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Abstract

Zeilberger’s method of creative telescoping is crucial for the computer-generated proofs of com-
binatorial and special-function identities. Telescopers are linear differential or (g-)recurrence
operators computed by algorithms for creative telescoping. For a given class of inputs, when
telescopers exist and how to construct telescopers efficiently if they exist are two fundamen-
tal problems related to creative telescoping. In this paper, we solve the existence problem of
telescopers for rational functions in three variables including 18 cases. We reduce the existence
problem from the trivariate case to the bivariate case and some related problems. The existence
criteria given in this paper enable us to determine the termination of algorithms for creative
telescoping with trivariate rational inputs.
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1. Introduction

Creative telescoping plays a crucial role in the algorithmic proof theory of combina-
torial identities developed by Wilf and Zeilberger in the early 1990s [44, 45, 43]. For a
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given function f(z,y1,...,Yyn), the process of creative telescoping constructs a nonzero
linear differential or (g-)recurrence operator L in x such that

L(f) = Oy, (g1) + - + Oy, (9n),

where ©,, denotes the derivation or (g-)difference operator in y; and the g;’s belong to the
same class of functions as f. The operator L is then called a telescoper for f, and the g;’s
are called the certificates of L. Two fundamental problems have been studied extensively
related to creative telescoping. The first problem is the existence problem of telescopers,
i.e., deciding the existence of telescopers for a given class of functions. The second one is
the construction problem of telescopers, i.e., designing efficient algorithms for computing
telescopers if they exist. For more open problems related to creative telescoping, one can
see [19]. In this paper, we will mainly focus on the existence problem of telescopers and
study the construction problem of telescopers in future work.

The existence of telescopers is closely connected to the termination of algorithms for
creative telescoping and the hypertranscendence and algebraic dependency of functions
defined by indefinite sums or integrals [33, 40]. In 1990, Zeilberger first presented a
sufficient condition on the existence of telescopers by showing that telescopers always
exist for so-called holonomic functions in [44] using Bernstein’s theory of algebraic D-
modules. Soon after this work, Wilf and Zeilberger in [43] proved that telescopers exist for
proper hypergeometric terms. However, holonomicity and properness are only sufficient
conditions. Abramov and Le [4] gave a necessary and sufficient condition on the existence
of telescopers for rational functions in two discrete variables. This work was soon extended
to the hypergeometric case by Abramov [3], the g-hypergeometric case in [24], and the
mixed rational and hypergeometric case in [22, 13]. All of the above work only focussed on
the problem for bivariate functions of a special class. The first criterion on the existence of
telescopers beyond the bivariate case was given in [18], in which a necessary and sufficient
condition is presented on the existence problem of telescopers for rational functions in
three discrete variables. The goal of this paper is continuing this project by considering
the remaining cases, in which the continuous, discrete and g-discrete variables can appear.

The remainder of this paper is organized as follows. We define the existence problem
of telescopers precisely in Section 2 and recall different types of reductions that are used
in testing the exactness of bivariate rational functions in Section 3. Existence criteria are
given for 18 types of telescopers for rational functions in three variables in Section 4.

A preliminary version [14] of this article has appeared in the Proceedings of ISSAC’19.
In the present version, we include twelve more cases in which the ¢-shift operator appears
and also more detailed proofs throughout.

Acknowledgement. The authors would like to thank Ruyong Feng, Hui Huang and Ziming
Li for many helpful discussions. In this work, Shaoshi Chen and Chaochao Zhu was
supported by the NSFC grants (No. 11871067 and No. 11688101) and by the Fund of the
Youth Innovation Promotion Association, CAS. Lixin Du was supported by the NSFC
grant (No. 11871067) and the Austrian FWF grant (No. P31571-N32). Rong-Hua Wang
was supported by the Natural Science Foundation of Tianjin (No. 19JCQNJC14500) and
the NSFC grant (No. 11871067).



2. Preliminaries

Let K be a field of characteristic zero and K(v) be the field of rational functions in
the variables v = {z,y1,...,y,} over K. For each v € v, the derivation §, on K(v) is
defined as the usual partial derivation 9/0, with respect to v satisfying that 6,(f +g) =
3u(f) + 0u(g) and 6,(fg) = g0u(f) + fdu(g) for all f,g € K(v). Moreover, d,(c) = 0 if
and only if ¢ € K(v \ {v}), i.e.,, ¢ is free of v. For each v € v, the shift operator o, is the
K-automorphism of K(v) defined by o,(v) = v+ 1 and o,(w) = w for all w € v\ {v}.
Let ¢ € K\ {0} be such that ¢" # 1 for all nonzero m € Z. For each v € v, the ¢-shift
operator T4, is the K-automorphism defined by 7,,(v) = qu and 74,(w) = w for all
w € v\ {v}. Abusing notation, we let §, and 0, with 0, € {0,, 7,4} denote arbitrary

extensions of §, and 6, to derivation and K-automorphism of K(v), the algebraic closure
of K(v).

Over the field K(v), we have a noncommutative algebra D := K(v)(0s, 0y, , ..., 0y,)
in which commutation rules are 0,,0,, = 0y,0,, for all v;,v; € v, and for any v € v and
feK(v),

fOu + 0, (f) if Oy = Dy,
a’Uf = U'u(f)a'u if 81; = va (1)

Taw(f)Oy it Oy = Ty s.
where D, S,, and T , refer to the differential, shift and g¢-shift operators, respectively.
The algebra D is also called the ring of linear functional operators or Ore polynomials
(for more details, see [10, 26]). Let A, be the difference operator S, — 1 and A, , be the
g-difference operator 1, , — 1. For each v € v, we define

Dv 1f &, = Dvu
61} = a’u - av(l) = A’u if 8’0 - S’U) (2)
Aq,v if 9, = q,v-

The action of the operator 0, € D on an element f € K(v) is defined as

du(f) if Oy = Dy,

oo(f) if 8y = Sy, (3)
T (f) i Oy =Ty .

In general, the action of the operator L = ZZ—O i >0 aio’il,,wina;”@;ll . 6;1 € D on
f € K(v) is defined as B

L(f) = Z Wig iy i OO - 00 ().

10,81 500000 >0

9u(f) =

Then the field K(v) becomes a left D-module. In this paper, we will mainly work with
rational functions in three variables z,y, z and the operators in K(z,y, 2)(0x, 0y, 0).

Example 2.1. Let L = 1+ (z + yz)D, + 25,T,,. € K(z,y,2)(Ds,Sy,Ty-) and f =
1/(z 4+ yz). Then we have

Lof=f+ @+ y2)8a(f) + 20, (rg-(f)) &

a qz—l—qyz—l—x'



The functions we consider will be in certain D-module, such as the field K(v) or
K(v). The ring K(x)(9,) is a subring of D that is also a left Euclidean domain. Efficient
algorithms for basic operations in K(x)(9,), such as computing the least common left

multiple (LCLM) of operators, have been developed in [10, 5.

Lemma 2.2. For an operator L = Y7 e;Di € K(z)(D,) with e, = 1, we let F be a
finite normal extension of K(z) containing the coefficients e;’s and G be the Galois group
of F over K(z). Let T be the LCLM of the operators o(L) = >.7_ o(e;) D% for all o € G.
Then T belongs to K(x)(D,).

Proof. Tt suffices to show that 7(T) = T for all 7 € G. Since D, commutes with any
automorphism in G by [9, Theorem 3.2.4 (i)], we have 7(LiLs) = 7(L1)7(L2) for all
Ly, Ly € F(D,). For each ¢ € G, we have T' = P,o(L) for some P, € F(D,), which
implies that 7(c(L)) divides 7(T"). When o runs through all elements of G, so does To.
Hence 7(T') is also a common left multiple of the operators o(L) for all ¢ € G. Since
7(T) and T are both monic and of the same degree in D,, we get 7(T) =T. |

Remark 1. The above assertion is not true in the (g-)shift case. For example, take
L =S, ++/x. The LCLM of L and its conjugation S, — /7 is S2 — \/z(x + 1), which is
not in K(x)(Sz).

Definition 2.3. For a rational function f € K(x,y,z), a nonzero operator L(z,d,) €
K(z)(0,) is called a telescoper of type (05,0,,0.) for f if there exist rational functions
g,h € K(x,y, z) such that

L(z,0:)(f) = ©y(g) + O=(h). (4)

The rational functions g, h are called the certificates of L.

Note that all of the telescopers for a given function together with the zero operator
form a left ideal of K(x)(0;) (see [25, Definition 1]). The following lemma summarizes
closure properties related to the existence of telescopers.

Lemma 2.4. Let f,g € K(z,y, 2), a,b € K(z) and «, 5 € K(x). Then we have
(i) if both f and g have telescopers in K(z){D,) of type (D, ©,,0.), so does af + Bg;
(ii) if both f and g have telescopers in K(z)(d,) of type (05, 0,,0,) with 0, € {S4, Ty},
so does af + bg.

Proof. We first show that o f has a telescoper in K(z)(D,) if f does. When a = 0 the
conclusion is obvious. Next we assume that a # 0 and L = .7 e;D} € K(z)(D,) is
a telescoper for f. Then L(f) = ©,(u) + ©.(v) with u,v € K(z,y,2). Set L = L - L,
which belongs to K(z)(D,). Then we have L(af) = ©,(u) + ©.(v), which means L is
a telescoper for af. By Lemma 2.2, there exists T € K(x)(D,) such that T is a left
multiple of L. So T is also a telescoper for af. When telescopers are in K(x)(S,) or
K(z)(T,,2), the above argument works for af for any a € K(z). It remains to show that
f + g has a telescoper in K(z)(0,) with 0, € {Dy, Sy, Ty 4} if both f and g do. Assume
that P,Q € K(z)(9,) are telescopers for f, g, respectively. Then the LCLM of P and @
is a telescoper for f + g by the commutativity between operators in K(z)(d,) and the
operators ©, and O..



Classes Types Telescoping equations
L. 1.1. (D2, Dy, D-) L(z, D) (f) = Dy(g) + D= (h).
2.1. (D, Ay, Az) L(z, Dz)(f) = Ay(9) + Az(h)
2. 2.2. (D, Mgy, Az) L(z, D2)(f) = Dq,y(9) + Az(h)
2.3. (D2, Ay, Ng2) | L(x, D) (f) = Agy(g) + Ag,z(h)
. | 31(S.Dy,D) L@, S:)(f) = Dy(9) + D= (h)
3.2. (Ty,e, Dy, D) L(z,Ty,2)(f) = Dy(g) + D= (h)
4.1. (Sz, Ay, D) L(z,5:)(f) = Ay(9) + D= (h)
" 4.2. (Sz,Aq,y,Dz) L(z,S2)(f) = Aq,y(9) + D=(h)
4.3. (Tge, Ay, D) L(z,Ty,2)(f) = By(g) + D=(h)
4.4. (Ty,e, Dg,y, D2) L(z,Tg,2)(f) = Aqy(g) + D=(h)
L (Sz, Ay, Az) L(z,52)(f) = By(9) + Az(h)
2. (82, Bqy; Az) L(z,5:)(f) = Bay(g) + Az(h)
5 3. (Se, Agyys Ag,2) L(z,5:)(f) = Aqu(9) + Aq,z(h)
54. (Tye, Ay, A2) Lz, Ty,2)(f) = By(g) + Az(h)
5.5. (Tg,z; Dgy, Az) Lz, Ty,2)(f) = Aqy(g) + Az(h)
5.6. (Tg,2, Dgys Ng,z) | L(m,Ty2)(f) = Dgy(g9) + Ag,z(h)
6 6.1. (Dz, Ay, Dz) L(z, D2 )(f) = Ay(g9) + D= (h)
6.2. (Da, Mgy, D) L(z, Ds)(f) = Aqy(g) + Dz (h)

Table 2.5. Six different classes of existence problems of telescopers

Let V = (V4,...,V,,) be any set partition of the variables v = {x,y1,...,yn}. A
rational function f € K(v) is said to be split with respect to the partition V if f =
fi- fm with f; € K(V;). A polynomial p € K[v] is said to be integer-linear in K[v]
if there exist r € K|[z] and a,by,...,b, € Z such that p = r(ax + byy1 + -+ + buyn)-
A polynomial p € KJv] is said to be g-integer-linear in K[v] if there exist r € K[z]
and a,by,...,b,,8,t1,...,t, € Z such that p = xsytl ceylnp(z ‘lyb1 --.ybn) A rational
function f = P/Q € K(v) with P,Q € K|v] and ged(P, Q) = 1 is said to be (q-)proper
in K(v) if @ is a product of (¢-)integer-linear polynomials over K. Split polynomials and
(g-)proper rational functions will be used to state our existence criteria for telescopers
in Section 4.

In the subsequent sections, we will study the existence of telescopers for rational
functions in three variables. More precisely, we consider the following problem.

Existence Problem for Telescopers. For a rational function f € K(z,y, 2), decide
the existence of telescopers of type (9,,0,,0,) for f.

Remark 2.6. In the trivariate case, there are 18 different types of telescopers up to
the symmetry among (6,,0,) which are collected into six different classes in Table 2.5
according to different techniques used in the studies.



Different types of partial fraction decompositions will be used in solving the existence
problems of telescopers. Let G = (0,,0,,0.) be the free abelian group generated by the
operators 6, 60,,0, with 8, € {0,,7;,}. Let f € K(z,y,2) and H be a subgroup of G.
We call the set

[fle :=A{c-¥(f) | ¥ € H and c € K\ {0}}

the H-orbit at f. Two elements f,g € K(x,y, z) are said to be H-equivalent if [f]g =
[9]m, denoted by f ~pg g. The relation ~p is an equivalence relation in K(z,y, z). Let
f=P/Q and g = A/B with P,Q, A, B € K[z, y, 2], gcd(P,Q) = 1 and ged(A4, B) = 1. If
f~mg,then P~y Q and A ~y B since any ¥ € H is an automorphism on K(z, y, z).
So detecting the H-equivalence among rational functions can be reduced to that among
polynomials. Two irreducible polynomials in distinct H-orbits are clearly coprime. A
nonzero rational function f € K(z,y, z) is said to be (6, 68,,0.)-invariant if there exist
m,n, k € Z, not all zero, and ¢ € K\ {0} such that 9m9”9k(f) = ¢ f. By comparing the
leading coeflicients, the constant ¢ in the above relamon must be of the form ¢° for some
s € Z. Moreover, c = 1 if all 6,, 60, and 6, are shift operators.

For any subgroup H of G and any polynomial @ € K(z,y)[z], one can group all of
irreducible factors in z of @ into distinct H-orbits that leads to the factorization

Q=c- HHz/Jw )7, where ¢ € K(z,y),n,m;,e;; € Nand ¢; j € H
i=1j=1

and the d;’s are monic irreducible polynomials in distinct H-orbits. With respect to this
factorization, we have the unique partial fraction decomposition for a rational function

f=P/Q € K(x,y, z) of the form

n m; €ij

F=p+ Y Yy Bt ¢ (5)

i=1 j=1¢=0
where p,a; ;¢ € K(x,y)[z] satisfying that deg_(a; ;) < deg,(d;). In the sequel, we will
take different H according to different types of existence problems.
Example 2.7. Consider the rational function of the form

T n Y —yz+x 32
2242r+y 24+ 2rx+y+l 2242ty 2242 t+y+2z+2

f =
If H = (0y), then we have the decomposition

x Y —yz+x 32
=+ + -
f d1 Uy (dl) dg d3
where d; = 22 +22+y, dy = 2°+2qx+y and d3 = 2%242qx+y-+22+2. Note that dy, da, ds
are in distinct (o )-orbits. If H = (7, 4, 0), then we have the different decomposition

x Y —yz+x 32
f = — + + + TR
di oy(dr)  Teu(di)  ds
where di, ds are in distinct (74,5, 0y)-orbits. If H = (7, ,,0,,0.), then we have another
decomposition

—yz+x 32

1 oy(dh) Tq,z(d1) Tq,x0y0z (di)




Cases Exactness equations
Continuous case 1.1. f = Dy(g) + D-(h)
2.1. f = Ay(g) + Az(h)
Discrete cases | 2.2. f = A, ,(g) + A= (h)
2.3. f=Aqy(9) + Ag,z(h)

3.1. f=Ay(g)+ D.(h)
3.2. f=2Agy(9)+ D=(h)

Mixed cases

Table 3.2. Six different cases of exactness testing problems
3. Reductions and Exactness Criteria

In this section, let F be any field of characteristic zero and will take F = K(z) in
Section 4. In order to detect the existence of telescopers, we first need to check whether
1 is a telescoper or not. This is equivalent to the following problem.

Exactness Testing Problem. For a rational function f € F(y, z), decide whether there
exist g, h € F(y, z) such that

f=0y(g) +O:(h).
If such g, h exist, we say that f is (0,,0,)-ezact in F(y, z).

Remark 3.1. Since there are three choices for each operator in {©,, 0.} together with
the symmetry between ©, and ©., there are 6 different types of exactness testing prob-
lems, listed in Table 3.2.

The following lemma shows that the exactness is unchanged even when we are looking
for the g and h in a larger field.

Lemma 3.3. Let f € F(y, z). Then f is (©,,0;)-exact in F(y, z) if and only if it is
(0y,0,)-exact in F(y, z).

Proof. The sufficiency is obvious. For the necessity, we assume that there exist u,v €
F(y, z) such that f = ©,(u) + O,(v). Let L be a finite normal extension of F(y, z)
containing the u,v and ©,(u), ©.(v) and let Try /r(, ) be the trace from L to F(y, z),
which commutes with (g-)shift operators by [23, Lemma 3.1] and also with derivations
by [9, Theorem 3.2.4 (i)]. Then

Trr/p(y,2) (F)=TrLrey,2) (Oy(w) + ©2(v) =0y (Trr/p(y,2) (1)) + O=(TrL/rey,2) (v))-

Since f € F(y,2), we have Try /p(y,.)(f) = mf with m=[L : F(y, 2)]. Thus f = ©,(g) +
O.(h) with g = LTry jp(y,»)(u) and h = LTy p(, ) (v) that are both in F(y, z). |

Y,z

Let &€ denote the set of all (O,,0.)-exact rational functions in F(y, z). Note that &£
forms a subspace of F(y, z) viewed as an F-vector space. Reduction algorithms have been
developed in [21, 23, 35, 11, 41] for simplifying rational functions modulo € and then
reducing the exactness problem from general rational functions to simple fractions. For
later use, we summarize these reductions as follows.



3.1.  The continuous case

For a rational function f € F(y, z), the Ostrogradsky—Hermite reduction [39, 34] with
respect to z decomposes f into the form

a

f=D.la)+ 2, ()
where g € F(y, z) and a,b € F(y)[z] with ged(a,b) = 1, deg,(a) < deg,(b) and b being
squarefree in z over F(y). Moreover, f = D, (u) for some u € F(y, z) if and only if a = 0.
We recall the criterion on the (D,, D, )-exactness of bivariate rational functions from [21,
Lemma 4].

Lemma 3.4. Let f € F(y, z) be of the form (6) and write

a - (673
EZZ«Z—@"

=1

where a;, 8; € F(y) with 3; # 3; for i, j with 1 <4i,j <n and ¢ # j. Then f is (D, D,)-
exact in F(y, z) if and only if for each ¢ with 1 < i < n, we have a; = D,(v;) for some

vi € F(y).

The above lemma reduces the exactness problem in the differential case from bivariate
rational functions to univariate algebraic functions. Let « € F(y) be an algebraic function
over F(y) with n := [F(y, ) : F(y)]. If @« = D,(p) for some 5 € F(y), then 5 € F(y, a)
by the trace argument as in the proof of Lemma 3.3. Assume that 8 = by + b1 +
oo+ b1t with b; € F(y). Then the equality « = D,(8) leads to a system of
linear differential equations on the b;’s, whose rational solutions can be computed by the
method in [6]. A generalization of the Ostrogradsky—Hermite reduction to the algebraic
case also solves the exactness problem of algebraic functions [20].

3.2.  The discrete cases

For any automorphism 6 on F(y, z) and a,b € F(y, z), we have the reduction formula

a 0="(a)
i =00 =9+ 5, @
_ n—10""(a) . _ —n—1 0%a) - .
where g = 31" 0y ifn>0and g=—-> ") D) if n < 0. By using the above
reduction formula, Abramov’s reduction in z [1, 2] decomposes f € F(y, z) into the form
a
f=247x9)+ 7, (8)

b
where g € F(y,z) and a,b € F(y)[z] with ged(a,b) = 1, deg,(a) < deg,(b) and b being
shift-free in 2 over F(y), i.e., for any k € Z \ {0} we have ged(b, o (b)) = 1. Moreover,
f = A.(u) for some u € F(y, z) if and only if a = 0. We use the reduction formula (7)
with 0 = o, to further decompose f as

I g
=00+ A 0+ 3% )

i=1 j=1



where u,v € F(y, 2), a;; € F(y)[z], and d; € Fly, z] are such that deg,(a; ;) < deg,(d;)
and the d;’s are irreducible polynomials in distinct (o, 0.)-orbits. We recall the criterion
on the (A,, A,)-exactness of bivariate rational functions by combining Lemma 3.2 and
Theorem 3.3 in [35].

Lemma 3.5. Let f € F(y, z) be of the form (9). Then f is (A,, A,)-exact in F(y, 2)

if and only if for all 4,5 with 1 <4 < I, 1 < j < J;, we have 0, (d;) = ol(d;) for

some m;,n; € Z with m; >0 and a; ; = 0" 0" (b; ;) — b; ;j for some b; ; € F(y)[z] with

deg, (b; j) < deg,(d;). In particular, if f is (A,, A,)-exact, so is each a; ;/d?.

For a rational function f € F(y, z), Abramov’s reduction in z and its g-analogue in y
decompose f into

I J;
f=20qy(9)+As(h) + Z Z R (10)

where g,h € F(y, 2), a;; € F(y)[z], di € Fly, 2] sat1sfy that deg,(a; ;) < deg,(d;) and
d;’s are irreducible polynomials in distinct (7, ,, 0, )-orbits. We recall the criterion on the
(Agys Ay)-exactness in F(y, z) from [11, Theorem 3].

Lemma 3.6. Let f € F(y, z) be of the form (10). Then f is (A, A)-exact in F(y, 2) if
and only if for each i € {1,...,I}, d; € Flz] and for each j € {1,...,J;}, a; ; :_Aq,y(bi,j)
for some b; ; € F(y)[z]. In particular, if f is (Ag,, A,)-exact, so is each a; ;/d’.

The g-analogue of Abramov’s reduction decomposes f € F(y, z) into the form
a
f:Aq,z(g)+c+ Ea (11)

where g € F(y, z), ¢ € F(y) and a,b € F(y)[z] with ged(a,b) = 1, deg,(a) < deg,(b) and
b being ¢-shift-free in z over F(y), that is ged(b, Té“zb) =1 for any k € Z\ {0}. Moreover,
f=27g:(u) for some u € F(y, z) if and only if ¢ =0 and a = 0.

Applying the reduction formula (7) with 6 = 7, we can further decompose f as

f=A00yw) +Ag:(v) +c+

(12)

H'M~
HM~

where u,v € F(y, z), ¢ € F(y), a;; € F(y)[z], and d; € F[y, z| are such that deg_(a; ;) <
deg,(d;) and the d;’s are irreducible polynomials in distinct (7, 74,-)-orbits. Then the
(Ag,y, Ay, z)-exactness criterion of f can be given by combining Lemma 3.6 and Theorem
3.8 in [41], which is a g-analogue of Lemma 3.5.

Lemma 3.7. Let f € F(y, z) be of the form (12). Then f is (A, ,, Aq,2)-exact in F(y, 2)

if and only if ¢ = Ay y(h) for some h € F(y) and for all 4,5 with 1 < ¢ < I, 1 <
J < Ji, we have o (d;) = q®ioli(d;) for some m;,n;, s; € Z with m; > 0 and for the

smallest positive integer m;, a; j = ¢~ 7% 7% 7. (b; ;) — b j for some b; ; € F(y)[z] with

deg_(b; j) < deg_(d;). In particular, if f is (A, A,..)-exact, so is each a; ;/d’.



3.83.  The mized cases

For a rational function f € F(y, z), applying the Ostrogradsky—Hermite reduction in z
and the reduction formula (7) with 6 =0, € {0y, 74, } to f yields

1
f = 4y(u) + Dx(v) + 3 7 (13)

where u,v € F(y, 2),a; € F(y)[z],d; € Fly, z] with deg,(a;) < deg,(d;) and the d;’s are
irreducible polynomials in distinct (f,)-orbits. We recall the criterion on the (©,,D,)-
exactness in F(y, z) from [11, Theorem 2].

Lemma 3.8. Let 6, € {0y, 74, } and f € F(y, z) be of the form (13). Then f is (0, D.)-
exact in F(y, z) if and only if for each ¢ € {1,...,I}, d; € F[z] and a; = O,(b;) for some
b; € F(y)[z]. In particular, if f is (©,, D,)-exact, so is each a;/d,.

4. Existence Criteria

We will reduce the existence problem of telescopers in the trivariate case to that in
the bivariate case and two related problems. To this end, we first recall the existence
criteria on telescopers for bivariate rational functions from [4, 38, 3, 22, 13].

Theorem 4.1. Let f(x,y) be a rational function in K(z,y). Then
(i) Differential case (see [22, Theorem 4.5]): f always has a telescoper of type (D, D,);

(ii) Shift case (see [4, Theorem 1] or [22, Theorem 4.11]): f has a telescoper of type
(Sz,Ay) if and only if f is of the form f = A,(g) + r for some g,r € K(z,y) and r
is proper in K(z,y).

(iil) ¢-Shift case (see [38, Theorem 1] or [22, Theorem 4.15)): f has a telescoper of type
(Tg,2:Ag,y) if and only if f is of the form f = Ay ,(g) + r for some g,r € K(z,y)
and r is ¢-proper in K(z,y).

(iv) Mixed cases (see [22, Theorems 4.6, 4.7, 4.9, 4.12, 4.13, 4.14]): f has a telescoper
of type (0z,0y) € {(Sz, Dy), (Tg.c, Dy), (Dz, Ay), (Tge; By), (D, Agy), (Sz, Agy)}
if and only if f is of the form f = ©,(g) + r for some g,7 € K(z,y) and the
denominator of r is split with respect to the partition ({z}, {y}).

Example 4.2. Let f = 1/(z +y). Then f has a telescoper of type (D, Dy), (Sz, Ay)
and (Ty,z,Aq,y), but has no telescoper in the mixed cases since = + y is not split.

Problem 4.3 (Shift Equivalence Testing Problem). Let F be any computable field of
characteristic zero. Given p € Flx1, ..., x,], decide whether there exist my,...,m, € Z
with my > 0 such that p(z1 + mq, ...,y + my) = p(1,...,T5).

This problem is solved by Grigoriev in [31, 32] and more recently by Kauers and
Schneider in [36] and Dvir et al. in [28].

Problem 4.4 (¢-Shift Equivalence Testing Problem). Let p € Flx1, ..., z,], decide if there
exist m,my,...,my, € Z with my > 0 such that p(¢"™ z1,...,¢™x,) = ¢"p(z1,. .., 2n).

This problem is much easier than the shift case, and an algorithm for testing ¢-shift
equivalence has been given in [41].
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Problem 4.5 (Separation Problem). Given an algebraic function « € K(z,y), decide
whether there exists a nonzero operator L € K(z)(D,) such that L(a) = 0. If such an

operator exists, we say that « is separable in x and y.

As a special case of [15, Proposition 10], a rational function in K(z,y) is separable
if and only if it is of the form a/(bc) with a € K[z,y],b € Klz] and ¢ € K[y]. This
motivates the nomenclature of Problem 4.5. We will study the separation problem in
the forthcoming paper [16], in which an algorithm is presented for constructing such a
differential annihilator L € K(z)(D,,) if it exists.

4.1.  Ezxistence problems of first class

In the pure differential setting, telescopers always exist for general D-finite functions
over K(v), which was proved by Zeilberger in 1990 using the elimination property of
holonomic D-modules [44]. For the sake of completeness, we will give a more direct
proof for rational functions in K(v). We first adapt Wegschaider’s “non-commutative
trick” in [42, Theorem 3.2] to the differential case.

Lemma 4.6. Let f € K(z,y1,...,y») and A € K[z|(D,,D,,,...,D,,) be a nonzero
operator such that A(f) = 0. Then there exists a nonzero operator L € K[z](D,) such
that L(f) = Dy, (g1) + -+ - + Dy, (gn) for some ¢1,..., 9, € K(x,y1,...,Yn).

Proof. We will follow the same argument in the proof of [42, Theorem 3.2]. We claim
that for every ¢ € {1,...,n + 1}, there exist Q;, € K[v|(Dy,Dy,,...,D,,) for each
jeA{l,...,£—1} and a nonzero R, € K[z|(D,,D,,,...,D,,) such that f is annihilated
by the operator

-1
Py=Y Dy Qjs+ Re. (14)

j=1
The lemma follows from this claim since R,,41 is the desired operator L € K[z](D,) with
gj = —Qju(f) €K(v) for j € {1,...,n}.

We prove the claim inductively: for ¢ = 1 take P, = R; = A. Assume that for some
¢ € {1,...,n} we have a nonzero operator P, of the form (14) that annihilates f. We
show that by division of R, by D; we can construct the operator Py, .
esrr -+ Dy,, we can write Ry = Dy (Req1 +
D, M), where m € N, M € K[z](Ds,Dy,,...,D,,), and R,y is a nonzero operator
in K[z](D,., D

Since D,, commutes with = and D,, D

yesrs - - Dy, ). For any w € K[y,] of degree at most m, we have

wD}' = Dy, Q¢+ 7 (15)

for some r € K and Q; € K[y(](D,,). In particular, = (—1)"m! # 0 if we take w = y}.
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Using the fact rD,, = D,,r for all i € {1,...,n} and (15), we find

Y m
(=1ymml Z Du < 1yl ) )t Do B+ Dy M)
_ZDUJ ( _ QJ; ) (Dyzc}@'i_l) (Re41 4+ Dy, M)
= Z Dy, Qi+ Rep1 2 Py with Q0 € K[V|(Dg, Dy, ..., Dy,).
j=1
Since Py(f) = 0, we have Ppy1(f) = 0. So P41 is the desired operator. |

Theorem 4.7. For any rational function f € K(v), there exists a nonzero L € K[z](D,)
such that L(f) = Dy, (g1) + - - - + Dy, (gn) for some g1, ..., g, € K(v).

Proof. Tt suffices to show that there exists a nonzero A € K[z|(D,, D,,,...,D,,) such
that A(f) = 0 by Lemma 4.6. Write f = P/Q with P,Q € K[v] and ged(P,Q) =
L. Denote d, = max{deg,(P),deg,(Q)} and d,, = max{deg,, (P),deg, (Q)} for i €
{1,...,n}. Let Wy be the K-vector space generated by the set

{a'DPDJt---Din |0<i+jo+ - +jn <N}

over K. By an easy combinatorial counting, the dimension of Wy is (N:L'}:;'Q) = O(N"*2)

over K. Furthermore, for any (i, jo, . . ., jn) € N*T2 a direct calculation yields

Pijo.
Joy»»»-,Jy (16)

i Dio DIt ... Din (F) —
e' DY Dy, -+ Dy () = QiFdo+tint1’

Yn
where P, j, . j, € K[v] with deg, (P j,.....;,) < (i +Jjo+ -+ jn +1)dy + i and
degyi (‘P7:)j07~~~7jn) S (z +j0 + - +jn + 1)dyz' for i € {17 ] n}

So the set Wy (f) is included in the K-vector space V spanned by the set

syl gl
QN1
whence the dimension of Vv is (N 41)(dy +1) [T/, (N +1)dy, +1) = O(N™!) over K.

Define linear map ¢ : Wy — Vy by (L) = L(f) for any L € W . For sufficiently large
N, we have

ngog(N+1)dz+N,ngig(N+1)dyifori_1,...,n},

N+n+2 -
N+1)(d, +1 N + 1)d,, + 1),
QR EILERITEE | (CERITARE
which implies that the kernel of ¥ is nontrivial. Therefore, there exists a nonzero opera-
tor A e Wy C K[z|(Dy,Dy,,...,D,,) such that A(f) = 0. |

Remark 4.8. In the continuous setting, the existence of telescopers for rational functions
implies that for algebraic functions by [21, Lemma 4]. Efficient algorithms for computing
telescopers have been given in [7, 21, 8, 37].

12



4.2.  Ezxistence problems of second class

We now solve the second class of existence problems where telescopers are linear
differential operators in K(x)(D,) and (0,,0,) € {(Ay,A.), (Aqy, Az), (Agy, Ag2)}-

Problem 4.9. Given f € K(z,y, z), determine if there exists a nonzero operator L €
K(z)(D,) such that L(f) = ©,(¢g) + ©.(h) for some g,h € K(x,y, z).

For v € {y,z}, let 0, = 0, if ©, = A, or 0, = 74, if O, = A,,. By partial fraction
decomposition w.r.t z and the transformation (7) with # = 6, and subsequently with
0 = 6, any rational function f € K(z,y, z) can be decomposed into

I J
F=0,u)+0.()+u+> > R (17)
i=1j=1 %

where u,v € K(z,y,2), 1 € K(z,9),a;,; € K(z,y)[z],d; € K[z,y,z] with deg,(a; ;) <
deg.(d;), di’s are irreducible polynomials in distinct (6y, 6. )-orbits and none of nonzero
aij/d is (©,,0.,)-exact.

The following theorem shows that Problem 4.9 can be reduced to the same problem
but for simple fractions and bivariate rational functions.

Theorem 4.10. Let f € K(z,y, z) be of the form (17). Then f has a telescoper of type
(D;,0,,0.,) if and only if u and the fraction a; ;/d} has a telescoper of the same type
forall 7,j with 1 <i<T and 1 <j < J,.

Proof. The sufficiency follows from Lemma 2.4. For the necessity, when f has a tele-
scoper of type (D,,0,,0.), since D, does not change the (6,,0.)-equivalence of the

Qi j
J=1 a

denominators, one can deduce that p and r = Zl 1 Z both have a telescoper of

the same type.

Next we will show each fraction a; ; /df has a telescoper of the same type when r
has a telescoper. To this end, we first show that D,(d;) = 0, that is d; € K[y, z] for all
1 <i < I. Over the field K(z,y), we can decompose r as

Qg

I/ /
r=0,u") + 0.(v*) + r* with r* _ZZ PRy

=1 j=1

where u*,v* € K(z,y)(2), o, 0 € K(z,y) with a; g # 0, 2= f; and z — B; are not
(0y,0)-equivalent for all ¢,4" with 1 <4 % ¢’ < I'. It suffices to show D,(8;) = 0 for all ¢
with 1 < ¢ < I'. We will prove this claim by contradiction. Suppose that D,.(8) # 0 for
some 1 <k < I’ and that L = Y7_ e,D’, € K(z)(D,) with eyeq # 0 is a telescoper for
r*. Then

" JF%%,J; D (B3:)° Al Qi j

M=\ T T X G )

i=1

where J” = J/(J/+1)--- (J/+p—1) and a&;; € K(z,y). As L(r*) is (8, ©.)-exact and
D, (Br) # 0, we have
05" (2 — Br) = ¢°*07* (2 — Br.) (18)
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for some my, ng, s € Z with m; > 0 and

TP eptk, gy Da(Br)? = q~ k007 (1) — (19)

for some 7, € K(z,y). From the Equation (18), we know 0;"* D.(8x) = ¢°* D, (Bk)-
Dividing Identity (19) by J,”e,D.(Bx)” gives

_—J. sk M Vk Yk
Oék7J/ =q k 9 _ _ _ )
' ! (JllcpepDI(Bk)p> J]/cpepDac (Bk)p

Thus ( i’;]’;‘,, is (0,0, )-exact in K(z,y)(z), and hence can be moved into u* and v*.

Then by similar discussions as above, one can see =hy7 B )J is (0, 0,)-exact for all j with

1 < j < J;. Notice that S is a root of dy for some 1 < k < I and that D, (Bk) = 0 leads to
D, (B) # 0 for any conjugate root § of d. Then all fractions of the form (e B)J in 7* are

also (0, ©,)-exact. Collecting all these fractions together, we get a;ﬂ is (©,, 0,)-exact

in K(x,y)(z) and hence in K(x,y,z) by Lemma 3.3, which contradicts the assumption

that none of nonzero adif in r is not exact. At this stage we have proved d; € K]y, z].

Since L is also a telesco;I)er for r. Then

I
£ =35 M~ 0,9 +0.0)
i=1 j=1 i

for some ¢, h € K(z,y, z). Notice that d;’s are in distinct (6, 6.)-orbits,

[ L ;5
’ (d_j> - (dij) = Oy(g15) + O=(hij)

for some g¢; j,hi; € K(z,y,2). So L is a telescoper for all a;;/d] with 1 < < I and
1<j<Ji |

Notice that for p € K(z,y), having telescopers of type (D,,0,,0,) or (D,,0,)
are equivalent. As the existence problem of telescopers for bivariate rational functions
has been settled by Theorem 4.1, we only need to decide when f = 2, where a €
K(z,y)[z],d € K[z, y, 2] with deg,(a) < deg,(d) and d being irreducible, has telescopers
of type (Dg,©,,0.). Same argument as in the proof of Theorem 4.10 implies that f
has a telescoper of type (D, ©,,0;) only when d is free of x. Assume d € K[y, z] and

L € K(z)(D,) is a telescoper of f. Then L(f) = f) is (®y, ©,)-exact. We will proceed
by checking whether the two conditions for the exactness in Lemma 3.5, 3.7 and 3.6 are
satisfied.

If 07 (d) # q'07 (d) whenever m,n,t € Z and m > 0, then we have L(a) = 0 which can
be reduced to solving the separation problem of bivariate rational functions and settled
via GCD computations.

If 0;*(d) = q'07(d) for some m,n,t € Z with m being the smallest positive integer,
then L(a) satisfies an equation. Next we will show how to solve the equation for different
(0y,06.) separately.

(1) When (0,,0.) = (0y,0.). Lemma 3.5 shows that L(z,D,)(a) = o;'c;"(b) — b for
some b € K(z,y)[z] with deg,(b) < deg,(d). Taking § = y/m and z = ny + mz shows
L(z,D;)(a) = o,'0;"(b) — b is equivalent to the existence problem of telescopers of

, r

type (D, 4Ay) fo b1var1ate rational functions, which has been solved by Theorem 4.1.
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(2) When (0,,0,) = (74,4,02), Lemma 3.6 leads to L(a) = Ay ,(b), which is the existence
problem of telescopers of type (D, A, ) solved by Theorem 4.1.
(3) When (0y,0) = (7q,y, 7q,2), by Lemma 3.7 we know L(x, Dy)(a) = ¢~ 7*7)" 7,7 (b) — b

for some b € K(z, y)[z] with deg, (b) < deg,(d). Define an F-homomorphism ¢ of F(y, z)
by y — y™, z — y~"z. Then the ¢-difference equation can also be simplified.

Proposition 4.11. Given a rational function f € F(y, z) and integers m, n, s € N with
m > 0. Then f = ¢°r, g)—g for some g € F(y, z) if and only if o(f) = ¢°74.,(h)—h
for some h € F(y, z).

qy qz()

Proof. Let 7 =17,

sufficiency, define 1 : F(y, z) — F(y, z) by y — y*/™, z — y™/™z, where F(y, z) is the
algebraic closure of F(y, z). It is easy to see 1) o = Idg(, .y and Yo7, , = To 1/1, where

The necessity follows from the fact that poT = Tq 0. For the

Tqy 18 extended to F(y,2). Thus ¢(f) = ¢°74,(h) — h implies f = ¢*7,", 7,7 (9) — g

with § = z/J(h) € F(y, z). By similar trace arguments used in Lemma (3.3), one can see

[=q¢77,7,0(g) — g if and only if f = ¢°7)" 7.7 (g) — g for some g € F(y, 2). |
At this stage, by letting y = yl/m and Z = y™/™z, we only need to decide whether

L(a) = ¢~ 97, (b) — b for some b € K(z,y,z), which can be determined by a similar

discussion process as the existence problem of telescopers of type (Dy, Ag ).

4.8.  Ezistence problems of third class

We now consider the third class of the existence problems of telescopers for rational
functions in three variables.

Problem 4.12. Given f € K(z,y, z), decide whether there exists a nonzero operator L in
K(z)(0,) with 0, € {Sg, T} such that L(f) = Dy(g)+ D.(h) for some g, h € K(z,y, 2).

Let f € F(y, z) be of the form (6) with F = K(x). If f is (D,, D,)-exact in K(z,y, 2),
then 1 is a telescoper for f. From now on, we assume that f is not (D,, D,)-exact.
Let (0z,04) € {(Sz,04), (Ty,2:7Tq.)} By dividing the roots of b in K(z,y) into different
(0;)-orbits, we can write f as f = D,(u) + r with u € F(y, z) and

1
r=dy S (20)

where «; ;, 5 € K(z,y) and the §;’s are in distinct (6,)-orbits. Note that f has a tele-
scoper of type (0, Dy, D) if and only if r has a telescoper of the same type.

Lemma 4.13. Let r = 3.7 a;/(z — 04(B)) with o;, 8 € K(z,y) and 07(8) # B for
any m € Z\ {0}. Then r is (D,, D,)-exact if it has a telescoper of type (95, Dy, D).

Proof. Assume that L = >")_, 0% € K(z)(d,) with e # 0 is a telescoper for r of type
(92, Dy, D). Then

J+p -
L) =Y —H = D,(u) + D.(v),
; 2 —61(B)

where u, v € K(z,y)(2) and &; = Ei:o exfk (aj_y) with ex, = 0 for k > p and a; = 0 for
j>J. S1nce 0 (B) # B whenever m € Z\{0}, for each 1 < j < J+p we have &; = D, (7;)
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for some 4; € K(z,y) by Lemma 3.4. We now prove inductively that for each j with
0<j<J, a; =Dy(y;) for some v; € K(z,y). Since &y = epeyy and ey € K(z) \ {0}, we
have ag = Dy (o) with vo = J0/eo. Suppose that we have shown that a; = D, (y;) for
j=0,....,k—1with k < J. Note that &y = egax +e10,(ag_1)+---+erb(an) = Dy(Fi)-
Then ap = Dy(vg) with v, = %(% - 2521 ;04 (vk—;)). So r is (Dy, D,)-exact by
Lemma 3.4. |

Theorem 4.14. Let r € K(z,y,2) be of the form (20). Then r has a telescoper of
type (0z, Dy, D) if and only if for each i with 1 < i < I, either oy ;/(z — 62(5;))

is (Dy,D;)-exact or 3; € K(y) and there exists a nonzero L; ; € K(x)(9,) such that
L; i(a;,;) = Dy(i,;) for some v, ; € K(z,y)(5;).

Proof. The sufficiency follows from Lemma 2.4 since each fraction a; ;/(z — 62(8;)) is
either (D,, D,)-exact or has a telescoper of type (9, Dy, D). To show the necessity,
we assume that L = > )_, et € K(2)(9,) with eg # 0 is a telescoper for r of type
(02, Dy, D). Then we have

where u,v € K(z,y, ) and &; ; = Zi:o ex0% (v j—1) with e = 0 for k > p and a; ; = 0
for 5 > J;. By Lemma 3.4, we have r; = E;.]:{Jp zj;’gﬁi)
i with 1 < ¢ < I since the ;’s are in distinct <9$>—otrbits. If there exists a nonzero
m; € N such that 67" (8;) = B, then 5; € K(y) by [22, Lemma 3.4 (i)]. So J; = 0
and L(a,0/(z — Bi)) = L(i0)/(z — 5i) is (Dy, D;)-exact, which implies that L(a; ) =
Dy (vi,0) for some 7, o € K(z,y). Since a; 0 € K(z,y)(5;), we can choose 7, 0 € K(z,y)(5;)
by the trace argument. If there is no nonzero m; € N such that 07" (3;) = f;, then the
theorem follows from Lemma 4.13. |

is (Dy,D.)-exact for each

Problem 4.12 now has been reduced to the exactness testing problem and the following
existence problem.

Problem 4.15. Given a € K(z,y)(3) with § algebraic over K(y), decide whether « has a
telescoper of type (0, Dy) with 9, € {Sy, T, 2}, i.e., there exists a nonzero L € K(x)(0)
such that L(a) = Dy () for some v € K(z, y)(8).

In order to solve the above problem, we first present a vector version of the Hermite-
like reduction in [29]. Let @ = %(ay,...,a,) € K(z,y)" with a;,d € K[z,y| satisfying
that ged(d, ay,...,a,) = 1 and B = 1(b; ;) € K(z,y)"*" with e,b;; € K[z,y] such
that ged(e,b1,1,.- 01,0y bnn) = 1. Let p € K[z,y] be any irreducible factor of d
that is coprime with e. Then d = p™d; with dy € K[z,y] and ged(p,d;) = 1. Since

ged(p, Dy(p)) = 1, we have ged(p, Dy(p)di) = 1 and then the Bézout relation
ai = sip +t;Dy(p)d,
where s;,t; € K(x)[y]. Using integration by parts, we get

a; sip + t;Dy(p)ds U; v;
m = m - = DU m—1 +
pdy pmdy p D
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where u; = t;(1 —m)™! and v; = s; — (1 — m)"'Dy(t;)ds. Let @ = (uy,...,u,) and
¥ = (v1,...,v,). Then we have

B i i i i @
= (p’”‘l) g <p’”‘1> Tt B e

where @ € K(x)[y]™. Repeating this process yields

B} J g h
i=D, (-2 )+ B+ :
v (pml) pmt pdie

where g,k € K(z)[y]™. By reducing the multiplicity of each irreducible factor of d that is
coprime with e in the above way, we obtain the additive decomposition

@=D,(b)+b-B+T7, (21)

where b € K(z,y)" and 7 = ﬁ(rl, —ooyrp) with 7 € K(x)[y] and p, ¢ € K[z, y] be such
that p is a squarefree polynomial and ged(p, e) = 1 and each irreducible factor of ¢ divides
e. We call the above process a vector Hermite reduction of @ with respect to B.

Let 8 € K(y) and n = [K(y, 8) : K(y)]. Assume that {31,..., 0.} is a basis for K(y, 5)
as a linear space over K(y). Since Dy (53;) € K(y, B), we have Dy, (8;) = 1 > i1 bjiB; with
e,bji € K[yl. Set B = 1(b; ;) € K(y)"*™. Then D,(f) = - B with § = (B1,...,5,).
Since o € K(z,)(8), we can write v = @- 7 for some @ = L(ay, ... an) € K(z,y)" with
d,a; € K[z, y]. Applying the vector Hermite reduction to @ with respect to B yields the
additive decomposition (21), which is equivalent to

- 1 &
=D,(b-FT)+awitha=—> rf, 22
o y(b-B8) + & with & pc,_rﬁ (22)

where r;,p, ¢ € K[z, y] with p being squarefree and ged(p,e) = 1 and each irreducible
factor of ¢ divides e € K[y].

Theorem 4.16. Let a € K(z,y)(8) be of the form (22). Then « has a telescoper of type
(03, Dy) if and only if the polynomial p in (22) is split in z and y.

Proof. Assume that p is split in  and y, i.e., p = p1ps for some p; € K[z] and py € K[y].
Then & can be written as & = >0, f; - g; with f; € K(z) and g; € K(y)(8) since
Bi € K(y)(B) and ¢ € K[y]. Let L; = f;(2)0, — 6.(f;) € K(x)(0,) for each 1 < 5 < m.
Then L;(f; - gj) = 0. So the LCLM of the L,’s annihilates &, which then is a telescoper
for a of type (85, Dy ). To show the necessity, we assume that L = >7_ 0% € K(2)(0,)
with epe, # 0 is a telescoper for a of type (05, Dy). Then L(&) = D,(%) for some
3 € K(z,y)(8). Write § = §- 37 with § € K(z,y)” and 7= (r1,...,7,). Then we have

< ) de eff) D,(5) + 5 B.

601

Suppose that p is not split in  and y. Then there exists a non-split irreducible factor
po of p such that 6,(po) ¥ p. Then 62(py) is also a non-split irreducible polynomial and
only divides the denominator 6%2(p)c. Since p is squarefree, the valuation of the left-hand
side of the above equality at 6%(pg) is —1. However, the valuation of the right-hand side
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is either > 0 or < —1 since B € K(y)"*™. This leads to a contradiction. So p is split in
x and y. |

Example 4.17. Let f = 2/(2? — y). Then
—a
_l’_

a
f - y— ﬂ Z+ﬂ,
where o = x/(2,/y) and 8 = /y. By Theorem 4.14, f has a telescoper of type (0., Dy, D)

since 8 € K(y) and L = 29, — 0,(z) is a telescoper for « of type (9;, D, ). Indeed, L is
also a telescoper for f of type (0y, Dy, D).

4.4. Ezistence problems of fourth class

We continue to address the fourth class of the existence problems of telescopers for
rational functions in three variables. There are four cases in this class.

Problem 4.18. Let 9, € {S,,T,,} and ©, € {A,, Ay, }. Given f € K(z,v, 2), demde
whether there exists a nonzero operator L € K(z)(d,) such that L(f) = 0,(g) + D.(h)
for some g, h € K(z,y, 2).

Let (0y,0y) € {(Sv,00), Ty, Tqw)} for v € {z,y}. By the Ostrogradsky—Hermite
reduction in z and the reduction formula (7) with ¢ = 6,,, we can decompose f as

a;
f=0,)+ D.(v) +r wherer—zz T (23)
=1 j= 0 d
with a; ; € K(z,y)[2] and d; € K[z,y, 2] satisfying the condition deg,(a; ;) < deg,(d;)
and the d;’s are irreducible polynomials in distinct (f,,6,)-orbits. Note that f has a
telescoper of type (9, ©,, D) if and only if r does.

Lemma 4.19. Let reK(x, y, z) be as in (23). Then r has a telescoper of type (9, Oy, D)

if and only if for each 7 with 1 <14 < I, we have r; = E;‘Ii:o e;lz;) has a telescoper of the

same type.

Proof. The sufficiency follows from Lemma 2.4. For the necessity we assume that L =
Sk _o lkOF € K(2)(9,) with 9, € {S, Ty} and £y # 0 is a telescoper for r of type
(02,0y, D). Then

I Ji+p

! €k9 az,j_k)
=3 = 3 | 3 =i

=1

with ¢, =0if k > pand a; ; =01if j > J; is (O,, D,)-exact. Since the d;’s are in distinct
(0., 0,)-orbits, the 67 (d;)’s are in distinct (f,)-orbits. By Lemma 3.8, we have L(r;) is
(04, D )-exact for each ¢ with 1 <14 < I. So each r; has a telescoper of the same type. I

Now the existence problem is reduced to that for rational functions of the form

I
1= Gy (24)




where a; € K(z,y)[z],d € K[z, y, z] with deg, (a;) < deg,(d) and d is irreducible in z over
K(z,y). We will proceed by a case distinction according to whether or not d satisfies the
condition: there exist ¢ € K\ {0} and integers m,n with m > 0 such that

07 (d) = c- 07(d). (25)

Note that the constant ¢ in (25) must be 1 if (6,,60,) € {(04,0y), (02, Tqy), (Tg.z:04)} DY
the comparison of leading coefficients. When (0,,60,) = (74,5, 74,4), We claim that ¢ = ¢°

for some s € Z. To show this claim, we write d = ciﬁjykxlyjzk. Then the equality

gk Cird kY
(d) = cr;,(d) implies that for all i,j, we have ¢ = ¢"™ 7. Let s = ged(m,n).
ilm—jln —

Tm
0,z
Then m = sm and n = sn. For different pairs (i1,71) and (iz,j2) with ¢
g2™= 72" we have iym — jin = iam — jon since ¢ is not a root of unity, which further
implies that (i2,j2) = (i1,71) + A(7,m) for some nonzero A € Z. Thus d = x'ylod,

where ig, jo € Z and d = Y }_odp(z"y™)z" with dp € K[T]. Since 7.7 (d) = 77, (d),
we have ¢ = ¢™~Jo"_ Combing the above discussions with [12, Proposition 1] yields a

characterization of polynomials satisfying the condition (25).

Lemma 4.20. Let d = >°!_, d;2" € K(z,y)[z] be a polynomial in z over K(z,y). If there
exist ¢ € K\ {0} and m,n € Z with m > 0 such that 67" (d) = c- 0;/(d), then for each i
with 0 <14 < p we have

if (6, = (04,04), then ¢ = 1 and d; is integer-linear in x an ie., d; =

(1) if (82,6,) = (02,0,), then ¢ = 1 and d; is integer-lincar in z and y, ic., d
f(nz + my) for some f € K(z);

(2) if (04,0y) = (02, Tq,y) OF (Tgz,0y), then ¢ =1 and d; € K(y) and d; € K if n # 0;
if (04,0,) = (Tq.2,Tq.y), then ¢ = ¢° for some s € Z and d; is g-integer-linear in x

3) if (00, 0,) = (T4 Tyy), th S f Z and d; is g-integer-linear i
and y, i.e., d; = a™y™o f;(a™y™) for some f; € K(z) and ng, mo € Z.

By the above characterization, the condition (25) can be checked by solving the bi-
variate case of Problems 4.3 and 4.4 in the pure shift and ¢-shift cases, respectively.

Lemma 4.21. Let f € K(z,y, ) be of the form (24) and d does not satisfy the condi-
tion (25). Then f has a telescoper of type (9z, O, D) if and only if f is (©,, D, )-exact.

Proof. The sufficiency is clear by definition. Assume that L = >"1_, ;0% with £y # 0 is
a telescoper for f of type (9y,©,, D,). Then we have that

Lt (aim;
L(f) = Z (E;o%(d)( )>

i=0

is (Ay, D;)-exact, where ¢; = 0 if j > p and a; = 0 if ¢ > I. Since d does not satisfy

the condition (25), we have 6% (d) and 67 (d) in distinct (f,)-orbits for all i # i’. By
Lemma 3.8, for any ¢ with 0 < i < p+ I, there exist u;,v; € K(x,y, z) such that

>0 4303 (ai-y)

= =0, (u; D, (v;). 26

To show that all fractions a;/0%(d) are (6, D)-exact, we proceed by induction. The
assertion is true for ¢ = 0 since ag/d = Oy(uo/lo) + D.(vo/lo). Suppose that we have
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shown that a; /0% (d) is (0, D, )-exact for i = 0,...,s—1 with s < I. By the equality (26)
with ¢ = s, we get

a U v 0 As—;
=0, (= | +D. (2 ) -y Lol | =2
Ox(d) 7 (fo > <€o> ; lo <9;J (d))

By the commutativity between 6, and 6y, 8, and Lemma 3.8, we have a/0%(d) is (8, D,)-

exact for any ¢ € N if a/d is. By the induction hypothesis, we have %Hi(as_j/@sﬁ_j (d))
is (©y, D,)-exact for all 1 < j < s. So are a,/6%(d) and f. |

We now deal with the case in which d satisfies the condition (25). From now on, we
will always assume that m is the smallest positive integer such that 0;"(d) = c- 6} (d) for
some n € Z and ¢ € K\ {0}. By the reduction formula (7) with ¢ = 6, the existence
problem is further reduced to that for rational functions of the form

m—1
=L 0

where a; € K(z,y)[z],d € K[z, y, z] with deg,(a;) < deg,(d) and d is irreducible in z over
K(z,y).
The following lemma is similar to Lemma 5.3 in [18].

Lemma 4.22. Let f € K(z,y, 2) be of the form (27) and d satisfy the condition (25).
Then f has a telescoper of type (0, 0y, D) if and only if for each ¢ with 0 < i < I, the
fraction a; /0% (d) has a telescoper of the same type.

Proof. The sufficiency follows from Lemma 2.4. For the necessity direction, one can
adapt the second part of the proof of [18, Lemma 5.3] to the setting of telescopers of
type (Oz, ©y, D;) literally by interpreting =, . 0 as being (0,, D, )-exact. |

The above lemma further reduces the existence problem to that for simple fractions
of the form

f=r (28)

where a,d € K[z, y, z],b € K[z, y| satisfy that ged(a,bd) = 1 and deg,(a) < deg,(d), and
d is irreducible and satisfies the condition (25). We will consider two cases according to
whether d is in K[z, 2] or not. If d € K[z, z], then 8} (d) = d for all i € N. The condition
05 (d) = 0;/(d) implies that d is also free of z, i.e., d € K[z]. Thus L € K(x)(0,) is a
telescoper for f of type (0, ©y, D) if and only if L(a/b) = ©,(u) for some u € K(z, y)[#]
with deg,(u) < deg,(d). Write a = Z;%Z(d)_l a;z" and u = Z?ioz(d)_l u;z%. Then for
each i with 0 < i < deg,(d) — 1, we have L(a;/b) = O,(u;), i.e., L is a telescoper for
all a;/b of type (0, ©,). The existence problem is then reduced to that in the bivariate
case, for which Theorem 4.1 applies. So it remains to deal with the case when d is not in
K[z, z].

Lemma 4.23. Let 7 := ;0™ with m,n € Z and m > 0 and let p € K[z,y] be an
irreducible polynomial. If 7¢(p) = A - p for some nonzero i € Z and nonzero A € K, then
7(p) = p - p for some nonzero p € K.
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Proof. We prove by cases. Write p = 3~ pijxty! with p; ; € K. If (0,,0,) = (04,0),
then 7%(p) = A - p implies that A = 1 by comparing the leading coefficients. So ¢ (p) =
" (p). By Lemma 4.20, we have p = r(inx + imy) for some r = 777,27 € K[2]. Thus
p = F(nz+my) with 7 = 37°_ r;i7 27, which implies that 7(p) = p. If (04, 0y) = (02, Tg.y)s
then 7¢(p) = X - p implies that p € K[y] and moreover p = ¢ - y for some ¢ € K if n # 0
by [13, Lemma 5.4], which leads to that 7(p) = p - p with p = ¢q. If (04,0y) = (7.2, 0y),
then 7¢(p) = X - p implies that p € K[y] and moreover p € K if n # 0 by [13, Lemma
5.4]. Then we have 7(p) = p. If (04,0,) = (7.2, 74y), then 78(p) = X - p implies that
p = (z°y") - r(xy"™) for some s,t € Z and r € K[z] by [27, Lemma 5.2]. So we have
7(p) = p - p with g = ¢~ ™. This completes the proof. |

Lemma 4.24. Let 7 := 0,0, with m,n € Z and m > 0 and let f = a/b with
a,b € K[z,y] and ged(a,b) = 1. If there exist eg,...,e, € K(x), not all zero, such
that >;_,e;7(f) = 0, then b = byby with by € K[z] and by € K|z, y] satisfying that
7(b2) = A - by for some nonzero A € K.

Proof. Assume that Y_;_,e;7'(f) = 0. Let by and by be the content and primitive part
of b as a polynomial in y over K[z]. If by is a constant in K, then the assertion holds since
7(b2) = ba. We now assume that bs ¢ K. Then all of its irreducible factors have positive
degree in y. Assume that there exists an irreducible factor p of by such that 7(p) # c¢-p
for any ¢ € K. Then for any integer i # 0, 7¢(p) # ¢; - p for any ¢; € K by Lemma 4.23.
Among all of such irreducible factors, we can always find one factor p of multiplicity m
such that 7¢(p) f by for all integer i < 0. Then 7¢(p) is also irreducible for all i € Z and
ged(t8(p), 77 (p)) = 1 if i # j. Let s be the largest integer such that 7°(p) | ba. Then the
irreducible polynomial 7""%(p) only divides the denominator 7" (b) and not others, which
implies that Y. e;7(f) # 0 since p depends on y and the coefficients e; are in K(z).
This leads to a contradiction. So for each irreducible factor p of bs we have 7(p) =c-p
for some ¢ € K. This implies that 7(bz) = A - by for some A € K. |

Lemma 4.25. Let a € K(z)[y,z] and b € K[z,y, z] be such that b # 0 and 07*(b) =
c- 0, (b) for some ¢ € K\ {0} and m,n € Z with m > 0. Then a/b has a telescoper of
type (Oz, Oy, D).

there exist

Proof. Set f = a/b. It suffices to show that for sufficiently large I € N,
= 0,(g) with L =

lo,...,l; € K(z), not all zero, and g € K(x,y,z) such that L(f)
Zf:o £;0i™. By the reduction formula (7) with o = 6,, we have

im (g 02"(@) _ 07"(a) L 0,0 (a)
0" (f) = gr(b) -0 (b) Oy(gi) + yczib

for some g; € K(x,y, z). Note that the degrees of the polynomials 9;1'"6‘;’” (a) in y and z
are the same as that of a. So all the polynomials 6, 02" (a) lie in a finite dimensional
linear space over K(z). Therefore, for sufficiently large I, there exist fo,...,¢; € K(z),

not all zero, such that Zf:o ;0,01 (a) = 0. This implies that L is a telescoper for f
of type (0z, 0y, D). |

Theorem 4.26. Let f € K(z,v, z) be of the form (28). Assume that d is not in K[z, z].
Then f has a telescoper of type (9x, 0y, D,) if and only if b = b1be for some by € K[z]
and by € Kz, y] satisfying 0 (ba) = A - 0} (b2) for some nonzero A € K.
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Proof. The sufficiency follows from Lemma 4.25. For the necessity, we assume that L €
K(z)(0,) is a telescoper for f of type (05,0, D). Write L = Lo+ L1 +-- -+ Ly,—1 with
Li = Y0 4i,j04 . Since 0,(d) and 67(d) are in distinct (,,)-orbits for all 0 <14 # j <
m — 1, Lemma 3.8 implies that L; is also a telescoper for f of the same type for each i
with 0 <7 <m — 1. A direct calculation yields

Lo(f) = ©,(g0) + 2

Ev
where A = 3777 ¢ Ly, j77 (a/b) with 7 = 6,707 and 7(d) = ¢ - d. By Lemma 3.8, we
have A = 0 since d ¢ K[z, z]. So the necessity follows from Lemma 4.24. |

Example 4.27. Let f = 1/(bd) with b = 2 +y and d = 22 — 2 — y. Note that d satisfies
the condition o, (d) = 0y(d) and is not in K|z, z]. By Theorem 4.26, f has a telescoper
of type (S, Ay, D) since b satisfies the same condition as d. Indeed, L = S, — 1 is a
telescoper for f since L(f) = A,(f) + D.(0).

4.5.  Ezxistence problems of fifth class

We now consider the fifth class of existence problems in which both telescopers and
(0y,0,) are involving (g-)shift operators. In this class, we let 0, € {S,,T;,.} and
(04,0:) € {(Ay,AL), (Agy,A2), (Agy, Ag,2)}. More precisely, we solve the following
problem.

Problem 4.28. Given f € K(z,y, z), determine if there exists a nonzero operator L €
K(z)(0,) such that L(f) = 0,(g) + ©.(h) for some g, h € K(z,y, 2).

For v € {z,y, 2}, let 0, = 0, if ©, = A, or 0, = 74, if O, = A, ,. By partial fraction
decomposition w.r.t z and the transformation (7) with § = 6, and subsequently with
0 = 0., any rational function f € K(z,y, z) can be decomposed into

I J; tij
Aj 5.0
i=1 j=1 4= ™

where u,v € K(z,y,2), 1 € K(z,y), a0 € K(z,y)[2],d; € K[z, y, 2] with deg,(a; ) <
deg,(d;), d;’s are irreducible polynomials in distinct (6, 6y, 6,)-orbits, 6¢d; and Hﬁl d; are
not (6, 60.)-equivalent for any 1 < ¢ < I, 0 < {,¢' < t;; with £ # ¢. Then by similar
discussions as the proof of Lemma 5.2 and Lemma 5.3 in [18], we can obtain the following
result.

Lemma 4.29. Let f € K(z,y,z) be of the form (29). Then f has telescopers of type

(02,0y,0.) if and only if ;¢ and all ‘;Z;f with1 <i<I,1<j<J;and 0 </ <t;; have

telescopers of the same type.

Notice that for p € K(z,y), having telescopers of type (95, 0,,0.) and (9;,0,) are
equivalent. The existence problem of bivariate rational functions has been solved by
Theorem 4.1. Thus Problem 4.28 for a general rational function has been reduced to that
for a rational function of the form

PR

c(z,y)d(z,y, 2)*’ (30)
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where A € N\ {0}, ¢ € K[z,y], b,d € K[z,y, z] with 0 < deg,(b) < deg,(d). Suppose
a(z) € K(z) \ {0}. It is easy to check that

P
Zaz V0! (af) =

i=1 z:l

Mb

) 9,(f)

whenever a;(z) € K(z) and f € K(x,y,z). This means the existence problem of f is
equivalent to that of «f. As such we can assume in the form (30) that b,c,d are all
primitive in y, z. If f is (©,,©.)-exact. Then L =1 is a telescoper for f. From now on,
we will also assume f is not (0,, ©,)-exact.

Lemma 4.30. Let f € K(x,y,2) be of the form (30). If f has a telescoper of type
(02,0y,0;) then

0 (d) = ¢°0;0%(d)  for some m, s, n,k € Z with m > 0. (31)

Proof. We prove the claim by contradiction. Suppose the condition (31) does not hold.
Assume that L = Zf:o a;0% € K(x)(d;) with ag # 0 is a telescoper for f. Then

a;0% (b B
Zel T dA = 6,(g) + ©-(h)

for some g,h € K(z,y, z). By assumption, we know 6%d’s are in distinct (6, 6,)-orbits,
Lemmas 3.5, 3.7 and 3.6 show that for any 0 < i < I, % are (©,,0,)-exact.
Particularly,

b
Zdo/\ = 0y(90) + ©:(ho) for some go, ho € K(z,y, 2).
As ap € K(z) \ {0}, we get b = ©, (L 2)+ 0. (Lo 2) which contradicts to the assumption
that f is not (©,, ©,)-exact. This completes the proof |
Next, we will proceed by case distinction according to whether or not
0, (d) = ¢* 0% (d)  for some s1,n1,k; € Z with ny > 0. (32)

Theorem 4.31. Let f € K(x,y, z) be of the form (30) and d satisfy the condition (31)
but not the condition (32). Then f has a telescoper of type (9,0, 0,) if and only if

05" (c) = ¢*20y" (c) (33)
for the (m,n) as in (31) and some ¢, sp € Z with ¢ > 0.

Proof. For the sufficiency, assume that ¢ satisfies the condition (33). Then set L =
Zf:o a; 0™ where I € N and a; € K(x) are to be determined. Applying the reduction
formula (7) yields

aiq—iSQ —its eitm (b)
L) =S a1
« 92}" (C) oztn Q?k (d)\)

1=

I
1 —180—1ts pitm n—itn n—1i
=0,u)+0.(v) + %Zaiq L gitm it —ith (5
=0

for some u,v € K(z,y, z). Note that the degrees of the polynomials 626, "6 (b) in
y or z are the same as that of b. Thus all shifts of b lie in a finite dimensional linear space
over K(z). If T is large enough, then there always exist a; € K(x), not all zero, such that
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Zf:o a;q— 2T isgitmg g Ttk (h) = 0. As a result L = Zf:o a;0i™ is a telescoper for
For the necessity, assume f = % has a telescoper Ly of type (0y, 0y, 0.).

Let Cy be the maximal factor of ¢ satisfying the condition (33) and Co = ¢/C;. If Cp € K
then we have done. Now assume that Cy ¢ K. Then deg, (C2) > 0 since ¢ is primitive with
respect to y, z. It follows that there exist By, By € K|z, y, z] with deg,(B;) < deg,(d)
and ged(B;, C;) =1 for i = 1,2, such that

1 (B B
f_d/\<Cl+Cg)’

Then C]fék has a telescoper Lo of type (05, ©,, ©.) by the sufficiency. The least common

left multiple of L; and Lo is a telescoper for %. Since d satisfies the condition (31),
we can assume L = Zf:o a;0im € K(x)(0,) with apa; # 0 to be a telescoper for %.
Thus

1 —1is impn—in —ik
az BQ) . q 049 9 9 (Bg)
<C2d>\> Z gzm gzngzk (d)\) - @ + Z 9””9 in 02)

=

(34)
for some u,v € K(z,y, z). Notice that L (C d/\) is (0,,0,)-exact and that d does not
satisfy the condition(32). Then Lemma 3.5, 3.7 and 3.6 lead to

I —1s mmpn—inn—ik
0img-ing=ik(p
Pt H;mey (CQ)

Let A = {c¢; € K[z,y] \ K[z]| ¢, is an irreducible factor of C5}. Then A is nonempty and
finite and none of ¢; satisfies condition (33) by the maximality of Cy. By the method
of proof by contradiction, one can prove that there exists a ¢, € A such that ¢, #
qsl 9;’”9?"0]» for any ¢; € A and §',i € Z with ¢ > 0. This fact together with equation
(35) and the constraint gcd(Bsz, C3) = 1 derive By = 0, which concludes the proof. |

Lemma 4.32. Let f € K(z,y, 2) be of the form (30) and d satisfy conditions (31) and
(32). Suppose

02 (c) = q*0;2(c)  for integers ma, s2,n2 with ma > 0. (36)
Then f has a telescoper of type (95,0, 0.).

Proof. Since d satisfies both (31) and (32), without lose of generality, we assume m,n4
are the smallest positive integers. Let mg = mmeony and L = Ef:o ai(?;mo, where [ € N
and a; € K(z) are to be determined. Then

I I

alo O(b) aiqfim52n17ism2n1 oimo (b) aiqaoimo (b)
L (f) - Z imgo imo Ny Z immnang inmany gikmant ( ny Z imnany B N
i=0 02" (c)0z"° (d*) = by (c)by 0z (d*) = Oy 6> (cd*)
T ; i _
i aiqaeémge zmn2n19Z6 b
—6,(u) + 0. (1) + == 7 o (37)
cd
where u,v € K(x,y,2), « = —imsan; — ismany — i(man — mna)sy and S = ikmani +

i(man — mnz)ky. Since the (¢-)shift operators do not change the degree of b, when I is
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large enough, we can find nontrivial solutions a; such that

1

> aig* 000, 0P (b) = 0.
i=0
Then identity (37) leads to the fact that L = Ef:o a; 070 is a telescoper for f. |

Theorem 4.33. Let f be of the form (30) and assume that d satisfies conditions (31)
and (32). Then f has a telescoper of type (9, ©,,0.) if and only if f can be decomposed

into the form
1 (B B
U (01+02)’

where By, By € K[z, y,z], C1,C2 € K[z, y] satisfy the following two constrains: (1) C4
satisfies the condition (36); (2) Bz/(Cad?) is (0,0, )-exact.

Proof. The sufficiency follows from Lemma 4.32. For the necessity, let C; be the maximal
factor of ¢ satisfying the condition (36) and Cy = ¢/C;. If Cy € K then we have done.
Now assume that Co ¢ K. Then deg, (C2) > 0 since ¢ is primitive with respect to y, 2. It
follows that there exist By, By € K[z, y, 2] with deg,(B;) < deg.(d) and ged(B;,C;) =1
for i = 1,2, such that f = (% + g—j) . Next we will prove % is (0, ©,)-exact.
Note that CBéA has a telescoper of the same type with f by Lemma 4.32. Then % has
a telescoper L = Zf:o a; 0™ and

1 —1is impn—in—ik
Bs q a;0;"0, 0" (B2)
L= =0y )+ 38

<ng>‘> ; 9””9 in Cz)d)‘ ( )

7'Lsai9:izm9;in9;ik(32)
~ 9img, " (Cq)d>

is (©y,0;)-exact and d satisfies condition (32), exactness criteria in Lemmas 3.5, 3.7
and 3.6 yield that there exists g € K(z,y)[z] such that

I
for some u,v € K(z,y,2). Since deg_(Bs) < deg,(d), function Y 2
i=0

I
Bs
Zq azezme zn9 ik _ q—>\519n1ez—k1 (g) — 9. (39)
Cy Y
=0

Let A = {¢; € K[z, y] \ K[z] | ¢; is an irreducible factor of Co}. Then A is nonempty
and finite since deg,(C2) > 0. Notice that none of ¢; in A satisfies the condition (36).
One can find a ¢, € A such that ¢, # ¢°0;'20}%c; for any ¢; € A and s,m3,n3 € Z with
ms > 0. Collecting all irreducible factors in Cs, which are (f,)-equivalent to ¢, into Dj.
Then we can decompose g—i into g—i = % + %, where A1, A € K[z,y,z2],D = Co/Ds.
Rewrite g = g1 + g2 where g1, 92 € K(x,y)[z] and the denominator of g; contains exactly
all irreducible factors in the denominator of g which are (6,)-equivalent to ¢,. Equation

(39) and the choice of Dy and g1 derive A1 = q_’\516‘"19 k1(g1) — g1, and hence

I
A
> g a0, 0" (D_i> =q 0,107 (ha) — ha, (40)
i=0
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I
where hy = Y ¢~ a;0im0,"0 " (g1). Subtracting Equation (40) from (39), we obtain
i=0

I
—18 im n—in )—1 A —As1gn1n— *
S a ey o () = a0 i) - o (a1)
i=0

with gf = g — h1. Repeating the above arguments for the equation (41), one can finally

decompose g—; = g—i + jg‘,—; + g—i for D; € Kz, y] and ?)i =q 107105 (g:) — gi

for any 1 < ¢ < T. Then we get

B T T

2 st A e

Bemrmopo () - Yo
=0 i=0

and hence % is (©,, ©)-exact. This completes the proof. |

4.6. Ezistence problems of sizth class

We consider the last class of the existence problems of telescopers for rational functions
in three variables.

Problem 4.34. Let 0, € {S,,T,,} and ©, = 9, — 1. Given f € K(z,y, 2), decide
whether there exists a nonzero operator L € K(x)(D,) such that L(f) = ©,(g) + D.(h)
for some g, h € K(z,y, 2).

By the Ostrogradsky—Hermite reduction and the reduction formula (7), we can de-
compose [ € K(x,y,z) as

I
f=06yw)+ D.(v)+r with r = Z

=1

o

where u,v € K(z,y,2) and «;, 5; € K(z,y) with o; # 0 and the ;’s are in distinct
(0,)-orbits with 8, € {0y, 74} Then f has a telescoper of type (D, ©,, D) if and only
if » has a telescoper of the same type.

Lemma 4.35. For any L = ?:0 0;DJ € K(z)(D,) and «, 8 € K(x,y), there exists
g € K(x,y)(z) such that
a L(«)
L = D.(g). 43
(%5) -2+ p.0) (43)

Proof. Letres.(f, ) denote the residue of f € K(z,y, z) at z = 3 in z. The map res, (-, 8)
is K(z, y)-linear and commutes with the operator D, by [21, Proposition 3]. Then we

have
e (3(25)8) o (25)) - 0

So all residues of h := L(a/(z — f)) — L(a)/(z — B) at all of its poles are zero. By
Proposition 2.2 in [22], we have h is D,-exact, i.e., h = D,(g) for some g € K(z,y)(z). I

The next theorem reduces Problem 4.34 to the separation problem for algebraic func-
tions (Problem 4.5) and the existence problem of telescopers in K(z, y)(8) with 5 € K(x).
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Theorem 4.36. Let f € K(z,y, z) be of the form (42). Then f has a telescoper of type
(Dz,0,,D.) if and only if for each ¢ with 1 < ¢ < I, either q; is separable in = and y or
B; € K(z) and «; € K(z,y)(8;) has a telescoper of type (D, 0,).

Proof. If for each ¢ with 1 < ¢ < I, either «; is separable or 8; € K(z) and «; €
K(z,y)(8;) has a telescoper of type (D, ©,), then there exists a nonzero L; € K(x)(D,)
such that either L;(a;) = 0 or L;(c;) = ©,(y;) for some 7; € K(z, y)(8;). By Lemma 4.35,

we have
o B _ Li(oi) O, (i)
Li(z—ﬂi) = Delo + 5 = Do+ T

i
=D.(gi © )
w)+0, (25
where ¢g; € K(z,y)(z). So for each ¢ with 1 < ¢ < I, the fraction «;/(z — ;) has a
telescoper of type (D, O, D). Then f has a telescoper of the same type by Lemmas 2.4
and 3.3. To show the necessity, we assume that L € K(z)(D,) is a telescoper for f of
type (Dg, Oy, D). By Lemma 4.35, there exists w € K(z, y)(z) such that

L(f) = ©y(L(u)) + D-( Z

=0y(9) + D=(h)

for some g, h € K(x,y, z). For each ¢ with 1 < < I, either «; is separable if L(a;) =0
or L(c)/(z — B;) is (O, D;)-exact if L(a;) # 0. In the later case we have 8; € K(z) and
L(c;) = ©y(y;) for some v; € K(x,y)(8;) by Lemma 3.8.

Remark 4.37. The separation problem on algebraic functions will be solved in the
forthcoming paper [16]. The existence problem of telescopers of type (D,,©,) can be
verified by Theorem 4.1, whose statement is for functions in K(z,y), but its proof also
works for functions in K(z)(y). In particular, this covers the case in which the functions
are in K(z,y)(8) with 8 € K(z).

Example 4.38. Let f be as in Example 4.27. Then
a —«

= + e
/ z—0  z+p
where a = m andlﬁ =z + y Note that « is not sep?rable in z and y since
its successive derivatives D% (a) = (1) [Tj_o(j + 1/2)(z +y)~"F3/2) are linearly inde-
pendent over K(x). Since /5 is not in K(z). So f has no telescoper of type (D, Oy, D)
by Theorem 4.36.

5. Conclusion

In this paper, we present existence criteria for telescopers for rational functions in
three variables. The criteria reduce the existence problems of telescopers for the trivari-
ate inputs to that for the bivariate inputs and two related solvable problems: the (g-)shift
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equivalence testing problem and the separation problem. In the pure differential case, al-
gorithms for constructing minimal telescopers for rational functions in three variables
have been presented in [21, 8] using residues and reductions. This has also recently been
extended to the pure shift case in [17] based on the existence criteria given in [18]. The
first natural direction for future work is to develope efficient algorithms for other twelve
cases using the existence criteria in this paper. The next more challenging direction is
to study the existence problem of telescopers for more general inputs, such as ratio-
nal functions and hypergeometric terms in several variables. To this end, we need first
solve the multivariate summability problem for those inputs. In particular, it is already
quite intriguing to extend the classical Gosper algorithm for indefinite hypergeometric
summation [30] to the bivariate case.
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