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Abstract

We present a generic and executable formalization of signature-based algorithms (such as
Faugère’s F5) for computing Gröbner bases, as well as their mathematical background,
in the Isabelle/HOL proof assistant. Said algorithms are currently the best known al-
gorithms for computing Gröbner bases in terms of computational efficiency. The formal
development attempts to be as generic as possible, generalizing most known variants
of signature-based algorithms, but at the same time the implemented functions are ef-
fectively executable on concrete input for efficiently computing mechanically verified
Gröbner bases. Besides correctness the formalization also proves that under certain con-
ditions the algorithms a-priori detect and avoid all useless reductions to zero, and return
minimal signature Gröbner bases.

To the best of our knowledge, the formalization presented here is the only formaliza-
tion of signature-based Gröbner basis algorithms in existence so far.

Keywords: Gröbner bases, signature-based algorithms, interactive theorem proving,
Isabelle/HOL

1. Introduction

Gröbner bases, introduced by Buchberger (1965), are a ubiquitous tool in computer
algebra and beyond, as they allow to effectively solve many problems related to multi-
variate polynomial rings and ideals. Finding Gröbner bases is a computationally difficult
task, and therefore many researchers have attempted to design more and more efficient
algorithms over the years. This, finally, lead to the first signature-based algorithm, the F5

algorithm invented by Faugère (2002). Nowadays, F5 and its relatives are the most effi-
cient algorithms for computing Gröbner bases, implemented in many modern computer
algebra systems.
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The work presented in this paper focuses on yet another implementation of signature-
based algorithms, but this time not in a computer algebra system but in the proof assis-
tant Isabelle/HOL (Nipkow et al. (2002)). The distinctive feature of our implementation
is its formal verification by the inference kernel of Isabelle. This, of course, necessitated
formalizing also the vast theory behind signature-based algorithms, eventually leading
to an extensive, generic and executable formalization of an important topic in modern
computer algebra. Even more, it is the—to the best of our knowledge—first-ever for-
malization of this theory in any proof assistant. As such, it constitutes the ultimate
certificate that the existing informal theory is indeed correct, without even the slightest
mistake or overlooked gap.

In the remainder we assume familiarity with the basics of Gröbner bases theory,
including polynomial reduction, S-polynomials, the definition of Gröbner bases, and
Buchberger’s algorithm. Although we present the key definitions, theorems and algo-
rithms of the signature-based approach to Gröbner bases in this paper, readers totally
new to the subject might also want to have a glance at the excellent survey article
by Eder and Faugère (2017), which we took as the template for our formalization. We
must also stress that besides Faugère, many more researchers have worked on signature-
based algorithms, resulting in a great variety of such algorithms. Giving an exhaustive
overview of all variations of signature-based algorithms in existence is out of scope here,
though; see again Eder and Faugère (2017) instead.

The motivation and distinctive feature of signature-based algorithms is detecting
and avoiding many more useless zero-reductions while computing Gröbner bases than
other algorithms—and in some cases even all useless reductions. This saves a lot of
computation time and thus leads to a drastic speed-up. How all this relates to signatures,
and what signatures are in the first place, will be explained in Sections 3–5.

The main motivation for the formalization was to verify a state-of-the-art algorithm
for computing Gröbner bases. That task could be expected to be challenging due to the
inherent complexity of the underlying mathematical theory, illustrated by the fact that
termination of the original F5 algorithm was an open problem for a decade until it was
settled by Galkin (2012). Our formal development of the theory may also serve as the
basis for further theoretical investigations, e. g. by implementing, testing and verifying
new improvements of the formalized algorithms, as well as for further formalizations in
the vast area of Gröbner bases.

Summarizing, the key features of the work presented here are as follows:

• The formalization is generic, in the sense that we consider rewrite bases and allow
for arbitrary term orders and rewrite orders (Section 5). According to Eder and Faugère
(2017) this set-up covers most, if not all, existing variations of signature-based al-
gorithms.

• All algorithms are proved to be totally correct w. r. t. their specifications. In partic-
ular, the algorithm for computing rewrite bases (Algorithm 1) is shown to terminate
for every input (Section 6.1).

• Besides correctness, we also prove that under certain conditions the algorithm
indeed avoids all useless zero-reductions, and that with a particular choice of the
rewrite order it returns minimal signature Gröbner bases (Section 7).
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• All formally verified algorithms are efficiently executable on concrete input. ‘Effi-
cient’ means that, for instance, the algorithms operate only on sig-poly-pairs rather
than full module elements (Section 8).

The entire formalization is freely available online (Maletzky (2018)), as an entry of Is-
abelle’s Archive of Formal Proofs (AFP).2

1.1. Organization of the Paper

The rest of the paper is organized as follows: Section 2 gives a brief overview of
Isabelle/HOL, to make the paper as self-contained as possible. Section 3 presents the
preliminaries of signature-based algorithms, Section 4 introduces s-reduction and sig-
nature Gröbner bases, Section 5 defines rewrite bases and S-pairs and establishes the
connection between them, Section 6 presents the main algorithms and hints why they
are totally correct, and Section 7 contains two results concerning the ‘optimality’ of the
algorithms. Each of these sections first presents the various concepts and theorems in
common mathematical style, before showing how they are formalized in Isabelle/HOL.

Section 8, then, explains how the formalized algorithms can be executed on concrete
input and provides a comparison of the running times of these algorithms to other algo-
rithms implemented in Isabelle/HOL and in Mathematica. Section 9, finally, concludes
the paper by giving quantitative information on the formalization effort and listing re-
lated and future work.

2. Brief Overview of Isabelle/HOL

The purpose of this section is to give a brief overview of the most important aspects
of Isabelle/HOL that are necessary for understanding the rest of the paper. Further
information and documentation can be found in Paulson (1994); Nipkow et al. (2002);
Wenzel (2018) and on the Isabelle homepage3. Readers already familiar with Isabelle
can safely skip this section.

Isabelle is a generic proof assistant: it serves as a framework for implementing differ-
ent object logics, such as first-order logic or higher-order logic, in one single system. As
such, it provides the basic infrastructure needed for automated and interactive theorem
proving in general: a small inference kernel based on higher-order unification, theory-
and proof contexts, a document preparation interface, and many more. Isabelle/HOL is
a concrete object logic implemented in Isabelle, namely classical higher-order predicate
logic. Being the most actively developed object logic of Isabelle, it comes with a library of
hundreds of useful mathematical concepts, such as numbers, sets, lists, abstract algebraic
structures, etc., which new formalizations can build upon.

Formalizing a mathematical theory in Isabelle/HOL normally proceeds by definitional
theory extensions: new concepts are defined, properties of these concepts and their rela-
tion to existing concepts are proved, and so on; arbitrary axiomatizations, though possible
in principle, are usually avoided to eliminate the risk of introducing inconsistencies to
the theory. Our formalization goes without any such axiomatizations.

2http://www.isa-afp.org
3http://isabelle.in.tum.de
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2.1. Definitions

New constants can be introduced either via explicit non-recursive definitions or as
recursive functions. A simple example of the former is the following:

definition subset-eq :: α set ⇒ α set ⇒ bool (infix ⊆ 50)

where subset-eq A B ←→ (∀a∈A. a ∈ B)

This definition introduces a new constant, subset-eq, of type α set⇒ α set⇒ bool. That
means, it is a function taking two sets of element-type α as arguments and returning a
boolean value. Greek letters like α always denote type variables; hence, subset-eq is a
polymorphic function that cannot only be applied to sets of a particular element-type,
but to all sets. The type constructors set and bool are built into Isabelle/HOL. The
‘infix’ clause following the type is optional and instructs Isabelle to record the short
infix notation ⊆ for subset-eq. The actual definition of subset-eq comes after the ‘where’
keyword: subset-eq holds for two arguments A and B if, and only if, every element a
of A is also an element of B. Note that free variables in definitions, theorems, etc. are
implicitly universally quantified, and that ∀ and ∈ are built-in constants with the usual
meaning. Therefore, subset-eq is indeed the usual subset relation; of course, it is a built-in
constant of Isabelle/HOL, too.

As can be seen, Isabelle uses Curried notation for denoting function application: in
the definition, subset-eq is applied to A and B by mere juxtaposition, without parenthe-
ses. Parentheses only become necessary in nested function applications, as in f (g x).
What can also be seen in the above definition is that single arrows are used to denote
equivalences and implications: −→ for logical implication, ←→ for equivalence.

Notation 2.1. Within enclosing informal text, we will adopt the standard mathematical
notation for function application when writing Isabelle code. For instance, we shall write
subset-eq(A, B) rather than subset-eq A B, because the latter does not fit very well with
informal text. Furthermore, names of constants will be typeset in sans serif font to
distinguish them from variables, which will be typeset in italics, as usual.

As an example of a recursive definition, consider the following:

function set :: α list ⇒ α set where

set [] = {} |

set (x # xs) = {x} ∪ set xs

This command defines a polymorphic function set which maps lists (built-in type con-
structor list) to the set of their elements, which is achieved by structural recursion on
the shape of the argument: if it is empty, the empty set is returned; otherwise, the list
consists of a head x and a tail xs, in which case set is applied to xs recursively and x
is added to the result. Recursively defined functions must always be shown to termi-
nate, to avoid potential inconsistencies. In some cases, Isabelle can do the termination
proofs itself, whereas in more difficult situations the user has to construct the proofs
interactively.

2.2. Theorems and Proofs

Theorems can be stated using the synonymous ‘lemma’, ‘theorem’ or ‘corollary’ key-
words. For instance, a lemma expressing that the set of elements of the concatenation
of two lists equals the union of the individual sets could be stated as follows:
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lemma set-append: set (xs @ ys) = set xs ∪ set ys

Here, @ is infix syntax denoting the concatenation of lists xs and ys, and recall from
above that the two free variables xs and ys are implicitly universally quantified. So
far, however, the lemma is only an unproved claim as far as Isabelle is concerned, so
we now have to prove it. Proving in Isabelle rests on two pillars: First, an intuitive,
human-readable formal proof language, called Isar, for proving theorems interactively.
That means, the user writes down the individual steps of the proof, and Isabelle checks
whether they are indeed correct. Second, a huge machinery of automatic proof methods
that are able to prove certain goals automatically, saving the user from doing tedious
but more or less simple proofs manually. Existing automation is fairly sophisticated,
incorporating even powerful state-of-art first-order reasoners.

To give a rough idea of how proofs in Isabelle/HOL look like, we show a quite verbose
induction proof of the above lemma; long dashes (−) indicate explanatory comments:

lemma set-append: set (xs @ ys) = set xs ∪ set ys

proof (induction xs)

−Induction base:

show set ([] @ ys) = set [] ∪ set ys by simp

−Prove the goal by simplification w.r.t. the definitions of ‹set› and ‹@›.

next

−Induction step:

fix x xs −Choose fresh ‹x› and ‹xs› arbitrary, but fixed.

assume set (xs @ ys) = set xs ∪ set ys −Assume the induction hypothesis.

then show set ((x # xs) @ ys) = set (x # xs) ∪ set ys by simp

−Prove the goal again by simplification,

but this time also using the induction hypothesis.

qed

Since we will not present any Isabelle-proofs in the remainder of this paper, we do not
say more about proving in Isabelle here.

Finally, please note that more complicated lemmas involving assumptions can be
stated following the ‘fixes’/‘assumes’/‘shows’ pattern, to increase readability:

lemma times-mono-int:

fixes a b c :: int

assumes a ≤ b and 0 ≤ c

shows a * c ≤ b * c

The optional ‘fixes’ clause locally fixes variables and potentially annotates them with
types (here int, the type of integers). The optional ‘assumes’ clause states one or more
assumptions, and the mandatory ‘shows’ clause states the ultimate conclusion.

Notation 2.2. Within enclosing informal text, names of lemmas and theorems will be
typeset in italics, like set-append.

2.3. Frequently Used Functions

We conclude this section by listing built-in concepts we will use later on.

• The usual logical connectives and quantifiers. Syntax in Isabelle/HOL closely re-
sembles ordinary mathematical notation, expect that logical implication is denoted
by −→ and equivalence by ←→.
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• The usual operations from set theory, whose Isabelle-syntax resembles mathemat-
ical notation, too.

• f `A, which denotes the image of set A under function f .

• {0..<n}, which denotes the set {k ∈ N | 0 ≤ k < n} of natural numbers; analo-
gously, [0..<n] denotes the list of natural numbers from 0 up to n.

• set, [] and #, as explained above: set(xs) is the set of elements of list xs, [] is the
empty list, and x # xs is the list whose first element is x and whose tail is xs.

• length(xs), which is the length of list xs.

• xs ! i, which is the i-th element of list xs, starting from 0.

• fst and snd, which project pairs of type α × β onto their first and second entries,
respectively. For instance, fst((a, b)) = a.

Remark 2.1. Throughout the paper we will follow the common convention in papers
about Isabelle of using dashes instead of underscores, for the sake of better readability.
So, subset-eq would in reality be subset_eq in the actual Isabelle sources.

3. Preliminaries

3.1. Mathematical Preliminaries

In this and the subsequent sections we present signature-based Gröbner basis algo-
rithms and their formalization in Isabelle/HOL. Notation is mainly borrowed from Eder and Faugère
(2017), with some small adjustments here and there to resemble the notation we use in
the formalization. In fact, since the formalization itself closely follows Sections 4–7
of Eder and Faugère (2017), most of the mathematical details omitted in this exposition
for the sake of brevity can be found there instead. The informal proofs that served as the
templates for our formal development were exclusively taken from the above-mentioned
article and from Roune and Stillman (2012) and Eder and Roune (2013).

In the remainder of this paper let K be a field and let R = K[x1, . . . , xn] be the
n-variate polynomial ring over K. Every polynomial p ∈ R can be written as a K-linear
combination of power-products, where a power-product is a product of the indetermi-
nates x1, . . . , xn, e. g. x2

1 x2 x4
3. We will write [X ] for the commutative monoid of power-

products in x1, . . . , xn and typically denote power-products by the typed variables s and
t, unless stated otherwise.

Now, fix a finite sequence F = (f1, . . . , fm) of polynomials in R; these polynomials
play the role of the set we want to compute a Gröbner basis of. The sequence F gives rise
to a module-homomorphism · : Rm → R by setting ei := fi for 1 ≤ i ≤ m and canonical
basis vectors ei of the free module Rm. A module element a ∈ Rm is called a syzygy
of F if a = 0. Note that Rm can be viewed as a K-vector space, meaning that every
a ∈ Rm can be written as a K-linear combination of terms, where a term is a product of
the form t ei for some power-product t and some 1 ≤ i ≤ m. We will write T for the set
of terms and typically denote terms by the typed variables u and v. For a term v = t ei,
t is called the power-product of v and i is called the component of v.
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For a polynomial p ∈ R, supp(p) is the support of p, which the set of all power-
products appearing in p with non-zero coefficient. Likewise, supp(a) for a ∈ R

m is the
set of all terms appearing in a with non-zero coefficient. coeff(p, t) denotes the coefficient
of power-product t in p ∈ R, and analogous for coeff(a, u) with u ∈ T and a ∈ Rm.

Finally we must also fix an admissible order relation � on [X ] and some compatible
extension �t to a term order on T. Admissible has the usual meaning of 1 � t and s1 �
s2 ⇒ t s1 � t s2 for all s1, s2, t ∈ [X ]. Compatible just means that s � t⇒ s ei �t t ei for
all s, t ∈ [X ] and 1 ≤ i ≤ m. The most important extension of � to a term order is the
position over term (POT) extension, denoted by �pot and defined as

s ei �pot t ej :⇔ i < j ∨ (i = j ∧ s � t).

Every p ∈ R has a leading power-product lp(p) and a leading coefficient lc(p): if
p 6= 0, the leading power-product of p is the largest power-product w. r. t. � appearing in
supp(p), and the leading coefficient is its coefficient; lp(0) is left undefined and lc(0) := 0.
Likewise, every module element a ∈ Rm has a leading term s(a) and a leading coefficient
lc(a), defined completely analogously w. r. t. �t. The reason why the leading term of a
is denoted by s(a) rather than lt(a) becomes clear in the following definition:

Definition 3.1 (Signature). Let a ∈ Rm. The signature of a is the leading term s(a)
of a.

Therefore, the all-important signature of a module element a ∈ Rm is nothing else but
the leading term of a. In the remainder, we will exclusively use the word ‘signature’
instead of ‘leading term’. Note that in contrast to Eder and Faugère (2017), in our case
the signature only consists of a term without coefficient.

Summarizing, every a ∈ R
m has two important values associated to it: its signature

s(a) ∈ T and the polynomial a ∈ R.

3.2. Isabelle/HOL

For our formal development of signature-based Gröbner basis algorithms we did not
have to start completely from scratch, but could build upon on existing extensive for-
malizations of multivariate polynomials and Gröbner bases. Here, we will explain the
most important aspects of these formalizations that are relevant for signature-based al-
gorithms; the interested reader is referred to Maletzky and Immler (2018a,b) for more
details. The formalizations are freely available as separate entries in the Archive of
Formal Proofs (Sternagel et al. (2010); Immler and Maletzky (2016)).

In Isabelle/HOL, multivariate polynomials are represented as so-called polynomial
mappings, which are functions from some type α to another type β such that all but
finitely many values are mapped to 0. The meaning of such a mapping is clear: α plays
the role of the power-products or terms, and β plays the role of the coefficient-ring; the
value a power-product or term is mapped to is its coefficient in the polynomial. The
type of polynomial mappings from α to β is denoted by α⇒0 β. Note that polynomial
mappings are sometimes also referred to as finitely supported functions.

Terms are simply represented as pairs consisting of a power-product and a component
of type nat, the type of natural numbers; hence, if α is the type of power-products, then
the type of terms is α× nat. Note that because of nat being infinite, the components of
terms can become arbitrarily large; this point deserves a bit more attention, which will
be paid below. Before, we summarize what we have so far:
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• Here and henceforth, α will always denote the type of power-products. How exactly
power-products are represented is not important, since they essentially only have
to form a cancellative commutative monoid and a lattice w. r. t. divisibility. For
more details see Maletzky and Immler (2018b).

• Type τ will abbreviate the type of terms, i. e., the type α× nat. In the actual for-
malization, τ only needs to be isomorphic to α×nat, but this is a mere technicality
without any further implications.

• Type β plays the role of K, the coefficient field.

• The polynomial ring R hence corresponds to the type α⇒0 β, and the module R
m

to τ ⇒0 β.

Example 3.1. Let p = 3x2 − 2xy + y3 − 4 ∈ K[x, y]. Then p corresponds to an object
of type α ⇒0 β which maps x2 7→ 3, xy 7→ −2, y3 7→ 1, 1 7→ −4, and all other power-
products t 7→ 0. As indicated above, how the individual power-products are represented
is not important here.

Likewise, let

a =

(

2xy2 − 3
x3 + y3

)

∈ K[x, y]2.

Then a corresponds to an object of type τ ⇒0 β which maps (xy2, 0) 7→ 2, (1, 0) 7→ −3,
(x3, 1) 7→ 1, (y3, 1) 7→ 1, and all other terms u 7→ 0. Note in particular that the first
component is indexed by 0, the second by 1, etc.

One may now ask the following legitimate question:

How can Rm be represented by τ ⇒0 β, if Rm has dimension m (and therefore
all terms appearing in its elements have components ≤ m), but τ allows for
arbitrarily large components?

Indeed, strictly speaking Rm and τ ⇒0 β are not isomorphic. However, we can cir-
cumvent the problem of components of terms being greater than m (or, in fact m − 1,
since the first component is indexed by 0) by explicitly putting certain constraints on all
module elements of type τ ⇒0 β appearing anywhere in the formal development. More
precisely, we define the set sig-inv-set(m), parameterized over the natural number m, of
all module elements whose terms have components in the range [0, . . . , m− 1]. Then, we
constrain all theorems where it is necessary by the additional condition that all module
elements a occurring in the theorem belong to sig-inv-set(m).

Of course, m is not just an arbitrary natural number, but it is the length of the
implicitly fixed sequence F = (f1, . . . , fm) of polynomials. So, in the formalization we
also fix a sequence, or more precisely a list, fs in the implicit theory context:

context fixes fs :: (α⇒0 β) list

This instruction ensures that all subsequent definitions, theorems, algorithms, etc. are
implicitly parameterized over the list fs. Consequently, we can define the set Rm of all
‘valid’ module elements:

definition Rm :: (τ ⇒0 β) set

where Rm = sig-inv-set (length fs)

8



Hence, Rm is the set of module elements whose terms have components in the range
[0, . . . , length(fs)− 1], and as such precisely corresponds to R

m.

Remark 3.1. In a dependently-typed system like Coq (Bertot and Castéran (2004)),
Rm could be turned into a type, meaning that the additional assumptions a ∈ Rm of
theorems could be encoded implicitly in the type of a. Isabelle/HOL is only simply-typed,
so this approach does not work in our case.

Remark 3.2. The definition of Rm shown above is not exactly the one of the formaliza-
tion. Namely, analogous to components, we also have to take care that all indeterminates
appearing in module elements also appear in fs; similar as for the components, this can-
not be encoded (easily) in the type α. The details are technical and omitted here for the
sake of simplicity.

Having fs fixed in the context, we next formalize the module-homomorphism ·, called
poly in the formal theory, and prove its characteristic properties. We omit its slightly
technical definition here.

lemma poly-zero: poly 0 = 0

lemma poly-plus: poly (a + b) = poly a + poly b

lemma poly-mult-scalar: poly (p ⊙ a) = p * poly a

Here one should note that poly is defined in such a way that these identities hold un-
conditionally, even if a, b /∈ Rm. The expression p ⊙ a denotes scalar multiplication of
the module element a by the polynomial p. Two further important lemmas about poly
describe its relationship to the ideal generated by the elements of fs:

lemma poly-in-ideal: poly a ∈ ideal (set fs)

lemma in-idealE-poly-Rm:

assumes p ∈ ideal (set fs)

shows ∃a∈Rm. p = poly a

The first lemma obviously expresses that poly(a) is always an element of the ideal gener-
ated by the elements of fs, whereas the second lemma states the converse: every element
p of the ideal can be written as p = poly(a) for some a ∈ Rm; a being an element of Rm
is of particular importance here. The expression ideal(B), taken from Sternagel et al.
(2010), denotes the ideal generated by the set B.

The only things that are still missing from Section 3.1 are the order relations �
and �t, and the various concepts they induce (leading power-product etc.); they are, in
fact, contained in Sternagel et al. (2010) as well. Similar to fs, the remaining formal
development shall be parameterized over these orderings, so a locale is employed to fix
them implicitly:

locale qpm-inf-term =

ordered-powerprod ord +

linorder ord-term

for ord :: α ⇒ α ⇒ bool (infixl � 50)

and ord-term :: τ ⇒ τ ⇒ bool (infixl �t 50) +

assumes stimes-mono: u �t v −→ t ⊗ u �t t ⊗ v

assumes ord-termI: fst u � fst v −→ snd u ≤ snd v −→ u �t v

9



Locales are a sophisticated mechanism for structuring Isabelle-theories into sub-theories
that can later be combined in a convenient and efficient way. Before, when fixing fs,
a simple context-statement was sufficient, but here we really need the capabilities of a
full-fledged locale. For more information on locales see Ballarin (2010).

Locale qpm-inf-term fixes the two relations � and �t, and assumes that � is an
admissible order on type α (the power-products) and that �t is a linear order on type
τ (the terms). Furthermore, it assumes the two properties stimes-mono and ord-termI.
Property stimes-mono expresses that �t is monotonic w. r. t. ⊗, where t⊗ u denotes the
term obtained from u by multiplying its power-product by t. Property ord-termI states
that if the power-product and the component of u are not greater than their respective
counterparts of v, then u �t v. Note that fst(u) gives the first entry of term u, i. e. its
power-product, and snd(u) gives the second entry of u, i. e. its component.

All subsequent definitions, theorems, etc. will be stated in the context of this locale,
meaning that they are implicitly parameterized over � and �t (just as they are param-
eterized over fs), and that furthermore all theorems are implicitly constrained by the
two additional assumptions stimes-mono and ord-termI. Leading power-products, lead-
ing terms and signatures of polynomials and module elements can be defined readily in
this setup.

We conclude this section by pointing the reader to Appendix A, containing a glossary
for translating between mathematical notions and notations occurring in this paper, and
their counterparts in the formalization.

Remark 3.3. In the actual Isabelle sources, power-products are written additively rather
than multiplicatively, for technical reasons. So, 0 is used instead of 1, + instead of ·, and
⊕ instead of ⊗. In this paper we decided to stick to the standard multiplicative writing
for the sake of uniformity.

4. Signature Reduction and Signature Gröbner Bases

Let us now turn to the key concept in the theory of Gröbner bases: polynomial
reduction. In the ‘traditional’, non-signature approach the reduction relation is a binary
relation on polynomials, parameterized over a set of polynomials. In the signature-based
world, it becomes a binary relation on module elements, i. e. on Rm, defined as follows:

Definition 4.1 (s-Reduction). Let a, b ∈ Rm and G ⊆ Rm. The module element a
s-reduces to b modulo G if, and only if, there exist g ∈ G and t ∈ [X ] such that

1. g 6= 0,

2. t lp(g) ∈ supp(a),

3. b = a− t g, and

4. t s(g) �t s(a), which is equivalent to s(b) �t s(a).

So, if a s-reduces to b modulo G, it simply means that a reduces to b modulo G in
the usual sense of polynomial reduction,4 and that furthermore the signature of b is

4G, of course, denotes the image of G under the homomorphism ·.
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not greater than that of a. In short, s-reduction is like polynomial reduction with the
additional requirement that signatures do not grow.

s-reduction comes in different flavors, depending on whether t lp(g) in Definition 4.1
equals lp(a) or not, and whether in the last condition of that definition we have t s(g) =
s(a) or t s(g) ≺t s(a). If t lp(g) = lp(a), we shall say that the s-reduction is a top s-
reduction; otherwise, if t lp(g) ≺ lp(a), we call it a tail s-reduction.5 If t s(g) = s(a) the
s-reduction is a singular s-reduction, whereas if t s(g) ≺t s(a) it is a regular s-reduction.
It is easy to see that in a regular s-reduction we always have s(b) = s(a).

Notation 4.1. Let r1 ∈ {�t,≺t, =} and r2 ∈ {�,≺, =}. We will use the following nota-

tion: a
r1,r2

−→G b means that a s-reduces to b modulo G, and that additionally t s(g) r1 s(a)

and t lp(g) r2 lp(a) hold, where t, g are as in Definition 4.1. As usual,
r1,r2

−→
∗

G denotes the

reflexive-transitive closure of
r1,r2

−→G. So,
�,�t
−→G stands for general s-reduction,

≺t,=
−→G for

regular top s-reduction, and so on. To ease notation, we will simply write −→G instead

of
�t,�
−→G.

What has been said above about the relationship between s(b) and s(a) if b s-reduces
to a is of course also true for the reflexive-transitive closure of s-reduction. In particular,

if a
≺t,r2

−→
∗

G b, i. e. a regular s-reduces to b in several steps, then s(b) = s(a). This trivial
observation will play a crucial role later on.

The definition of s-reduction in the formalization closely follows Definition 4.1, but
in addition also incorporates Notation 4.1:

definition sig-red-single :: (τ ⇒ τ ⇒ bool) ⇒ (α ⇒ α ⇒ bool) ⇒

(τ ⇒0 β) ⇒ (τ ⇒0 β) ⇒ (τ ⇒0 β) ⇒ α ⇒ bool

where sig-red-single r1 r2 a b g t ←→

(poly g 6= 0 ∧ coeff (poly a) (t * lp (poly g)) 6= 0 ∧

b = a - monom-mult ((coeff (poly a) (t * lp (poly g))) / lc (poly g)) t g ∧

r1 (t ⊗ s g) (s a) ∧ r2 (t * lp (poly g)) (lp (poly a)))

definition sig-red :: (τ ⇒ τ ⇒ bool) ⇒ (α ⇒ α ⇒ bool) ⇒

(τ ⇒0 β) set ⇒ (τ ⇒0 β) ⇒ (τ ⇒0 β) ⇒ bool

where sig-red r1 r2 G a b ←→ (∃g∈G. ∃t. sig-red-single r1 r2 a b g t)

definition is-sig-red :: (τ ⇒ τ ⇒ bool) ⇒ (α ⇒ α ⇒ bool) ⇒

(τ ⇒0 β) set ⇒ (τ ⇒0 β) ⇒ bool

where is-sig-red r1 r2 G a ←→ (∃b. sig-red r1 r2 G a b)

So, sig-red-single(r1, r2, a, b, g, t) expresses that a s-reduces to b modulo the singleton
{g} using the given power-product t as the multiplier. Note that monom-mult(c, t, a)
is multiplication of a by the coefficient c and power-product t. The two relations r1

and r2 have exactly the same meaning as in Notation 4.1, i. e., they specify whether
the s-reduction is singular/regular/arbitrary and top/tail/arbitrary, respectively. The

expression sig-red(r1, r2, G, a, b) precisely corresponds to a
r1,r2

−→G b; the reflexive-transitive
closure of s-reduction is thus given by sig-red(r1, r2, G)∗∗, using Isabelle/HOL’s built-in
notation r∗∗ for denoting the reflexive-transitive closre of an arbitrary binary relation r.
Finally, is-sig-red is an auxiliary notion expressing s-reducibility.

5Obviously lp(a) ≺ t lp(g) is not possible, since t lp(g) ∈ supp(a).
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Since traditional polynomial reduction is known to be Noetherian, and s-reduction in
some sense ‘refines’ polynomial reduction, we can immediately infer that s-reduction is
Noetherian, too:

Lemma 4.1. For all G ⊆ Rm,
r1,r2

−→G is Noetherian, that is, there are no infinite chains

a1
r1,r2

−→G a2
r1,r2

−→G . . ..

This lemma can be translated easily into Isabelle/HOL, employing the built-in predi-
cate wfP for expressing well-foundedness of the converse of s-reduction (denoted by −−):

lemma sig-red-wf-Rm:

assumes G ⊆ Rm

shows wfP (sig-red r1 r2 G)
−−

Proving this lemma is a matter of only a couple of lines, thanks to the fact that
Immler and Maletzky (2016) already proved Noetherianity of traditional polynomial re-
duction in Isabelle/HOL. The assumption of G being a subset of Rm is necessary because
of the observations made in Section 3.2.

Before we define signature Gröbner bases, we introduce an auxiliary notion:

Definition 4.2. We say that a s-reduces to zero modulo G if, and only if, there exists

b such that a
�t,�
−→

∗

G b and b = 0, i. e., b is a syzygy. Just as for s-reduction, we will

also use the phrases singular and regular s-reduction to zero, if a
=,�
−→

∗

G b or a
≺t,�
−→

∗

G b,
respectively.

Note that even though we use the word ‘zero’ in Definition 4.2 it does not mean that b it-
self has to be 0, only that it must be a syzygy. This terminology is taken from Eder and Faugère
(2017).

In the non-signature world, a Gröbner basis is a set G ⊆ R such that every p ∈ 〈G〉 can
be reduced to 0 modulo G. This definition can be translated readily into the signature-
based setting:

Definition 4.3 (Signature Gröbner Basis). Let u be a term. A set G ⊆ Rm is a
signature Gröbner basis in u if, and only if, every a ∈ Rm with s(a) = u s-reduces to
zero modulo G.

The set G is a signature Gröbner basis up to u if it is a signature Gröbner basis in
all v ≺t u. If G is a signature Gröbner basis in all terms, we simply call it a signature
Gröbner basis.

Translating Definitions 4.2 and 4.3 into Isabelle/HOL is again immediate; the only real
differences are some Rm conditions, as usual:

definition sig-red-zero :: (τ ⇒ τ ⇒ bool) ⇒ (τ ⇒0 β) set ⇒ (τ ⇒0 β) ⇒ bool

where sig-red-zero r1 G a ←→ (∃b. (sig-red r1 (�) G)
∗∗

a b ∧ poly b = 0)

definition is-sig-GB-in :: (τ ⇒0 β) set ⇒ τ ⇒ bool

where is-sig-GB-in G u ←→

(∀a. s a = u −→ a ∈ Rm −→ sig-red-zero (�t) G a)

definition is-sig-GB_upt :: (τ ⇒0 β) set ⇒ τ ⇒ bool

where is-sig-GB-upt G u ←→

(G ⊆ Rm ∧ (∀v. v ≺t u −→ snd v < length fs −→ is-sig-GB-in G v))

12



Please note that sig-red-zero is only parameterized over the relation r1 for signatures,
but not over r2 for leading power-products: there is no need to distinguish between
top/tail/arbitrary s-reductions to zero.

The connection between signature Gröbner bases and ordinary non-signature Gröbner
bases follows immediately from the definition of s-reduction:

Proposition 4.1. Let G ⊆ R
m be a signature Gröbner basis. Then G is a Gröbner basis

of 〈f1, . . . , fm〉.

Signature-based Gröbner basis algorithms, such as F5, compute rewrite bases, which
are a subclass of signature Gröbner bases (see Section 5). Proposition 4.1 tells us that
from a signature Gröbner basis one can easily obtain a Gröbner basis of the ideal
〈f1, . . . , fm〉 under consideration by applying the module-homomorphism · to all ele-
ments.

The formalization of Proposition 4.1 looks as follows, where is-Groebner-basis is defined
in Immler and Maletzky (2016):

lemma is-sig-GB-is-Groebner-basis:

assumes G ⊆ Rm and ∀u.is-sig-GB-in G u

shows is-Groebner-basis (poly ` G)

The next result about signature Gröbner bases will prove very useful later on, for in-
stance in Lemma 4.3. Readers interested in its proof are referred to Lemma 3 in Roune and Stillman
(2012).

Lemma 4.2. Let a, b ∈ Rm\{0}, let G be a signature Gröbner basis up to s(a), and
assume s(a) = s(b) and lc(a) = lc(b).

1. If both a and b are regular top s-irreducible modulo G, then lp(a) = lp(b) and
lc(a) = lc(b).

2. If both a and b are regular s-irreducible modulo G, then a = b.

In the formalization this lemma is split into two lemmas:

lemma sig-regular-top-reduced-lp-lc-unique:

assumes is-sig-GB-upt G (s a) and a ∈ Rm and b ∈ Rm

and s a = s b and lc a = lc b

and ¬ is-sig-red (≺t) (=) G a and ¬ is-sig-red (≺t) (=) G b

shows lp (poly a) = lp (poly b) and lc (poly a) = lc (poly b)

lemma sig-regular-reduced-unique:

assumes is-sig-GB-upt G (s a) and a ∈ Rm and b ∈ Rm

and s a = s b and lc a = lc b

and ¬ is-sig-red (≺t) (�) G a and ¬ is-sig-red (≺t) (�) G b

shows poly a = poly b

We conclude this section by introducing the concept of a syzygy signature and proving
an important lemma about it:

Definition 4.4 (Syzygy Signature). A term u is called a syzygy signature if there
exists a ∈ Rm\{0} with s(a) = u and a = 0.
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Syzygy signatures play a key role for detecting useless zero-reductions when computing
signature Gröbner bases. Namely, by virtue of Lemma 4.2, we obtain the following result
whose importance will become clear in Section 5:

Lemma 4.3 (Syzygy Criterion). Let a ∈ Rm and let G be a signature Gröbner basis up
to s(a). If s(a) is a syzygy signature, then a regular s-reduces to zero modulo G.

Moreover, if u is a syzygy signature and u | v,6 then v is a syzygy signature, too.

Definition 4.4 and Lemma 4.3 naturally translate into Isabelle/HOL:

definition is-syz-sig :: τ ⇒ bool

where is-syz-sig u ←→ (∃a∈Rm. a 6= 0 ∧ s a = u ∧ poly a = 0)

lemma syzygy-crit:

assumes is-sig-GB-upt G (s a) and is-syz-sig G (s a) and a ∈ Rm

shows sig-red-zero (≺t) G a

lemma is-syz-sig-dvd:

assumes is-syz-sig u and u dvdt v

shows is-syz-sig v

5. Rewrite Bases and S-Pairs

Besides signature Gröbner bases, we need another class of sets G ⊆ Rm of module
elements, called rewrite bases. Rewrite bases play a crucial role for computing signature
Gröbner bases, as will be seen in Section 6. Before, however, we must introduce some
auxiliary concepts: sig-poly-pairs, rewrite orders and canonical rewriters.

Definition 5.1 (Sig-Poly-Pair). A sig-poly-pair is a pair (u, p) ∈ T × R such that
there exists a ∈ R

m\{0} with s(a) = u and a = p.

Our definition of rewrite orders is slightly more technical than the one given in the
literature. The reason for this deviation is that there, rewrite orders are defined for
module elements rather than sig-poly-pairs. We found it more reasonable to define
rewrite orders on sig-poly-pairs, because in any case the only information concrete rewrite
orders may take into account for deciding which of the two arguments is greater are the
signatures and the polynomial parts of the arguments.

Definition 5.2 (Rewrite Order). A binary relation E on sig-poly-pairs is called a
rewrite order if, and only if, it is a reflexive, transitive and linear relation, additionally
satisfying

1. (u, p) E (v, q) ∧ (v, q) E (u, p) =⇒ u = v for all sig-poly-pairs (u, p) and (v, q), and

2. a ∈ G\{0} ∧ b ∈ G\{0} ∧ s(a) | s(b) =⇒ (s(a), a) E (s(b), b) for all a, b, G such that
G is a signature Gröbner basis up to s(b) and b is regular top s-irreducible modulo
G.

6u | v, for two terms u and v, means that there exists t ∈ [X] with v = t u.

14



The last condition essentially expresses that E shall refine the divisibility relation on
signatures—but only under some technical assumptions which are necessary for proving
that Erat (Definition 5.3) is indeed a rewrite order.

To get some intuition about rewrite orders, we present the two ‘standard’ rewrite
orders that can be found in the literature:

Definition 5.3 (Erat, Eadd). The relation Erat is defined as

(u, p) Erat (v, q) :⇔ lp(q) u ≺t lp(p) v ∨ (lp(q) u = lp(p) v ∧ u �t v).

The relation Eadd is defined as

(u, p) Eadd (v, q) :⇔ u �t v.

As explained in Remark 7.3 in Eder and Faugère (2017), the suffix ‘rat’ of Erat originates
from an alternative presentation of this relation, in which the ratios u

lp(p) and v
lp(q) are

compared.
Above we claimed that Erat and Eadd are rewrite orders. The proof for Eadd is fairly

straightforward, but the proof of the last requirement of rewrite orders is a bit more
involved for Erat; one essentially has to make use of Lemma 4.2 again.

The definition of rewrite orders in the formalization closely resembles Definition 5.2;
only note that spp-of(a) is a mere abbreviation for (s(a), poly(a)):

definition is-rewrite-ord :: ((τ × (α⇒0 β)) ⇒ (τ × (α⇒0 β)) ⇒ bool) ⇒ bool

where is-rewrite-ord ord ←→

(reflp ord ∧ transp ord ∧ (∀a b. ord a b ∨ ord b a) ∧

(∀a b. ord a b −→ ord b a −→ fst a = fst b) ∧

(∀G a b. is-sig-GB-upt G (s b) −→ a ∈ G −→ b ∈ G −→

a 6= 0 −→ b 6= 0 −→ s a dvdt s b −→

¬ is-sig-red (≺t) (=) G b −→ ord (spp-of a) (spp-of b)))

Since there is nothing special about the formal definitions of Erat and Eadd compared to
the informal ones, we omit them here.

Just as we have implicitly fixed � and �t, let us now also fix an arbitrary rewrite
order E. The last prerequisite we need before we can define rewrite bases are canonical
rewriters:

Definition 5.4 (Canonical Rewriter). Let G ⊆ Rm, a ∈ Rm and u ∈ T. The module
element a is called a canonical rewriter in signature u w. r. t. G if, and only if, a ∈ G\{0},
s(a) |u, and a is maximal w. r. t. E with these properties.7

Definition 5.5 (Rewrite Basis). Let G ⊆ R
m and u ∈ T. The set G is said to be

a rewrite basis in u if, and only if, u is a syzygy signature or there exists a canonical
rewriter g in signature u w. r. t. G such that u

s(g) g is regular top s-irreducible modulo G.8

Furthermore, G is a rewrite basis up to u if it is a rewrite basis in all v ≺t u. If G is
a rewrite basis in all terms, we simply call it a rewrite basis.

7By abuse of notation we also compare module elements in Rm w. r. t. E, in the sense that a E b ⇔
(s(a), a) E (s(b), b).

8For two terms u, v with u | v, u

v
denotes the unique t ∈ [X] with v = t u.
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The definitions of canonical rewriters and rewrite bases translate naturally into in
Isabelle/HOL; note in particular the parallels between the definitions of is-sig-GB-upt
and is-RB-upt:

definition is-canon-rewriter :: (τ ⇒0 β) set ⇒ τ ⇒ (τ ⇒0 β) ⇒ bool

where is-canon-rewriter G u a ←→

(a ∈ G ∧ a 6= 0 ∧ s a dvdt u ∧

(∀g∈G. g 6= 0 −→ s g dvdt u −→ spp-of g E spp-of a)))

definition is-RB-in :: (τ ⇒0 β) set ⇒ τ ⇒ bool

where is-RB-in G u ←→

(is-syz-sig u ∨

(∃g. is-canon-rewriter G u g ∧

¬ is-sig-red (≺t) (=) G (monom-mult 1 (u / s g) g)))

definition is-RB-upt :: (τ ⇒0 β) set ⇒ τ ⇒ bool

where is-RB-upt G u ←→

(G ⊆ Rm ∧ (∀v. v ≺t u −→ snd v < length fs −→ is-RB-in G v))

Now that we know what rewrite bases are it is time to establish the connection
between rewrite bases and signature Gröbner bases, and hence to traditional Gröbner
bases by virtue of Proposition 4.1. For an informal proof of the following proposition,
see Lemma 8 in Eder and Roune (2013):

Proposition 5.1. If G is a rewrite basis up to u, it is also a signature Gröbner basis up
to u.

We omit the obvious translation of this proposition into Isabelle/HOL. Summarizing,
Propositions 4.1 and 5.1 justify computing a rewrite basis in order to find a traditional
Gröbner basis of 〈f1, . . . , fm〉. Therefore, we now need a means for actually computing
rewrite bases—and it turns out that the key to an effective algorithm lies in a concept
well-known from traditional Gröbner bases theory:

Definition 5.6 (S-Pair). Let a, b ∈ Rm, and let t = lcm(lp(a), lp(b)). Then the S-pair
of a and b, written spair(a, b), is defined as

spair(a, b) :=
t

lc(a)lp(a)
a−

t

lc(b)lp(b)
b.

Furthermore, a and b are said to give rise to a regular S-pair if, and only if, a, b 6= 0 and
t

lp(a)s(a) 6= t

lp(b)
s(b); otherwise they give rise to a singular S-pair.

So, S-pairs correspond precisely to S-polynomials, but ‘lifted’ from R to Rm: indeed,
spair(a, b) ∈ Rm, and it is easy to see that spair(a, b) = spoly(a, b), where spoly(p, q) is
the usual S-polynomial of p and q.

The distinction between singular and regular S-pairs is important, because in The-
orem 5.1 below we will show that only regular S-pairs are of interest. If a and b give
rise to a regular S-pair, we have s(spair(a, b)) = max( t

lp(a)s(a), t

lp(b)
s(b)), where t is as in

Definition 5.6.
The definitions of S-pairs and regular S-pairs in the formalization look as follows:
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definition spair :: (τ ⇒0 β) ⇒ (τ ⇒0 β) ⇒ (τ ⇒0 β)
where spair a b = (let t1 = lp (poly a); t2 = lp (poly b); t = lcm t1 t2 in

(monom-mult (1 / lc (poly a)) (t / t1) a) -

(monom-mult (1 / lc (poly b)) (t / t2) b))

definition is-regular-spair :: (τ ⇒0 β) ⇒ (τ ⇒0 β) ⇒ bool

where is-regular-spair a b ←→

(poly a 6= 0 ∧ poly b 6= 0 ∧

(let t1 = lp (poly a); t2 = lp (poly b); t = lcm t1 t2 in

(t / t1) ⊗ s a 6= (t / t2) ⊗ s b))

Now we are ready to state the central theorem in this section, which links rewrite bases
to regular S-pairs just as Buchberger’s theorem links Gröbner bases to S-polynomials:

Theorem 5.1. Let G ⊆ Rm be finite and u ∈ T, assume that no two elements of G
have the same signatures, and moreover assume that G is a rewrite basis in all s(a) ≺t u,
where a is either a regular S-pair of elements of G or a = ei (1 ≤ i ≤ m). Then G is a
rewrite basis up to u.

For a proof of this theorem see Lemma 10 in Eder and Roune (2013). The formal
statement of the theorem in Isabelle/HOL is as follows:

lemma is-RB-upt-finite:

assumes G ⊆ Rm and inj-on s G and finite G

and ∀g1∈G.∀g2∈G. is-regular-spair g1 g2 −→ s (spair g1 g2) ≺t u −→

is-RB-in G (s (spair g1 g2))

and ∀i. i < length fs −→ (1, i) ≺t u −→ is-RB-in G (1, i)

shows is-RB-upt G u

The second assumption of is-RB-upt-finite merely expresses that the function s is injective
on G, that is, no two elements of G have the same signatures.

Theorem 5.1 gives us some idea how to decide whether a given finite set G is a
rewrite basis up to u: it suffices to check the finitely many signatures of regular S-
pairs and canonical basis vectors. Note, however, that there is still an issue related to
syzygy signatures: the definition of rewrite bases involves syzygy signatures, and deciding
whether a given u is a syzygy signature is a difficult problem—actually, as difficult as
computing a Gröbner basis of the module of syzygies. Luckily, Theorem 5.1 does not
only suggest a method for (semi-)deciding whether a given set is a rewrite basis, but it
also gives rise to an algorithm for computing rewrite bases which does not suffer from
the problem with syzygy signatures just outlined. This algorithm is the subject of the
next section.

6. Algorithms

As claimed above, Theorem 5.1 gives rise to an algorithm for computing rewrite
bases, and in fact that algorithm bears close resemblance to Buchberger’s algorithm for
computing Gröbner bases: it is a critical-pair/completion algorithm that successively
iterates through all S-pairs, applies a criterion for testing whether the S-pair under
consideration must be reduced, s-reduces it to some normal form if necessary, and adds
the result to the basis computed so far unless it be zero. Algorithm 1 summarizes the
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Algorithm 1 An algorithm for computing rewrite bases.

Input: sequence (f1, . . . , fm) of polynomials in R, admissible order � on [X ], compatible
extension �t on T, rewrite order E

Output: rewrite basis G
1: function RB((f1, . . . , fm),�,�t,E)
2: G ← ∅
3: S ← {s(fj ei − fi ej) | 1 ≤ i < j ≤ m}
4: P ← {ei | 1 ≤ i ≤ m}
5: while P 6= ∅ do
6: a ← some element of P with �t-minimal signature
7: P ← P\{a}
8: if a = ei for some i then
9: S ← S ∪ {s(fi g − g ei) | g ∈ G}

10: if ¬sigCrit(E, G, S, a) then
11: b ← result of regular s-reducing a modulo G
12: if b = 0 then
13: S ← S ∪ {s(b)}
14: else
15: G ← G ∪ {b}
16: P ← P ∪ {spair(g, b) | g ∈ G, spair(g, b) is regular}

17: return G

method just sketched in an imperative programming style; it is a slight variation of
Algorithm 3 in Eder and Faugère (2017).

Several remarks on Algorithm 1 are in place:

• The accumulator G holds the basis computed so far, and P is the set of elements
that still have to be considered. It does not only contain regular S-pairs, but also
the m canonical basis vectors corresponding to the input-sequence (f1, . . . , fm).
This justifies initializing G by the empty set.

• The set S contains the signatures of some known syzygies. It is initialized by the
signatures of the Koszul syzygies of the input sequence, and successively enlarged
in Lines 9 and 13. These syzygy-signatures are used to apply the syzygy criterion
(Lemma 4.3) in function sigCrit, see Algorithm 2 below.

• It is important to note that in Line 6 of Algorithm 1, an element a with minimal
signature is taken from P . This is crucial for the correctness of the algorithm, since
a different choice could lead to wrong results.

• Also note that s(b) = s(a), since b is the result of regular s-reducing a, and regular
s-reductions do not change signatures. This, together with the particular choice of
a, implies that G is computed by increasing signatures, i. e., the signatures of the
elements b added to G in Line 15 are increasing.

Ignoring the sigCrit-test in Line 10 of Algorithm 1 for the moment, the algorithm is
partially correct. This follows from the fact that either b = 0, in which case s(b) = s(a)
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is a syzygy signature, or b is added to G, in which case it becomes the canonical rewriter
in s(b) = s(a) (this follows from the definition of rewrite orders) and is by construction
regular top s-irreducible. Therefore, in either case the potentially enlarged set G is a
rewrite basis in s(a) by Definition 5.5, and upon termination of the algorithm, it is a
rewrite basis in all terms u thanks to Theorem 5.1.

The auxiliary function sigCrit, which is implemented in Algorithm 2, tests whether
an S-pair spair(a, b) has to be s-reduced in Algorithm 1. In a nutshell, it applies
Lemma 4.3, the syzygy criterion, and moreover checks whether the constituents of the
S-pair are canonical rewriters in certain terms ua and ub; if not, the S-pair does not
have to be reduced, because either the canonical rewriters in these respective terms
have been treated already, or will still be treated later on, and in either case there is
nothing to be done for spair(a, b). There is one subtle point, though: Knowing that
spair(a, b) is regular, one of ua or ub is strictly greater than the other by definition, and
s(spair(a, b)) = max(ua, ub). W. l. o. g. assume ub ≺t ua. So, by what has been said
above, it should be clear that sigCrit is allowed to do the checks on ua = s(spair(a, b))
in Line 5 of Algorithm 2, but it is perhaps not clear why the same checks may also be
performed on the smaller term ub that does not contribute to s(spair(a, b)) at all. Indeed,
answering this question is slightly intricate, and we confine ourselves here to pointing the
interested reader to Lemma 12 in Eder and Roune (2013) for an explanation.

Algorithm 2 An algorithm for testing whether S-pairs must be regular s-reduced.

Input: rewrite order E, G ⊆ Rm, S ⊆ T, regular spair(a, b) with a, b ∈ G
Output: ‘False’ if spair(a, b) has to be regular s-reduced in Algorithm 1

1: function sigCrit(E, G, S, spair(a, b))
2: t ← lcm(lp(a), lp(b))
3: ua ←

t
lp(a)s(a)

4: ub ←
t

lp(b)
s(b)

5: if (∃s ∈ S. s |ua) ∨ (a is not canonical rewriter in ua w. r. t. G) then
6: return True
7: if (∃s ∈ S. s |ub) ∨ (b is not canonical rewriter in ub w. r. t. G) then
8: return True
9: return False

We hope we could convince the reader about the partial correctness of Algorithms 1
and 2 now; if not, a more thorough account on the whole subject can, as usual, be
found in Eder and Faugère (2017). However, the algorithm is not only partially correct,
but also terminates for every input; this claim will be investigated in Section 6.1. We
summarize the result in a theorem:

Theorem 6.1 (Correctness of Algorithm 1). For every input, Algorithm 1 terminates
and returns a rewrite basis G w. r. t. (f1, . . . , fm), �, �t and E. Furthermore, 〈G〉 =
〈f1, . . . , fm〉.

Remark 6.1. Algorithm 2 corresponds to Algorithm 4 in Eder and Faugère (2017),
which, however, is presented in a slightly different way. Namely, the two disjuncts in
Lines 5 and 7 of Algorithm 2 are combined into one single ‘rewritability’ check in the
cited article. This makes the formulation of the algorithm a bit more elegant.
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Also, one has to take into account that the last argument of function sigCrit could be
a canonical basis vector ei rather than an S-pair. In that case, only the syzygy criterion
is applied, i. e., ∃s ∈ S. s | ei.

Let us now turn to the formalization of RB in Isabelle/HOL. There, it is natural to
implement functions as functional programs instead of imperative ones, so we define the
tail-recursive function rb-aux for computing rewrite bases as follows:

function rb-aux ::

(((τ ⇒0 β) list × τ list × (((τ ⇒0 β) × (τ ⇒0 β)) + nat) list) × nat) ⇒

(((τ ⇒0 β) list × τ list × (((τ ⇒0 β) × (τ ⇒0 β)) + nat) list) × nat)

where

rb-aux ((gs, ss, []), z) = ((gs, ss, []), z) |

rb-aux ((gs, ss, a # ps’), z) =

(let ss’ = new-syz-sigs ss gs a in

if sig-crit gs ss’ a then

rb-aux ((gs, ss’, ps’), z)

else

let b = sig-trd gs (poly-of-pair a) in

if poly b = 0 then

rb-aux ((gs, (s b) # ss’, ps’), Suc z)

else

rb-aux ((b # gs, ss’, add-spairs ps’ gs b), z))

The function takes one argument, which in turn is a tuple consisting of four entries: a
list gs corresponding to the set G in Algorithm 1, a list ss corresponding to S, a list ps
corresponding to P , and a natural number z counting the total number of zero-reductions.
The latter is a mere technicality only needed in Section 7.1, and may thus be ignored for
the moment. The function not only returns gs, but also the other arguments, to facilitate
formal reasoning about it—but of course only gs is interesting from our perspective.
Please note that the list fs and the various relations (�, etc.) are still implicitly fixed
in the theory context and therefore do not have to be passed as arguments to rb-aux
explicitly.

The first part of the definition corresponds to the base case, where the list ps is empty.
The second part corresponds to the case where ps contains at least one element, and can
hence be decomposed into its head a and tail ps′. Since we ensure that the list is always
kept sorted by increasing signatures, a is known to be an element with minimal signature,
just as required in Line 6 of Algorithm 1. Then, ss is enlarged by new syzygy-signatures
in the auxiliary function new-syz-sigs, and the result is stored in ss′; this corresponds
precisely to Lines 8 and 9 of Algorithm 1. Afterward, the auxiliary function sig-crit is
applied to gs, ss′ and a to check whether a has to be s-reduced or not. sig-crit is the
formalization of function sigCrit, and since there is nothing special about its definition,
we omit it here. Anyway, if sig-crit returns True, nothing needs to be done and rb-aux is
called recursively on the remaining list ps′. Otherwise, a is regular s-reduced to b (taken
care of by function sig-trd), and depending on whether b is a syzygy or not its signature is
added to ss′ or it is added to gs, and new S-pairs are added to ps′ by function add-spairs.
So, in short, rb-aux corresponds exactly to Lines 5–17 of Algorithm 1. The remaining
lines, corresponding to the initialization of G, S and P , are covered by the way how the
arguments of the initial call of rb-aux are constructed, as will be seen below.
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Before, please note that the element-type of ps is a sum type, i. e., the disjoint union
of two types: once the type of pairs of module elements, (τ ⇒0 β) × (τ ⇒0 β), and
once the type nat of natural numbers. This is due to the fact that ps may both contain
S-pairs and canonical basis vectors: S-pairs are represented by the two elements they
originate from, because these elements themselves are needed in sig-crit, and canonical
basis vectors are compactly represented by their component, which is of course a natural
number. Function poly-of-pair converts an object of this sum type into an actual module
element of type τ ⇒0 β, by either constructing an S-pair or returning a ‘full’ basis vector.

The initial argument of rb-aux corresponds to the initial values of G, S and P : gs
is the empty list, ss is Koszul-syz-sigs(fs), which returns the signatures of the Koszul
syzygies of fs, and ps is the list map(Inr, [0.. < length(fs)]), representing the canonical
basis vectors in the sum type mentioned above.

So, we can finally define function rb as follows:

definition rb :: (τ ⇒0 β) list × nat

where rb = (let ((gs, _, _), z) =

rb-aux (([], Koszul-syz-sigs fs, map Inr [0..<length fs]), 0)

in (gs, z))

As can be seen, rb does not take any explicit arguments in the above definition, but it
is implicitly parameterized over the constants fixed in the theory context (fs, �, �t and
E).

In order to formally prove the correctness of rb-aux, and hence rb, we define an
invariant rb-aux-inv of function rb-aux that holds for the initial argument, is preserved
in every recursive call, and is strong enough to infer the desired properties of rb from it.
Since the precise definition of the invariant is fairly lengthy, we only informally summarize
its key characteristics here. rb-aux-inv(gs, ss, ps) holds if

• the signatures of the elements of gs are strictly decreasing (note that new elements
with larger signatures are added up front to gs),

• every element in gs stems from regular s-reducing an S-pair of elements coming later
in gs (i. e., earlier during execution of the function), or from regular s-reducing a
canonical basis vector,

• every element in gs is regular s-irreducible modulo the elements coming after it in
gs,

• every element of gs belongs to the set Rm,

• gs does not contain syzygies,

• for every g in gs, the elements coming after it in gs constitute a rewrite basis up
to s(g),

• every element in ss is a syzygy signature,

• ps is sorted by increasing signatures,

• no element in ps has a signature which is strictly smaller than the signature of any
element in gs, and
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• gs is a rewrite basis in all ei which do not appear in ps any more, and similar for
S-pairs.

The first three items are only needed for proving termination of rb-aux, see Section 6.1.
This list is not exhaustive; it is only meant to give an impression of how challenging it is to
prove correctness of rb-aux and rb in a formal environment. In absolute figures, the whole
proof, distributed across several lemmas, takes roughly 1800 lines of Isabelle code—not
counting the proofs of the necessary theoretical results shown in previous sections, like
is-RB-upt-finite. The claim that the invariant is preserved in the third recursive call of
rb-aux turns out have the most difficult proof:

lemma rb-aux-inv-preserved-3:

fixes gs ss a ps

defines ss’ ≡ new-syz-sigs ss gs a

defines b ≡ sig-trd gs (poly-of-pair a)

assumes rb-aux-inv (gs, ss, a # ps) and ¬ sig-crit gs ss’ a and poly b 6= 0

shows rb-aux-inv (b # gs, ss’, add-spairs ps gs b)

After having proved that rb-aux-inv holds for the initial argument of rb-aux and is
preserved in each of the three recursive calls, and that rb-aux terminates (see Section 6.1),
we can infer the following two key properties of rb which correspond to Theorem 6.1:

theorem rb-is-RB-upt: is-RB-upt (set (fst rb)) u

theorem ideal-rb-aux: ideal (poly ` set (fst rb)) = ideal (set fs)

Remark 6.2. Algorithm 1 and function rb could easily be adapted to not only compute
a rewrite basis, and hence Gröbner basis of the ideal 〈f1, . . . , fm〉, but also a Gröbner basis
of the module of syzygies of (f1, . . . , fm). We do not consider this in the formalization,
though.

6.1. Termination

Termination of the original F5 algorithm had been an open problem for a long time,
until it was eventually settled by Galkin (2012). Later, Pan et al. (2012) proved ter-
mination of a more general signature-based algorithm, which happens to be equivalent
to Algorithm 1. The proof we modeled our formal Isabelle-proof after can be found
in Eder and Roune (2013) (Theorem 20). Here, we present the key ideas of the proof,
referring the interested reader to the cited article for more information about it.

Assume (g1, g2, g3, . . .) is the sequence of elements added to G by Algorithm 1, in
that order. We want to show that this sequence is finite. First, introduce the following
relation ∼ on Rm: a ∼ b :⇔ lp(b)s(a) = lp(a)s(b). ∼ is an equivalence relation, and
therefore allows one to partition the sequence into subsets of equivalent elements w. r. t.
∼. Next, one can prove that only finitely many of these subset are non-empty, using
Noetherianity of Rm and further properties of the sequence that follow from its being
constructed by Algorithm 1, e. g., no element is regular s-reducible by the others. Finally,
one can prove by induction on the finitely many non-empty sets R that each of them is
finite, because every element of R corresponds to an S-pair of elements in ‘previous’ sets,
which are finite by the induction hypothesis. This concludes the proof.
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Remark 6.3. Readers not so familiar with signature-based algorithms might wonder
why the well-known termination proof of Buchberger’s algorithm does not work for
signature-based algorithms. The reason is simple: a new element b added to the basis is
only regular s-irreducible, which unfortunately does not imply that b is irreducible in the
traditional sense of polynomial reduction. In particular, lp(b) might even be divisible by
lp(g) for some g in the current basis—something which cannot happen in Buchberger’s
algorithm, which in turn is what the termination proof of Buchberger’s algorithm mainly
rests upon.

In the formalization, the theorem needed for establishing termination of function
rb-aux is as follows:

lemma rb-termination:

fixes seq :: nat ⇒ (τ ⇒0 β)
assumes ∀i j. i < j −→ s (seq i) ≺t s (seq j)

and ∀i. (∃j<length fs. s (seq i) = (0, j) ∧ lp (poly (seq i)) � lp (fs ! j)) ∨

(∃j k. is-regular-spair (seq j) (seq k) ∧

poly (spair (seq j) (seq k)) 6= 0 ∧

s (seq i) = s (spair (seq j) (seq k)) ∧

lp (poly (seq i)) � lp (poly (spair (seq j) (seq k))))

and ∀i. ¬ is-sig-red (≺t) (�) (seq ` {0..<i}) (seq i)

and range seq ⊆ Rm and 0 /∈ poly ` range seq

and ∀i. is-sig-GB-upt (seq ` {0..<i}) (s (seq i))

shows False

So, we assume that there exists an infinite sequence seq with the listed properties and
derive a contradiction; hence, any such sequence must be finite. seq is modeled as a
function from the natural numbers to module elements of type τ ⇒0 β, which means that
the i-th element of seq is simply seq(i) and the set of all elements of seq is range(seq). A
close inspection of the presumed properties of seq reveals that they essentially correspond
to the first six properties of gs in the above list characterizing rb-aux-inv. The only real
difference is that the order of the elements in seq corresponds to the order in which
they are generated by function rb-aux, which is the reversed order compared to gs. This
explains why, for instance, the signatures in seq must be strictly increasing, whereas in
gs they must be strictly decreasing.

From rb-termination we can conclude that function rb-aux terminates for all argu-
ments satisfying the invariant rb-aux-inv, which in particular includes the initial argument
specified by function rb. This finishes the proof of total correctness of rb.

7. Optimality Results

7.1. No Zero-Reductions

The original goal of signature-based algorithms is to detect and avoid as many use-
less zero-reductions as possible, and thus speed up the computation of Gröbner bases.
Practical experience shows that this goal is indeed achieved (see Section 8), and theory
even tells us that in some situations zero-reductions can be avoided altogether:

Theorem 7.1. Let (f1, . . . , fm) be a regular sequence and assume �t = �pot, i. e., �t is
a POT-extension of �. Then Algorithm 1 does not s-reduce any element to zero, meaning
that the test in Line 12 of that algorithm always yields ‘False’.
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The proof of this celebrated result, which is presented as Corollary 7.1 in Eder and Faugère
(2017), is actually not very difficult. It proceeds along the following lines: Using �pot,
the rewrite basis is computed incrementally, i. e., first for (f1), then for (f1, f2), and so
on. The sequence (f1, . . . , fm) being regular implies that the only syzygies a satisfying
s(a) = t ei, for 1 ≤ i ≤ m and t ∈ [X ], are in the module of principal syzygies of
(f1, . . . , fi)—a generating set of which is added to S in Line 9. However, every zero-
reduction corresponds to precisely such a syzygy, and therefore is detected beforehand
by the syzygy criterion implemented in function sigCrit. It should be observed that
Eder and Faugère (2017) need the additional assumption that E be either Erat or Eadd.
We do not need this assumption because of our slightly different implementation of func-
tion sigCrit.

The formalization of Theorem 7.1 in Isabelle/HOL begins with the definition of reg-
ular sequences:

definition is-regular-sequence :: (α⇒0 β) list ⇒ bool

where is-regular-sequence fs ←→

(∀j<length fs. ∀q. q * fs ! j ∈ ideal (set (take j fs)) −→

q ∈ ideal (set (take j fs)))

As can be seen, is-regular-sequence is a predicate on lists of polynomials. The definition
avoids any reference to quotient rings by unfolding the definition of zero-divisors in such
rings. Function take(j, fs) returns the list of the first j elements of fs.

Proving that there are no zero-reductions in function rb obviously boils down to
proving that the second case in the second part in the definition of rb-aux cannot occur.
This means that whenever sig-crit fails to hold for some a, the result of regularly s-
reducing a cannot be a syzygy:

lemma rb-aux-inv2-no-zero-red:

assumes is-regular-sequence fs and is-pot-ord

and rb-aux-inv2 (gs, ss, a # ps) and ¬ sig-crit gs (new-syz-sigs ss gs a) a

shows poly (sig-trd gs (poly-of-pair a)) 6= 0

Here, is-pot-ord expresses the fact that the implicitly fixed order �t is a POT-extension
of �. The predicate rb-aux-inv2 is a strengthened version of rb-aux-inv, which can also
be proved to be an invariant of rb-aux if fs is a regular sequence and is-pot-ord holds. It
additionally requires ss to contain all necessary syzygy-signatures, something which is
not needed for proving correctness of rb-aux and hence is not encoded in rb-aux-inv.

As a consequence of rb-aux-inv2-no-zero-red and the fact that rb-aux-inv2 holds for the
initial argument of rb-aux as specified in rb, we can infer that indeed no zero-reductions
take place. This result is formulated using the second return value, z, of rb, which counts
the total number of zero-reductions:

corollary rb-aux-no-zero-red:

assumes is-regular-sequence fs and is-pot-ord

shows snd rb = 0

7.2. Minimal Signature Gröbner Bases

Just as traditional Gröbner bases, signature Gröbner bases are not unique. Hence,
we can define minimal signature Gröbner bases as follows:
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Definition 7.1 (Minimal Signature Gröbner Basis). A signature Gröbner basis is
called minimal if, and only if, none of its elements is top s-reducible modulo the other
elements.

Note that minimal signature Gröbner bases have nothing to do with minimal Gröbner
bases in the usual sense: if G is a minimal signature Gröbner basis, then G is not auto-
matically a minimal Gröbner basis, that is, there could exist p1, p2 ∈ G with p1 6= p2 and
lp(p1) | lp(p2). Nevertheless, minimal signature Gröbner bases deserve the name, since
every ideal I ⊆ Rm has one unique minimal signature Gröbner basis G, and moreover
any other signature Gröbner basis H of I satisfies {s(g) | g ∈ G} ⊆ {s(h) |h ∈ H} and
{lp(g) | g ∈ G} ⊆ {lp(h) |h ∈ H}; see Lemma 4.3 in Eder and Faugère (2017) for details.

Surprisingly, when using Erat as the rewrite order, rb-aux automatically computes
minimal signature Gröbner bases (recall from Proposition 5.1 that rewrite bases are
also signature Gröbner bases). The following theorem corresponds to Corollary 7.3
in Eder and Faugère (2017):

Theorem 7.2. Assume E = Erat. Then the rewrite basis computed by Algorithm 1 is
also a minimal signature Gröbner basis.

Therefore, Erat is the optimal rewrite order in terms of the size of the resulting basis
and the number of S-pairs that must be dealt with. Still, as noted in point (c) of
Section 14.3 in Eder and Faugère (2017), other rewrite orders, such as Eadd, can lead to
a comparable overall performance of the algorithm.

Again, Definition 7.1 and Theorem 7.2 translate naturally into in Isabelle/HOL, as
shown below:

definition is-min-sig-GB :: (τ ⇒0 β) set ⇒ bool

where is-min-sig-GB G ←→

G ⊆ Rm ∧ (∀u. snd u < length fs −→ is-sig-GB-in G u) ∧

(∀g∈G. ¬ is-sig-red (�t) (=) (G - {g}) g)

corollary rb-aux-is-min-sig-GB:

assumes (E) = (Erat)

shows is-min-sig-GB (set (fst rb))

8. Code Generation and Computations

When it comes to actually computing rewrite bases, the following two observations
are important:

• Algorithm 1 and function rb operate on module elements in R
m, or objects of type

τ ⇒0 β, respectively. Operations on such objects, such as addition, multiplication,
etc., are of course m-times more expensive than on ordinary polynomials in R.

• A close investigation of said algorithms and their sub-algorithms, such as regular
s-reduction, reveals that in fact only the signature s(a) and the polynomial part a
of module elements a ∈ Rm must be known for executing the algorithms. There-
fore, the whole computation of rewrite bases can be made more efficient by letting
the functions operate on sig-poly-pairs (see Definition 5.1) instead of full module
elements.
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In the formalization, we take the preceding observations into account by refining function
rb and all other functions it depends on to new functions that operate on sig-poly-pairs,
i. e., objects of type τ×(α⇒0 β). Of course, we formally prove that the refined functions
behave precisely as the original ones and therefore inherit all their main properties.
Eventually we end up with a function gb-sig that takes a list of polynomials as input,
employs the refined version of rb-aux (called rb-spp-aux) for computing a rewrite basis of
it, which is a list of sig-poly-pairs. Finally, it projects the elements of this list onto their
second entries to obtain again a list of polynomials which constitute a Gröbner basis of
the input. Furthermore, gb-sig is parameterized over �, �t and E.

Thanks to Isabelle’s code generator, the mechanically verified function gb-sig can be
used to effectively compute Gröbner bases. In a nutshell, this works by translating the
definitions of gb-sig and its sub-algorithms, which are universally quantified equalities
in Isabelle/HOL, into operationally equivalent procedures operating on concrete data
structures in SML, OCaml, Scala or Haskell. The translation is implemented in such
a way that the generated executable programs can be trusted to inherit all correctness
properties of the abstract Isabelle-functions. More information about code generation in
Isabelle can be found in Haftmann et al. (2013); Haftmann and Bulwahn (2018).

In our concrete case, multivariate polynomials are represented efficiently as ordered
(w. r. t. �) associative lists, mapping power-products to coefficients. This formally veri-
fied concrete representation, which is part of Sternagel et al. (2010), allows us to provide
efficient implementations of all frequently used operations, e. g., addition, lp, etc.

A typical invocation of gb-sig within Isabelle, which automatically triggers code gen-
eration into SML and execution of the resulting program, could look as follows:9

value [code] gb-sig-pprod (POT DRLEX) rw-rat-strict-pprod

[X ^ 2 * Z ^ 3 + 3 * X ^ 2 * Y, X * Y * Z + 2 * Y ^ 2]

This instruction immediately returns the following 4-element Gröbner basis, computed
over the field of rational numbers w. r. t. the POT extension of the degree-reverse-
lexicographic ordering and rewrite order Erat:

[(3 / 4) * X ^ 3 * Y ^ 2 - 2 * Y ^ 4, - 4 * Y ^ 3 * Z - 3 * X ^ 2 * Y ^ 2,

X * Y * Z + 2 * Y ^ 2, X ^ 2 * Z ^ 3 + 3 * X ^ 2 * Y]

The auxiliary constants X, Y and Z are introduced for conveniently writing down trivari-
ate polynomials; further indeterminates can easily be added on-the-fly, without even
having to adapt the underlying type. More sample computations can be found in theory
Signature-Examples of the formalization.

Besides simple examples as the one shown above, gb-sig can also be tested on com-
mon benchmark problems and compared to other implementations of Gröbner bases.
Table 1 shows such a comparison to a formally verified implementation of Buchberger’s
algorithm with product- and chain-criterion in Isabelle/HOL, called gb and described
in Maletzky and Immler (2018a), and to function GroebnerBasis in Mathematica 11.3.
Since this article is not meant as an exhaustive survey on the efficiency of different Gröb-
ner basis algorithms, we confine ourselves here to present results of computations over
the rationals w. r. t. the POT extension of the degree-reverse-lexicographic ordering and
rewrite order Erat. We shall emphasize, however, that other order relations and rewrite
orders are formalized, too, and may hence be used in computations without further ado.

9The suffixes ‘-pprod’ are technical artifacts that can safely be ignored here.
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Table 1: Timings (in seconds) and total number of zero-reductions of Gröbner basis computations.
‘?’ indicates that the computation was aborted after 1200 seconds.

gb-sig gb Mathematica
Benchmark Time #0-red Time #0-red Time
cyclic-5 0.1 0 0.1 79 0.0
cyclic-6 2.0 8 186.2 517 0.3
cyclic-7 544.7 36 ? ? ?
katsura-6 0.9 0 9.5 159 0.5
katsura-7 22.4 0 270.0 355 3.7
katsura-8 1005.4 0 ? ? 42.0
eco-9 3.0 0 24.2 685 2.8
eco-10 32.0 0 255.7 1572 27.9
eco-11 297.2 0 ? ? 263.0
noon-5 0.4 0 0.5 208 0.1
noon-6 8.7 0 13.8 738 1.0
noon-7 213.5 0 289.2 2467 12.4

Remark 8.1. The timings for Mathematica have to be read with care: Mathematica
always computes a reduced Gröbner basis, whereas the results returned by gb-sig and gb
are not necessarily reduced. So, the timings of Mathematica must be understood as a
mere reference mark for highly sophisticated, state-of-the-art computer algebra software.
It is not surprising that our formally verified function gb-sig cannot compete with it in
most cases.

9. Conclusion

In this paper we presented a formalization of signature-based algorithms for comput-
ing Gröbner bases in Isabelle/HOL. The formalization is generic, executable, and covers
not only correctness but also optimality (no zero-reductions, minimal signature Gröbner
bases) of the implemented algorithms.

The formalization effort was roughly three months of full-time work. This might
not sound very much, but it must once again be noted that we could make heavy use
of existing formalizations of multivariate polynomials and modules thereof, as well as
Gröbner bases theory, in Isabelle/HOL. Otherwise, it would have taken a lot longer.
The total number of lines of code is ∼ 11440, distributed over the five theories Prelims
(general facts about lists, relations, etc.; ∼ 960 lines), More-MPoly (general properties
of polynomials; ∼ 440 lines), Quasi-PM-Power-Products (facts about power-products;
∼ 290 lines), Signature-Groebner (main theory; ∼ 9370 lines) and Signature-Examples
(code generation and sample computations; ∼ 380 lines). Proofs are intentionally given
in a quite verbose style for better readability.

9.1. Related Work

Even though signature-based algorithms have, to the best of our knowledge, not been
formalized in any other proof assistant so far, formalizations of traditional Gröbner bases
theory exist in various systems.
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The first formalization of Gröbner bases dates back to Théry (2001) and Persson
(2001) in the Coq proof assistant (Bertot and Castéran (2004)). Later, Schwarzweller
(2006) formalized the purely theoretical aspects of the theory in Mizar (Bancerek et al.
(2015)). Jorge et al. (2009) and Medina-Bulo et al. (2010) implemented formally verified
versions of Buchberger’s algorithm in OCaml and Common LISP, respectively; the former
was verified using Coq, and the latter using ACL2 (Kaufmann et al. (2000)). And, of
course, the work presented in this paper heavily rests on the formalization of traditional
Gröbner bases theory by Immler and Maletzky (2016) in Isabelle/HOL.

Buchberger (2004) and Crăciun (2008) took a slightly different approach: they man-
aged to automatically synthesize Buchberger’s algorithm from a formal description of its
specification in the Theorema system (Buchberger et al. (2016)). In the same system,
we formalized a generalization of Gröbner bases to reduction rings (Maletzky (2016)).

Finally, it must also be mentioned that Gröbner bases methodology for a long time
has been, and still is, successfully applied in automated theorem proving, as a black-box
algorithm for proving universal equalities and inequations over algebraically closed fields;
see for instance Harrison (2001) and Chaieb and Wenzel (2007).

9.2. Future Work

The present formalization could be extended in several ways. First of all, function
gb-sig could be improved by inter-reducing intermediate bases when �pot is used as the
module term order. This idea, due to Stegers (2006); Eder and Perry (2010), has the
potential of speeding up computations, but inter-reducing intermediate bases turns out
to be much more subtle in the signature-based setting than it is in the traditional setting.

Another possible improvement of gb-sig consists of implementing the F4-style reduc-
tion, as proposed by Faugère (1999). This approach not only s-reduces one polynomial
at a time, but several polynomials simultaneously by row-reducing certain matrices.
Incidentally, the F4 algorithm and corresponding F4-style reduction are part of the for-
malization by Immler and Maletzky (2016) (described in Maletzky and Immler (2018a)),
and therefore could be incorporated into the formalization presented here with only mod-
erate effort. The main reason why we have not done so as of yet is that no increase in
performance can be expected from it in this concrete case: matrices are represented
densely as immutable arrays in Isabelle/HOL, but F4-style reductions only make sense if
sparse matrices are stored efficiently, possibly even involving some sort of compression.
Formalizing better representations of sparse matrices in Isabelle/HOL is left for future
work.

A third potential improvement of the efficiency of the algorithms is the use of more so-
phisticated data-structures, e. g. tournament trees, kd-trees, and others. Roune and Stillman
(2012) review some of these data-structures and how they can reasonably be used in the
computation of Gröbner bases by signature-based algorithms.

Acknowledgments. I thank the anonymous reviewers for their valuable remarks.
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Table A.2: Translations of concepts between informal mathematics, the formalization as presented in
this paper, and the actual Isabelle sources of the formalization.

Mathematics Formalization (paper) Formalization (sources)
K β β
R α⇒0 β α⇒0 β
Rm τ ⇒0 β; Rm τ ⇒0 β; dgrad-sig-set
〈·〉 ideal ideal
(f1, . . . , fm) fs fs
a poly a rep-list a
supp supp keys
coeff coeff lookup
� � �
�t �t �t

lp lp punit.lt
lc lc punit.lc, lc
s s lt
r1,r2

−→G sig-red r1 r2 G sig-red r1 r2 G
t u (t ∈ [X ], u ∈ T) t⊗ u t⊕ u
u | v (u, v ∈ T) u dvdt v u addst v
c t a (c ∈ K, t ∈ [X ], a ∈ Rm) monom-mult c t a monom-mult c t a
(s(a), a) spp-of a spp-of a
Erat Erat rw-rat
Eadd Eadd rw-add

Appendix A. Translation between Mathematics and Formalization

Table A.2 lists several concepts of the theory and how they translate into our for-
malization as presented in this exposition, and into the actual Isabelle sources of the
formalization. Differences between the latter two stem from increasing the readability of
the paper and have no deeper significance; in fact, readers not intending to look at the
Isabelle sources may safely ignore the last column.
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