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Abstract

We introduce a “workable” notion of degree for non-homogeneous polynomial ide-
als and formulate and prove ideal theoretic Bézout Inequalities for the sum of two
ideals in terms of this notion of degree and the degree of generators. We compute
probabilistically the degree of an equidimensional ideal.
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Inequality.
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Introduction

Motivated by the aim to formulate and prove an idealistic version of Bézout’s Theorem
(see [18]) and by applications to transcendence theory (see [15, 4]), the notion of degree of
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1

http://arxiv.org/abs/1701.04341v1


homogeneous polynomial ideals became intensively studied. In general this work relied on
the notion of degree of homogeneous polynomial ideals based on the Hilbert polynomial
(see [14] for a different view).

In this paper we propose an alternative and self-contained approach for non-homogeneous
polynomial ideals leading to specific results which are not simple consequences of their ho-
mogeneous counterparts.

We introduce a “workable” notion of degree for non-homogeneous polynomial ideals
and formulate and prove ideal theoretic Bézout Inequalities for the sum of two ideals in
terms of this notion of degree. However it turns out, that, due to the presence of embedded
primes, a Bézout Inequality in completely intrinsic terms (depending only on the degrees
of the two given ideals) is unfeasable. Hence in some place the degrees of generators of
at least one of the ideals comes into play and our main Bézout Inequality will be of this
mixed type.

We finish the paper with a probabilistic algorithm which computes the degree of an
equidimensional ideal given by generators.

Organization of the paper

The first three sections are devoted to the development of the tools we are going to
use in the sequel. The technical highlight is Proposition 19 in the third section which
anticipates in some sense the “correctness” of our ideal theoretic notion of degree (see
Theorem 21 and Definition 22) and the main result of the paper, namely the mixed type
Bézout Inequality, Theorem 29, in the fourth section.

These results become combined in the fifth section with techniques going back to
Masser and Wüstholz [15] in order to estimate the degree of a polynomial ideal in terms
of the degrees of generators (Theorem 32).

Finally the sixth section contains a probabilistic complexity result concerning the com-
putation of the degree of an equidimensional ideal.

1 Notions and Notations

Let K be an algebraically closed field, ~X = (X1, . . . ,Xn) with X1, . . . ,Xn indeterminates
over K and K[ ~X] the ring of n−variate polynomials with coefficients in K. The affine
space Kn with the Zariski topology is denoted by An. For any ideal a of K[ ~X], we denote
by V (a) the set of its common zeros in An and by A := K[ ~X ]/a the associated factor ring.

We shall use freely standard notions and notations from Commutative Algebra and
affine Algebraic Geometry. These can be found for example in [1, 16, 17].

Less standard is the notion of degree of closed (affine) subvarieties of An we are going
to use.

For an irreducible closed subvariety V of An we define the degree deg V of V as the
maximum number of points that can arise when we intersect V with an affine linear
subspace E of An such that V ∩ E is finite (observe that it is a nontrivial fact that
deg V < ∞ holds). The degree degV of an arbitrary closed subvariety V of An is the sum
of the degrees of the irreducible components of V .

It is a remarkable fact that for this notion of degree that for closed subvarieties V and
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W an intrinsic Bézout Inequality holds: deg(V ∩ W ) ≤ deg(V ) .deg(W ) (with intrinsic
we mean that the degree of V ∩W is estimated in terms of the degrees of V and W only).
For more details we refer to [10, 6, 18].

2 Secant and regular sequences

Let a ⊂ K[ ~X ] be an arbitrary ideal of dimension m (i.e. the Krull dimension of the ring A
equals m) such that all its isolated primes have dimension m (or, equivalently, the variety
V (a) is equidimensional of dimension m). Under this condition we say that the ideal a is
equidimensional of dimension m.

Definition 1 Let ~f := f1, . . . , fm′ , m′ ≤ m, be a sequence of polynomials of K[ ~X ]. Then
~f is called a secant sequence for a of length m′ if for any index j, 1 ≤ j ≤ m′, the
dimension of the ideal a+ (f1, . . . , fj) is m− j. Moreover, ~f is called a regular sequence
of length m′ with respect to a if a+ (f1, . . . , fm′) is a proper ideal and if for any index j,
1 ≤ j ≤ m′ the polynomial fj is not a zero-divisor modulo the ideal a+ (f1, . . . , fj−1). If
this is the case the residue classes f1 + a, . . . , fm′ + a are said to form a regular sequence
in A.

Remark 2 In the sequel we shall only consider secant sequences of maximal length m.

Observe that for a secant sequence ~f := f1, . . . , fm for a, all the isolated components
of the ideal a+(f1) have dimension m− 1 and f2, . . . , fm is a secant sequence for a+(f1).
More generally, for 1 ≤ j < m the polynomials fj+1, . . . , fm form a secant sequence for
a+ (f1, . . . , fj).

Any regular sequence of maximal length m with respect to a constitutes a secant
sequence for a, because any member of the regular sequence drops the Krull dimension by
one at each step, up to reach dimension 0.

Proposition 3 Let ~f := f1, . . . , fm be a secant sequence for the equidimensional ideal a
of dimension m. Let us consider the regular morphism:

~f : V (a) −→ Am,

x 7−→ ~f(x) := (f1(x), . . . , fm(x)).
(1)

Then ~f(V (a)) is Zariski dense in Am. Said otherwise, ~f : V (a) → Am is dominant.

Proof. The proof is an easy consequence of the Theorem of the Dimension of the Fibers
(see for instance [17, §6.3 Theorem 7]). Since the sequence ~f is secant, the fiber ~f−1(0) is
a zero-dimensional algebraic set and, therefore, there exists an irreducible component of
V (a) which intersects this fiber. If p is the corresponding minimal associated prime of a, the
Theorem of the Dimension of the Fibers applied to the restriction ~f |V (p): V (p) −→ Am

implies that ~f |V (p) is dominant. Thus ~f(V (p)) is Zariski dense in Am and hence also
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~f(V (a)).

From Proposition 3 we deduce immediately the following statement:

Corollary 4 With the same notations as in Proposition 3, the following is a monomor-
phism of K−algebras:

~f∗ : K[Y1, . . . , Ym] −→ A = K[ ~X]/a,
Yi 7−→ fi + a, 1 ≤ i ≤ m.

In particular, the residual classes {f1 + a, . . . , fm + a} are algebraically independent over
K.

Corollary 5 Let ~f be a secant sequence for the equidimensional ideal a of dimension
m. Then there exists a non-empty Zariski open subset U of Am, such that for all ~a :=
(α1, . . . , αm) ∈ U ∩Km the sequence ~f − ~a := f1 − α1, . . . , fm − αm is a secant sequence
for a.

Proof. Fix an index j, 1 ≤ j ≤ m and let ~fj : V (a) → Aj be the polynomial map
(f1(x), . . . , fj(x)). As in the proof of Proposition 3, we deduce that there exists at least

one irreducible component of V (a) such that the restriction of ~fj is dominant and its
typical fiber has dimension m− j. On the other hand, if p is an isolated associated prime
of a such that the typical fiber of the restriction of ~fj to V (p) has not dimension m − j,

then the Zariski closure ~fj(V (p)) is properly contained in Aj. Therefore, the set of points

~y ∈ Aj such that the fiber ~f−1
j (~y) is m − j dimensional contains a nonempty Zariski

open set Uj ⊂ Aj. One verifies immediately that U :=

m
⋂

j=1

(Uj × Am−j) ⊂ Am satisfies the

statement of the corollary.

Remark 6 There exists in (An)m a nonempty Zariski open set O of linear forms of K[ ~X ]
such that each element ~f = f1, . . . , fm of O constitutes a secant family for a.

Proof. The statement is a consequence of Noether’s Normalization Lemma as in [10,
Lemma 1] applied to the equidimensional variety V (a).

We need in the sequel the following technical lemma concerning Zariski dense subsets:

Lemma 7 Let be given positive integers n1, . . . , ns and a subset U of An1 × · · · × Ans.
For each i = 1, . . . , s denote by πi the canonical projection of the product space onto Ani.
Assume that the set U satisfies the following conditions:

i) π1(U) is Zariski dense in An1 .

ii) For each i = 1, . . . , s− 1 and each a := (a1, . . . , ai) ∈
(

π1 × . . .× πi
)

(U) the set

πi+1

(

({a} × Ani+1 × · · · × Ans) ∩ U
)

⊂ Ani+1

is Zariski dense in Ani+1.
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Then, the set U is Zariski dense in An1 × · · · × Ans.

Proof. By induction on s. For s = 1 there is nothing to prove because condition i)
implies already the conclusion (the second condition is vacuous). Suppose now s > 1.
For each i = 1, . . . , s denote by Ti the ni−tuple of coordinates of Ani and suppose that a
polynomial F (T1, . . . , Ts) vanishes on U . Consider F as polynomial in the variables Ts:

F =
∑

α∈Nns
0

fα(T1, . . . , Ts−1) T
α
s .

For an arbitrary point a := (a1, . . . , as−1) ∈
(

π1×. . .×πs−1

)

(U) the ns−variate polynomial
F (a, Ts) vanishes at any point b ∈ Ans with (a, b) ∈ U . In other words, the polynomial
F (a, Ts) vanishes on the set πs

(

({a}×Ans)∩U
)

, which is Zariski dense in Ans by condition
ii) for i = s − 1. Hence the coefficients fα(a) are zero for all subindexes α and for all
a ∈

(

π1 × . . .× πs−1

)

(U).
We consider now the set U ′ ⊂ An1 × · · · × Ans−1 defined as

U ′ :=
(

π1 × . . . × πs−1

)

(U).

It is easy to see that U ′ satisfies conditions i) and ii). Hence, by induction hypothesis, the
set U ′ is Zariski dense and therefore each polynomial fα must be identically zero. Hence
F = 0, which implies that U is Zariski dense in An1 × · · · × Ans .

Corollary 8 There exists in (An+1)m a nonempty Zariski open set O of polynomials of
degree one such that each element ~f = f1, . . . , fm of O constitutes a secant sequence for a.

Proof. The condition to form a secant sequence is expressible in first order logic and hence
constructible. From Corollary 5, Remark 6 and Lemma 7 we deduce that the sequences
~f = f1, . . . , fm of degree one polynomials which are secant sequences for a constitutes a
Zariski dense subset of (An+1)m. Since this set is also constructible the corollary follows.

We are now going to analyze the ubiquity of regular sequences with respect to an
equidimensional polynomial ideal a ⊂ K[ ~X ] of positive dimension. We start with the
following simple observation.

Remark 9 Let p be a prime ideal of the polynomial ring K[ ~X] of positive dimension.
Then the set

T := {(a1, . . . , an) ∈ Kn | there exists λ ∈ K such that a1X1 + · · · + anXn + λ ∈ p}

is a proper linear subspace of Kn.

Proof. The set T is clearly a linear subspace because p is an ideal. If T = Kn the
elements of the canonical basis of Kn belong to T . Hence, there exist scalars λ1, . . . , λn

such that X1+λ1, . . . ,Xn+λn belong to p. Thus the ideal p is maximal. This contradicts
the assumption that p is of positive dimension.

From Remark 9 and Lemma 7 we deduce now the following result about the density
of degree one regular sequences with respect to an equidimensional polynomial ideal.
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Proposition 10 Let a ⊂ K[ ~X ] be an equidimensional ideal of dimension m > 0. Then
there exists a Zariski dense subset U of (An+1)m such that for all ( ~a1, . . . , ~am) ∈ U with
~ai := (a1i, . . . , ani, a(n+1)i), 1 ≤ i ≤ m, the polynomials ℓ1, . . . , ℓm of degree 1 defined by

ℓi := a1iX1 + · · · + aniXn + a(n+1)i

form a regular sequence with respect to the ideal a.

Proof. We start by the construction of a suitable regular generic polynomial of degree
1. Let p1, . . . , pt be the associated primes of a of positive dimension and let pt+1, . . . , pr
those associated primes which are maximal ideals. Observe 1 ≤ t since the ideal a is
of positive dimension. For each j = 1, . . . , t let Tj be the proper linear subspace of An

associated to pj following Remark 9. Thus U1 := An \⋃t
j=1 Tj is a constructible Zariski

dense subset of An. Observe that for 1 ≤ j ≤ t and any (homogeneous) linear form
ℓ whose coefficients belong to U1, the constructible set ℓ(V (pj)) is Zariski dense in A1.
Thus, the intersection Uℓ :=

⋂s
j=1−ℓ(V (pj)) is constructible and Zariski dense too. Hence

U := {(ℓ, u) ; ℓ ∈ U1, u ∈ Uℓ} is a constructible subset of An+1 which is Zariski dense
following Lemma 7.

Now, for each maximal ideal pj , t < j ≤ r, associated to a we consider Wj ⊂ An+1, the
n−dimensional linear subspace of the polynomials of degree one contained in pj . Since U
is Zariski dense and constructible in An+1, we conclude that

U1 := U \
r
⋃

j=t+1

Wj

is constructible and Zariski dense in An+1.
Now we consider an arbitrary polynomial ℓ1 := a1X1+· · · anXn+an+1 with (a1, . . . , an+1) ∈

U1. Then, ℓ1 /∈ pj for t < j ≤ r since the vector (a1, . . . , an+1) does not belong to
∪r
j=t+1Wj . On the other hand, we have ℓ1 /∈ pj for all 1 ≤ j ≤ t because the homogeneous

part of ℓ1 is in U1.
In other words, for ℓ1 ∈ U1 we infer that ℓ1 does not belong to any associated prime

of a. Thus ℓ1 is not a zero divisor mod a.
In order to prove that ℓ1 is a regular element it suffices to show that ℓ1 is not a unity

modulo a. Otherwise ℓ1 must be also a unity mod p1, i.e. ℓ1(p) 6= 0 for all p ∈ V (p1) and
then −an+1 is not in the image ℓ(V (p1)) which contradicts the fact that an+1 ∈ Uℓ (recall
that 1 ≤ t holds).

Summarizing, we have shown that there exists a (constructible) Zariski dense subset
U1 of An+1 such that any polynomial of degree one with coefficients in U1 is regular mod
a.

Now the corollary follows by an inductive argument based on Lemma 7: take any ℓ1
with coefficients in U1. Then by Krull’s Principal Ideal Theorem, the ideal a1 := a+ (ℓ1)
is equidimensional of dimension m− 1. If m = 1 there is nothing to prove.

Assume m > 1. We build a constructible Zariski dense subset U2,ℓ1 of A
n+1 (depending

on ℓ1) such that for any ℓ2 with coefficients in this set, the pair ℓ1, ℓ2 is a regular sequence
of length 2 for a. By repeating this argument for each ℓ1, Lemma 7 ensures the existence of
a Zariski dense subset U2 of An+1×An+1 representing the coefficients of regular sequences
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of length 2 for a, formed by polynomials of degree 1. The corollary follows now inductively
after m steps.

3 Generic fiber vs. special fibers

Throughout this section let notations and assumptions be the same as in the previous
section. Let us now consider a minimal primary decomposition of the equidimensional
ideal a, of dimension m, namely

a = q1 ∩ · · · ∩ qr,

where each ideal qi is pi−primary. Assume ~f is a secant sequence with respect to the ideal
a. Let us denote by K[~f ] the image of K[Y1, . . . , Ym] in A = K[X1, . . . ,Xn]/a.

Let us recall the polynomial mapping ~f : V (a) −→ Am and let ~fi be its restriction to
each of the components V (pi):

~fi := ~f |V (pi): V (pi) −→ Am, where 1 ≤ i ≤ r.

Taking into account Proposition 3 we may assume without loss of generality that there
exists an index 1 ≤ s ≤ r such that ~fi is dominant if and only if 1 ≤ i ≤ s.

Lemma 11 With these notations the following statements hold:

i) For any i, s+1 ≤ i ≤ r, there exists a non-zero polynomial Qi ∈ K[Y1, . . . , Ym] such
that Qi(f1, . . . , fm) belongs to qi.

ii) For any i, 1 ≤ i ≤ s, and for any j, 1 ≤ j ≤ n, there is a polynomial Qij ∈
K[Y1, . . . , Ym][T ], of positive degree in the variable T such that Qij(f1, . . . , fm)(Xj)
belongs to qi.

Proof. For the proof of statement i), observe that for any i, s + 1 ≤ i ≤ r, the image
~f(V (pi)) is contained in a proper hypersurface of Am. Taking Gi ∈ K[Y1, . . . , Ym] the
minimal equation of this hypersurface, we conclude that Gi(f1, . . . , fm) belongs to pi.
Since the radical of qi is pi, there exists some power Qi := Gki

i such that Qi(f1, . . . , fm)
belongs to qi, as wanted.

For the proof of statement ii), let us write by p := pi where 1 ≤ i ≤ s. As ~fi(V (p))
is Zariski dense in Am, and a is m−equidimensional we have a monomorphism of finitely
generated K−algebras of the same Krull dimension:

~f∗
i : K[Y1, . . . , Ym] →֒ K[X1, . . . ,Xn]/p,

with ~f∗
i (Yk) = fk + p, 1 ≤ k ≤ m. Thus we may consider K[~f ] as a subalgebra of

K[X1, . . . ,Xn]/p. Let S := K[~f ] \ {0}, Then K(~f) := S−1K[~f ] is the quotient field of
K[~f ] and we have an extension of domains of the same Krull dimension:

K(~f) →֒ S−1(K[X1, . . . ,Xn]/p),

which is therefore a finite field extension. Then, for any 1 ≤ j ≤ n the residue class
Xj + p is algebraic over K(~f). In particular, there is a polynomial Hj ∈ K[Y1, . . . , Ym][T ]
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(depending on p), of positive degree in T such that Hj(f1, . . . , fm)(Xj) belongs to p. As

p = pi, let us write Gij := Hj. Since pi is the radical of qi , there is some power Qij := G
kij
ij

such that Qij(f1, . . . , fm)(Xj) belongs to qi as wanted.

For the next statement observe that Corollary 4 implies that for any nonzero poly-
nomial q ∈ K[Y1, . . . , Ym] we have q(~f) = q(f1, . . . , fm) 6= 0. Thus K[~f ] \ {0} forms
a multiplicative closed set of A which we denote in the sequel by S(~f). Observe that
K(~f) := S(~f)−1K[~f ] is the quotient field of K[~f ].

Proposition 12 There is a nonzero polynomial q ∈ K[Y1, . . . , Ym] such that for q(~f) =
q(f1, . . . , fm) ∈ S(~f) the localizations of K[~f ] and A by q(~f) define an integral ring exten-
sion:

K[~f ]
q(~f) →֒ A

q(~f).

In particular A
q(~f)

is a finite K[~f ]
q(~f)

−module.

Proof. We use the notations of Lemma 11. Let us consider the polynomial q ∈ K[Y1, . . . , Ym]
given by

q :=





s
∏

i=1

n
∏

j=1

aij(Y1, . . . , Ym)



×
(

r
∏

i=s+1

Qi(Y1, . . . , Ym)

)

∈ K[Y1, . . . , Ym],

where for 1 ≤ i ≤ s and 1 ≤ j ≤ n the polynomial aij is the non-zero leading coefficient of
the polynomial Qij ∈ K[Y1, . . . , Ym][T ] which satisfies the condition aij(f1, . . . , fm) 6∈ pi

(see the proof of Lemma 11). As q is a non-zero polynomial we have q(~f) = q(f1, . . . , fm) 6∈
a. Thus we obtain a K−algebra extension

K[~f ]
q(~f)

→֒ A
q(~f)

.

As q(~f) ∈ qi for s+1 ≤ i ≤ r, the minimal primary decomposition of the ideal (0) in A
q(~f)

is given by:
(0) = qe1 ∩ · · · ∩ qes,

where qei is the extension of qi to A
q(~f). In particular, the ring extension above is integral

since for every 1 ≤ j ≤ n the residue class Xj + a satisfies the algebraic dependence
equation given by

∏s
i=1 Qij described in Lemma 11. In particular, as A

q(~f)
is a finitely

generated K[~f ]
q(~f)

−algebra and as every residue class Xj + a, 1 ≤ j ≤ n is integral over

K[~f ]
q(~f), the algebra A

q(~f) is a finite K[~f ]
q(~f)−module.

We deduce from Proposition 12 the following statement.

Corollary 13 The localized ring S(~f)−1A is a K(~f)−algebra of finite dimension.
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Proposition 14 There is a nonzero polynomial p ∈ K[Y1, . . . , Ym] such that p(f) :=
p(f1, . . . , fm) ∈ S(~f) has the following property. The localizations by p(f) define an integral
ring extension:

K[~f ]
p(~f)

→֒ A
p(~f)

,

and A
p(~f)

is a free K[~f ]
p(~f)

−module of finite rank. Moreover, its rank satisfies the condi-
tion

rank
K[~f ]

p(~f)
(A

p(~f)
) = dim

K(~f)
S(~f)−1A.

Proof. Let q ∈ K[Y1, . . . , Ym] be the non-zero polynomial of Proposition 12. Then, we
have

• a finite subset β of A, such that β is a basis of S(~f)−1A as K(~f)−vector space.

• a finite subset M of A, such that M is a system of generators of theK[~f ]
q(~f)

−module
A

q(~f)
.

As β is a basis of S(~f)−1A as K(~f)−vector space, there is some nonzero polynomial
h ∈ K[Y1, . . . , Ym] such that h(~f) := h(f1, . . . , fm) 6= 0 in A and such that all elements
in M are linear combinations of the elements in the basis β with coefficients in K[~f ]

h(~f)
.

Then, p := qh ∈ K[Y1, . . . , Ym] is a non-zero polynomial such that

K[~f ]
p(~f)

→֒ A
p(~f)

is an integral ring extension and such that A
p(~f)

is a free K[~f ]
p(~f)

−module of finite rank.

As rank is stable under localizations, we conclude

rank
K[~f ]

p(~f)
(A

p(~f)
) = dim

K(~f)
S−1A.

Lemma 15 Suppose that ~f is a regular sequence. Then the inequality dimK A/(~f) ≤
dim

K(~f)
S(~f)−1A holds.

Proof. By induction on the Krull dimension m of A.
If m = 0 there is nothing to prove. Suppose m ≥ 1 and denote by B := A/(f1).

Since ~f is a secant sequence, the ring B has Krull dimension m− 1 and ~f ′ := f2, . . . , fm
is a regular sequence for the ideal a + (f1). Therefore, if T denotes the multiplicative
subset K[~f ′] \ {0} of B and L′ := K(~f ′) we have by induction hypothesis the inequality
dimK B/(~f ′) ≤ dimL′ T−1B.

Since B/(~f ′) = A/(~f) it suffices to show the inequality dimL′ T−1B ≤ dim
K(~f)

S−1A.

Let g1, . . . , gs be polynomials in K[ ~X ] whose classes form a basis of T−1B over L′. We
consider the images of g1, . . . , gs in the ring S(~f)−1A. We show that these elements are
linearly independent over K(~f). Suppose on the contrary that they are K(~f)−linearly
dependent. Cleaning denominators we may suppose that there exists a non trivial lin-
ear combination

∑s
i=1 pigi which belongs to the ideal a where the pi’s are polynomials in
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K[~f ]. Since the polynomials f1, . . . , fm are algebraically independent modulo a, f1 ∈ K[~f ]
may be viewed as an irreducible element in a factorial domain. Moreover, since f1 is not
zero-divisor modulo a we may suppose without loss of generality that f1 is not a common
factor of all polynomials p1, . . . , ps. Taking the class of each polynomial pi modulo the
ideal (f1) ⊂ K[~f ] we conclude that the polynomials gi are not linearly independent in
T−1B, contradiction.

Lemma 15 fails for secant sequences:

Example 16 Consider the one dimensional ideal a = (X3
1 ,X

2
1X2) ⊂ K[X1,X2] whose

primary decomposition is a = (X2
1 ) ∩ (X3

1 ,X2) . The polynomial X2 is a secant sequence
for a and A/(X2) = K[X1,X2]/(X

3
1 ,X2) ≃ K[X1]/(X

3
1 ). Therefore dimK A/(X2) = 3.

On the other hand, if S := K[X2] \ {0} and L := K(X2), we have

S−1A ≃ S−1K[X1,X2]/(X
3
1 ,X

2
1 ) ≃ K(X2)[X1]/(X

2
1 )

(since X2 is invertible in S−1A). But then dimL S−1A = 2.
Observe that X2 is a secant family for a but it is a zero divisor in A since X2X

2
1 ∈ a and

X2
1 /∈ a.

Typically we have equality in Lemma 15.

Proposition 17 Let ~f be a secant sequence for a, as before. Then there exists a non-
empty Zariski open subset O of Am such that for any ~a ∈ O the equality dimK A/(~f−~a) =
dim

K(~f)
S(~f)−1A holds.

Proof. By Proposition 14, there exists a non-zero polynomial p ∈ K[Y1, . . . , Ym] such
that the localizations by p(~f) define an integral ring extension

K[~f ]
p(~f)

→֒ A
p(~f)

and A
p(~f)

is a free K[~f ]
p(~f)

−module of finite rank

N := rank
K[~f ]

p(~f)
(A

p(~f)) = dim
K(~f) S(

~f)−1A.

Let H := {p 6= 0} ⊂ Am and let U be the nonempty Zariski open subset of Am of
Corollary 5. Then, O := H ∩U is also a non-empty Zariski open subset of Am. Let ~a ∈ O
be a point in this open set and let us denote by m~a the ideal in K[~f ] generated by the
sequence f1 − a1, . . . , fm − am in K[~f ]. As K[~f ] is a polynomial ring, m~a is a maximal
ideal in K[~f ]. Let us denote by m~aA its extension to A. Moreover, as p(~a) 6= 0, we have

p(~f) 6∈ m~a. In particular, the extension m
(1)
~a := m~aK[~f ]

p(~f) is also a maximal ideal in

K[~f ]
p(~f)

. Let us consider the submodule m
(1)
~a

A
p(~f)

of A
p(~f)

as K[~f ]
p(~f)

−module. Note

that (A/m~aA)p(~f) is isomorphic as K[~f ]
p(~f)

−module to

(

K[~f ]
p(~f)

)N

/m
(1)
~a

(

K[~f ]
p(~f)

)N

.
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Thus, we conclude that as K[~f ]
p(~f)

−module, (A/m~aA)p(~f) is isomorphic to

(

K[~f ]
p(~f)

/m
(1)
~a

)N ∼=
(

K[~f ]/m~a

)N ∼= KN .

Hence dimK A/(~f − ~a) = N = dim
K(~f)

S(~f)−1A for all ~a ∈ O.

Corollary 18 There exists a Zariski dense subset U of (An+1)m such that for any sequence
~f = f1, . . . , fm of degree one polynomials of U the sequence ~f is secant and the equality
dim

K(~f)
S(~f)−1A = dimK A/(~f) holds.

Proof. Combine Corollary 8 with Proposition 17 and Lemma 7.

Let 1 ≤ q ≤ r be the number of isolated primes of the ideal a. Without loss of
generality we may assume that these are p1, . . . , pq. Then for each 1 ≤ j ≤ q the ring
Apj is local and Artinian with maximal ideal (pj/a)pj . In the sequel we denote by ℓj the
length of Apj .

As in Lemma 11 we may assume without loss of generality that there exists an index
1 ≤ s ≤ q such that ~fi = ~f |V (pi) : V (pi) → Am is dominant if and only if 1 ≤ i ≤ s.

We say that the ring extension K(~f) ⊆ S(~f)−1A is separable if for every 1 ≤ i ≤ s the
field extension K(~f) ⊆ S(~f)−1A/(pi/a) is separable (compare Corollary 13).

With these notions and notations we may formulate the following result.

Proposition 19

i) Assume that the ring extension K(~f) ⊆ S(~f)−1A is separable. Then we have

dim
K(~f)

S(~f)−1A ≤
(

s
∑

i=1

deg V (pi) ℓi

)

m
∏

k=1

deg(fk) ≤

≤





q
∑

j=1

degV (pj) ℓj





m
∏

k=1

deg(fk).

ii) There exists a nonempty Zariski open subset O of (An+1)m such that for any sequence
~f = f1, . . . , fm of degree one polynomials of O, the sequence ~f is secant for a and
such that

dim
K(~f)

S(~f)−1A =

q
∑

j=1

deg V (pj) ℓj

holds.

Proof. We are going to show statement i). Let us abbreviate L := K(~f), S := S(~f) and
R := S(~f)−1A = S−1A.

By virtue of Lemma 11 i) the localizations mi := S−1(pi/a), 1 ≤ i ≤ s, are exactly
the maximal ideals of R. By Corollary 13 the L−algebra R is finite dimensional and
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therefore Artinian. From the Chinese Remainder Theorem we deduce now R =

s
⊕

i=1

Rmi
.

Let 1 ≤ i ≤ s and observe that the rings Rmi
and Api are isomorphic.

Therefore ℓi is also the length of the Artinian local ring Rmi
. This implies dimLRmi

=
[R/mi : L] ℓi.

Putting all this together we obtain

dimL S−1A = dimLR =

s
∑

i=1

[R/mi : L] ℓi. (2)

Fix again 1 ≤ i ≤ s. We are now going to analyze in geometric terms the quantity
[R/mi : L].

Observe that the dominating morphism ~fi = ~f |V (pi) : V (pi) → Am induces canonical
field isomorphisms

R/mi
∼= S−1(A/(pi/a)) ∼= K(V (pi)),

whereK(V (pi)) denotes the fraction field of V (pi). Since by assumption the field extension
K(~f) ⊂ S−1(A/(pi/a)) is separable, we see that ~fi is generically unramified. In particular,
we are in conditions to apply [17, Theorem 4, Chapter II, §6.3] to conclude that there
exists a Zariski open subset W of Am such that for any point ~a ∈ W the fiber ~f−1

i (~a) is
unramified and of cardinality [R/mi : L].

Choose ~a ∈ W . From the Bézout Inequality [10] we deduce now

[R/mi : L] = ♯ ~f−1
i (~a) ≤ deg V (pi)

m
∏

k=1

deg(fk).

From (2) we infer finally the statement i) of the proposition, namely

dim
K(~f)

S(~f)−1A = dimL S−1A =
s
∑

i=1

♯ ~f−1
i (~a) ℓi ≤

≤
(

s
∑

i=1

deg V (pi) ℓi

)

m
∏

k=1

deg(fk) ≤





q
∑

j=1

deg V (pj) ℓj





m
∏

k=1

deg(fk).

We are now going to prove statement ii) of the proposition.
Following Corollary 8 and [10, Lemma 1] we may choose a nonempty Zariski open

subset of (An+1)m such that for any sequence ~f = f1, . . . , fm of degree one polynomials of
O the following conditions are satisfied:

• ~f is a secant sequence for a;

• for 1 ≤ j ≤ q the morphisms ~fj := ~f |V (pj ): V (pj) → Am are dominant, generically
unramified and of degree deg V (pj).

Thus, in particular, any sequence ~f = f1, . . . , fm of O fulfills the assumption of the
statement i) of the proposition.

12



From the proof of statement i) we deduce:

dim
K(~f) S(

~f)−1A =

q
∑

j=1

♯ ~f−1
j (~a) ℓj

for a suitable, generically chosen point ~a ∈ Am. Since fj is generically unramified of degree

deg V (pj) we may choose ~a such that ♯ ~f−1
j (~a) = deg V (pj) holds for 1 ≤ j ≤ q. This implies

the statement ii) of the proposition, namely dim
K(~f) S(

~f)−1A =
∑q

j=1 deg V (pj) ℓj .

4 Notion of the degree of an ideal of non-homogeneous poly-

nomials

As at the end of the last section let be given an equidimensional ideal a of K[ ~X ] of
dimension m with isolated primes p1, . . . , pq. Let A := K[ ~X]/a, recall that for 1 ≤ j ≤ q
the ring Apj is local and Artinian and let ℓj be the length of Apj .

We shall need the following technical result.

Lemma 20 There exists a nonempty Zariski open subset U of (An+1)m such that for any
sequence ~f = f1, . . . , fm of degree one polynomials of U , the sequence ~f is secant for a and
dimK A/(~f) is constant, independently from ~f .

Proof. Let Tij, 1 ≤ i ≤ m, 0 ≤ j ≤ n be new indeterminates, ~T = (Tij) 1≤i≤m
0≤j≤n

and let

Fi :=
∑m

j=1 TijXj + Ti0, 1 ≤ i ≤ m. Fix any monomial order of ~X and let g1, . . . gs ∈ K[ ~X ]

be a set of generators of a. Observe that the ideal (g1, . . . gs, F1, . . . , Fm) of K(~T )[ ~X ] is
zero-dimensional.

Consider an arbitrary Gröbner basis computation β of this ideal.
The leading coefficients occurring in β form a finite set of nonzero rational functions

of K(~T ). Hence, there exists a nonempty Zariski open subset U of A(n+1)m where none of
the numerators and denominators of these rational functions vanishes.

Let ~f = f1, . . . , fm be a sequence of degree one polynomials of U . Then β may be
specialized to a Gröbner basis computation of (g1, . . . gs, f1, . . . , fm) in K[ ~X ] which yields
the stair of β.

In view of Corollary 8 we may assume without loss of generality that for every sequence
~f = f1, . . . , fm of degree one polynomials of U the sequence ~f is secant for a.

Therefore everything is well defined and dimK A/(~f) is finite and constant on U .

Theorem 21 There exists a nonempty Zariski open subset O of (An+1)m such that for
any sequence ~f = f1, . . . , fm of degree one polynomials of O the sequence ~f is secant for a

and dimK A/(~f ) =
∑q

j=1 deg V (pj) ℓj holds.

Proof. Combining Proposition 19 ii) with Lemma 20 we find a nonempty Zariski open
subsetO of (An+1)m such that for any sequence ~f = f1, . . . , fm of degree one polynomials of
O the sequence ~f is secant for a such that dimK A/(~f) is constant and dim

K(~f) S
−1(~f)A =

∑q
j=1 degV (pj) ℓj holds.
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From Corollary 18 we conclude that there exists a sequence ~f0 = f0
1 , . . . , f

0
m of degree

one polynomials of O satisfying the equality

dim
K(~f0)

S−1(~f0)A = dimK A/(~f0).

This implies

dimK A/(~f0) =

q
∑

j=1

deg V (pj) ℓj .

Hence, for an arbitrary sequence ~f = f1, . . . , fm of degree one polynomials belonging to
O the sequence ~f is secant for a and it holds

dimK A/(~f) = dimK A/(~f0) =

q
∑

j=1

degV (pj) ℓj .

We may simplify the somewhat complicated formulation of Theorem 21 saying that a
generic sequence ~f = f1, . . . , fm of degree one polynomials is secant for a and dimK A/(~f) =
∑q

j=1 degV (pj) ℓj holds. In this sense the word generic refers always to the existence of a
nonempty Zariski open set which not always is made explicit.

Using this terminology we may define the degree of the equidimensional ideal a in two
different ways as follows.

Definition 22 The degree deg(a) of the equidimensional ideal a may be equivalently de-
fined as

i) deg(a) := dimK A/(~f ) for a generic sequence ~f = f1, . . . , fm of degree one polyno-
mials of K[ ~X ]

or

ii) deg(a) :=
∑q

j=1 deg V (pj) ℓj , where p1, . . . , pq are the isolated primes of a and ℓ1, . . . , ℓq
are the lengths of the Artinian local rings Ap1 , . . . , Apq .

The formulation ii) for the degree of a was introduced in [2] for homogeneous ideals whereas
the formulation i) seems new for non-homogeneous ideals and represents our “workable”
notion of degree (see Section 6).

The next statement is a straightforward consequence of this definition:

Proposition 23 Let a and b two equidimensional ideals in the ring K[ ~X] of the same
dimension m. If a ⊆ b then deg(b) ≤ deg(a).

Proof. Since the ideals have the same dimension we can take the same generic degree one
polynomials ~f for both ideals. Thus a+ (~f) ⊆ b+ (~f) and the proposition follows.

If the ideal a is generated by a single polynomial its degree agrees with the total degree
of the polynomial which generates it.
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Proposition 24 Let a be the ideal generated by a non constant polynomial g. The
deg(a) = deg(g).

Proof. It suffices to observe that after a generic linear change of coordinates, the degree
of the polynomial g does not change if n − 1 variables are generically specialized and it
agrees with the total degree of g.

In the case of general polynomial ideals, as customary, we extend our notion of degree
as follows.

Definition 25 Let I ⊂ K[ ~X] be an arbitrary proper polynomial ideal with isolated primary
components q1, . . . , qt. We define:

deg(I) :=

t
∑

h=1

deg(qh).

Remark 26 For radical polynomial ideals Definitions 22 and 25 coincide with the usual
notions of geometric degree of (equidimensional or arbitrary) algebraic closed subvarieties
of affine spaces following [10].

4.1 On the Bézout Inequality

In view of the Bézout Inequality [10, 6, 18] for affine varieties one might expect that for
arbitrary ideals I, J ⊂ K[ ~X] the following estimation holds:

deg(I + J) ≤ deg(I).deg(J).

That this may become wrong shows the following example.

Example 27 Consider the one-dimensional ideal I = (X3
1 ,X

2
1X2) ⊂ K[X1,X2] whose

primary decomposition is I = (X2
1 ) ∩ (X3

1 ,X2). The primary isolated component is (X2
1 )

while (X3
1 ,X2) is the embedded one. By Definition 22 we have deg(I) = deg((X2

1 )) = 2,
since for any generic linear polynomial f1 := aX1 + bX2 + c the ring K[ ~X ]/(X2

1 , f1) has
the K-basis {1,X1}.
Take the ideal J := (X2) ⊂ K[ ~X], which has degree one, and consider the degree of the
sum I + J . We have

I + J = (X3
1 ,X

2
1X2,X2) = (X3

1 ,X2),

which is a 0-dimensional (X1,X2)-primary ideal. Clearly deg(I + J) = 3.
But on the other hand we have deg(I).deg(J) = 2.1 = 2 < 3.

The following example illustrates that there is no chance to obtain an intrinsic Bézout
Inequality (which depends only on the degrees of the ideals but not their generators).

Example 28 Let k ∈ N and I = (Xk
1 ,X1X2) ⊂ K[X1,X2]. It is easy to see that the

primary decomposition of I is: I = (X1) ∩ (Xk
1 ,X2) and then deg(I) = deg((X1)) = 1.

By adding the ideal (X2) we have

deg(I + (X2)) = deg(Xk
1 ,X1X2,X2) = deg(Xk

1 ,X2) =
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= length (K[X1,X2]/(X
k
1 ,X2)) = k.

Observe that the degree of the sum of the ideals depends on the degree of the generators
of I but not on the degree of I.

Nevertheless, Proposition 19 implies the following Bézout-type Inequality for equidi-
mensional ideals.

Theorem 29 Let K be of characteristic zero and let a ⊂ K[ ~X] be an equidimensional
ideal of dimension m > 0. Let f1, . . . , fk be a regular sequence, not necessarily maximal,
for a. Then the inequality

deg(a+ (f1, . . . , fk)) ≤ deg(a)

k
∏

i=1

deg(fi)

holds.

Proof. Since a is assumed equidimensional and f1, . . . , fk is a regular sequence, Krull’s
Principal Ideal Theorem implies that ideal b := a + (f1, . . . , fk) is also equidimensional.
Combining Proposition 10 with Theorem 21 we see that there exists a regular sequence
fk+1, . . . , fm of degree one polynomials such that deg(b) = dimK K[ ~X ]/b+(fk+1, . . . , fm)
holds.

Let S := K[f1, . . . , fk, fk+1, . . . , fm] \ {0} and L := K(f1, . . . , fk, fk+1, . . . , fm), then
Lemma 15 states the inequality

deg(b) = dimK A/(f1, . . . , fk, fk+1, . . . , fm) ≤ dimL S−1(A).

On the other hand, taking into account that the characteristic of K is zero, from Propo-
sition 19 i) we deduce

dimL S−1(A) ≤





q
∑

j=1

deg(V (pj)) ℓj





m
∏

i=1

deg(fi) = deg(a)

k
∏

i=1

deg(fi).

This implies the theorem.

5 A Masser-Wüstholz type degree bound for non-homogeneous

polynomial ideals

The constructions in this section are inspired by [15].
Let a be an arbitrary non-zero proper ideal of the polynomial ring R := K[ ~X ] where

K is an algebraically closed field of characteristic zero and ~X := (X1, . . . ,Xn) is a set of
variables. Denote by r := ht(a) the height of the ideal a.

From a primary decomposition of a we obtain a decomposition of a as follows:

a = Qr ∩Qr+1 ∩ · · · ∩Qn ∩ I,
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where, for each j = r, . . . , n the ideal Qj is the intersection of all isolated primary compo-
nents of a having height j, or the whole ring R otherwise. The ideal I is the intersection
of the embedded primary components.

For any j = r, . . . , n such that Qj 6= R, let Qj =
⋂sj

i=1 qji be its primary decomposition.
Observe that Qj is unmixed of height j.

5.1 A family of suitable multiplicative sets related to the ideal a

In this section we introduce suitable simple multiplicative sets such that the respective
localizations detect each equidimensional component of the ideal a (see Proposition 30
below).

With the previous notations, for each pair (k, ℓ) such thatQk 6= R and 1 ≤ ℓ ≤ sk, there
exists a point zkℓ ∈ An lying in the variety V (qkℓ) but outside the union of the remaining
irreducible components V (qji), with j 6= k or i 6= ℓ if j = k, and the immerse variety
V (I). In purely idealistic terms, there exists a maximal ideal mkℓ such that qkℓ ⊆ mkℓ but
qji * mkℓ for all the other pairs (j, i) and I * mkℓ.

For each index j = r, . . . , n such that a has isolated components of height j we introduce
the multiplicative set

Sj := R \
sj
⋃

i=1

mji.

If there is no isolated component of a with height j we define Sj := R \ {0}.
From qkℓ ⊆ mkℓ we infer qkℓ ∩ Sk = ∅. On the other hand, for j 6= k, we have

qkℓ ∩ Sj 6= ∅. If Sj = R \ {0} this is obvious. If Sj 6= R \ {0} the assumption qkℓ ∩ Sj = ∅
implies the inclusion qkℓ ⊂

⋃sj
i=1mji. By [1, Proposition 1.11], there exists then an index

i with qkℓ ⊂ mji, in contradiction with the choice of the maximal ideals and j 6= k. A
similar argument shows I∩Sj 6= ∅ for all j = r, . . . n. Namely, if I is disjoint from Sj then
I must be included in suitable maximal ideal mji, which again contradicts the choice of
the maximal ideals.

With these considerations we have

Proposition 30 For any index k = r, . . . , n the equality

S−1
k (a) = S−1

k (Qk)

holds in the fraction ring S−1
k R.

In particular, if Qk 6= R, the ideal S−1
k (a) is unmixed of height k (or equivalently

unmixed of dimension n− k).

Proof. By the previous arguments we have

S−1
k (a) = S−1

k (Qr) ∩ S−1
k (Qr+1) ∩ · · · ∩ S−1

k (Qn) ∩ S−1
k (I) =

=
⋂

ji

S−1
k (qji) ∩ S−1

k (I) =
⋂

ki

S−1
k (qki) = S−1

k (Qk).

Thus, in case Qk 6= R, the ideal S−1
k (a) is unmixed of height k because Qk has this

property.
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5.2 A suitable local regular sequence contained in a

Let ~g := g1, . . . , gs be a system of generators of a with degrees D1 ≥ D2 ≥ · · · ≥ Ds,
respectively. Since a is assumed generated by s many polynomials, Krull’s Principal Ideal
Theorem (see [1, Corollary 11.16]) implies that in the primary decomposition of a only
unmixed components Qk with k ≤ s may appear.

Lemma 31 Fix an index k = r, . . . , n with Qk 6= R. Then, there exist polynomials
p1, . . . , pk ∈ a such that for all j, 1 ≤ j ≤ k, the following conditions are satisfied:

i) The polynomial pj is a generic linear combination of the polynomials gj , . . . , gs (in
particular, deg(pj) = deg(gj) = Dj).

ii) p1, . . . , pj is a regular sequence in the localized ring S−1
k (R).

iii) If aj := (p1, . . . , pj) and a∗j := S−1
k (aj)∩R, the ideal a∗j is an unmixed ideal of height

j in R.

iv) The inequality deg(a∗j ) ≤ deg(a∗j−1)Dj holds.

Proof.

The proof runs by induction on j, where 1 ≤ j ≤ k.
For j = 1 let p1 be a generic linear combination of the generators g1, . . . , gs. Clearly

p1 satisfies the conditions i), ii), iii) for j = 1 because p1 is not invertible in S−1
k (R) since

it belongs to the unmixed (n− k)-dimensional ideal S−1
k (a) (see Proposition 30). Remark

that, even if condition iv) is vacuous for j = 1, the inequality deg(a∗1) ≤ deg(p1) holds (see
Propositions 23 and 24).

Suppose now that the lemma holds for 1 ≤ j < k and let p1, . . . , pj be polynomials
verifying conditions i)− iv). Let

S−1
k (aj) =

q
⋂

i=1

hi

be a primary decomposition of the ideal S−1
k (aj) in the ring S−1

k R. Remark that all
the primary components in this decomposition are isolated and (n − j)-dimensional be-
cause S−1

k R is a Cohen-Macaulay ring and S−1
k (aj) is generated by the regular sequence

p1, . . . , pj.
For each i = 1, . . . , q consider the linear subspace

Ti := {µ ∈ Ks−j−1 |
∑

t≥j+1

µtgt ∈
√

hi},

where
√
hi denotes the radical of hi. If for some i, Ti is the whole space Ks−j−1,

then gj+1, . . . , gs ∈ √
hi. Then, since pj ∈ hi and pj is a generic linear combination of

gj , gj+1, . . . , gs we infer that gj also belongs to
√
hi and by repeating this argument we
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conclude that S−1
k (a) ⊂ √

hi. But then, by Proposition 30, we have the inequality of
heights k ≤ j, which contradicts the choice of j.

Therefore, any Ti is a proper linear subspace ofK
s−j−1, and in particular, a generic vec-

tor µ ∈ Ks−j−1 verifies µ /∈ ⋃i Ti and so, the associated polynomial pj+1 :=
∑

t≥j+1 µtgt

is not a zero divisor modulo the ideal S−1
k (aj). Moreover, pj+1 is not invertible modulo

S−1
k (aj) because of the inclusion S−1

k ((pj+1) + aj) ⊆ S−1
k (a) and Proposition 30. Hence,

p1, . . . , pj+1 is a regular sequence in S−1
k R and conditions i) and ii) are satisfied for j +1.

Condition iii) is a consequence of ii) by Macaulay’s Theorem applied to the Cohen-
Macaulay ring S−1

k R and the well-known fact that the contraction to R of a primary ideal
in S−1

k R remains primary of same dimension.
We finish the proof showing condition iv): Since p1, . . . , pj is a regular sequence in

S−1
k R, the ideals S−1

k (aj) and a∗j are both equidimensional of dimension n − j. On the

other hand, as pj+1 is regular with respect to S−1
k (aj), then it is also regular with respect

to S−1
k (aj) ∩R = a∗j . In particular, a∗j + (pj+1) is equidimensional of dimension n− j − 1.
Since a∗j ⊆ a∗j+1 and pj+1 ∈ a∗j+1 holds, we have the inclusion a∗j + (pj+1) ⊆ a∗j+1 and

both ideals are equidimensional of dimension n− j − 1. Thus, Proposition 23 implies

deg(a∗j+1) ≤ deg(a∗j + (pj+1)).

Finally, by Theorem 29 applied to the ideal a∗j and the polynomial pj+1, we have the
inequalities

deg(a∗j+1) ≤ deg(a∗j + (pj+1)) ≤ deg(a∗j ) deg(pj+1) = deg(a∗j )Dj+1

and the lemma is proved.

5.3 Bézout Inequality in Masser-Wüstholz style

Lemma 31 implies the following Bézout Inequality which appears in [15] in the projective
case with the usual notion of degree for homogeneous ideals:

Theorem 32 Let K be an algebraically closed field of characteristic zero, ~X := (X1, . . . ,Xn)
variables over K and a ⊂ R := K[ ~X ] a non-zero and proper polynomial ideal generated
by polynomials g1, . . . , gs of total degrees D1 ≥ · · · ≥ Ds, respectively. Fix an index k,
1 ≤ k ≤ n, such that in the primary decomposition of a there exist isolated components of
height k and denote by Qk the intersection of this components. Then:

i) The inequality deg(Qk) ≤ D1 . . . Dk holds.

ii) The inequality deg(a) ≤ ∑

k∈C D1 . . . Dk, holds, where C is the set of those k such
that the ideal a has isolated primary components of height k.

Proof. Following the previous lemma, consider the polynomials p1, . . . , pk defining a
regular sequence in the localized ring S−1

k (R). Since ak := (p1, . . . , pk) ⊆ a, we have
S−1
k (ak) ⊆ S−1

k (a) = S−1
k (Qk) (Proposition 30). Hence, a∗k := S−1

k (ak) ∩ R ⊆ Qk, and
both ideals are unmixed of height k (and in particular, equidimensional of dimension n−k).
From Proposition 23 we conclude deg(Qk) ≤ deg(a∗k).
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By iteration of Condition iv) in Lemma 31 we obtain deg(a∗k) ≤ D1 . . . Dk which implies
inequality i).

The assertion ii) is immediate from i) and the definition of degree of arbitrary ideals
(Definition 25).

6 Computing the degree of an equidimensional polynomial

ideal

Let a be an equidimensional ideal of the polynomial ring Q[ ~X] in n variables ~X :=
(X1, . . . ,Xn). Assume that the dimension m and a system of generators g1, . . . , gs ∈ Z[ ~X ]
of the ideal a are known. Let d and σ be upper bounds for the degrees of g1, . . . , gs and
the bit-sizes of their coefficients.

The goal of this section is to discuss the complexity character of the problem of com-
puting deg(a).

Of course, one could compute (uniformly and deterministically) a primary decompo-
sition of the ideal a (see [8]) and determine deg(a) by means of Definition 22 ii). This
would involve a computational cost which is doubly exponential in n.

We present here a probabilistic approach which is more efficient and discuss then
whether its complexity can be improved.

Let Tij , 1 ≤ i ≤ m, 0 ≤ j ≤ n be new indeterminates, ~T = (Tij) 1≤i≤m
0≤j≤n

and let for

1 ≤ i ≤ m fi :=

n
∑

j=1

TijXj + Ti0. Let ~f := f1, . . . , fm and fix a monomial order for ~X .

Let b the ideal generated by a. From the proof of Lemma 20 and Theorem 21 we
deduce

deg(a) = dimQ(~T )Q(~T )[ ~X ]/b.

Since b is an ideal of dimension zero in Q(~T )[ ~X ] we have just to compute a Gröbner
basis of b from the generators g1, . . . , gs and f1, . . . , fm.

Following [5, Theorem 3.3] this can be done using (sdn
2
)O(1) arithmetic operations in

Q(~T ).
Applying [11, Theorem 4.4] we obtain a non-uniform deterministic or uniform proba-

bilistic algorithm which computes deg(a) by means of (sdn
2
)O(1) arithmetic operations in

Q.
The non-uniform deterministic version of the algorithm is based on a hitting sequence

of integers having bit-size (sdn
2
)O(1). This sequence has to be chosen probabilistically in

the uniform complexity model. The whole algorithm requires therefore (σsdn
2
)O(1) bit

operations.
Putting everything together we obtain the following complexity statement.

Theorem 33 There exists a uniform probabilistic algorithm implementable on a Turing
Machine with advice which computes deg(a) in time (σsdn

2
)O(1)
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This result raises two questions. What is the uniform deterministic complexity of
computing deg(a)? This question seems to be out of reach with the actual techniques.

The other question asks whether deg(a) can be computed probabilistically using (σsdn)O(1)

bit operations.
This question can be answered positively if it is possible to guess probabilistically

generic degree one polynomials f1, . . . , fm of Z[ ~X ] of bit size (σsdn)O(1).
In this case the probabilistic algorithm of Lakshman [13], techniques of [9], a suitable

arithmetic Bézout Inequality (see e.g. [3, Théorème 2] or [12, §1.2.4]) and efficient fac-
torization of univariate polynomials over Z (see for instance [7, Corollary 16.25]) can be
combined to obtain the desired complexity result. We do not go into the (lengthy) details
of this approach.

Conclusion

We introduced a suitable notion of degree for non-homogeneous polynomial ideals and
proved extrinsic Bézout Inequalities for this notion. We argued that an intrinsic Bézout
Inequality for the sum of two ideals is unfeasable. We exhibit a probabilistic algorithm of
single exponential complexity which computes the degree of an equidimensional ideal.
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