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Abstract

Zeilberger’s method of creative telescoping is crucial for the computer-generated proofs of com-
binatorial and special-function identities. Telescopers are linear differential or (q-)recurrence
operators computed by algorithms for creative telescoping. For a given class of inputs, when
telescopers exist and how to construct telescopers efficiently if they exist are two fundamen-
tal problems related to creative telescoping. In this paper, we solve the existence problem of
telescopers for rational functions in three variables including 18 cases. We reduce the existence
problem from the trivariate case to the bivariate case and some related problems. The existence
criteria given in this paper enable us to determine the termination of algorithms for creative
telescoping with trivariate rational inputs.
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1. Introduction

Creative telescoping plays a crucial role in the algorithmic proof theory of combina-

torial identities developed by Wilf and Zeilberger in the early 1990s [44, 45, 43]. For a
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given function f(x, y1, . . . , yn), the process of creative telescoping constructs a nonzero

linear differential or (q-)recurrence operator L in x such that

L(f) = Θy1
(g1) + · · ·+Θyn

(gn),

where Θyi
denotes the derivation or (q-)difference operator in yi and the gi’s belong to the

same class of functions as f . The operator L is then called a telescoper for f , and the gi’s

are called the certificates of L. Two fundamental problems have been studied extensively

related to creative telescoping. The first problem is the existence problem of telescopers,

i.e., deciding the existence of telescopers for a given class of functions. The second one is

the construction problem of telescopers, i.e., designing efficient algorithms for computing

telescopers if they exist. For more open problems related to creative telescoping, one can

see [19]. In this paper, we will mainly focus on the existence problem of telescopers and

study the construction problem of telescopers in future work.

The existence of telescopers is closely connected to the termination of algorithms for

creative telescoping and the hypertranscendence and algebraic dependency of functions

defined by indefinite sums or integrals [33, 40]. In 1990, Zeilberger first presented a

sufficient condition on the existence of telescopers by showing that telescopers always

exist for so-called holonomic functions in [44] using Bernstein’s theory of algebraic D-

modules. Soon after this work, Wilf and Zeilberger in [43] proved that telescopers exist for

proper hypergeometric terms. However, holonomicity and properness are only sufficient

conditions. Abramov and Le [4] gave a necessary and sufficient condition on the existence

of telescopers for rational functions in two discrete variables. This work was soon extended

to the hypergeometric case by Abramov [3], the q-hypergeometric case in [24], and the

mixed rational and hypergeometric case in [22, 13]. All of the above work only focussed on

the problem for bivariate functions of a special class. The first criterion on the existence of

telescopers beyond the bivariate case was given in [18], in which a necessary and sufficient

condition is presented on the existence problem of telescopers for rational functions in

three discrete variables. The goal of this paper is continuing this project by considering

the remaining cases, in which the continuous, discrete and q-discrete variables can appear.

The remainder of this paper is organized as follows. We define the existence problem

of telescopers precisely in Section 2 and recall different types of reductions that are used

in testing the exactness of bivariate rational functions in Section 3. Existence criteria are

given for 18 types of telescopers for rational functions in three variables in Section 4.

A preliminary version [14] of this article has appeared in the Proceedings of ISSAC’19.

In the present version, we include twelve more cases in which the q-shift operator appears

and also more detailed proofs throughout.
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2. Preliminaries

Let K be a field of characteristic zero and K(v) be the field of rational functions in
the variables v = {x, y1, . . . , yn} over K. For each v ∈ v, the derivation δv on K(v) is
defined as the usual partial derivation ∂/∂v with respect to v satisfying that δv(f + g) =
δv(f) + δv(g) and δv(fg) = gδv(f) + fδv(g) for all f, g ∈ K(v). Moreover, δv(c) = 0 if
and only if c ∈ K(v \ {v}), i.e., c is free of v. For each v ∈ v, the shift operator σv is the
K-automorphism of K(v) defined by σv(v) = v + 1 and σv(w) = w for all w ∈ v \ {v}.
Let q ∈ K \ {0} be such that qm 6= 1 for all nonzero m ∈ Z. For each v ∈ v, the q-shift
operator τq,v is the K-automorphism defined by τq,v(v) = qv and τq,v(w) = w for all
w ∈ v \ {v}. Abusing notation, we let δv and θv with θv ∈ {σv, τq,v} denote arbitrary

extensions of δv and θv to derivation and K-automorphism of K(v), the algebraic closure
of K(v).

Over the field K(v), we have a noncommutative algebra D := K(v)〈∂x, ∂y1
, . . . , ∂yn

〉
in which commutation rules are ∂vi∂vj = ∂vj∂vi for all vi, vj ∈ v, and for any v ∈ v and
f ∈ K(v),

∂vf =



















f∂v + δv(f) if ∂v = Dv,

σv(f)∂v if ∂v = Sv,

τq,v(f)∂v if ∂v = Tq,v.

(1)

where Dv, Sv, and Tq,v refer to the differential, shift and q-shift operators, respectively.
The algebra D is also called the ring of linear functional operators or Ore polynomials
(for more details, see [10, 26]). Let ∆v be the difference operator Sv − 1 and ∆q,v be the
q-difference operator Tq,v − 1. For each v ∈ v, we define

Θv := ∂v − ∂v(1) =



















Dv if ∂v = Dv,

∆v if ∂v = Sv,

∆q,v if ∂v = Tq,v.

(2)

The action of the operator ∂v ∈ D on an element f ∈ K(v) is defined as

∂v(f) =



















δv(f) if ∂v = Dv,

σv(f) if ∂v = Sv,

τq,v(f) if ∂v = Tq,v.

(3)

In general, the action of the operator L =
∑

i0,i1,...,in≥0 ai0,i1,...,in∂
i0
x ∂

i1
y1

· · · ∂inyn
∈ D on

f ∈ K(v) is defined as

L(f) =
∑

i0,i1,...,in≥0

ai0,i1,...,in∂
i0
x ∂

i1
y1

· · ·∂inyn
(f).

Then the field K(v) becomes a left D-module. In this paper, we will mainly work with
rational functions in three variables x, y, z and the operators in K(x, y, z)〈∂x, ∂y, ∂z〉.

Example 2.1. Let L = 1 + (x + yz)Dx + 2SyTq,z ∈ K(x, y, z)〈Dx, Sy, Tq,z〉 and f =
1/(x+ yz). Then we have

L · f = f + (x+ yz)δx(f) + 2σy(τq,z(f)) =
2

qz + qyz + x
.
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The functions we consider will be in certain D-module, such as the field K(v) or
K(v). The ring K(x)〈∂x〉 is a subring of D that is also a left Euclidean domain. Efficient
algorithms for basic operations in K(x)〈∂x〉, such as computing the least common left
multiple (LCLM) of operators, have been developed in [10, 5].

Lemma 2.2. For an operator L =
∑ρ

i=0 eiD
i
x ∈ K(x)〈Dx〉 with eρ = 1, we let F be a

finite normal extension of K(x) containing the coefficients ei’s and G be the Galois group
of F over K(x). Let T be the LCLM of the operators σ(L) =

∑ρ
i=0 σ(ei)D

i
x for all σ ∈ G.

Then T belongs to K(x)〈Dx〉.

Proof. It suffices to show that τ(T ) = T for all τ ∈ G. Since Dx commutes with any
automorphism in G by [9, Theorem 3.2.4 (i)], we have τ(L1L2) = τ(L1)τ(L2) for all
L1, L2 ∈ F〈Dx〉. For each σ ∈ G, we have T = Pσσ(L) for some Pσ ∈ F〈Dx〉, which
implies that τ(σ(L)) divides τ(T ). When σ runs through all elements of G, so does τσ.
Hence τ(T ) is also a common left multiple of the operators σ(L) for all σ ∈ G. Since
τ(T ) and T are both monic and of the same degree in Dx, we get τ(T ) = T .

Remark 1. The above assertion is not true in the (q-)shift case. For example, take
L = Sx +

√
x. The LCLM of L and its conjugation Sx −

√
x is S2

x −
√

x(x + 1), which is
not in K(x)〈Sx〉.

Definition 2.3. For a rational function f ∈ K(x, y, z), a nonzero operator L(x, ∂x) ∈
K(x)〈∂x〉 is called a telescoper of type (∂x,Θy,Θz) for f if there exist rational functions
g, h ∈ K(x, y, z) such that

L(x, ∂x)(f) = Θy(g) + Θz(h). (4)

The rational functions g, h are called the certificates of L.

Note that all of the telescopers for a given function together with the zero operator
form a left ideal of K(x)〈∂x〉 (see [25, Definition 1]). The following lemma summarizes
closure properties related to the existence of telescopers.

Lemma 2.4. Let f, g ∈ K(x, y, z), a, b ∈ K(x) and α, β ∈ K(x). Then we have
(i) if both f and g have telescopers in K(x)〈Dx〉 of type (Dx,Θy,Θz), so does αf + βg;
(ii) if both f and g have telescopers in K(x)〈∂x〉 of type (∂x,Θy,Θz) with ∂x ∈ {Sx, Tq,x},

so does af + bg.

Proof. We first show that αf has a telescoper in K(x)〈Dx〉 if f does. When α = 0 the
conclusion is obvious. Next we assume that α 6= 0 and L =

∑ρ
i=0 eiD

i
x ∈ K(x)〈Dx〉 is

a telescoper for f . Then L(f) = Θy(u) + Θz(v) with u, v ∈ K(x, y, z). Set L̃ = L · 1
α ,

which belongs to K(x)〈Dx〉. Then we have L̃(αf) = Θy(u) + Θz(v), which means L̃ is
a telescoper for αf . By Lemma 2.2, there exists T ∈ K(x)〈Dx〉 such that T is a left
multiple of L̃. So T is also a telescoper for αf . When telescopers are in K(x)〈Sx〉 or
K(x)〈Tq,x〉, the above argument works for af for any a ∈ K(x). It remains to show that
f + g has a telescoper in K(x)〈∂x〉 with ∂x ∈ {Dx, Sx, Tq,x} if both f and g do. Assume
that P,Q ∈ K(x)〈∂x〉 are telescopers for f, g, respectively. Then the LCLM of P and Q
is a telescoper for f + g by the commutativity between operators in K(x)〈∂x〉 and the
operators Θy and Θz.
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Classes Types Telescoping equations

1. 1.1. (Dx, Dy , Dz) L(x,Dx)(f) = Dy(g) +Dz(h).

2.

2.1. (Dx,∆y ,∆z)

2.2. (Dx,∆q,y ,∆z)

2.3. (Dx,∆q,y ,∆q,z)

L(x,Dx)(f) = ∆y(g) + ∆z(h)

L(x,Dx)(f) = ∆q,y(g) + ∆z(h)

L(x,Dx)(f) = ∆q,y(g) + ∆q,z(h)

3.
3.1. (Sx, Dy , Dz)

3.2. (Tq,x, Dy , Dz)

L(x, Sx)(f) = Dy(g) +Dz(h)

L(x, Tq,x)(f) = Dy(g) +Dz(h)

4.

4.1. (Sx,∆y , Dz)

4.2. (Sx,∆q,y , Dz)

4.3. (Tq,x,∆y , Dz)

4.4. (Tq,x,∆q,y , Dz)

L(x, Sx)(f) = ∆y(g) +Dz(h)

L(x, Sx)(f) = ∆q,y(g) +Dz(h)

L(x, Tq,x)(f) = ∆y(g) +Dz(h)

L(x, Tq,x)(f) = ∆q,y(g) +Dz(h)

5.

5.1. (Sx,∆y,∆z)

5.2. (Sx,∆q,y,∆z)

5.3. (Sx,∆q,y,∆q,z)

5.4. (Tq,x,∆y,∆z)

5.5. (Tq,x,∆q,y,∆z)

5.6. (Tq,x,∆q,y,∆q,z)

L(x,Sx)(f) = ∆y(g) + ∆z(h)

L(x, Sx)(f) = ∆q,y(g) +∆z(h)

L(x, Sx)(f) = ∆q,y(g) + ∆q,z(h)

L(x, Tq,x)(f) = ∆y(g) +∆z(h)

L(x, Tq,x)(f) = ∆q,y(g) + ∆z(h)

L(x, Tq,x)(f) = ∆q,y(g) +∆q,z(h)

6.
6.1. (Dx,∆y , Dz)

6.2. (Dx,∆q,y , Dz)

L(x,Dx)(f) = ∆y(g) +Dz(h)

L(x,Dx)(f) = ∆q,y(g) +Dz(h)

Table 2.5. Six different classes of existence problems of telescopers

Let V = (V1, . . . , Vm) be any set partition of the variables v = {x, y1, . . . , yn}. A
rational function f ∈ K(v) is said to be split with respect to the partition V if f =
f1 · · · fm with fi ∈ K(Vi). A polynomial p ∈ K[v] is said to be integer-linear in K[v]
if there exist r ∈ K[z] and a, b1, . . . , bn ∈ Z such that p = r(ax + b1y1 + · · · + bnyn).
A polynomial p ∈ K[v] is said to be q-integer-linear in K[v] if there exist r ∈ K[z]
and a, b1, . . . , bn, s, t1, . . . , tn ∈ Z such that p = xsyt11 · · · ytnn r(xayb11 · · · ybnn ), A rational
function f = P/Q ∈ K(v) with P,Q ∈ K[v] and gcd(P,Q) = 1 is said to be (q-)proper
in K(v) if Q is a product of (q-)integer-linear polynomials over K. Split polynomials and
(q-)proper rational functions will be used to state our existence criteria for telescopers
in Section 4.

In the subsequent sections, we will study the existence of telescopers for rational
functions in three variables. More precisely, we consider the following problem.

Existence Problem for Telescopers. For a rational function f ∈ K(x, y, z), decide
the existence of telescopers of type (∂x,Θy,Θz) for f .

Remark 2.6. In the trivariate case, there are 18 different types of telescopers up to
the symmetry among (Θy,Θz) which are collected into six different classes in Table 2.5
according to different techniques used in the studies.
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Different types of partial fraction decompositions will be used in solving the existence
problems of telescopers. Let G = 〈θx, θy, θz〉 be the free abelian group generated by the
operators θx, θy, θz with θv ∈ {σv, τq,v}. Let f ∈ K(x, y, z) and H be a subgroup of G.
We call the set

[f ]H := {c · ψ(f) | ψ ∈ H and c ∈ K \ {0}}
the H-orbit at f . Two elements f, g ∈ K(x, y, z) are said to be H-equivalent if [f ]H =
[g]H , denoted by f ∼H g. The relation ∼H is an equivalence relation in K(x, y, z). Let
f = P/Q and g = A/B with P,Q,A,B ∈ K[x, y, z], gcd(P,Q) = 1 and gcd(A,B) = 1. If
f ∼H g, then P ∼H Q and A ∼H B since any ψ ∈ H is an automorphism on K(x, y, z).
So detecting the H-equivalence among rational functions can be reduced to that among
polynomials. Two irreducible polynomials in distinct H-orbits are clearly coprime. A
nonzero rational function f ∈ K(x, y, z) is said to be (θx, θy, θz)-invariant if there exist
m,n, k ∈ Z, not all zero, and c ∈ K \ {0} such that θmx θ

n
y θ

k
z (f) = c · f . By comparing the

leading coefficients, the constant c in the above relation must be of the form qs for some
s ∈ Z. Moreover, c = 1 if all θx, θy, and θz are shift operators.

For any subgroup H of G and any polynomial Q ∈ K(x, y)[z], one can group all of
irreducible factors in z of Q into distinct H-orbits that leads to the factorization

Q = c ·
n
∏

i=1

mi
∏

j=1

ψi,j(di)
ei,j , where c ∈ K(x, y), n,mi, ei,j ∈ N and ψi,j ∈ H

and the di’s are monic irreducible polynomials in distinct H-orbits. With respect to this
factorization, we have the unique partial fraction decomposition for a rational function
f = P/Q ∈ K(x, y, z) of the form

f = p+

n
∑

i=1

mi
∑

j=1

ei,j
∑

ℓ=0

ai,j,ℓ
ψi,j(di)ℓ

, (5)

where p, ai,j,ℓ ∈ K(x, y)[z] satisfying that degz(ai,j,ℓ) < degz(di). In the sequel, we will
take different H according to different types of existence problems.

Example 2.7. Consider the rational function of the form

f =
x

z2 + 2x+ y
+

y

z2 + 2x+ y + 1
+

−yz + x

z2 + 2qx+ y
+

3x2

z2 + 2qx+ y + 2z + 2
.

If H = 〈σy〉, then we have the decomposition

f =
x

d1
+

y

σy(d1)
+

−yz + x

d2
+

3x2

d3
,

where d1 = z2+2x+y, d2 = z2+2qx+y and d3 = z2+2qx+y+2z+2. Note that d1, d2, d3
are in distinct 〈σy〉-orbits. If H = 〈τq,x, σy〉, then we have the different decomposition

f =
x

d1
+

y

σy(d1)
+

−yz + x

τq,x(d1)
+

3x2

d3
,

where d1, d3 are in distinct 〈τq,x, σy〉-orbits. If H = 〈τq,x, σy, σz〉, then we have another
decomposition

f =
x

d1
+

y

σy(d1)
+

−yz + x

τq,x(d1)
+

3x2

τq,xσyσz(d1)
.

6



Cases Exactness equations

Continuous case 1.1. f = Dy(g) +Dz(h)

Discrete cases

2.1. f = ∆y(g) + ∆z(h)

2.2. f = ∆q,y(g) + ∆z(h)

2.3. f = ∆q,y(g) + ∆q,z(h)

Mixed cases
3.1. f = ∆y(g) +Dz(h)

3.2. f = ∆q,y(g) +Dz(h)

Table 3.2. Six different cases of exactness testing problems

3. Reductions and Exactness Criteria

In this section, let F be any field of characteristic zero and will take F = K(x) in
Section 4. In order to detect the existence of telescopers, we first need to check whether
1 is a telescoper or not. This is equivalent to the following problem.

Exactness Testing Problem. For a rational function f ∈ F(y, z), decide whether there
exist g, h ∈ F(y, z) such that

f = Θy(g) + Θz(h).

If such g, h exist, we say that f is (Θy,Θz)-exact in F(y, z).

Remark 3.1. Since there are three choices for each operator in {Θy,Θz} together with
the symmetry between Θy and Θz, there are 6 different types of exactness testing prob-
lems, listed in Table 3.2.

The following lemma shows that the exactness is unchanged even when we are looking
for the g and h in a larger field.

Lemma 3.3. Let f ∈ F(y, z). Then f is (Θy,Θz)-exact in F(y, z) if and only if it is
(Θy,Θz)-exact in F(y, z).

Proof. The sufficiency is obvious. For the necessity, we assume that there exist u, v ∈
F(y, z) such that f = Θy(u) + Θz(v). Let L be a finite normal extension of F(y, z)
containing the u, v and Θy(u),Θz(v) and let TrL/F(y,z) be the trace from L to F(y, z),
which commutes with (q-)shift operators by [23, Lemma 3.1] and also with derivations
by [9, Theorem 3.2.4 (i)]. Then

TrL/F(y,z)(f)=TrL/F(y,z) (Θy(u) + Θz(v)) =Θy(TrL/F(y,z)(u)) + Θz(TrL/F(y,z)(v)).

Since f ∈ F(y, z), we have TrL/F(y,z)(f) = mf with m=[L : F(y, z)]. Thus f = Θy(g) +

Θz(h) with g = 1
mTrL/F(y,z)(u) and h = 1

mTrL/F(y,z)(v) that are both in F(y, z).

Let E denote the set of all (Θy,Θz)-exact rational functions in F(y, z). Note that E
forms a subspace of F(y, z) viewed as an F-vector space. Reduction algorithms have been
developed in [21, 23, 35, 11, 41] for simplifying rational functions modulo E and then
reducing the exactness problem from general rational functions to simple fractions. For
later use, we summarize these reductions as follows.
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3.1. The continuous case

For a rational function f ∈ F(y, z), the Ostrogradsky–Hermite reduction [39, 34] with
respect to z decomposes f into the form

f = Dz(g) +
a

b
, (6)

where g ∈ F(y, z) and a, b ∈ F(y)[z] with gcd(a, b) = 1, degz(a) < degz(b) and b being
squarefree in z over F(y). Moreover, f = Dz(u) for some u ∈ F(y, z) if and only if a = 0.
We recall the criterion on the (Dy, Dz)-exactness of bivariate rational functions from [21,
Lemma 4].

Lemma 3.4. Let f ∈ F(y, z) be of the form (6) and write

a

b
=

n
∑

i=1

αi

z − βi
,

where αi, βi ∈ F(y) with βi 6= βj for i, j with 1 ≤ i, j ≤ n and i 6= j. Then f is (Dy, Dz)-
exact in F(y, z) if and only if for each i with 1 ≤ i ≤ n, we have αi = Dy(γi) for some

γi ∈ F(y).

The above lemma reduces the exactness problem in the differential case from bivariate
rational functions to univariate algebraic functions. Let α ∈ F(y) be an algebraic function
over F(y) with n := [F(y, α) : F(y)]. If α = Dy(β) for some β ∈ F(y), then β ∈ F(y, α)
by the trace argument as in the proof of Lemma 3.3. Assume that β = b0 + b1α +
· · · + bn−1α

n−1 with bi ∈ F(y). Then the equality α = Dy(β) leads to a system of

linear differential equations on the bi’s, whose rational solutions can be computed by the
method in [6]. A generalization of the Ostrogradsky–Hermite reduction to the algebraic
case also solves the exactness problem of algebraic functions [20].

3.2. The discrete cases

For any automorphism θ on F(y, z) and a, b ∈ F(y, z), we have the reduction formula

a

θn(b)
= θ(g)− g +

θ−n(a)

b
, (7)

where g =
∑n−1

i=0
θi−n(a)
θi(b) if n ≥ 0 and g = −∑−n−1

i=0
θi(a)

θn+i(b) if n < 0. By using the above

reduction formula, Abramov’s reduction in z [1, 2] decomposes f ∈ F(y, z) into the form

f = ∆z(g) +
a

b
, (8)

where g ∈ F(y, z) and a, b ∈ F(y)[z] with gcd(a, b) = 1, degz(a) < degz(b) and b being
shift-free in z over F(y), i.e., for any k ∈ Z \ {0} we have gcd(b, σk

z (b)) = 1. Moreover,
f = ∆z(u) for some u ∈ F(y, z) if and only if a = 0. We use the reduction formula (7)
with θ = σy to further decompose f as

f = ∆y(u) + ∆z(v) +

I
∑

i=1

Ji
∑

j=1

ai,j

dji
, (9)
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where u, v ∈ F(y, z), ai,j ∈ F(y)[z], and di ∈ F[y, z] are such that degz(ai,j) < degz(di)

and the di’s are irreducible polynomials in distinct 〈σy , σz〉-orbits. We recall the criterion

on the (∆y ,∆z)-exactness of bivariate rational functions by combining Lemma 3.2 and

Theorem 3.3 in [35].

Lemma 3.5. Let f ∈ F(y, z) be of the form (9). Then f is (∆y,∆z)-exact in F(y, z)

if and only if for all i, j with 1 ≤ i ≤ I, 1 ≤ j ≤ Ji, we have σmi
y (di) = σni

z (di) for

some mi, ni ∈ Z with mi > 0 and ai,j = σmi
y σ−ni

z (bi,j)− bi,j for some bi,j ∈ F(y)[z] with

degz(bi,j) < degz(di). In particular, if f is (∆y ,∆z)-exact, so is each ai,j/d
j
i .

For a rational function f ∈ F(y, z), Abramov’s reduction in z and its q-analogue in y

decompose f into

f = ∆q,y(g) + ∆z(h) +

I
∑

i=1

Ji
∑

j=1

ai,j

dji
, (10)

where g, h ∈ F(y, z), ai,j ∈ F(y)[z], di ∈ F[y, z] satisfy that degz(ai,j) < degz(di) and

di’s are irreducible polynomials in distinct 〈τq,y , σz〉-orbits. We recall the criterion on the

(∆q,y ,∆z)-exactness in F(y, z) from [11, Theorem 3].

Lemma 3.6. Let f ∈ F(y, z) be of the form (10). Then f is (∆q,y ,∆z)-exact in F(y, z) if

and only if for each i ∈ {1, . . . , I}, di ∈ F[z] and for each j ∈ {1, . . . , Ji}, ai,j = ∆q,y(bi,j)

for some bi,j ∈ F(y)[z]. In particular, if f is (∆q,y,∆z)-exact, so is each ai,j/d
j
i .

The q-analogue of Abramov’s reduction decomposes f ∈ F(y, z) into the form

f = ∆q,z(g) + c+
a

b
, (11)

where g ∈ F(y, z), c ∈ F(y) and a, b ∈ F(y)[z] with gcd(a, b) = 1, degz(a) < degz(b) and

b being q-shift-free in z over F(y), that is gcd(b, τkq,zb) = 1 for any k ∈ Z \ {0}. Moreover,

f = ∆q,z(u) for some u ∈ F(y, z) if and only if c = 0 and a = 0.

Applying the reduction formula (7) with θ = τq,y , we can further decompose f as

f = ∆q,y(u) + ∆q,z(v) + c+

I
∑

i=1

Ji
∑

j=1

ai,j

dji
, (12)

where u, v ∈ F(y, z), c ∈ F(y), ai,j ∈ F(y)[z], and di ∈ F[y, z] are such that degz(ai,j) <

degz(di) and the di’s are irreducible polynomials in distinct 〈τq,y , τq,z〉-orbits. Then the

(∆q,y ,∆q,z)-exactness criterion of f can be given by combining Lemma 3.6 and Theorem

3.8 in [41], which is a q-analogue of Lemma 3.5.

Lemma 3.7. Let f ∈ F(y, z) be of the form (12). Then f is (∆q,y,∆q,z)-exact in F(y, z)

if and only if c = ∆q,y(h) for some h ∈ F(y) and for all i, j with 1 ≤ i ≤ I, 1 ≤
j ≤ Ji, we have σmi

y (di) = qsiσni
z (di) for some mi, ni, si ∈ Z with mi > 0 and for the

smallest positive integer mi, ai,j = q−jsiτmi
q,y τ

−ni
q,z (bi,j)− bi,j for some bi,j ∈ F(y)[z] with

degz(bi,j) < degz(di). In particular, if f is (∆q,y ,∆q,z)-exact, so is each ai,j/d
j
i .
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3.3. The mixed cases

For a rational function f ∈ F(y, z), applying the Ostrogradsky–Hermite reduction in z
and the reduction formula (7) with θ = θy ∈ {σy, τq,y} to f yields

f = Θy(u) +Dz(v) +

I
∑

i=1

ai
di
, (13)

where u, v ∈ F(y, z), ai ∈ F(y)[z], di ∈ F[y, z] with degz(ai) < degz(di) and the di’s are
irreducible polynomials in distinct 〈θy〉-orbits. We recall the criterion on the (Θy, Dz)-
exactness in F(y, z) from [11, Theorem 2].

Lemma 3.8. Let θy ∈ {σy, τq,y} and f ∈ F(y, z) be of the form (13). Then f is (Θy, Dz)-
exact in F(y, z) if and only if for each i ∈ {1, . . . , I}, di ∈ F[z] and ai = Θy(bi) for some
bi ∈ F(y)[z]. In particular, if f is (Θy, Dz)-exact, so is each ai/di.

4. Existence Criteria

We will reduce the existence problem of telescopers in the trivariate case to that in
the bivariate case and two related problems. To this end, we first recall the existence
criteria on telescopers for bivariate rational functions from [4, 38, 3, 22, 13].

Theorem 4.1. Let f(x, y) be a rational function in K(x, y). Then
(i) Differential case (see [22, Theorem 4.5]): f always has a telescoper of type (Dx, Dy);
(ii) Shift case (see [4, Theorem 1] or [22, Theorem 4.11]): f has a telescoper of type

(Sx,∆y) if and only if f is of the form f = ∆y(g) + r for some g, r ∈ K(x, y) and r
is proper in K(x, y).

(iii) q-Shift case (see [38, Theorem 1] or [22, Theorem 4.15]): f has a telescoper of type
(Tq,x,∆q,y) if and only if f is of the form f = ∆q,y(g) + r for some g, r ∈ K(x, y)
and r is q-proper in K(x, y).

(iv) Mixed cases (see [22, Theorems 4.6, 4.7, 4.9, 4.12, 4.13, 4.14]): f has a telescoper
of type (∂x,Θy) ∈ {(Sx, Dy), (Tq,x, Dy), (Dx,∆y), (Tq,x,∆y), (Dx,∆q,y), (Sx,∆q,y)}
if and only if f is of the form f = Θy(g) + r for some g, r ∈ K(x, y) and the
denominator of r is split with respect to the partition ({x}, {y}).

Example 4.2. Let f = 1/(x + y). Then f has a telescoper of type (Dx, Dy), (Sx,∆y)
and (Tq,x,∆q,y), but has no telescoper in the mixed cases since x+ y is not split.

Problem 4.3 (Shift Equivalence Testing Problem). Let F be any computable field of
characteristic zero. Given p ∈ F[x1, ..., xn], decide whether there exist m1, . . . ,mn ∈ Z
with m1 > 0 such that p(x1 +m1, . . . , xn +mn) = p(x1, . . . , xn).

This problem is solved by Grigoriev in [31, 32] and more recently by Kauers and
Schneider in [36] and Dvir et al. in [28].

Problem 4.4 (q-Shift Equivalence Testing Problem). Let p ∈ F[x1, ..., xn], decide if there
exist m,m1, . . . ,mn ∈ Z with m1 > 0 such that p(qm1x1, . . . , q

mnxn) = qmp(x1, . . . , xn).

This problem is much easier than the shift case, and an algorithm for testing q-shift
equivalence has been given in [41].
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Problem 4.5 (Separation Problem). Given an algebraic function α ∈ K(x, y), decide

whether there exists a nonzero operator L ∈ K(x)〈Dx〉 such that L(α) = 0. If such an

operator exists, we say that α is separable in x and y.

As a special case of [15, Proposition 10], a rational function in K(x, y) is separable

if and only if it is of the form a/(bc) with a ∈ K[x, y], b ∈ K[x] and c ∈ K[y]. This

motivates the nomenclature of Problem 4.5. We will study the separation problem in

the forthcoming paper [16], in which an algorithm is presented for constructing such a

differential annihilator L ∈ K(x)〈Dx〉 if it exists.

4.1. Existence problems of first class

In the pure differential setting, telescopers always exist for general D-finite functions

over K(v), which was proved by Zeilberger in 1990 using the elimination property of

holonomic D-modules [44]. For the sake of completeness, we will give a more direct

proof for rational functions in K(v). We first adapt Wegschaider’s “non-commutative

trick” in [42, Theorem 3.2] to the differential case.

Lemma 4.6. Let f ∈ K(x, y1, . . . , yn) and A ∈ K[x]〈Dx, Dy1
, . . . , Dyn

〉 be a nonzero

operator such that A(f) = 0. Then there exists a nonzero operator L ∈ K[x]〈Dx〉 such

that L(f) = Dy1
(g1) + · · ·+Dyn

(gn) for some g1, . . . , gn ∈ K(x, y1, . . . , yn).

Proof. We will follow the same argument in the proof of [42, Theorem 3.2]. We claim

that for every ℓ ∈ {1, . . . , n + 1}, there exist Qj,ℓ ∈ K[v]〈Dx, Dyj
, . . . , Dyn

〉 for each

j ∈ {1, . . . , ℓ− 1} and a nonzero Rℓ ∈ K[x]〈Dx, Dyℓ
, . . . , Dyn

〉 such that f is annihilated

by the operator

Pℓ =

ℓ−1
∑

j=1

Dyj
Qj,ℓ +Rℓ. (14)

The lemma follows from this claim since Rn+1 is the desired operator L ∈ K[x]〈Dx〉 with
gj := −Qj,ℓ(f) ∈ K(v) for j ∈ {1, . . . , n}.

We prove the claim inductively: for ℓ = 1 take P1 = R1 = A. Assume that for some

ℓ ∈ {1, . . . , n} we have a nonzero operator Pℓ of the form (14) that annihilates f . We

show that by division of Rℓ by Dℓ we can construct the operator Pℓ+1.

Since Dyℓ
commutes with x and Dx, Dyℓ+1

, . . . , Dyn
, we can write Rℓ = Dm

yℓ
(Rℓ+1 +

Dyℓ
M), where m ∈ N, M ∈ K[x]〈Dx, Dyℓ

, . . . , Dyn
〉, and Rℓ+1 is a nonzero operator

in K[x]〈Dx, Dyℓ+1
, . . . , Dyn

〉. For any w ∈ K[yℓ] of degree at most m, we have

wDm
yℓ

= Dyℓ
Q̃ℓ + r (15)

for some r ∈ K and Q̃ℓ ∈ K[yℓ]〈Dyℓ
〉. In particular, r = (−1)mm! 6= 0 if we take w = ymℓ .
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Using the fact rDyi
= Dyi

r for all i ∈ {1, . . . , n} and (15), we find

ymℓ
(−1)mm!

Pℓ =

ℓ−1
∑

j=1

Dyj

(

ymℓ
(−1)mm!

Qj,ℓ

)

+
ymℓ

(−1)mm!
Dm

yℓ
(Rℓ+1 +Dyℓ

M)

=
ℓ−1
∑

j=1

Dyj

(

ymℓ
(−1)mm!

Qj,ℓ

)

+
(

Dyℓ
Q̃ℓ + 1

)

(Rℓ+1 +Dyℓ
M)

=
ℓ
∑

j=1

Dyj
Q̃j,ℓ + Rℓ+1 , Pℓ+1 with Q̃j,ℓ ∈ K[v]〈Dx, Dyj

, . . . , Dyn
〉.

Since Pℓ(f) = 0, we have Pℓ+1(f) = 0. So Pℓ+1 is the desired operator.

Theorem 4.7. For any rational function f ∈ K(v), there exists a nonzero L ∈ K[x]〈Dx〉
such that L(f) = Dy1

(g1) + · · ·+Dyn
(gn) for some g1, . . . , gn ∈ K(v).

Proof. It suffices to show that there exists a nonzero A ∈ K[x]〈Dx, Dy1
, . . . , Dyn

〉 such

that A(f) = 0 by Lemma 4.6. Write f = P/Q with P,Q ∈ K[v] and gcd(P,Q) =

1. Denote dx = max{degx(P ), degx(Q)} and dyi
= max{degyi

(P ), degyi
(Q)} for i ∈

{1, . . . , n}. Let WN be the K-vector space generated by the set

{ xiDj0
x D

j1
y1

· · ·Djn
yn

| 0 ≤ i+ j0 + · · ·+ jn ≤ N }

over K. By an easy combinatorial counting, the dimension of WN is
(

N+n+2
n+2

)

= O(Nn+2)

over K. Furthermore, for any (i, j0, . . . , jn) ∈ Nn+2, a direct calculation yields

xiDj0
x D

j1
y1

· · ·Djn
yn
(f) =

Pi,j0,...,jn

Qi+j0+···+jn+1
, (16)

where Pi,j0,...,jn ∈ K[v] with degx(Pi,j0,...,jn) ≤ (i+ j0 + · · ·+ jn + 1)dx + i and

degyi
(Pi,j0,...,jn) ≤ (i + j0 + · · ·+ jn + 1)dyi

for i ∈ {1, . . . , n}.

So the set WN (f) is included in the K-vector space VN spanned by the set
{

xk0yk1

1 · · · ykn
n

QN+1

∣

∣

∣

∣

∣

0 ≤ k0 ≤ (N + 1)dx +N, 0 ≤ ki ≤ (N + 1)dyi
for i = 1, . . . , n

}

,

whence the dimension of VN is (N +1)(dx+1)
∏n

i=1((N +1)dyi
+1) = O(Nn+1) over K.

Define linear map ψ : WN → VN by ψ(L) = L(f) for any L ∈ WN . For sufficiently large

N , we have
(

N + n+ 2

n+ 2

)

> (N + 1)(dx + 1)
n
∏

i=1

((N + 1)dyi
+ 1),

which implies that the kernel of ψ is nontrivial. Therefore, there exists a nonzero opera-

tor A ∈ WN ⊆ K[x]〈Dx, Dy1
, . . . , Dyn

〉 such that A(f) = 0.

Remark 4.8. In the continuous setting, the existence of telescopers for rational functions

implies that for algebraic functions by [21, Lemma 4]. Efficient algorithms for computing

telescopers have been given in [7, 21, 8, 37].
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4.2. Existence problems of second class

We now solve the second class of existence problems where telescopers are linear
differential operators in K(x)〈Dx〉 and (Θy,Θz) ∈ {(∆y,∆z), (∆q,y ,∆z), (∆q,y ,∆q,z)}.

Problem 4.9. Given f ∈ K(x, y, z), determine if there exists a nonzero operator L ∈
K(x)〈Dx〉 such that L(f) = Θy(g) + Θz(h) for some g, h ∈ K(x, y, z).

For v ∈ {y, z}, let θv = σv if Θv = ∆v or θv = τq,v if Θv = ∆q,v. By partial fraction
decomposition w.r.t z and the transformation (7) with θ = θy and subsequently with
θ = θz, any rational function f ∈ K(x, y, z) can be decomposed into

f = Θy(u) + Θz(v) + µ+
I
∑

i=1

Ji
∑

j=1

ai,j

dji
, (17)

where u, v ∈ K(x, y, z), µ ∈ K(x, y), ai,j ∈ K(x, y)[z], di ∈ K[x, y, z] with degz(ai,j) <
degz(di), di’s are irreducible polynomials in distinct 〈θy , θz〉-orbits and none of nonzero

ai,j/d
j
i is (Θy,Θz)-exact.

The following theorem shows that Problem 4.9 can be reduced to the same problem
but for simple fractions and bivariate rational functions.

Theorem 4.10. Let f ∈ K(x, y, z) be of the form (17). Then f has a telescoper of type
(Dx,Θy,Θz) if and only if µ and the fraction ai,j/d

j
i has a telescoper of the same type

for all i, j with 1 ≤ i ≤ I and 1 ≤ j ≤ Ji.

Proof. The sufficiency follows from Lemma 2.4. For the necessity, when f has a tele-
scoper of type (Dx,Θy,Θz), since Dx does not change the 〈θy , θz〉-equivalence of the

denominators, one can deduce that µ and r =
∑I

i=1

∑Ji

j=1
ai,j

dj

i

both have a telescoper of

the same type.
Next we will show each fraction ai,j/d

j
i has a telescoper of the same type when r

has a telescoper. To this end, we first show that Dx(di) = 0, that is di ∈ K[y, z] for all
1 ≤ i ≤ I. Over the field K(x, y), we can decompose r as

r = Θy(u
⋆) + Θz(v

⋆) + r⋆ with r⋆ =

I′

∑

i=1

J′

i
∑

j=1

αi,j

(z − βi)j
,

where u⋆, v⋆ ∈ K(x, y)(z), αi,j , βi ∈ K(x, y) with αi,J′

i
6= 0, z − βi and z − βi′ are not

〈θy, θz〉-equivalent for all i, i′ with 1 ≤ i 6= i′ ≤ I ′. It suffices to show Dx(βi) = 0 for all i
with 1 ≤ i ≤ I ′. We will prove this claim by contradiction. Suppose that Dx(βk) 6= 0 for
some 1 ≤ k ≤ I ′ and that L =

∑ρ
ℓ=0 eℓD

ℓ
x ∈ K(x)〈Dx〉 with eρe0 6= 0 is a telescoper for

r⋆. Then

L(r⋆) =
I′

∑

i=1





J ′ρ
i eραi,J′

i
Dx(βi)

ρ

(z − βi)
J′

i
+ρ

+

J′

i+ρ−1
∑

j=1

α̃i,j

(z − βi)j



 ,

where J ′ρ
i = J ′

i(J
′
i +1) · · · (J ′

i + ρ− 1) and α̃i,j ∈ K(x, y). As L(r⋆) is (Θy,Θz)-exact and
Dx(βk) 6= 0, we have

θmk
y (z − βk) = qskθnk

z (z − βk) (18)
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for some mk, nk, sk ∈ Z with mk > 0 and

J ′ρ
k eραk,J′

k
Dx(βk)

ρ = q−(J′

k+ρ)skθmk
y (γk)− γk (19)

for some γk ∈ K(x, y). From the Equation (18), we know θmk
y Dx(βk) = qskDx(βk).

Dividing Identity (19) by J ′ρ
k eρDx(βk)

ρ gives

αk,J′

k
= q−J′

kskθmk
y

(

γk

J ′ρ
k eρDx(βk)ρ

)

− γk

J ′ρ
k eρDx(βk)ρ

.

Thus
αk,J′

k

(z−βk)
J′

k
is (Θy,Θz)-exact in K(x, y)(z), and hence can be moved into u⋆ and v⋆.

Then by similar discussions as above, one can see
αk,j

(z−βk)j
is (Θy,Θz)-exact for all j with

1 ≤ j ≤ Ji. Notice that βk is a root of dk for some 1 ≤ k ≤ I and that Dx(βk) 6= 0 leads to
Dx(β) 6= 0 for any conjugate root β of dk. Then all fractions of the form α

(z−β)j in r⋆ are

also (Θy,Θz)-exact. Collecting all these fractions together, we get
ak,j

dj

k

is (Θy,Θz)-exact

in K(x, y)(z) and hence in K(x, y, z) by Lemma 3.3, which contradicts the assumption
that none of nonzero

ai,j

dj

i

in r is not exact. At this stage we have proved di ∈ K[y, z].

Since L is also a telescoper for r. Then

L(r) =

I
∑

i=1

Ji
∑

j=1

L(ai,j)

dji
= Θy(g) + Θz(h)

for some g, h ∈ K(x, y, z). Notice that di’s are in distinct 〈θy, θz〉-orbits,

L

(

ai,j

dji

)

=
L(ai,j)

dji
= Θy(gi,j) + Θz(hi,j)

for some gi,j , hi,j ∈ K(x, y, z). So L is a telescoper for all ai,j/d
j
i with 1 ≤ i ≤ I and

1 ≤ j ≤ Ji.
Notice that for µ ∈ K(x, y), having telescopers of type (Dx,Θy,Θz) or (Dx,Θy)

are equivalent. As the existence problem of telescopers for bivariate rational functions
has been settled by Theorem 4.1, we only need to decide when f = a

dj , where a ∈
K(x, y)[z], d ∈ K[x, y, z] with degz(a) < degz(d) and d being irreducible, has telescopers
of type (Dx,Θy,Θz). Same argument as in the proof of Theorem 4.10 implies that f
has a telescoper of type (Dx,Θy,Θz) only when d is free of x. Assume d ∈ K[y, z] and

L ∈ K(x)〈Dx〉 is a telescoper of f . Then L(f) = L(a)
dj is (Θy,Θz)-exact. We will proceed

by checking whether the two conditions for the exactness in Lemma 3.5, 3.7 and 3.6 are
satisfied.

If θmy (d) 6= qtθnz (d) whenever m,n, t ∈ Z and m > 0, then we have L(a) = 0 which can
be reduced to solving the separation problem of bivariate rational functions and settled
via GCD computations.

If θmy (d) = qtθnz (d) for some m,n, t ∈ Z with m being the smallest positive integer,
then L(a) satisfies an equation. Next we will show how to solve the equation for different
(θy, θz) separately.

(1) When (θy, θz) = (σy, σz). Lemma 3.5 shows that L(x,Dx)(a) = σm
y σ

−n
z (b) − b for

some b ∈ K(x, y)[z] with degz(b) < degz(d). Taking ȳ = y/m and z̄ = ny +mz shows
L(x,Dx)(a) = σm

y σ
−n
z (b) − b is equivalent to the existence problem of telescopers of

type (Dx,∆y) for bivariate rational functions, which has been solved by Theorem 4.1.
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(2) When (θy, θz) = (τq,y , σz), Lemma 3.6 leads to L(a) = ∆q,y(b), which is the existence
problem of telescopers of type (Dx,∆q,y) solved by Theorem 4.1.

(3) When (θy, θz) = (τq,y, τq,z), by Lemma 3.7 we know L(x,Dx)(a) = q−jtτmq,yτ
−n
q,z (b)− b

for some b ∈ K(x, y)[z] with degz(b) < degz(d). Define an F-homomorphism ϕ of F(y, z)
by y 7→ ym, z 7→ y−nz. Then the q-difference equation can also be simplified.

Proposition 4.11. Given a rational function f ∈ F(y, z) and integersm,n, s ∈ N with
m > 0. Then f = qsτmq,yτ

−n
q,z (g)−g for some g ∈ F(y, z) if and only if ϕ(f) = qsτq,y(h)−h

for some h ∈ F(y, z).

Proof. Let τ = τmq,yτ
−n
q,z . The necessity follows from the fact that ϕ◦τ = τq,y◦ϕ. For the

sufficiency, define ψ : F(y, z) → F(y, z) by y 7→ y1/m, z 7→ yn/mz, where F(y, z) is the
algebraic closure of F(y, z). It is easy to see ψ ◦ϕ = IdF(y,z) and ψ ◦ τq,y = τ ◦ψ, where
τq,y is extended to F(y, z). Thus ϕ(f) = qsτq,y(h) − h implies f = qsτmq,yτ

−n
q,z (g̃) − g̃

with g̃ = ψ(h) ∈ F(y, z). By similar trace arguments used in Lemma (3.3), one can see
f = qsτmq,yτ

−n
q,z (g̃)− g̃ if and only if f = qsτmq,yτ

−n
q,z (g)− g for some g ∈ F(y, z).

At this stage, by letting ȳ = y1/m and z̄ = yn/mz, we only need to decide whether
L(ā) = q−jtτq,y(b̄) − b̄ for some b̄ ∈ K(x, y, z), which can be determined by a similar
discussion process as the existence problem of telescopers of type (Dx,∆q,y).

4.3. Existence problems of third class

We now consider the third class of the existence problems of telescopers for rational
functions in three variables.

Problem 4.12. Given f ∈ K(x, y, z), decide whether there exists a nonzero operator L in
K(x)〈∂x〉 with ∂x ∈ {Sx, Tq,x} such that L(f) = Dy(g)+Dz(h) for some g, h ∈ K(x, y, z).

Let f ∈ F(y, z) be of the form (6) with F = K(x). If f is (Dy, Dz)-exact in K(x, y, z),
then 1 is a telescoper for f . From now on, we assume that f is not (Dy, Dz)-exact.

Let (∂x, θx) ∈ {(Sx, σx), (Tq,x, τq,x)}. By dividing the roots of b in K(x, y) into different
〈θx〉-orbits, we can write f as f = Dz(u) + r with u ∈ F(y, z) and

r =

I
∑

i=1

Ji
∑

j=0

αi,j

z − θjx(βi)
, (20)

where αi,j , βi ∈ K(x, y) and the βi’s are in distinct 〈θx〉-orbits. Note that f has a tele-
scoper of type (∂x, Dy, Dz) if and only if r has a telescoper of the same type.

Lemma 4.13. Let r =
∑J

j=0 αj/(z − θjx(β)) with αj , β ∈ K(x, y) and θmx (β) 6= β for
any m ∈ Z \ {0}. Then r is (Dy, Dz)-exact if it has a telescoper of type (∂x, Dy, Dz).

Proof. Assume that L =
∑ρ

ℓ=0 eℓ∂
ℓ
x ∈ K(x)〈∂x〉 with e0 6= 0 is a telescoper for r of type

(∂x, Dy, Dz). Then

L(r) =

J+ρ
∑

j=0

α̃j

z − θjx(β)
= Dy(u) +Dz(v),

where u, v ∈ K(x, y)(z) and α̃j =
∑j

k=0 ekθ
k
x(αj−k) with ek = 0 for k > ρ and αj = 0 for

j > J . Since θmx (β) 6= β wheneverm ∈ Z\{0}, for each 1 ≤ j ≤ J+ρ we have α̃j = Dy(γ̃j)
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for some γ̃j ∈ K(x, y) by Lemma 3.4. We now prove inductively that for each j with

0 ≤ j ≤ J , αj = Dy(γj) for some γj ∈ K(x, y). Since α̃0 = e0α0 and e0 ∈ K(x) \ {0}, we
have α0 = Dy(γ0) with γ0 = γ̃0/e0. Suppose that we have shown that αj = Dy(γj) for
j = 0, . . . , k−1 with k ≤ J . Note that α̃k = e0αk+e1θx(αk−1)+ · · ·+ekθkx(α0) = Dy(γ̃k).

Then αk = Dy(γk) with γk = 1
e0
(γ̃k − ∑k

j=1 ejθ
j
x(γk−j)). So r is (Dy, Dz)-exact by

Lemma 3.4.

Theorem 4.14. Let r ∈ K(x, y, z) be of the form (20). Then r has a telescoper of
type (∂x, Dy, Dz) if and only if for each i with 1 ≤ i ≤ I, either αi,j/(z − θjx(βi))

is (Dy, Dz)-exact or βi ∈ K(y) and there exists a nonzero Li,j ∈ K(x)〈∂x〉 such that
Li,j(αi,j) = Dy(γi,j) for some γi,j ∈ K(x, y)(βi).

Proof. The sufficiency follows from Lemma 2.4 since each fraction αi,j/(z − θjx(βi)) is
either (Dy, Dz)-exact or has a telescoper of type (∂x, Dy, Dz). To show the necessity,
we assume that L =

∑ρ
ℓ=0 eℓ∂

ℓ
x ∈ K(x)〈∂x〉 with e0 6= 0 is a telescoper for r of type

(∂x, Dy, Dz). Then we have

L(r) =

I
∑

i=1

Ji+ρ
∑

j=0

α̃i,j

z − θjx(βi)
= Dy(u) +Dz(v),

where u, v ∈ K(x, y, z) and α̃i,j =
∑j

k=0 ekθ
k
x(αi,j−k) with ek = 0 for k > ρ and αi,j = 0

for j > Ji. By Lemma 3.4, we have ri =
∑Ji+ρ

j=0
α̃i,j

z−θj
x(βi)

is (Dy, Dz)-exact for each

i with 1 ≤ i ≤ I since the βi’s are in distinct 〈θx〉-orbits. If there exists a nonzero
mi ∈ N such that θmi

x (βi) = βi, then βi ∈ K(y) by [22, Lemma 3.4 (i)]. So Ji = 0
and L(αi,0/(z − βi)) = L(αi,0)/(z − βi) is (Dy, Dz)-exact, which implies that L(αi,0) =

Dy(γi,0) for some γi,0 ∈ K(x, y). Since αi,0 ∈ K(x, y)(βi), we can choose γi,0 ∈ K(x, y)(βi)
by the trace argument. If there is no nonzero mi ∈ N such that θmi

x (βi) = βi, then the
theorem follows from Lemma 4.13.

Problem 4.12 now has been reduced to the exactness testing problem and the following
existence problem.

Problem 4.15. Given α ∈ K(x, y)(β) with β algebraic overK(y), decide whether α has a
telescoper of type (∂x, Dy) with ∂x ∈ {Sx, Tq,x}, i.e., there exists a nonzero L ∈ K(x)〈∂x〉
such that L(α) = Dy(γ) for some γ ∈ K(x, y)(β).

In order to solve the above problem, we first present a vector version of the Hermite-
like reduction in [29]. Let ~a = 1

d(a1, . . . , an) ∈ K(x, y)n with ai, d ∈ K[x, y] satisfying
that gcd(d, a1, . . . , an) = 1 and B = 1

e (bi,j) ∈ K(x, y)n×n with e, bi,j ∈ K[x, y] such
that gcd(e, b1,1, . . ., b1,n, . . ., bn,n) = 1. Let p ∈ K[x, y] be any irreducible factor of d
that is coprime with e. Then d = pmd1 with d1 ∈ K[x, y] and gcd(p, d1) = 1. Since
gcd(p,Dy(p)) = 1, we have gcd(p,Dy(p)d1) = 1 and then the Bézout relation

ai = sip+ tiDy(p)d1,

where si, ti ∈ K(x)[y]. Using integration by parts, we get

ai
pmd1

=
sip+ tiDy(p)d1

pmd1
= Dy

(

ui
pm−1

)

+
vi

pm−1d1
,
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where ui = ti(1 − m)−1 and vi = si − (1 − m)−1Dy(ti)d1. Let ~u = (u1, . . . , un) and
~v = (v1, . . . , vn). Then we have

~a=Dy

(

~u

pm−1

)

+
~v

pm−1d1
=Dy

(

~u

pm−1

)

+
~u

pm−1
·B+

~w

pm−1d1e
,

where ~w ∈ K(x)[y]n. Repeating this process yields

~a = Dy

(

~g

pm−1

)

+
~g

pm−1
·B+

~h

pd1e
,

where ~g,~h ∈ K(x)[y]n. By reducing the multiplicity of each irreducible factor of d that is
coprime with e in the above way, we obtain the additive decomposition

~a = Dy(~b) +~b ·B+ ~r, (21)

where ~b ∈ K(x, y)n and ~r = 1
pc (r1, . . . , rn) with ri ∈ K(x)[y] and p, c ∈ K[x, y] be such

that p is a squarefree polynomial and gcd(p, e) = 1 and each irreducible factor of c divides
e. We call the above process a vector Hermite reduction of ~a with respect to B.

Let β ∈ K(y) and n = [K(y, β) : K(y)]. Assume that {β1, . . . , βn} is a basis for K(y, β)
as a linear space over K(y). Since Dy(βi) ∈ K(y, β), we have Dy(βi) =

1
e

∑n
j=1 bj,iβj with

e, bj,i ∈ K[y]. Set B = 1
e (bi,j) ∈ K(y)n×n. Then Dy(~β) = ~β · B with ~β = (β1, . . . , βn).

Since α ∈ K(x, y)(β), we can write α = ~a · ~βT for some ~a = 1
d (a1, . . . , an) ∈ K(x, y)n with

d, ai ∈ K[x, y]. Applying the vector Hermite reduction to ~a with respect to B yields the
additive decomposition (21), which is equivalent to

α = Dy(~b · ~βT ) + α̃ with α̃ =
1

pc

n
∑

i=1

riβi, (22)

where ri, p, c ∈ K[x, y] with p being squarefree and gcd(p, e) = 1 and each irreducible
factor of c divides e ∈ K[y].

Theorem 4.16. Let α ∈ K(x, y)(β) be of the form (22). Then α has a telescoper of type
(∂x, Dy) if and only if the polynomial p in (22) is split in x and y.

Proof. Assume that p is split in x and y, i.e., p = p1p2 for some p1 ∈ K[x] and p2 ∈ K[y].
Then α̃ can be written as α̃ =

∑m
j=1 fj · gj with fj ∈ K(x) and gj ∈ K(y)(β) since

βi ∈ K(y)(β) and c ∈ K[y]. Let Lj = fj(x)∂x − θx(fj) ∈ K(x)〈∂x〉 for each 1 ≤ j ≤ m.
Then Lj(fj · gj) = 0. So the LCLM of the Lj’s annihilates α̃, which then is a telescoper
for α of type (∂x, Dy). To show the necessity, we assume that L =

∑ρ
ℓ=0 eℓ∂

ℓ
x ∈ K(x)〈∂x〉

with e0eρ 6= 0 is a telescoper for α of type (∂x, Dy). Then L(α̃) = Dy(γ̃) for some

γ̃ ∈ K(x, y)(β). Write γ̃ = ~s · ~βT with ~s ∈ K(x, y)n and ~r = (r1, . . . , rn). Then we have

L

(

1

pc
~r

)

=

ρ
∑

ℓ=0

eℓ
θℓx(p)c

θℓx(~r) = Dy(~s) + ~s ·B.

Suppose that p is not split in x and y. Then there exists a non-split irreducible factor
p0 of p such that θx(p0) ∤ p. Then θ

ρ
x(p0) is also a non-split irreducible polynomial and

only divides the denominator θρx(p)c. Since p is squarefree, the valuation of the left-hand
side of the above equality at θρx(p0) is −1. However, the valuation of the right-hand side
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is either ≥ 0 or < −1 since B ∈ K(y)n×n. This leads to a contradiction. So p is split in
x and y.

Example 4.17. Let f = x/(z2 − y). Then

f =
α

z − β
+

−α
z + β

,

where α = x/(2
√
y) and β =

√
y. By Theorem 4.14, f has a telescoper of type (∂x, Dy, Dz)

since β ∈ K(y) and L = x∂x − θx(x) is a telescoper for α of type (∂x, Dy). Indeed, L is
also a telescoper for f of type (∂x, Dy, Dz).

4.4. Existence problems of fourth class

We continue to address the fourth class of the existence problems of telescopers for
rational functions in three variables. There are four cases in this class.

Problem 4.18. Let ∂x ∈ {Sx, Tq,x} and Θy ∈ {∆y,∆q,y}. Given f ∈ K(x, y, z), decide
whether there exists a nonzero operator L ∈ K(x)〈∂x〉 such that L(f) = Θy(g) +Dz(h)
for some g, h ∈ K(x, y, z).

Let (∂v, θv) ∈ {(Sv, σv), (Tq,v, τq,v)} for v ∈ {x, y}. By the Ostrogradsky–Hermite
reduction in z and the reduction formula (7) with σ = θy, we can decompose f as

f = Θy(u) +Dz(v) + r, where r =

I
∑

i=1

Ji
∑

j=0

ai,j

θjx(di)
(23)

with ai,j ∈ K(x, y)[z] and di ∈ K[x, y, z] satisfying the condition degz(ai,j) < degz(di)
and the di’s are irreducible polynomials in distinct 〈θx, θy〉-orbits. Note that f has a
telescoper of type (∂x,Θy, Dz) if and only if r does.

Lemma 4.19. Let r∈K(x, y, z) be as in (23). Then r has a telescoper of type (∂x,Θy, Dz)

if and only if for each i with 1 ≤ i ≤ I, we have ri =
∑Ji

j=0
ai,j

θj
x(di)

has a telescoper of the

same type.

Proof. The sufficiency follows from Lemma 2.4. For the necessity we assume that L =
∑ρ

k=0 ℓk∂
k
x ∈ K(x)〈∂x〉 with ∂x ∈ {Sx, Tq,x} and ℓ0 6= 0 is a telescoper for r of type

(∂x,Θy, Dz). Then

L(r) =

I
∑

i=1

L(ri) =

I
∑

i=1





Ji+ρ
∑

j=0

∑j
k=0 ℓkθ

k
x(ai,j−k)

θjx(di)





with ℓk = 0 if k > ρ and ai,j = 0 if j > Ji is (Θy, Dz)-exact. Since the di’s are in distinct
〈θx, θy〉-orbits, the θjx(di)’s are in distinct 〈θy〉-orbits. By Lemma 3.8, we have L(ri) is
(Θy, Dz)-exact for each i with 1 ≤ i ≤ I. So each ri has a telescoper of the same type.

Now the existence problem is reduced to that for rational functions of the form

f =
I
∑

i=0

ai
θix(d)

, (24)
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where ai ∈ K(x, y)[z], d ∈ K[x, y, z] with degz(ai) < degz(d) and d is irreducible in z over

K(x, y). We will proceed by a case distinction according to whether or not d satisfies the

condition: there exist c ∈ K \ {0} and integers m,n with m > 0 such that

θmx (d) = c · θny (d). (25)

Note that the constant c in (25) must be 1 if (θx, θy) ∈ {(σx, σy), (σx, τq,y), (τq,x, σy)} by

the comparison of leading coefficients. When (θx, θy) = (τq,x, τq,y), we claim that c = qs

for some s ∈ Z. To show this claim, we write d =
∑

i,j,k ci,j,kx
iyjzk. Then the equality

τmq,x(d) = cτnq,y(d) implies that for all i, j, we have c = qim−jn. Let s = gcd(m,n).

Then m = sm̄ and n = sn̄. For different pairs (i1, j1) and (i2, j2) with qi1m−j1n =

qi2m−j2n, we have i1m − j1n = i2m − j2n since q is not a root of unity, which further

implies that (i2, j2) = (i1, j1) + λ(n̄, m̄) for some nonzero λ ∈ Z. Thus d = xi0yj0 d̄,

where i0, j0 ∈ Z and d̄ =
∑ρ

k=0 dk(x
n̄ym̄)zk with dk ∈ K[T ]. Since τmq,x(d̄) = τnq,y(d̄),

we have c = qi0m−j0n. Combing the above discussions with [12, Proposition 1] yields a

characterization of polynomials satisfying the condition (25).

Lemma 4.20. Let d =
∑ρ

i=0 diz
i ∈ K(x, y)[z] be a polynomial in z over K(x, y). If there

exist c ∈ K \ {0} and m,n ∈ Z with m > 0 such that θmx (d) = c · θny (d), then for each i

with 0 ≤ i ≤ ρ we have

(1) if (θx, θy) = (σx, σy), then c = 1 and di is integer-linear in x and y, i.e., di =

f(nx+my) for some f ∈ K(z);

(2) if (θx, θy) = (σx, τq,y) or (τq,x, σy), then c = 1 and di ∈ K(y) and di ∈ K if n 6= 0;

(3) if (θx, θy) = (τq,x, τq,y), then c = qs for some s ∈ Z and di is q-integer-linear in x

and y, i.e., di = xn0ym0fi(x
nym) for some fi ∈ K(z) and n0,m0 ∈ Z.

By the above characterization, the condition (25) can be checked by solving the bi-

variate case of Problems 4.3 and 4.4 in the pure shift and q-shift cases, respectively.

Lemma 4.21. Let f ∈ K(x, y, z) be of the form (24) and d does not satisfy the condi-

tion (25). Then f has a telescoper of type (∂x,Θy, Dz) if and only if f is (Θy, Dz)-exact.

Proof. The sufficiency is clear by definition. Assume that L =
∑ρ

k=0 ℓk∂
k
x with ℓ0 6= 0 is

a telescoper for f of type (∂x,Θy, Dz). Then we have that

L(f) =

ρ+I
∑

i=0

(

∑i
j=0 ℓjθ

j
x(ai−j)

θix(d)

)

is (∆y , Dz)-exact, where ℓj = 0 if j > ρ and ai = 0 if i > I. Since d does not satisfy

the condition (25), we have θix(d) and θi
′

x (d) in distinct 〈θy〉-orbits for all i 6= i′. By

Lemma 3.8, for any i with 0 ≤ i ≤ ρ+ I, there exist ui, vi ∈ K(x, y, z) such that
∑i

j=0 ℓjθ
j
x(ai−j)

θix(d)
= Θy(ui) +Dz(vi). (26)

To show that all fractions ai/θ
i
x(d) are (Θy, Dz)-exact, we proceed by induction. The

assertion is true for i = 0 since a0/d = Θy(u0/ℓ0) + Dz(v0/ℓ0). Suppose that we have
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shown that ai/θ
i
x(d) is (Θy, Dz)-exact for i = 0, . . . , s−1 with s ≤ I. By the equality (26)

with i = s, we get

as
θsx(d)

= Θy

(

us
ℓ0

)

+Dz

(

vs
ℓ0

)

−
s
∑

j=1

ℓj
ℓ0
θjx

(

as−j

θs−j
x (d)

)

.

By the commutativity between θx and θy, δz and Lemma 3.8, we have a/θix(d) is (Θy, Dz)-

exact for any i ∈ N if a/d is. By the induction hypothesis, we have
ℓj
ℓ0
θjx(as−j/θ

s−j
x (d))

is (Θy, Dz)-exact for all 1 ≤ j ≤ s. So are as/θ
s
x(d) and f .

We now deal with the case in which d satisfies the condition (25). From now on, we

will always assume that m is the smallest positive integer such that θmx (d) = c · θny (d) for
some n ∈ Z and c ∈ K \ {0}. By the reduction formula (7) with σ = θy, the existence

problem is further reduced to that for rational functions of the form

f =

m−1
∑

i=0

ai
θix(d)

, (27)

where ai ∈ K(x, y)[z], d ∈ K[x, y, z] with degz(ai) < degz(d) and d is irreducible in z over
K(x, y).

The following lemma is similar to Lemma 5.3 in [18].

Lemma 4.22. Let f ∈ K(x, y, z) be of the form (27) and d satisfy the condition (25).

Then f has a telescoper of type (∂x,Θy, Dz) if and only if for each i with 0 ≤ i ≤ I, the
fraction ai/θ

i
x(d) has a telescoper of the same type.

Proof. The sufficiency follows from Lemma 2.4. For the necessity direction, one can
adapt the second part of the proof of [18, Lemma 5.3] to the setting of telescopers of

type (∂x,Θy, Dz) literally by interpreting ≡y,z 0 as being (Θy, Dz)-exact.

The above lemma further reduces the existence problem to that for simple fractions
of the form

f =
a

bd
, (28)

where a, d ∈ K[x, y, z], b ∈ K[x, y] satisfy that gcd(a, bd) = 1 and degz(a) < degz(d), and

d is irreducible and satisfies the condition (25). We will consider two cases according to
whether d is in K[x, z] or not. If d ∈ K[x, z], then θiy(d) = d for all i ∈ N. The condition

θmx (d) = θny (d) implies that d is also free of x, i.e., d ∈ K[z]. Thus L ∈ K(x)〈∂x〉 is a

telescoper for f of type (∂x,Θy, Dz) if and only if L(a/b) = Θy(u) for some u ∈ K(x, y)[z]

with degz(u) < degz(d). Write a =
∑degz(d)−1

i=0 aiz
i and u =

∑degz(d)−1
i=0 uiz

i. Then for

each i with 0 ≤ i ≤ degz(d) − 1, we have L(ai/b) = Θy(ui), i.e., L is a telescoper for
all ai/b of type (∂x,Θy). The existence problem is then reduced to that in the bivariate

case, for which Theorem 4.1 applies. So it remains to deal with the case when d is not in

K[x, z].

Lemma 4.23. Let τ := θmx θ
−n
y with m,n ∈ Z and m > 0 and let p ∈ K[x, y] be an

irreducible polynomial. If τ i(p) = λ · p for some nonzero i ∈ Z and nonzero λ ∈ K, then
τ(p) = µ · p for some nonzero µ ∈ K.
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Proof. We prove by cases. Write p =
∑

i,j pi,jx
iyj with pi,j ∈ K. If (θx, θy) = (σx, σy),

then τ i(p) = λ · p implies that λ = 1 by comparing the leading coefficients. So σim
x (p) =

σin
y (p). By Lemma 4.20, we have p = r(inx+ imy) for some r =

∑s
j=0 rjz

j ∈ K[z]. Thus

p = r̃(nx+my) with r̃ =
∑s

j=0 rj i
jzj , which implies that τ(p) = p. If (θx, θy) = (σx, τq,y),

then τ i(p) = λ · p implies that p ∈ K[y] and moreover p = c · y for some c ∈ K if n 6= 0
by [13, Lemma 5.4], which leads to that τ(p) = µ · p with µ = q. If (θx, θy) = (τq,x, σy),
then τ i(p) = λ · p implies that p ∈ K[y] and moreover p ∈ K if n 6= 0 by [13, Lemma
5.4]. Then we have τ(p) = p. If (θx, θy) = (τq,x, τq,y), then τ i(p) = λ · p implies that
p = (xsyt) · r(xinyim) for some s, t ∈ Z and r ∈ K[z] by [27, Lemma 5.2]. So we have
τ(p) = µ · p with µ = qsm−nt. This completes the proof.

Lemma 4.24. Let τ := θmx θ
−n
y with m,n ∈ Z and m > 0 and let f = a/b with

a, b ∈ K[x, y] and gcd(a, b) = 1. If there exist e0, . . . , er ∈ K(x), not all zero, such
that

∑r
i=0 eiτ

i(f) = 0, then b = b1b2 with b1 ∈ K[x] and b2 ∈ K[x, y] satisfying that
τ(b2) = λ · b2 for some nonzero λ ∈ K.

Proof. Assume that
∑r

i=0 eiτ
i(f) = 0. Let b1 and b2 be the content and primitive part

of b as a polynomial in y over K[x]. If b2 is a constant in K, then the assertion holds since
τ(b2) = b2. We now assume that b2 /∈ K. Then all of its irreducible factors have positive
degree in y. Assume that there exists an irreducible factor p of b2 such that τ(p) 6= c · p
for any c ∈ K. Then for any integer i 6= 0, τ i(p) 6= ci · p for any ci ∈ K by Lemma 4.23.
Among all of such irreducible factors, we can always find one factor p of multiplicity m
such that τ i(p) ∤ b2 for all integer i < 0. Then τ i(p) is also irreducible for all i ∈ Z and
gcd(τ i(p), τ j(p)) = 1 if i 6= j. Let s be the largest integer such that τs(p) | b2. Then the
irreducible polynomial τr+s(p) only divides the denominator τr(b) and not others, which
implies that

∑r
i=0 eiτ

i(f) 6= 0 since p depends on y and the coefficients ei are in K(x).
This leads to a contradiction. So for each irreducible factor p of b2 we have τ(p) = c · p
for some c ∈ K. This implies that τ(b2) = λ · b2 for some λ ∈ K.

Lemma 4.25. Let a ∈ K(x)[y, z] and b ∈ K[x, y, z] be such that b 6= 0 and θmx (b) =
c · θny (b) for some c ∈ K \ {0} and m,n ∈ Z with m > 0. Then a/b has a telescoper of
type (∂x,Θy, Dz).

Proof. Set f = a/b. It suffices to show that for sufficiently large I ∈ N, there exist
ℓ0, . . . , ℓI ∈ K(x), not all zero, and g ∈ K(x, y, z) such that L(f) = Θy(g) with L =
∑I

i=0 ℓi∂
im
x . By the reduction formula (7) with σ = θy, we have

θimx (f) =
θimx (a)

θimx (b)
=

θimx (a)

ci · θiny (b)
= Θy(gi) +

θ−in
y θimx (a)

ci · b
for some gi ∈ K(x, y, z). Note that the degrees of the polynomials θ−in

y θimx (a) in y and z

are the same as that of a. So all the polynomials θ−in
y θimx (a) lie in a finite dimensional

linear space over K(x). Therefore, for sufficiently large I, there exist ℓ0, . . . , ℓI ∈ K(x),

not all zero, such that
∑I

i=0 ℓiθ
−in
y θimx (a) = 0. This implies that L is a telescoper for f

of type (∂x,Θy, Dz).

Theorem 4.26. Let f ∈ K(x, y, z) be of the form (28). Assume that d is not in K[x, z].
Then f has a telescoper of type (∂x,Θy, Dz) if and only if b = b1b2 for some b1 ∈ K[x]
and b2 ∈ K[x, y] satisfying θmx (b2) = λ · θny (b2) for some nonzero λ ∈ K.
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Proof. The sufficiency follows from Lemma 4.25. For the necessity, we assume that L ∈
K(x)〈∂x〉 is a telescoper for f of type (∂x,Θy, Dz). Write L = L0+L1 + · · ·+Lm−1 with
Li =

∑ri
j=0 ℓi,j∂

jm+i
x . Since θix(d) and θ

j
x(d) are in distinct 〈θy〉-orbits for all 0 ≤ i 6= j ≤

m − 1, Lemma 3.8 implies that Li is also a telescoper for f of the same type for each i
with 0 ≤ i ≤ m− 1. A direct calculation yields

L0(f) = Θy(g0) +
A

d
,

where A =
∑r0

j=0 c
−jℓ0,jτ

j(a/b) with τ = θ−n
y θmx and τ(d) = c · d. By Lemma 3.8, we

have A = 0 since d /∈ K[x, z]. So the necessity follows from Lemma 4.24.

Example 4.27. Let f = 1/(bd) with b = x+ y and d = z2 − x− y. Note that d satisfies
the condition σx(d) = σy(d) and is not in K[x, z]. By Theorem 4.26, f has a telescoper
of type (Sx,∆y, Dz) since b satisfies the same condition as d. Indeed, L = Sx − 1 is a
telescoper for f since L(f) = ∆y(f) +Dz(0).

4.5. Existence problems of fifth class

We now consider the fifth class of existence problems in which both telescopers and
(Θy,Θz) are involving (q-)shift operators. In this class, we let ∂x ∈ {Sx, Tq,z} and
(Θy,Θz) ∈ {(∆y,∆z), (∆q,y ,∆z), (∆q,y ,∆q,z)}. More precisely, we solve the following
problem.

Problem 4.28. Given f ∈ K(x, y, z), determine if there exists a nonzero operator L ∈
K(x)〈∂x〉 such that L(f) = Θy(g) + Θz(h) for some g, h ∈ K(x, y, z).

For v ∈ {x, y, z}, let θv = σv if Θv = ∆v or θv = τq,v if Θv = ∆q,v. By partial fraction
decomposition w.r.t z and the transformation (7) with θ = θy and subsequently with
θ = θz, any rational function f ∈ K(x, y, z) can be decomposed into

f = Θy(u) + Θz(v) + µ+

I
∑

i=1

Ji
∑

j=1

ti,j
∑

ℓ=0

ai,j,ℓ

θℓxd
j
i

, (29)

where u, v ∈ K(x, y, z), µ ∈ K(x, y), ai,j,ℓ ∈ K(x, y)[z], di ∈ K[x, y, z] with degz(ai,j,ℓ) <

degz(di), di’s are irreducible polynomials in distinct 〈θx, θy, θz〉-orbits, θℓxdi and θℓ
′

x di are
not 〈θy, θz〉-equivalent for any 1 ≤ i ≤ I, 0 ≤ ℓ, ℓ′ ≤ ti,j with ℓ 6= ℓ′. Then by similar
discussions as the proof of Lemma 5.2 and Lemma 5.3 in [18], we can obtain the following
result.

Lemma 4.29. Let f ∈ K(x, y, z) be of the form (29). Then f has telescopers of type
(∂x,Θy,Θz) if and only if µ and all

ai,j,ℓ

θℓ
xd

j

i

with 1 ≤ i ≤ I, 1 ≤ j ≤ Ji and 0 ≤ ℓ ≤ ti,j have

telescopers of the same type.

Notice that for µ ∈ K(x, y), having telescopers of type (∂x,Θy,Θz) and (∂x,Θy) are
equivalent. The existence problem of bivariate rational functions has been solved by
Theorem 4.1. Thus Problem 4.28 for a general rational function has been reduced to that
for a rational function of the form

f =
b(x, y, z)

c(x, y)d(x, y, z)λ
, (30)
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where λ ∈ N \ {0}, c ∈ K[x, y], b, d ∈ K[x, y, z] with 0 ≤ degz(b) < degz(d). Suppose
α(x) ∈ K(x) \ {0}. It is easy to check that

ρ
∑

i=1

ai(x)∂
i
x(αf) =

ρ
∑

i=1

(

ai(x)∂
i
x(α)

)

∂ix(f)

whenever ai(x) ∈ K(x) and f ∈ K(x, y, z). This means the existence problem of f is
equivalent to that of αf . As such we can assume in the form (30) that b, c, d are all
primitive in y, z. If f is (Θy,Θz)-exact. Then L = 1 is a telescoper for f . From now on,
we will also assume f is not (Θy,Θz)-exact.

Lemma 4.30. Let f ∈ K(x, y, z) be of the form (30). If f has a telescoper of type
(∂x,Θy,Θz) then

θmx (d) = qsθny θ
k
z (d) for some m, s, n, k ∈ Z with m > 0. (31)

Proof. We prove the claim by contradiction. Suppose the condition (31) does not hold.

Assume that L =
∑I

i=0 ai∂
i
x ∈ K(x)〈∂x〉 with a0 6= 0 is a telescoper for f . Then

L(f) =

I
∑

i=0

aiθ
i
x(b)

θix(c)θ
i
x(d

λ)
= Θy(g) + Θz(h)

for some g, h ∈ K(x, y, z). By assumption, we know θixd’s are in distinct 〈θy, θz〉-orbits,
Lemmas 3.5, 3.7 and 3.6 show that for any 0 ≤ i ≤ I,

aiθ
i
x(b)

θi
x(c)θ

i
x(d

λ)
are (Θy,Θz)-exact.

Particularly,
a0b

cdλ
= Θy(g0) + Θz(h0) for some g0, h0 ∈ K(x, y, z).

As a0 ∈ K(x) \ {0}, we get b
cdλ = Θy(

g0
a0
) + Θz(

h0

a0
) which contradicts to the assumption

that f is not (Θy,Θz)-exact. This completes the proof.
Next, we will proceed by case distinction according to whether or not

θn1

y (d) = qs1θk1

z (d) for some s1, n1, k1 ∈ Z with n1 > 0. (32)

Theorem 4.31. Let f ∈ K(x, y, z) be of the form (30) and d satisfy the condition (31)
but not the condition (32). Then f has a telescoper of type (∂x,Θy,Θz) if and only if

θtmx (c) = qs2θtny (c) (33)

for the (m,n) as in (31) and some t, s2 ∈ Z with t > 0.

Proof. For the sufficiency, assume that c satisfies the condition (33). Then set L =
∑I

i=0 ai∂
itm
x , where I ∈ N and ai ∈ K(x) are to be determined. Applying the reduction

formula (7) yields

L(f) =
I
∑

i=0

aiq
−is2−itsθitmx (b)

θitny (c)θitny θitkz (dλ)
= Θy(u) + Θz(v) +

1

cdλ

I
∑

i=0

aiq
−is2−itsθitmx θ−itn

y θ−itk
z (b)

for some u, v ∈ K(x, y, z). Note that the degrees of the polynomials θitmx θ−itn
y θ−itk

z (b) in
y or z are the same as that of b. Thus all shifts of b lie in a finite dimensional linear space
over K(x). If I is large enough, then there always exist ai ∈ K(x), not all zero, such that
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∑I
i=0 aiq

−is2−itsθitmx θ−itn
y θ−itk

z (b) = 0. As a result L =
∑I

i=0 ai∂
itm
x is a telescoper for

f .

For the necessity, assume f = b(x,y,z)
c(x,y)d(x,y,z)λ has a telescoper L1 of type (∂x,Θy,Θz).

Let C1 be the maximal factor of c satisfying the condition (33) and C2 = c/C1. If C2 ∈ K
then we have done. Now assume that C2 6∈ K. Then degy(C2) > 0 since c is primitive with
respect to y, z. It follows that there exist B1, B2 ∈ K[x, y, z] with degz(Bi) < degz(d)
and gcd(Bi, Ci) = 1 for i = 1, 2, such that

f =
1

dλ

(

B1

C1
+
B2

C2

)

,

Then B1

C1dλ has a telescoper L2 of type (∂x,Θy,Θz) by the sufficiency. The least common

left multiple of L1 and L2 is a telescoper for B2

C2dλ . Since d satisfies the condition (31),

we can assume L =
∑I

i=0 ai∂
im
x ∈ K(x)〈∂x〉 with a0aI 6= 0 to be a telescoper for B2

C2dλ .
Thus

L

(

B2

C2dλ

)

=

I
∑

i=0

q−isaiθ
im
x (B2)

θimx (C2)θiny θ
ik
z (dλ)

= Θy(u) + Θz(v) +

I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z (B2)

θimx θ−in
y (C2)dλ

(34)

for some u, v ∈ K(x, y, z). Notice that L
(

B2

C2dλ

)

is (Θy,Θz)-exact and that d does not

satisfy the condition(32). Then Lemma 3.5, 3.7 and 3.6 lead to

I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z (B2)

θimx θ−in
y (C2)

= 0. (35)

Let Λ = {cj ∈ K[x, y] \K[x]| cj is an irreducible factor of C2}. Then Λ is nonempty and
finite and none of cj satisfies condition (33) by the maximality of C1. By the method
of proof by contradiction, one can prove that there exists a cℓ ∈ Λ such that cℓ 6=
qs

′

θimx θ−in
y cj for any cj ∈ Λ and s′, i ∈ Z with i > 0. This fact together with equation

(35) and the constraint gcd(B2, C2) = 1 derive B2 = 0, which concludes the proof.

Lemma 4.32. Let f ∈ K(x, y, z) be of the form (30) and d satisfy conditions (31) and
(32). Suppose

θm2

x (c) = qs2θn2

y (c) for integers m2, s2, n2 with m2 > 0. (36)

Then f has a telescoper of type (∂x,Θy,Θz).

Proof. Since d satisfies both (31) and (32), without lose of generality, we assume m,n1

are the smallest positive integers. Let m0 = mm2n1 and L =
∑I

i=0 ai∂
im0
x , where I ∈ N

and ai ∈ K(x) are to be determined. Then

L (f) =

I
∑

i=0

aiθ
im0
x (b)

θim0
x (c)θim0

x (dλ)
=

I
∑

i=0

aiq
−ims2n1−ism2n1θim0

x (b)

θimn2n1
y (c)θinm2n1

y θikm2n1
z (dλ)

=

I
∑

i=0

aiq
αθim0

x (b)

θimn2n1
y θβz (cdλ)

= Θy(u) + Θz(v) +

∑I
i=0 aiq

αθim0
x θ−imn2n1

y θ−β
z (b)

cdλ
, (37)

where u, v ∈ K(x, y, z), α = −ims2n1 − ism2n1 − i(m2n −mn2)s1 and β = ikm2n1 +
i(m2n −mn2)k1. Since the (q-)shift operators do not change the degree of b, when I is
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large enough, we can find nontrivial solutions ai such that

I
∑

i=0

aiq
αθim0

x θ−imn2n1

y θ−β
z (b) = 0.

Then identity (37) leads to the fact that L =
∑I

i=0 ai∂
im0
x is a telescoper for f .

Theorem 4.33. Let f be of the form (30) and assume that d satisfies conditions (31)

and (32). Then f has a telescoper of type (∂x,Θy,Θz) if and only if f can be decomposed

into the form

f =
1

dλ

(

B1

C1
+
B2

C2

)

,

where B1, B2 ∈ K[x, y, z], C1, C2 ∈ K[x, y] satisfy the following two constrains: (1) C1

satisfies the condition (36); (2) B2/(C2d
λ) is (Θy,Θz)-exact.

Proof. The sufficiency follows from Lemma 4.32. For the necessity, let C1 be the maximal

factor of c satisfying the condition (36) and C2 = c/C1. If C2 ∈ K then we have done.

Now assume that C2 6∈ K. Then degy(C2) > 0 since c is primitive with respect to y, z. It

follows that there exist B1, B2 ∈ K[x, y, z] with degz(Bi) < degz(d) and gcd(Bi, Ci) = 1

for i = 1, 2, such that f = 1
dλ

(

B1

C1
+ B2

C2

)

. Next we will prove B2

C2dλ is (Θy,Θz)-exact.

Note that B1

C1dλ has a telescoper of the same type with f by Lemma 4.32. Then B2

C2dλ has

a telescoper L =
∑I

i=0 ai∂
im
x and

L

(

B2

C2dλ

)

= Θy(u) + Θz(v) +

I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z (B2)

θimx θ−in
y (C2)dλ

(38)

for some u, v ∈ K(x, y, z). Since degz(B2) < degz(d), function
I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z (B2)

θim
x θ−in

y (C2)dλ

is (Θy,Θz)-exact and d satisfies condition (32), exactness criteria in Lemmas 3.5, 3.7

and 3.6 yield that there exists g ∈ K(x, y)[z] such that

I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z

(

B2

C2

)

= q−λs1θn1

y θ−k1

z (g)− g. (39)

Let Λ = {cj ∈ K[x, y] \ K[x] | cj is an irreducible factor of C2}. Then Λ is nonempty

and finite since degy(C2) > 0. Notice that none of cj in Λ satisfies the condition (36).

One can find a cℓ ∈ Λ such that cℓ 6= qsθm3
x θn3

y cj for any cj ∈ Λ and s,m3, n3 ∈ Z with

m3 > 0. Collecting all irreducible factors in C2, which are 〈θy〉-equivalent to cℓ, into D1.

Then we can decompose B2

C2
into B2

C2
= A1

D1
+ A

D , where A1, A ∈ K[x, y, z], D = C2/D1.

Rewrite g = g1+ g2 where g1, g2 ∈ K(x, y)[z] and the denominator of g1 contains exactly

all irreducible factors in the denominator of g which are 〈θy〉-equivalent to cℓ. Equation
(39) and the choice of D1 and g1 derive A1

D1
= q−λs1θn1

y θ−k1
z (g1)− g1, and hence

I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z

(

A1

D1

)

= q−λs1θn1

y θ−k1

z (h1)− h1, (40)
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where h1 =
I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z (g1). Subtracting Equation (40) from (39), we obtain

I
∑

i=0

q−isaiθ
im
x θ−in

y θ−ik
z

(

A

D

)

= q−λs1θn1

y θ−k1

z (g⋆1)− g⋆1 (41)

with g⋆1 = g − h1. Repeating the above arguments for the equation (41), one can finally
decompose B2

C2
= A1

D1
+ A2

D2
+ · · · + AT

DT
for Di ∈ K[x, y] and Ai

Di
= q−λs1θn1

y θ−k1
z (gi) − gi

for any 1 ≤ i ≤ T . Then we get

B2

C2
= q−λs1θn1

y θ−k1

z

(

T
∑

i=0

gi

)

−
T
∑

i=0

gi

and hence B2

C2dλ is (Θy,Θz)-exact. This completes the proof.

4.6. Existence problems of sixth class

We consider the last class of the existence problems of telescopers for rational functions
in three variables.

Problem 4.34. Let ∂y ∈ {Sy, Tq,y} and Θy = ∂y − 1. Given f ∈ K(x, y, z), decide
whether there exists a nonzero operator L ∈ K(x)〈Dx〉 such that L(f) = Θy(g) +Dz(h)
for some g, h ∈ K(x, y, z).

By the Ostrogradsky–Hermite reduction and the reduction formula (7), we can de-
compose f ∈ K(x, y, z) as

f = Θy(u) +Dz(v) + r with r =

I
∑

i=1

αi

z − βi
, (42)

where u, v ∈ K(x, y, z) and αi, βi ∈ K(x, y) with αi 6= 0 and the βi’s are in distinct
〈θy〉-orbits with θy ∈ {σy, τq,y}. Then f has a telescoper of type (Dx,Θy, Dz) if and only
if r has a telescoper of the same type.

Lemma 4.35. For any L =
∑ρ

j=0 ℓjD
j
x ∈ K(x)〈Dx〉 and α, β ∈ K(x, y), there exists

g ∈ K(x, y)(z) such that

L

(

α

z − β

)

=
L(α)

z − β
+Dz(g). (43)

Proof. Let resz(f, β) denote the residue of f ∈ K(x, y, z) at z = β in z. The map resz(·, β)
is K(x, y)-linear and commutes with the operator Dx by [21, Proposition 3]. Then we
have

resz

(

L

(

α

z − β

)

, β

)

= L

(

resz

(

α

z − β
, β

))

= L(α).

So all residues of h := L(α/(z − β)) − L(α)/(z − β) at all of its poles are zero. By
Proposition 2.2 in [22], we have h is Dz-exact, i.e., h = Dz(g) for some g ∈ K(x, y)(z).

The next theorem reduces Problem 4.34 to the separation problem for algebraic func-
tions (Problem 4.5) and the existence problem of telescopers in K(x, y)(β) with β ∈ K(x).
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Theorem 4.36. Let f ∈ K(x, y, z) be of the form (42). Then f has a telescoper of type
(Dx,Θy, Dz) if and only if for each i with 1 ≤ i ≤ I, either αi is separable in x and y or

βi ∈ K(x) and αi ∈ K(x, y)(βi) has a telescoper of type (Dx,Θy).

Proof. If for each i with 1 ≤ i ≤ I, either αi is separable or βi ∈ K(x) and αi ∈
K(x, y)(βi) has a telescoper of type (Dx,Θy), then there exists a nonzero Li ∈ K(x)〈Dx〉
such that either Li(αi) = 0 or Li(αi) = Θy(γi) for some γi ∈ K(x, y)(βi). By Lemma 4.35,
we have

Li

(

αi

z − βi

)

= Dz(gi) +
Li(αi)

z − βi
= Dz(gi) +

Θy(γi)

z − βi

= Dz(gi) + Θy

(

γi
z − βi

)

,

where gi ∈ K(x, y)(z). So for each i with 1 ≤ i ≤ I, the fraction αi/(z − βi) has a
telescoper of type (Dx,Θy, Dz). Then f has a telescoper of the same type by Lemmas 2.4
and 3.3. To show the necessity, we assume that L ∈ K(x)〈Dx〉 is a telescoper for f of
type (Dx,Θy, Dz). By Lemma 4.35, there exists w ∈ K(x, y)(z) such that

L(f) = Θy(L(u)) +Dz(L(v) + w) +

I
∑

i=1

L(αi)

z − βi

= Θy(g) +Dz(h)

for some g, h ∈ K(x, y, z). For each i with 1 ≤ i ≤ I, either αi is separable if L(αi) = 0
or L(αi)/(z− βi) is (Θy, Dz)-exact if L(αi) 6= 0. In the later case we have βi ∈ K(x) and
L(αi) = Θy(γi) for some γi ∈ K(x, y)(βi) by Lemma 3.8.

Remark 4.37. The separation problem on algebraic functions will be solved in the
forthcoming paper [16]. The existence problem of telescopers of type (Dx,Θy) can be
verified by Theorem 4.1, whose statement is for functions in K(x, y), but its proof also
works for functions in K(x)(y). In particular, this covers the case in which the functions
are in K(x, y)(β) with β ∈ K(x).

Example 4.38. Let f be as in Example 4.27. Then

f =
α

z − β
+

−α
z + β

,

where α = 1
2(x+y)

√
x+y

and β =
√
x+ y. Note that α is not separable in x and y since

its successive derivatives Di
x(α) = (−1)i

∏i
j=0(j + 1/2)(x+ y)−(i+3/2) are linearly inde-

pendent over K(x). Since β is not in K(x). So f has no telescoper of type (Dx,Θy, Dz)
by Theorem 4.36.

5. Conclusion

In this paper, we present existence criteria for telescopers for rational functions in
three variables. The criteria reduce the existence problems of telescopers for the trivari-
ate inputs to that for the bivariate inputs and two related solvable problems: the (q-)shift
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equivalence testing problem and the separation problem. In the pure differential case, al-
gorithms for constructing minimal telescopers for rational functions in three variables
have been presented in [21, 8] using residues and reductions. This has also recently been
extended to the pure shift case in [17] based on the existence criteria given in [18]. The
first natural direction for future work is to develope efficient algorithms for other twelve
cases using the existence criteria in this paper. The next more challenging direction is
to study the existence problem of telescopers for more general inputs, such as ratio-
nal functions and hypergeometric terms in several variables. To this end, we need first
solve the multivariate summability problem for those inputs. In particular, it is already
quite intriguing to extend the classical Gosper algorithm for indefinite hypergeometric
summation [30] to the bivariate case.
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