x for any x ∈X .

• (2⇒ 3)
We know that ν is an additive monoid homomorphism. It remains to check that
ν preserves multiplication: ν(x) ⋅ ν(y) = 2x ⋅ 2y = 4xy = 2xy = ν(xy).

• (3⇒ 2)
2 = ν(1) = ν(1 ⋅ 1) = ν(1) ⋅ ν(1) = 2 ⋅ 2 = 4.

• (2 ∧ 3⇒ 4)
We have ν(1) = 2 and 2 ⋅ ν(x) = 4x = 2x = ν(x).

• (4⇒ 3)
Yes.

Quasiidempotent semirings are useful because they allow us to view X as a bundle5

over νX , with ν as the bundle projection. This bundle has a section νX ↪X and both
ν and this inclusion preserve the semiring operations and the intrinsic order. This
allows us to pass between the total space and the base of the bundle, often reducing
issues from X to the more manageable (since it is an idempotent semiring) νX .

In light of this view, let us examine fibers of ν closer.

Lemma 4.4 Let X be a quasiidempotent semiring.

1. Given a ∈X, the fiber ν−1(a) is non-empty if and only if a ∈ νX. In that case a

is the largest element of ν−1(a).
2. Suppose X is upper-bound. For any x ∈X and a ∈ νX, if x ≤ a, then x + a = a.6
5Here we use the term ‘bundle’ in the most general sense — as any map, where we treat the

domain as a disjoint union of fibers.
6As a special case, when X is idempotent (therefore upper-bound, 1 = 2 and νX = X), we get

that a ≤ b⇔ a + b = b for all a, b ∈X .
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Proof.

1. Suppose we have x ∈ ν−1(a); then 2a = 4x = 2x = a, so a ∈ ν−1(a). Conversely, if
a = 2a, then a ∈ ν−1(a).
Take any x ∈ ν−1(a). Then x ≤ 2x = a.

2. Since x ≤ a, there exists y ∈ X with x + y = a. We then have

a ≤ x + a ≤ 2x + 2a = 4x + 2y = 2x + 2y = 2a = a.
Since X is upper-bound, we conclude a = x + a.

We now recall the definition of supertropical semirings [7, 11].

Definition 4.5 A supertropical semiring X is a quasiidempotent uc-semiring
which satisfies the following for all a, b ∈X :

• if ν(a) ≠ ν(b), then a + b ∈ {a, b},
• if ν(a) = ν(b), then a + b = ν(a) = ν(b).

Finally, we get to linearly ordered upper-bound semirings. In fact, the intrinsic order
is the only order on semirings that we consider in this paper; thus, any time we refer
to a linearly ordered semiring, we mean linearly ordered by its intrinsic order.

In any linearly ordered upper-bound semiring X we can introduce the strict order
relation < as one would expect. For a, b ∈ X define a < b in either of the following
equivalent ways:

a ≤ b ∧ a ≠ b ⇐⇒ ¬(b ≤ a).
The relation < is irreflexive, asymmetric and transitive. Also, < satisfies the law of
trichotomy: for any a, b ∈X exactly one of the statements a < b, a = b, b < a holds.

Lemma 4.6 Let X be a linearly ordered upper-bound quasiidempotent unital semir-
ing.

1. For any a ∈ νX the fiber ν−1(a) contains either exactly one or exactly two ele-
ments.

2. For all x, y ∈X we have x = y if and only if

ν(x) = ν(y) ∧ (x ∈ νX ⇐⇒ y ∈ νX).
16



3. If x, y ∈X, y ∉ νX and x < y, then 2x < y.

4. For any x, y ∈X, if x < y, then x + y = y.
Proof.

1. Since a ∈ νX , Lemma 4.4 tells us that a is the largest element of ν−1(a). Suppose
we had at least two further elements x, y ∈ ν−1(a); without loss of generality
assume x < y < a. Then there exists u ∈ X such that x + u = y. It follows that
2u ≤ 2y = a, but we cannot have 2u = a since that would mean u ∈ ν−1(a) and
then y = x+u ≥ 2min{x,u} = a (since in a linear order min{x,u} ∈ {x,u}). Thus
2u < a. If x ≤ 2u, then a = 2x ≤ 4u = 2u < a, a contradiction, so 2u < x. Then
there exists v ∈X such that 2u + v = x. Lemma 3.2 gives us 2 = 3, and we get a
contradiction y = x + u = 3u + v = 2u + v = x.

2. Follows easily from the previous item.

3. Suppose 2x ≥ y; then 2x = 4x ≥ 2y. On the other hand x ≤ y implies 2x ≤ 2y, so
2x = 2y. But ν−1(2y) = {y,2y} and x < y < 2y, a contradiction.

4. If y ∈ νX , then x+y = y by Lemma 4.4. Assume now y ∉ νX ; then by the previous
item 2x < y. We have some u ∈X with x+u = y. Certainly u ≤ y. Suppose u < y;
then 2u < y. Since 2x,2u ∈ νX , Lemma 4.4 tells us that 2y = 2x + 2u ∈ {2x,2u}.
In either case we get 2y < y, a contradiction. Hence u = y, meaning that
y = x + u = x + y.

We can now show that when a semiring is linearly ordered, elementarity (as well as
supertropicality) reduces to a simple comparison of two numbers.

Theorem 4.7 (Characterization of elementary linearly ordered semirings)
The following statements are equivalent for any linearly ordered upper-bound uc-
semiring X.

1. The equivalent statements of Theorem 3.9 hold for X (in particular, X is fully
elementary).

2. X is supertropical.

3. X is quasiidempotent.

4. 2 = 3 in X.
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Proof.

• (1⇒ 3)
Lemma 3.2 tells us that the Frobenius property of X implies 2 = 4 in X .

• (1 ∧ 3⇒ 2)
Take any a, b ∈ X . If a = b, then a + b = 2a = ν(a). Otherwise without loss of
generality a < b, so a + b = b ∈ {a, b} by Lemma 4.6.

• (2⇒ 3)
By definition.

• (3⇒ 1)
We prove the Frobenius equality for any n ∈ N≥1. Take x, y ∈ X ; since X is
linearly ordered, we may without loss of generality assume x ≤ y. If x = y, then

(x + y)n = (2x)n = 2nxn = 2xn = xn + yn.

On the other hand, if x < y, then x + y = y by Lemma 4.6. Hence

xn + yn ≤ n

∑
k=0

(n
k
)xn−kyk = (x + y)n = yn ≤ xn + yn.

Since X is upper-bound, we conclude (x + y)n = xn + yn.

• (3⇔ 4)
By Lemma 3.2 the statements 2 = 4 and 2 = 3 are equivalent in our situation.

5 Towards General Characterization of Elementar-

ity

The previous two sections established the main results of the paper. This section, on
the other hand, is more speculative. We consider what the scope of our results is —
we look at them from the perspective of general uc-semirings, rather than just the
upper-bound ones.

Recall that Theorem 3.9 tells us that full elementarity is equivalent to the Frobenius
property for upper-bound uc-semirings. Clearly, we do not have such an equivalence
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for general uc-semirings. By the fundamental theorem of symmetric polynomials over
rings, every unital commutative ring is fully elementary. Of course, not every uc-ring
is Frobenius.7 There is a simple characterization for when it is.

Proposition 5.1 A uc-ring X is Frobenius if and only if x ⋅ y ⋅ (x + y) = 0 for all
x, y ∈X.

Proof.

• (⇒)
Suppose X is a Frobenius ring. We have 2 = 4 by Lemma 3.2, and we can
subtract 1 on both sides to get 1 = 3. Thus
x3 + y3 = (x+ y)3 = x3 +3x2y +3xy2 + y3 = x3 +x2y +xy2 + y3 = x3 +xy(x+ y)+ y3.
Subtracting x3 + y3 on both sides yields the desired equation.

• (⇐)
First apply the assumed equation for x = y = 1 to get 2 = 0. Take now any
n ∈ N≥1; we prove the Frobenius equality for the exponent n by induction on n.
Of course, the Frobenius equality for n = 1 always holds.

As for the induction step, assume that the Frobenius equalities hold for expo-
nents, smaller than n (but larger than 0). We have (x+ y)n =∑n

k=0 (nk)xn−kyk. If

n is even, we have the middle binomial coefficient ( n

n/2
) = ( n−1

n/2−1
)+(n−1

n/2
) = 2 ⋅(n−1

n/2
)

which is even, so equal to 0 in X . All other terms (regardless of the parity of
n) come in pairs, and for 0 < k < n/2 we have

(n
k
)xn−kyk + ( n

n − k
)xkyn−k = (n

k
)(xy)k(xn−2k + yn−2k) =

= (n
k
)(xy)k(x + y)n−2k = xy(x + y)(n

k
)(xy)k−1(x + y)n−2k−1 = 0.

Thus what we are left with is (x + y)n = (n
0
)xn + (n

n
)yn = xn + yn.

7There is a reason why the Frobenius equalities (x+y)n = xn
+yn are informally called “Freshman’s

Dream”.

19



Thus not every fully elementary semiring is Frobenius. What about the other impli-
cation? We do not yet know the answer, so we pose this as a question.

Question 5.2 Is every Frobenius semiring fully elementary?

The problem with answering such a question is that, at least in rings, and presum-
ably in many other semirings as well, the Frobenius property is entirely incidental to
elementarity. On the other hand, it proved to be crucial for upper-bound semirings.
We now make it explicit why this was the case.

Lemma 5.3 Let X be a uc-semiring. The following statements are equivalent.

1. X is Frobenius and 2 = 3 in X.

2. X satisfies the statement of Lemma 3.5.

3. X satisfies the statement of Lemma 3.7

4. X satisfies the statement of Lemma 3.8

5. For every n ∈ N the map ς is a monoid homomorphism from the additive monoid
of decreasing sequences of length n to the multiplicative monoid of polynomial
functions in n variables over X.

Proof.

• (1⇒ 2)
We reprove Lemma 3.5, but this time only under the assumption that X is
Frobenius and 2 = 3 in X .

Take any x, y ∈ X and n ∈ N≥2. Then (n1) = n = n + 1 in X . By Frobenius we get

xn + yn = (x + y)n = n

∑
k=0

(n
k
)xn−kyk =

= xn−1y +
n

∑
k=0

(n
k
)xn−kyk = xn−1y + (x + y)n = xn + xn−1y + yn.

• (2⇒ 3)
Note that the proof of Lemma 3.7 does not use the fact that X is upper-
bound directly. It relies on Lemma 3.4 (applicable for general uc-semirings)
and Lemma 3.5.
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• (3⇒ 4)
The proof of Lemma 3.8 does not use the upper-boundedness of X directly. It
relies on Lemma 3.7.

• (4⇒ 5)
By assumption we have ς(d) = eld1−d2n,1 ⋅ . . . ⋅ eldn−1−dnn,n−1 ⋅ eldnn,n for any decreasing
d ∈ Nn. Applying this for d′, d′′, d′ + d′′, we get

ς(d′ + d′′) = el(d′1+d′′1 )−(d′2+d′′2 )n,1 ⋅ . . . ⋅ el(d
′

n−1+d
′′

n−1)−(d
′

n+d
′′

n)
n,n−1 ⋅ eld

′

n+d
′′

n
n,n =

= (eld′1−d′2n,1 ⋅ . . . ⋅ eld
′

n−1−d
′

n

n,n−1 ⋅ eld
′

n
n,n) ⋅ (eld′′1−d′′2n,1 ⋅ . . . ⋅ eld

′′

n−1−d
′′

n

n,n−1 ⋅ eld
′′

n
n,n) = ς(d′) ⋅ ς(d′′).

• (5⇒ 1)
Take any n ∈ N≥1 and x, y ∈X . We get8

xn+yn = ς(n,0) = ς((1,0)+. . .+(1,0)) = ς(1,0) ⋅ . . . ⋅ς(1,0) = (ς(1,0))n = (x+y)n.
Thus X is Frobenius, and Lemma 3.2 tells us that therefore natural numbers,
greater than or equal to 2, are the same in X if they have equal parity. Hence

2 = 6 = ς(2,1,0)(1,1,1) = ς(1,0,0)(1,1,1) ⋅ ς(1,1,0)(1,1,1) = 3 ⋅ 3 = 9 = 3.

In view of the last of the equivalent statements of the lemma, we introduce the fol-
lowing definition.

Definition 5.4 A uc-semiring is symhomomorphic when it satisfies the equivalent
statements of Lemma 5.3.

The point is that it is the symhomomorphic property which captures the essence of
the idea of the proof of elementarity in this paper. In fact, we can distill the results
of Section 3 into the following corollary.

Corollary 5.5 Let X be a uc-semiring.

1. If X is upper-bound and Frobenius, it is symhomomorphic.

2. If X is symhomomorphic, it is fully elementary.

8One can make the case that this argument is the essence, why we do not include n = 0 in the
Frobenius property (Definition 3.1): ς(n,0) has two terms for n ≥ 1, and only one for n = 0.

21



Proof.

1. By Lemmas 3.2 and 5.3.

2. The proof of (1⇒ 2) in Theorem 3.9 relies only on Lemma 3.8.

Of course, this is just the part that Frobenius implies full elementarity. Theorem 3.9
states that for upper-bound semirings the converse is also true. How critical is the
upper-boundedness for this argument?

Question 5.6 For upper-bound uc-semirings the Frobenius property and full elemen-
tarity are equivalent. Is there a larger natural class of semirings where this is still
true?

At first glance one might be optimistic and speculate that between characterizations
of full elementarity in upper-bound uc-semirings and in uc-rings, one will get a char-
acterization for general uc-semirings. The point is that upper-bound semirings are
in a sense “orthogonal” to rings. We have already mentioned that the only upper-
bound ring is the trivial one. Moreover, for every semiring X (and the aforementioned
equivalence relation a ≈ b ⇐⇒ a ≤ b ∧ b ≤ a) we have a short exact sequence

{0}→ [0]↪X ↠X/≈ → {0}

where X/≈ is an upper-bound semiring and the equivalence class [0] = {x ∈X ∣ 0 ≈ x}
is a ring. That is, any uc-semiring can be split into an upper-bound semiring and a
uc-ring in this way.

Unfortunately, this approach turns out to be rather limited. Exact sequences are useful
for categories which are abelian (or at least additive), which semirings decidedly are
not. In particular, it is not even true that if [0] is trivial, X is necessarily upper-bound.

A simple example is N2=4 ∶= N/∼ where N has the usual semiring operations and ∼ is
the smallest congruence such that 2 ∼ 4 (that is, we identify any numbers ≥ 2 which
have the same parity). The underlying set of N2=4 is {[0], [1], [2], [3]}, and we have
[0] ≤ [1] ≤ [2] ≤ [3] ≤ [2]. The uc-semiring N2=4 is Frobenius, but not upper-bound or
symhomomorphic.

Is it fully elementary? It turns out that the answer is yes. Recall from Lemma 3.4
that

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0) +
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α).
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In N2=4 we can transfer the big sum to the other side of the equation:

ς(d1 + 1, . . . , dk + 1,0, . . . ,0) = ς(d) ⋅ eln,k +
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α)

(it turns out that when a term in the big sum is not zero, the numbers are large
enough that only parity matters).

From here a suitable induction allows us to reduce all minimal symmetric segments to
polynomials in elementary symmetric polynomials. In fact, the argument is essentially
the same as in the fundamental theorem of symmetric polynomials over rings, where
we get

ς(d1 + 1, . . . , dk + 1,0, . . . ,0) = ς(d) ⋅ eln,k −
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α)

and proceed from there.

Recall from Lemma 3.7 that in the case of Frobenius upper-bound uc-semirings we
were able to write

ς(d1 + 1, . . . , dk + 1,0, . . . ,0) = ς(d) ⋅ eln,k + 0 ⋅
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α).

Is the ability to write these expressions in these forms merely a coincidence or is there
something more to it?

Question 5.7 Is it the case for every fully elementary semiring X that we have

ς(d1 + 1, . . . , dk + 1,0, . . . ,0) = ς(d) ⋅ eln,k + u ⋅
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d +α)

for some u ∈ X?

Above we made the case for this question by examples, but a theoretical case can
also be made. If we drop the upper-boundedness condition, the proof of (4 ⇒ 1) in
Theorem 3.9 still tells us that xn + yn ≈ (x + y)n for all n ∈ N and x, y ∈ X where X

is a fully elementary (or at least 2-elementary) uc-semiring. Take n = 2 and x = y = 1
to get 2 ≈ 4. Hence 2 ≤ 3 ≤ 4 ≤ 2, so also 2 ≈ 3. Thus there exists u ∈ X such that
3 + u = 2.
The idea is that this kind of u might “play the role of −1” sufficiently well. The
solution to the equation 3 + u = 2 may not be unique, but with some luck, given any

ς(d) ⋅ eln,k = ς(d1 + 1, . . . , dk + 1,0, . . . ,0) +
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α)
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(as per Lemma 3.4), we could find a solution which allows us to take the big sum to
the other side of the equation:

ς(d1 + 1, . . . , dk + 1,0, . . . ,0) = ς(d) ⋅ eln,k + u ⋅
n

∑
j=k+1

∑
α∈Id

j

aj,ας(d + α).

From here, we could derive full elementarity by induction.

Recall that Theorem 4.7 says (among other things) that a linearly ordered upper-
bound uc-semiring is fully elementary if and only if 2 = 3 holds in it. A positive
answer to the following question would be a significant generalization.

Question 5.8 Is the condition 2 ≈ 3 in a uc-semiring not just a necessary, but also a
sufficient condition for full elementarity?

Of course, this entire discussion is just an aspect of a more general question.

Question 5.9 Is there a meaningful theorem which classifies elementarity for arbi-
trary uc-semirings?
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