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Abstract

The sparse difference resultant introduced in (Li , 2015b) is a basic concept in difference elim-

ination theory. In this paper, we show that the sparse difference resultant of a generic Laurent

transformally essential system can be computed via the sparse resultant of a simple algebraic

system arising from the difference system. Moreover, new order bounds of sparse difference re-

sultant are found. Then we propose an efficient algorithm to compute sparse difference resultant

which is the quotient of two determinants whose elements are the coefficients of the polynomials

in the algebraic system. The complexity of the algorithm is analyzed and experimental results

show the efficiency of the algorithm.

Keywords: Sparse difference resultant, Laurent transformally essential system, Sparse resultant,

Complexity

1. Introduction

It is well-known that the resultant, as a basic concept in algebraic geometry and a powerful

tool in elimination theory, gives conditions for an over-determined system of polynomial equa-

tions to have common solutions (Cox , 2004). Since most polynomials are sparse as they only

contain certain fixed monomials, Gelfand, Kapranov, Sturmfels, and Zelevinsky introduced the

concept of sparse resultant (Gelfand , 1994; Sturmfels , 1993). Canny and Emiris showed that

the sparse resultant is a factor of the determinant of a Macaulay style matrix and gave efficient

algorithms to compute the sparse resultant based on this matrix representation (Canny , 1995;

Emiris , 2012a,b). D’Andrea further showed that the sparse resultant is the quotient of two de-

terminants where the denominator is a minor of the numerator (D’Andrea , 2011).
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With the resultant and sparse resultant theories becoming more mature, it is a natural idea to

extend the algebraic results to differential and difference cases due to their broad applications.

However, such results in differential and difference cases are not complete parallel with algebraic

case. For the ordinary differential case, differential resultants and sparse differential resultants

are studied successively (Li , 2015a; Rueda , 2010; Yang , 2011). For the ordinary difference

case, Li et al. introduced the concept of sparse difference resultant for a Laurent transformally

essential system consisting of n + 1 Laurent difference polynomials in n difference variables and

its basic properties are proved (Li , 2015b). Based on the degree and the order bounds, they

proposed a single exponential algorithm in terms of the number of variables, the Jacobi number,

and the size of the Laurent transformally essential system, which is essentially to search for the

sparse difference resultant with the given order and degree bound.

Sparse difference resultant arises in many areas of pure and applied mathematics and has

potential applications beside the symbolic computation community. For example, the vanishing

of the sparse difference resultant gives a necessary condition for the corresponding difference

polynomial system to have non-zero solutions (Li , 2015b). Thus it has great potentials to solve

some important problems in difference algebra, such as elimination of difference indeterminates,

solving difference equations in difference fields and so on (Cohn , 1965; Ovchinnikov , 2020;

Hrushovski , 2007). Some natural phenomena in real world are described by difference equations

(Gao , 2009; Ovchinnikov , 2020; Roeger , 2004; Henson , 2007; Ekhad , 2014). However, since

the case of difference polynomial system is traditionally significantly harder, there are only few

efficient algorithms and techniques about difference resultants so far. Up to now using mature

techniques of the algebraic case to deal with differential or difference cases is an effective way

(Yang , 2011; Li , 2015b). In the difference case one need to convert difference polynomials

into an algebraic polynomial system, then to compute the classical sparse resultant, and finally

convert the results back in the world of difference polynomials. One of the key observations

of the conversion is the effective order of sparse difference resultant. Thus the order bound of

sparse difference resultant is particularly important and has a direct impact on the complexity of

the associated algorithm.

In this paper, we further explore efficient algorithms to find the sparse difference resultant of

a given difference polynomial system using the difference structure and difference specialization

technique. We show that the sparse difference resultant of a Laurent transformally essential

system consisting of n + 1 Laurent difference polynomials in n difference variables is the same

as the one of a simple system consisting of m + 1 polynomials in m difference variables, where

m is the rank of the symbolic support matrix of the super essential system. Moreover, a new

order bound of sparse difference resultant is given. Then we propose an efficient algorithm to

compute sparse difference resultant, which is based on the fact that sparse difference resultant is

shown to be the sparse resultant for a certain generic algebraic polynomial system. It starts with

the given sparse difference polynomial system and directly obtain a strong essential polynomial

system of the original system, then one can regard it as sparse algebraic polynomial system and

use the algorithm in (Canny , 1995) to construct the matrix representation whose determinant

is the required sparse difference resultant. Furthermore, the computations of finding the strong

essential polynomial system are compiled as the function SDResultant with Mathematica and

then the mixed subdivision algorithm is called to search for the sparse resultant.

The rest of the paper is arranged as follows. In Section 2, we review some preliminary re-

sults which contains definitions and theorems of sparse resultant and sparse difference resultant.

Section 3 concentrates on the main results of the paper involving the theoretical preparation of

the algorithm, algorithm implementation and illustrated examples. The last section concludes
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the results.

2. Preliminaries

2.1. On the sparse resultant

We first introduce several basic notions and properties of sparse resultant which are needed

in the algorithm. We refer to (Gelfand , 1994; Sturmfels , 1993, 1994; Li , 2015b; Canny , 1995)

for more details.

Let B0, . . . ,Bn be finite subsets of Zn. Assume 0 ∈ Bi and |Bi| ≥ 2 for each i, where here

and below, the symbol |S | denotes the cardinality of the set S . For algebraic indeterminates

X = {x1, . . . , xn} and α = (α1, . . . , αn) ∈ Zn, denote Xα =
∏n

i=1 x
αi

i
. Let

Fi(x1, . . . , xn) = ci0 +
∑

α∈Bi\{0}

ciαX
α (i = 0, . . . , n) (1)

be a generic sparse Laurent polynomial system and ciα are treated as parameters. We call Bi the

support of Fi and ωi =
∑
α∈Bi

ciαα is called the symbolic support vector of Fi. The convex hull of

Rn containing Bi is called the Newton polytope of Fi. For any subset I ⊂ {0, . . . , n}, the matrix

MI whose row vectors are ωi (i ∈ I) is called the symbolic support matrix of {Fi : i ∈ I}. Denote

ci = (ciα)α∈Bi
, cI = ∪i∈I(ci) and by rk(MI) the rank of matrix MI .

Definition 2.1. ((Li , 2015b, Definition 61)) Follow the notations introduced above.

• A collection of {Fi}i∈I is weak essential if rk(MI) = |I| − 1.

• A collection of {Fi}i∈I is essential if rk(MI) = |I| − 1 and for each proper subset J of I,

rk(MJ) = |J|.

Note that we sometimes call system (1) algebraically essential instead of essential in order

to differentiate it with difference case. A polynomial system {Fi}i∈I is weak essential if and only

if (Fi : i ∈ I) ∩ Q[cI] is of codimension one in Q[cI] (Canny , 1995). In this case, there exists

an irreducible polynomial R ∈ Q[cI] such that (Fi : i ∈ I) ∩ Q[cI] = (R) and R is called

the sparse resultant of {Fi : i ∈ I}. Furthermore, the system {Fi}i∈I is essential if and only if

(Fi : i ∈ I) ∩Q[cI] = (R) and ci appears effectively in R for each i ∈ I.

Suppose an arbitrary total ordering of {F0, . . . ,Fn} is given, say F0 < F1 < · · · < Fn. Now we

define a total ordering ≻ among subsets of {F0, . . . ,Fn}. For any two subsets D = {D0, . . . ,Ds}

and C = {C0, . . . ,Ct} where D0 > · · · > Ds and C0 > · · · > Ct, D is said to be of higher ranking

than C, denoted by D ≻ C, if 1) there exists an i ≤ min(s, t) such that D0 = C0, . . . ,Di−1 = Ci−1,

Di > Ci or 2) s > t and Di = Ci (i = 0, . . . , t). Note that ifD is a proper subset of C, then C ≻ D.

Thus for the system F = {Fi : i = 0, . . . , n} given in (1), if rk(MF) ≤ n, then F has an essential

subset with minimal ranking.

Lemma 2.2. ((Li , 2015b, Lemma 65)) Suppose FI = {Fi : i ∈ I} is an essential system. Then

there exists an I′ ⊂ {1, . . . , n} with |I′| = n − |I| + 1, such that by setting xi, i ∈ I′ to 1, the

specialized system F̃I = {F̃i : i ∈ I} satisfies

(1) F̃I is still essential.

(2) rk(M
F̃I

) = |I| − 1 is the number of variables in F̃I .

(3) (FI) ∩Q[cI] = (F̃I) ∩Q[cI], where F̃I = Fi|xi=1,i∈I′ .

3



An essential system {Fi}i∈I is said to be variable-essential if there are only |I| − 1 variables

appearing effectively in Fi. Clearly, if {Fi : i = 0, . . . , n} is essential, then by Lemma 2.2 it is

variable-essential. We call a variable-essential system F = {Fi : i = 0, . . . , n} strong essential if

there exists an invertible variable transformation x1 =
∏n

j=1 z
m1 j

j
, . . . , xn =

∏n
j=1 z

mn j

j
such that

the image G of F under the above transformation is a generic sparse system satisfying: (1) G is

essential. (2) Span
Z

(B) = Zn, where B is the set of all supports of G.

2.2. Sparse difference resultant

This section will review the results associated with sparse difference resultant, for details

please refer to reference (Li , 2015b).

An ordinary difference field F is a field with a unitary operation σ satisfying σ(a + b) =

σ(a) + σ(b) and σ(ab) = σ(a)σ(b) for any a, b ∈ F . We call σ the difference (transforming)

operator of F . If a ∈ F , σ(a) is called the transform of a and is denoted by a(1). And for

n ∈ Z+, σn(a) = σn−1(σ(a)) is called the n-th transform of a and denoted by a(n), with the usual

assumption a(0) = a. By a[n] we mean the set {a, a(1), . . . , a(n)}. If σ is an isomorphism of a

difference field, then the field is called inversive. Every difference field has an inversive closure

(Cohn , 1965). In this paper, all difference fields are assumed to be inversive with characteristic

zero.

A subset S of a difference extension field G of F is said to be transformally dependent

over F if the set {σk(a)|a ∈ S, k ≥ 0} is algebraically dependent over F , otherwise, is called

transformally independent over F , or a family of difference indeterminates over F . We say that

α is transformally algebraic or transformally transcendental over F respectively if S consists of

one element α. The maximal subset Ω of G which is transformally independent over F is said to

be a transformal transcendence basis of G over F . We use σ.tr.degG/F to denote the difference

transcendence degree of G over F , which is the cardinal number of Ω.

Let F be an ordinary difference field with a transforming operatorσ. LetΩ be the semigroup

of elements generated by σ. Let Y = {y1, . . . , yn} be indeterminants and F {Y} = F [ΩY] the

difference polynomial ring, where ΩY = {σiy j|i ≥ 0, 1 ≤ j ≤ n} and σ(σiy j) = σ
i+1y j. Let f be

a difference polynomial in F {Y}. The order of f w.r.t. yi is defined to be the greatest number k

such that y
(k)

i
appears effectively in f , denoted by ord( f , yi). If yi does not appear in f , then we set

ord( f , yi) = −∞. The order of f is defined to be maxi ord( f , yi), that is, ord( f ) = maxi ord( f , yi).

A Laurent difference monomial of order s is in the form
∏n

i=1

∏s
k=0(y

(k)

i
)dik where dik are integers

which can be negative. A Laurent difference polynomial over F is a finite linear combination of

Laurent difference monomials with coefficients in F . A difference ideal I in F {Y} is an algebraic

ideal which is closed under σ, i.e., σ(I) ⊆ I. If I also has the property that σ(a) ∈ I implies a ∈ I,

it is called a reflexive difference ideal. The concept of difference ideal and reflexive difference

ideal can be generalized to Laurent difference case naturally.

For every Laurent difference polynomial F ∈ F {Y,Y−1}, there exists a unique Laurent dif-

ference monomial M such that M · F is the norm form of F, denoted by N(F), which satisfies 1)

M ·F ∈ F {Y} and 2) for any Laurent difference monomial T with T ·F ∈ F {Y}, T ·F is divisible

by M · F as polynomials. The order and degree of N(F) is defined to be the order and degree of

F, denoted by ord(F) and deg(F).

SupposeAi = {Mi0,Mi1, . . . ,Mili } (i = 0, 1, . . . , n) are finite sets of Laurent difference mono-

mials in Y. Consider n + 1 generic Laurent difference polynomials defined overA0, . . . ,An:

Pi = ui0Mi0 +

li∑

k=1

uik Mik (i = 0, . . . , n), (2)
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where all the uik are transformally independent over F . Denote

ui = (ui0, ui1, . . . , uili) (i = 0, . . . , n) and u =

n⋃

i=0

ui. (3)

The number li + 1 is called the size of Pi andAi is called the support of Pi.To avoid this triviality

in the sequel we assume that li ≥ 1 (i = 0, . . . , n).

Definition 2.3. ((Li , 2015b, Definition 11)) A set of Laurent difference polynomials of the form

(2) is called Laurent transformally essential if for every Pi there exist ki (i = 0, . . . , n) with 1 ≤

ki ≤ li such that σ.tr.degQ〈
M0k0

M00
,

M1k1

M10
, . . . ,

Mnkn

Mn0
〉/Q = n. In this case, we also say thatA0, . . . ,An

form a Laurent transformally essential system.

This definition generally means that for any Laurent transformally essential system P, σ.tr.deg

(F {u}[P]/F {u}) = n which implies [P]∩F {u} has codimension one. Note that, for n+ 1 generic

difference polynomial system with given order and degree larger than zero, the system is Laurent

transformally essential since one may take Mi0 = 1 and Miki
= yi for 1 ≤ i ≤ n. Hence, for

a random difference system with n + 1 Laurent difference polynomials, it satisfies the Laurent

transformally essential properties with probability one.

Letm be the set of all difference monomials in Y and [N(P0), . . . ,N(Pn)] the difference ideal

generated by N(Pi) in Q{Y, u0, . . . , un}. Let

IY,u = ([N(P0), . . . ,N(Pn)] :m), (4)

Iu = IY,u ∩Q{u0, . . . , un}. (5)

Now suppose P = {P0, . . . ,Pn} is a Laurent transformally essential system. Since Iu defined

in (5) is a reflexive prime difference ideal of codimension one, there exists a unique irreducible

difference polynomial R(u) = R(u0, . . . , un) ∈ Q{u0, . . . , un} such that R can serve as the first

polynomial in each characteristic set of Iu w.r.t. any ranking endowed on u0, . . . , un (Li , 2015b).

Thus the definition of sparse difference resultant is given as follows:

Definition 2.4. ((Li , 2015b, Definition 15)) The above R(u0, . . . , un) ∈ Q{u0, . . . , un} is defined

to be the sparse difference resultant of the Laurent transformally essential system P0, . . . ,Pn,

denoted by ResA0,...,An
or ResP0,...,Pn

, where Ai is the support of Pi for i = 0, 1, . . . , n. When all

theAi are equal to the sameA, we simply denote it by ResA.

By Definition 2.4, the existence of sparse difference resultant of a Laurent difference poly-

nomial system is attributed to determine whether the system is Laurent transformally essential,

which is a cumbersome procedure. In (Li , 2015b), the authors build a one-to-one correspon-

dence between a difference polynomial system and so-called symbolic support matrix and then

use the matrix to discriminate whether a Laurent difference system is transformally essential.

Specifically, let Bi =
∏n

j=1

∏s
k=0(y

(k)

j
)di jk (i = 1, . . . ,m) be m Laurent difference monomials.

Introduce a new algebraic indeterminate x and let

di j =

s∑

k=0

di jkxk (i = 1, . . . ,m, j = 1, . . . , n)

be univariate polynomials in Z[x]. If ord(Bi, y j) = −∞, then set di j = 0. The vector (di1, di2,

5



. . . , din) is called the symbolic support vector of Bi. The matrix M = (di j)m×n is called the

symbolic support matrix of B1, . . . , Bm.

Consider the set of generic Laurent difference polynomials defined in (2),

Pi = ui0Mi0 +

li∑

k=1

uik Mik (i = 0, . . . , n).

Let βik be the symbolic support vector of Mik/Mi0, k = 1, . . . , li. Then the vector wi =
∑li

k=1
uikβik

is called the symbolic support vector of Pi and the matrix MP whose rows are w0, . . . ,wn is called

the symbolic support matrix of P0, . . . ,Pn. Therefore, we have

Theorem 2.5. ((Li , 2015b, Theorem 31)) A sufficient and necessary condition for P0, . . . ,Pn

form a Laurent transformally essential system is the rank of MP is equal to n.

Furthermore, we can use the symbolic support matrix to determine certain Pi such that their

coefficients will not occur in the sparse difference resultant, which leads to the following defini-

tion:

Definition 2.6. ((Li , 2015b, Definition 33)) Let T ⊂ {0, 1, . . . , n}. Then we call T or PT super-

essential if the following conditions hold: (1) card(T) − rk(MPT
) = 1 and (2) card(J) = rk(MPJ

)

for each proper subset J of T.

The existence of super-essential system of a difference polynomial system is given by the

following theorem (Li , 2015b).

Theorem 2.7. ((Li , 2015b, Theorem 34)) If {P0, . . . ,Pn} is a Laurent transformally essential

system, then for any T ⊂ {0, 1, . . . , n}, card(T) − rk(MPT
) ≤ 1 and there exists a unique T which

is super-essential. If T is super-essential, then the sparse difference resultant of {P0, . . . ,Pn}

involves only the coefficients of Pi (i ∈ T).

Therefore, let R be the sparse difference resultant of a Laurent transformally essential system

(2). Then a strong essential system S whose sparse resultant is equal to R can be obtained from

(2).

We introduce some notations which are needed to bound the order of R. Let A = (ai j) be an

n × n matrix where ai j is an integer or −∞. A diagonal sum of A is any sum a1σ(1) + a2σ(2) +

· · · + anσ(n) with σ a permutation of 1, . . . , n. If A is an m × n matrix with k = min{m, n}, then a

diagonal sum of A is a diagonal sum of any k × k submatrix of A. The Jacobi number of a matrix

A is the maximal diagonal sum of A, denoted by Jac(A).

Let si j = ord(N(Pi), y j) (i = 0, . . . , n; j = 1, . . . , n) and si = ord(N(Pi)). We call the (n+1)×n

matrix A = (si j) the order matrix of P0, . . . ,Pn. By Aî, we mean the submatrix of A obtained by

deleting the (i+1)-th row from A. Note that when we consider the sparse difference resultant, we

compute it in the Laurent difference polynomial ring. Hence, without loss of generality, we may

assume that the normal form of Pi is itself. Then, we use P to denote the set {N(P0), . . . ,N(Pn)}

and by Pî, we mean the set P\{N(Pi)}. We call Ji = Jac(Aî) the Jacobi number of the system Pî,

also denoted by Jac(Pî).

Theorem 2.8. ((Li , 2015b, Theorem 51, 74; Lemma 16)) Let P be a Laurent transformally

essential system and R the sparse difference resultant of P. Then, R is of minimal order in each

ui0, and

ord(R, ui) =

{
−∞ if Ji = −∞,

hi ≤ Ji if Ji ≥ 0.
6



Moreover, R ∈ (P
[h0]

0
,P

[h1]

1
, . . . ,P

[hn]
n ) in Q{Y,Y−1, u0, . . . , un} .

3. Main results

In this section, we first present some theoretical results, and then give an efficient algorithm

to compute sparse difference resultant. We analyze the complexity of the algorithm and show the

efficiency by three examples.

3.1. Theoretical preparations

By Theorem 2.7, there exists a uniqueT ⊂ {0, 1, . . . , n} such that T is super essential. Without

loss of generality, we assume T = {0, 1, . . . ,m}, where m ≤ n. The symbolic support matrix of

PT is

MPT
=



w0,1 w0,2 . . . w0,n

w1,1 w1,2 . . . w1,n

. . . . . . . . . . . .

wm,1 wm,2 . . . wm,n


(m+1)×n

, (6)

and rk(MPT
) = m. Then we choose a submatrix from MPT

whose column rank is m. Without

loss of generality, we assume that the first m columns in MPT
is of rank m. Now, we set yi, i =

m+1, . . . , n, to 1 in PT to obtain a new difference polynomial system P̃T whose symbolic support

matrix is

M
P̃T
=



w0,1 w0,2 . . . w0,m

w1,1 w1,2 . . . w1,m

. . . . . . . . . . . .

wm,1 wm,2 . . . wm,m


(m+1)×m

. (7)

Since rk(M
P̃T

) = m, P̃T is Laurent transformally essential. Let w̃i = (wi,1,wi,2, . . . ,wi,m) be

the symbolic support vector of P̃i for i = 0, . . . ,m in P̃T, and R̃ be the sparse difference resultant

of the system P̃T. Let R be the sparse difference resultant of P, we will show that R = R̃. Before

this, we need the following lemma which can be shown by linear algebra and we omit the proof.

Lemma 3.1. Let M be a matrix of row codimension one such that any proper subset of rows

is linearly independent. Let M̃ be a submatrix of M with the same number of rows such that

rk(M) = rk(M̃). Then, any proper subset of rows of M̃ is linearly independent.

Lemma 3.2. P̃T forms a super essential system.

Proof. Let M = MPT
and M̃ = M

P̃T
. Apply Lemma 3.1 to M and M̃, we have P̃T forms a super

essential system.

In analogy with the algebraic case, we define a total ordering of P̃T

∞
= {σ jP̃i, 0 ≤ i ≤ m, j ≥

0}, σ jP̃i < σ
kP̃l if and only if either i < l or i = l and j < k. Then, this ordering can be extended

to a total ordering among the subsets of P̃T

∞
as defined in Section 2. Consider all possible

systems of the form

P̃ =
{
σi01 P̃0, σ

i02 P̃0, . . . , σ
i0s0 P̃0,

σi11 P̃1, σ
i12 P̃1, . . . , σ

i1s1 P̃1,

. . . , . . . , . . . , . . . ,

σim1 P̃m, σ
im2 P̃m, . . . , σ

imsm P̃m

}
,

(8)

7



which are algebraically essential and choose the one that is minimal with respect to the above

introduced ordering. Suppose that P̃ is an algebraically essential system with minimal ordering,

which always exists due to the proof of Theorem 68 in (Li , 2015b).

Note that, in order to define the symbolic support vector of P ∈ P̃, we may assume the

symbolic support vector of the variable σiy j is ei, j where ei, j are linearly independent. Then, the

symbolic support vector of any monomials in P ∈ P̃ can be defined. Since σ(σiy j) = σ
i+1y j, we

may set ei, j = xie j for any i and 1 ≤ j ≤ m, where e1, . . . , em form a standard basis in Qm, then

xie j are linear independent over Q. Since σkui, j is transcendental over {σpui, j, σ
lys|p < k, 0 ≤

i ≤ n, 1 ≤ j ≤ li, l ≥ 0, 1 ≤ s ≤ n}, we have that the symbolic support vector of P = σiP̃ j can be

defined as xiω̃ j, where ω̃ j is the symbolic support vector of P̃ j. Though we treat the polynomials

in P̃ as difference polynomial or algebraic polynomial, the linear dependence of the symbolic

support vector of the polynomials in P̃ will not change in some sense.

Let
P =

{
σi01P0, σ

i02P0, . . . , σ
i0s0 P0,

σi11P1, σ
i12P1, . . . , σ

i1s1 P1,

. . . , . . . , . . . , . . . ,

σim1Pm, σ
im2Pm, . . . , σ

imsm Pm

}
,

(9)

and we have the following result.

Lemma 3.3. If P̃ is algebraically essential, then P forms an algebraically essential system.

Proof. Since P̃ is an algebraically essential system, we have that the row corank of its symbolic

support matrix M
P̃

is 1. Since P̃ is algebraically essential, we have
∑
σiP̃ j∈P̃

fi jω̃i j = 0, where

0 , fi j ∈ Q{u0, . . . , un} for any i, j and ω̃i j is the symbolic support vector of σiP̃ j. Since

ω̃i j = xiω̃ j, where ω̃ j is the symbolic support vector of P̃ j, we have
∑
σiP̃ j∈P̃

fi jx
iω̃ j = 0.

Assume that P does not form an algebraically essential system. Then its symbolic support

matrix MP has full rank. Thus
∑
σiP j∈P

fi jωi j , 0, where ωi j is the symbolic support vector of

σiP j, or equivalently,
∑
σiP j∈P

fi jx
iω j , 0 where ω j is the symbolic support vector of P j. Now

we consider the rank of MPT
. By Lemma 3.2, P̃T is super essential, each m×m submatrix of M

P̃T

is of full rank. Since
∑
σiP̃ j∈P̃

fi jx
iω̃ j = 0 and

∑
σiP j∈P

fi j x
iω j , 0, through a row transformation

for MPT
over Q{u0, . . . , un}[x], we can obtain a row vector of form (0, . . . , 0, hm+1, . . . , hn) and

hm+1, . . . , hn are not all zeros. Hence, the rank of MPT
is m+1. This contradicts to the fact that PT

is a Laurent transformally essential system. Hence, P forms an algebraically essential system.

Theorem 3.4. With above notations, R = R̃ up to a multiplicative constant.

Proof. By the definition of P̃, we have that R̃ is the sparse resultant of P̃ since it has the lowest

order in un due to the ordering introduced before. By Lemma 3.3, P is an algebraically essential

system. Let R′ be the sparse resultant of P, then R′ ∈ (P̃) since P̃ is obtained by setting y j to 1

in P for j = m + 1, . . . , n. Hence R′|R̃. Then, R̃ = R′ up to a multiplicative constant since they

are irreducible.

Now, we show that R = R′ up to a multiplicative constant. By the definition of P̃ and

Theorem 2.8, R′ has the lowest order in
[
P̃T

]
L ∩ Q{u0, . . . , um} for each ui0, where [PT]L is the

ideal generated by PT in Laurent difference polynomial ring Q{Y,Y−1, u0, . . . , um} . We claim

that R′ has the lowest rank in [PT]L ∩Q{u0, . . . , um} for each ui0. If it is not the case, then R has
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a lower rank than R′ in ui0 for some i. Since [PT]L ∩ Q{u0, . . . , um} ⊂ [P̃T]L ∩ Q{u0, . . . , um},

then R ∈ [P̃T]L ∩ Q{u0, . . . , um}. It contradicts to the fact that R′ has the lowest rank in [P̃T]L ∩

Q{u0, . . . , um} for each ui0. Then by the uniqueness of sparse difference resultant, R = R′ = R̃

up to a multiplicative constant.

Theorem 3.4 provides a simple way to compute sparse difference resultants of a Laurent

transformally essential system where the unique super essential system is further simplified.

Now we can give some new order bounds of the sparse difference resultant R which is obviously

true according to Theorem 2.8 and 3.4. Let APT
be the order matrix of the system PT and A

P̃T
the

order matrix of P̃T such that the (m + 1) × m matrix M
P̃T

is of rank m. Then, an order bound of

R is just the order bound of R′, and by Theorem 2.8, we have

Proposition 3.5. The order bound of R for each set ui, 0 ≤ i ≤ m can be bounded by Jac(A
P̃T

),

where P̃T forms a Laurent transformally essential system, or equivalently, the (m+ 1)×m matrix

M
P̃T

is of rank m.

By above proposition, one can get the order bound by the minimal Jacobi number of the

corresponding m × m full rank sub-matrices of APT
. Furthermore, we have

Proposition 3.6. Let M
P̃T

be an (m + 1) × m full rank sub-matrix of MPT
. Let fi be the greatest

common divisor of the i-th column of M
P̃T

for i = 1, . . .m. Then the order bound of R for each

set ui can be bounded by Ji = Jac
(
(A

P̃T
)î

)
−

∑m
i=1 deg( fi).

Proof. Let P̃T be a super essential system and M
P̃T

its symbolic support matrix. We denote by

ci the i-th column of M
P̃T

and c′
i
= ci/ fi. Then ci and c′

i
are linearly dependent. Let M

P̂T
be the

(m + 1) × (m + 1) matrix by adding a last column c′
1

to M
P̃T

and P̂T its corresponding difference

system by introducing a new difference indeterminant. Then by Theorem 3.4, P̂T and P̃T have

the same sparse difference resultant. Let M
P̃T

′ be the sub-matrix of M
P̂T

by deleting the first

column and P̃T

′
its corresponding difference system. By Theorem 3.4 again, P̃T

′
and P̃T have

the same sparse difference resultant. Inductively, one may take an (m + 1) × m matrix M
PT

with

c′
i

as its i-th column and its corresponding difference system PT, such that PT and PT have the

same sparse difference resultant. Thus the order bound of R for each set ui equals the i-th Jacobi

number of the order matrix A
PT

, which is J̃i −
∑m

i=1 deg( fi) where J̃i = Jac((A
P̃T

)î).

In what follows, we state a proposition which will accelerate the algorithm to search for a

simple algebraic polynomial system induced by P̃T.

Proposition 3.7. Let P̂ = {P
[J0]

0
,P

[J1]

1
, . . . ,P

[Jm]
m } be a polynomial system obtained from a trans-

formally essential difference system, D
P̂

the algebraic symbolic support matrix of P̂, Jacobi

numbers Ji be given as above. Then its algebraic essential system is contained in {P
[J0−p]

0
,P

[J1−p]

1
,

. . . ,P
[Jm−p]
m }, where p = |̂P| − rank(D

P̂
) − 1.

Proof. Let P = {P
[J0−p]

0
,P

[J1−p]

1
, . . . ,P

[Jm−p]
m } andD

P
the algebraic symbolic support matrix of P.

We only need to show that D
P

is not of full row rank. If it is not the case, let R be the sparse

difference resultant of the original system, then there exist QP, Ti j ∈ F {Y,Y
−1} such that R =∑

P∈P
QPP+

∑m
i=0

∑ki

j=1
Ti jσ

Ji−p+ jPi. We claim that there exists an i, such that ord(R, ui) > Ji − p.
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If this is not the case, substituting σJi−p+ jui0 by σJi−p+ j(−
∑li

k=1
uikMik/Mi0) in both sides of the

above equation, we have R =
∑

P∈P
QPP for some QP ∈ F {Y,Y

−1}, which contradicts to the

fact that D
P

is of full row rank. Hence the claim is true. Then, the algebraic symbolic support

matrix of P′ = {P
[J0]

0
,P

[J1]

1
, . . . ,P

[Ji−1]

i−1
,P

[Ji−p]

i
,P

[Ji+1]

i+1
, . . . ,P

[Jm]
m } is of full rank by Theorem 2.8.

Comparing P′ with P̂, we find that the co-rank ofD
P̂

is no more than p which contradicts to the

definition of p.

3.2. A new algorithm for sparse difference resultant

Based on the new bounds and propositions for the sparse difference resultant, we propose an

improved algorithm to compute sparse difference resultant for any given Laurent transformally

essential difference polynomial system. The algorithm is motivated by the fact that sparse dif-

ference resultant is equal to the sparse resultant of a strong essential polynomial system which

is derived from the original difference polynomial system (Li , 2015b). Thus one can transform

the obtainment of sparse difference resultant to compute sparse resultant which has mature algo-

rithms such as subdivision method initiated by Canny and Emiris (Canny , 1995).

Therefore, the algorithm is divided into two parts. The first part is to find the strong essential

polynomial system. The main strategy for this part is to use the symbolic support matrix of the

given difference polynomial system to determine the existence of sparse difference resultant. If

yes, obtain the unique super-essential system, and simplify the super-essential system based on

Theorem 3.4, then use algebraic tools to find the strong essential system. The second one is to

use the mixed subdivision method to construct matrix representation of sparse resultant of the

strong essential system which provides the required sparse difference resultant up to a sign.

In order to present a better understanding of the whole procedure, we give the flow chart of

Algorithm 1 in Figure 1.

A difference system P Sparse difference resultant of P

rank(DP)=n

y Algebraic sparse

xresultant of P̂

Laurent transformally

essential system PI
Simplification of P to obtain P̂

rk(DPI
)=|I|−1

yJ⊆I,|J|=rk(DPJ
) Assignments

xvariable transformation

Super-essential system PT

Find algebraic essential system

with minimal ranking to obtain P

Set variables

y{ym+1,...,yn}to one

x
A new super-essential

difference system
−−−−−−→ Algebraic system P̂ obtained by or-

der bounds

Figure 1. Flow chart of the algorithm
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Algorithm 1 —– SDResultant(P)

Input: A generic Laurent difference system P = {P0, . . . ,Pn}.

Output: The sparse difference resultant R of P.

1. Construct the symbolic support matrix DP of P.

If rank(DP) = n, then proceed to compute SDResultant;

Else, return “No SDResultant for P ”.

2. Set T = {0, 1, . . . , n}, S = ∅.

3. Let S = ∅, choose an element i ∈ T.

3.1. Let S = S ∪ {i},T′ = T \ S ,

3.2 If rank(DPT′
) = |T′| − 1, set T = T′, return to step 3.

3.2.1 Else if T = S , go to the next step,

3.2.2 else choose an i ∈ T \ S go back to step 3.1.

Note PT is a super-essential system.

4. Assume T = {0, 1, . . . ,m}. Compute the rank of the symbolic support matrix DPT
of PT by

Gauss elimination. We obtain (i1, . . . , im) such that the (m + 1) × m matrix which corresponds

to the i1-th, . . . , im-th columns of DPT
has rank m. We assume these columns are the first m

columns. Set the variables {ym+1, . . . , yn} in PT to 1, we denoted by P̃T the new system under this

substitution.

Compute the order matrix A
P̃T

of P̃T and fi the common factor of the i-th column of M
P̃T

,

compute the Jacobi number Ji = Jac
(
(A

P̃T
)î

)
−

∑m
i=1 deg( fi).

Construct a new algebraic system P̂ = {P̃
[J0]

0
, P̃

[J1]

1
, . . . , P̃

[Jm]
m }.

5. Compute the algebraic symbolic support matrixD
P̂

of P̂, let p = |̂P| − rank(D
P̂
) − 1.

Find the algebraic essential system with minimal ranking P from P̂e = {P
[J0−p]

0
, P

[J1−p]

1
, . . . ,

P
[Jm−p]
m }.

6. Select n − rank(DP) variables in P to 1, denoted by P̂.

Take a variable transformation for P̂ to make it be a strong essential system.

7. Use mixed subdivision algorithm to obtain sparse algebraic resultant of P̂.

/*/ In step 4, by Gaussian elimination, we may obtain the row echelon form. The indices are

corresponding to the columns of the pivots in the row echelon form.

/*/ Steps 5 ∼ 7 are performed purely algebraically.

Theorem 3.8. The algorithm is correct.

Proof. The termination of the algorithm is obvious. The correctness of the algorithm is guar-

anteed by Lemma 2.2, Theorem 2.7, Theorem 2.8, Lemma 3.2, Lemma 3.3, Theorem 3.4 and

Proposition 3.7.

3.3. Complexity of the algorithm

We divide the complexity analysis of Algorithm 1 into two parts: the first six steps and

the mixed subdivision algorithm in step 7, and then combine these two parts to estimate the

overall complexity. In complexity bounds, we sometimes ignore polylogarithmic factors in the

parameters appearing in polynomial factors; this is denoted by O∗(·).

We first recall the complexity analysis of the mixed subdivision algorithm. The key point

of mixed subdivision algorithm is to construct Newton matrix whose determinant is a nontrivial
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multiple of sparse resultant. We refer to (Canny , 2000) and references therein for the related

background materials and constructed techniques of Newton matrix. The complexity of Newton

matrix construction is analyzed in (Canny , 2000) and recalled as follows.

Theorem 3.9. (Canny , 2000, Theorem 11.6) Given polynomials g1, . . . , gn, the algorithm com-

putes an implicit representation of Newton matrix M with worst-case bit complexity

O∗
(
|E |n9.5µ6.5 log2 d log

1

ǫlǫσ

)

where |E | is the cardinality of the set that indexes the rows and columns of Newton matrix M, µ is

the maximum point cardinality of the n+ 1 supports, d is the maximum degree of any polynomial

in any variable, and ǫl, ǫσ ∈ (0, 1) are the error probabilities for the lifting scheme and the

perturbation, respectively.

Before we estimate the complexity of Algorithm 1, the following lemma is needed for the

complexity analysis. Before we estimate the complexity of Algorithm 1, the following lemma

is needed for the complexity analysis.

Lemma 3.10. For a symbolic matrix M = (mi, j) with p rows and q columns, where mi, j ∈

C[y1, . . . , yk]. The arithmetic complexity to compute the rank of M with probability 1 − ǫ is

bounded by max(p, q)3, where ǫ is the error probabilities for the rank of the symbolic support

matrices.

Proof. Assume the rank of M is r. Then, there exists an r × r sub-matrix Mr of M, such that

det(Mr) = g(y1, . . . , yk) , 0. Hence, we set y1, . . . , yk to concrete values a1, . . . , ak in a given set

S . By Schwartz-Zippel Lemma(Zippel , 1979), the probability of g(a1, . . . , ak) , 0 is bounded

by 1 − d/|S |, where d is the degree of g. Now, let M̂ be the matrix obtained by substituting yi by

ai in M. Then, rk(M̂) ≤ rk(M). If g(a1, . . . , ak) , 0, the rank of M̂ is r and the time complexity to

compute the rank of M̂ is bounded by O(max(p, q)3). Denote by ǫ the error probabilities for the

rank computation for the symbolic support matrices which is depend on S , then the arithmetic

complexity to compute the rank of M with probability 1 − ǫ is bounded by max(p, q)3.

Remark 3.11. Here, we assume that the constant ai are taken randomly in a given set S , hence

the error probabilities for the rank computation depends on the size of the set S , the size of the

input matrix and the degree of the entries of the matrix. To avoid the probability, one can derive

deterministic bounds by using, for instance, test-sets of points(Recio , 2018).

Now we give the complexity of Algorithm 1.

Theorem 3.12. The total complexity of Algorithm 1 is bounded by

O∗
(
|E |n25.5s16µ6.5(log2 d) ǫ

)
,

where |E | is the cardinality of the set that indexes the rows and columns of Newton matrix M

corresponds to P̂, µ is the maximum point cardinality of the n+1 supports w.r.t. P, d is the degree

bound of any polynomial in any variable, and ǫ is the error probability of the Algorithm.

Proof. We analyze the computational complexity for each step of Algorithm 1.
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Step 1. The first step is to compute the rank of symbolic support matrix DP whose size is

(n+1)×n. By Lemma 3.10, the arithmetic complexity is bounded by O∗(n3) with error probability

ǫ1.

Step 2. The complexity of this step can be ignored.

Step 3. This step is to find the super essential system of P. Consider the worst case which

means the super essential system only contains two polynomials. Thus we need (n − 1) loops

from (n+1) to 2. In the k-th loop, one need to compute the rank of a matrix with size (n+1−k)×n.

Then, by Lemma 3.10, the arithmetic computational cost of this step is
∑n−1

k=0[(n+1−k)2n] = O(n3)

with error probability ǫ2.

Step 4. By (Moenck , 1973), it needs at most O(d(log d)2) steps to compute the gcd of two

polynomials in Z[x], so the arithmetic complexity of computing the gcd of F ∈ Z[x] is bounded

by (m − 1)d(log d)2. By (Ollivier , 2010), using Jacobi’s algorithm, the arithmetic complexity of

Jacobi number is bounded by O(n3).

Step 5. The fifth step is to look for the algebraic essential system with minimal ranking P,

which is similar to the third step except for the big size algebraic symbolic support matrix. And

one need to compute the rank ofD
P̂

and the sub-matrix of the symbolic matrix of P̂e.

We consider the worst case. Denote by s = maxi(ord(Pi)) the maximal order of Pi. The

worst case is the Jacobi number Ji = ms and p = 0, then the number of polynomials in the set

P̂e is bounded by (ms + 1)(m + 1). Then the symbolic support matrix of P̂e has the size bounded

by (ms + 1)(m+ 1)× ((ms+ 1)(m+ 1) − 1), and thus the arithmetic complexity of computing the

rank is bounded by O(m6s3) with error probability ǫ3 for each loop by Lemma 3.10. In analogy

with Step 3, the arithmetic computational time in this step is bounded by O(m8s4) with error

probability ǫ4. Hence, the arithmetic complexity in this step is bounded by O(n8s4) with error

probability ǫ4 since m ≤ n.

Step 6. To select n−rank(DP) variables inP to 1, we can determine these variables according

the result obtained from Step 5. To take a variable transformation for P̂ to make it be a strong

essential system, we only need to compute the Smith normal form of the matrix formed by

the support vector of the monomials in P̂. The monomials are bounded by (ns + 1)µ, where

µ is the maximum point cardinality of the n + 1 supports w.r.t. P, hence the matrix size are

bounded by (ns + 1)µ × (ns + 1)(n + 1), the arithmetic complexity of this step is bounded by

O(n6s4µ2(log d)1+θ) (Storjohann , 2000, Proposition 8.10), where 0 < θ < 1 is a small positive

number.

Step 7. Now, consider the degree and size of P̂. The number of polynomials of P̂ is

bounded by (ns + 1)(n + 1). Comparing with the original system P, the degree keep invari-

ant and the maximum point cardinality of the supports is bounded by (ns + 1)µ. Hence, by

Theorem 3.9, the arithmetic complexity to compute the sparse resultant of P̂ is bounded by

O∗
(
|E |n25.5s16µ6.5 log2 d log 1

ǫlǫσ

)
, where |E | is the cardinality of the set that indexes the rows

and columns of Newton matrix M corresponds to P̂, µ is the maximum point cardinality of the

n + 1 supports w.r.t. P, d is the maximum degree of any polynomial Pi in any variable, and

ǫl, ǫσ ∈ (0, 1) are the error probabilities for the lifting scheme and the perturbation, respectively.

Let ǫ be the total error probability for the whole Algorithm. Summarizing the above com-

plexity analysis yields the total complexity. The proof ends.

3.4. Implementation and Examples

Algorithm 1 for finding the sparse difference resultant described above has been imple-

mented in the computer algebra systems Mathematica and Maple. The complied function SDResul-
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tant with Mathematica outputs the strong essential polynomial system, and then calling mixed

subdivision method with Maple in (Canny , 1995) gives the required sparse difference resultant

which corresponds to the sparse resultant of the obtained strong essential polynomial system.

The interface of SDResultant only need two arguments: the difference polynomial system and

the difference indeterminates. The function SDResultant will automatically check whether the

input difference polynomial system is Laurent transformally essential or not. If yes, the function

SDResultant returns the strong essential polynomial system.

There exist two obvious merits for Algorithm 1. One merit of SDResultant is that, by

characterizing the difference polynomials with the corresponding symbolic support matrix, it

only requires the techniques of linear algebra, such as computing the rank of matrices, row

reduction and so on, to discriminate the related conditions and finally output the strong essential

polynomial system. Another one is that the algorithm finally gives the matrix representation of

sparse difference resultant which may facilitate to show the properties and explore fast algorithms

for sparse difference resultant.

3.4.1. An artificial example

In this section, we illustrate the Algorithm 1 by an artificial difference polynomial system

P = {P0,P1,P2,P3,P4}, where yi j = y
( j)

i
and

P0 = u00 + u01 y2
11y2

21y31 + u02 y2
1y2y3y4y41,

P1 = u10 + u11 y2
11y2

21y31 + u12 y2
11y21y31y41y42,

P2 = u20 + u21 y2
12y2

22y32 + u22 y2
11y2

21y31 + u23 y2
1y2y3y4y41,

P3 = u30 + u31 y11y21 + u32 y2
11y21y31y42,

P4 = u40 + u41 y11y32y41 + u42 y2
11y22y4.

1. Concrete computations

The first step is to check whether or not the difference system P is transformally essential.

The symbolic support matrix of P is

DP =



2xu01 + 2u02 2xu01 + u02 xu01 + u02 (x + 1)u02

2xu11 + 2xu12 2xu11 + xu12 xu11 + xu12 (x2 + x)u12

2u21x2 + 2u22x + 2u23 2u21x2 + 2u22x + u23 u21x2 + u22x + u23 (x + 1)u23

xu31 + 2xu32 xu31 + xu32 xu32 x2u32

xu41 + 2xu42 x2u42 x2u41 xu41 + u42


.

It is easy to find rk(DP) = 4, thus P is transformally essential.

By the third step of the Algorithm 1, the super essential system of P is PT = {P0,P1, P2}

with T = {0, 1, 2}, which is independent of P3 and P4. The symbolic support matrix of PT is

DPT
=


2xu01 + 2u02 2xu01 + u02 xu01 + u02 (x + 1)u02

2xu11 + 2xu12 2xu11 + xu12 xu11 + xu12 (x2 + x)u12

2u21x2 + 2u22x + 2u23 2u21x2 + 2u22x + u23 u21x2 + u22x + u23 (x + 1)u23

 .
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Since the submatix M of DPT
by deleting the middle two columns is

A14 =


2xu01 + 2u02 (x + 1)u02

2xu11 + 2xu12 (x2 + x)u12

2u21x2 + 2u22x + 2u23 (x + 1)u23

 ,

whose rank is 2, then by Theorem 3.4, we set y2 and y3 and their transformations to 1, then

P̃T = {P̃0, P̃1, P̃2}, where

P̃0 = u00 + u01 y2
11 + u02 y2

1 y4 y41,

P̃1 = u10 + u11 y2
11 + u12 y2

11 y41 y42,

P̃2 = u20 + u21 y2
12 + u22 y2

11 + u23 y2
1 y4 y41.

Note that by Theorem 3.4, one can delete any two columns to find the submatrix with rank

2. For example, by deleting the last two columns of DPT
, one also obtain the submatrix A12. The

rank of A12 is 2 and one can set y3 and y4 and their differences to 1 to get the new simplified

super essential difference system.

The order matrix of P̃T is


1 1

1 2

2 1

, then the Jacobi numbers are J0̂ = 4, J1̂ = J2̂ = 3. Since

the last column of A14 has a common factor (x + 1), thus by Proposition 3.6, the modified Jacobi

numbers are J̃0̂ = J0̂ − 1 = 3, J̃1̂ = J1̂ − 1 = 2, J̃2̂ = J2̂ − 1 = 2. Then we use the modified Jacobi

numbers J̃î (i = 0, 1, 2) to construct an algebraic system P̂ = {P̃
[J̃0̂]

0
, P̃

[J̃1̂]

1
, P̃

[J̃2̂]

2
}.

The following steps are performed in algebraic circumstance. For the system P̂, we first

search for an essential system with minimal ranking, and then perform a variable transformation

for the essential system, i.e.,

P̂ = {P̃0, σP̃0, σ
2P̃0, P̃1, σP̃1, P̃2, σP̃2}

=
{
u00 + z4u01 + z1u02, σu00 + z5σu01 + z2σu02, σ

2u00 + z6σ
2u01 + z3σ

2u02,

u10 + z4u11 + z2u12, σu10 + z5σu11 + z3σu12,

u20 + z5u21 + z4u22 + z1u23, σu20 + z6σu21 + z5σu22 + z2σu23

}
, (10)

where z1 = y2
1
y41, z2 = y2

11
y42y41, z3 = y2

12
y42, z4 = y2

11
, z5 = y2

12
, z6 = y2

13
.

Finally, regard P̂ as the algebraic polynomial system of z1, . . . , z6 and use the mixed sub-

division algorithm in (Canny , 1995) to obtain the sparse algebraic resultant of P̂ which is the

required sparse difference resultant R. This step cannot be done by hand and will be performed

on a computer in next subsection.

Remark 3.13. The modified Jacobi numbers reduce the dimensions of symbolic support matrices

from 13×12 to 10×9 in searching the algebraic essential system with minimal ranking. Moreover,

the modified Jacobi numbers will drop the complexity of the searching algorithm for sparse

difference resultant in (Li , 2015b).

2. Implementation

We use the complied package SDResultant and the mixed subdivision algorithm to automat-

ically compute the sparse difference resultant of P. The program can be found in
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https://github.com/cmyuanmmrc/codeforsdr.

Note that, recently, a package to compute the sparse resultant of algebraic polynomial system

is given in Macaulay2 in Staglian (2020). Thus maybe it is an alternative way to look for the

sparse resultant of the algebraic case in our algorithm.

Firstly, we transform the target difference polynomial system P to the given form. Input the

difference polynomial system P = {P0,P1,P2,P3,P4} in the form

P0 = u00(i) + u01(i) y(1, i + 1)2 y(2, i + 1)2 y(3, i + 1)

+u02(i) y(1, i)2 y(2, i) y(3, i) y(4, i) y(4, i+ 1),

P1 = u10(i) + u11(i) y(1, i + 1)2 y(2, i + 1)2 y(3, i + 1)

+u12(i) y(1, i + 1)2 y(2, i + 1) y(3, i + 1) y(4, i + 1) y(4, i + 2), (11)

P2 = u20(i) + u21(i) y(1, i + 2)2 y(2, i + 2)2 y(3, i + 2)

+u22(i) y(1, i + 1)2 y(2, i + 1)2 y(3, i + 1) + u23(i) y(1, i)2 y(2, i) y(3, i) y(4, i) y(4, i+ 1),

P3 = u30(i) + u31(i) y(1, i + 1) y(2, i + 1) + u32(i) y(1, i + 1)2 y(2, i + 1) y(3, i + 1) y(4, i + 2),

P4 = u40(i) + u41(i) y(1, i + 1) y(3, i + 2) y(4, i + 1) + u42(i) y(1, i + 1)2 y(2, i + 2) y(4, i).

Firstly, applying the package SDResultant to system (10) gives a strong essential system

{
u00(i) + z(5)z(3)2u01(i) + z(1)u02(i), u00(i + 1) + z(4)2z(6)u01(i + 1) + z(3)u02(i + 1),

u00(i + 2) + z(2)u01(i + 2) + z(4)u02(i + 2), u10(i) + z(5)z(3)2u11(i) + z(3)u12(i),

u10(i + 1) + z(6)z(4)2u11(i + 1) + z(4)u12(i + 1),

u20(i) + z(4)2z(6)u21(i) + z(5)z(3)2u22(i) + z(1)u23(i),

u20(i + 1) + z(2)u21(i + 1) + z(6)z(4)2u22(i + 1) + z(3)u23(i + 1)
}
,

where z(i) are the same as zi in system (10). It takes 50.796 seconds by the order TimeUsed[]

in Mathematica 10. Observe that the first three polynomials P0,P1 and P2 constitute a super-

essential system while the last two P3 and P4 are redundant. Obviously, system (12) can be

further simplified to the following form

{
u00(i) + w(4)u01(i) + w(1)u02(i), u00(i + 1) + w(6)u01(i + 1) + w(3)u02(i + 1),

u00(i + 2) + w(2)u01(i + 2) + w(5)u02(i + 2), u10(i) + w(4)u11(i) + w(3)u12(i),

u10(i + 1) + w(6)u11(i + 1) + w(5)u12(i + 1),

u20(i) + w(6)u21(i) + w(4)u22(i) + w(1)u23(i),

u20(i + 1) + w(2)u21(i + 1) + w(6)u22(i + 1) + w(3)u23(i + 1)
}
, (12)

where w(i) = z(i) (i = 1, 2, 3, 5),w(4) = z(5)z(3)2,w(6) = z(4)2z(6).

Then we regard system (12) as an algebraic polynomial system in w(i) (i = 1, . . . , 6), and

then with the mixed subdivision algorithm find the matrix representation of the sparse resultant
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R in the form

M =



u10(i + 1) u11(i + 1) u12(i + 1) 0 0 0 0

u20(i) u21(i) 0 u22(i) 0 0 u23(i)

u00(i + 2) 0 u02(i + 2) 0 0 u01(i + 2) 0

u10(i) 0 0 u11(i) u12(i) 0 0

u00(i + 1) u01(i + 1) 0 0 u02(i + 1) 0 0

u20(i + 1) u22(i + 1) 0 0 u23(i + 1) u21(i + 1) 0

u00(i) 0 0 u01(i) 0 0 u02(i)



(13)

The time to construct the matrix in Maple 18 is 4.641 seconds. Then the required sparse

difference resultant R of system (11) is

R = Det[M]

= u01(2 + i)u02(i)u02(1 + i)u11(i)u12(1 + i)u20(1 + i)u21(i)

−u02(i)u02(1 + i)u02(2 + i)u11(i)u11(1 + i)u20(i)u21(1 + i)

+u02(i)u02(1 + i)u02(2 + i)u10(1 + i)u11(i)u21(i)u21(1 + i)

−u00(2 + i)u02(i)u02(1 + i)u11(i)u12(1 + i)u21(i)u21(1 + i)

+u01(1 + i)u01(2 + i)u02(i)u12(i)u12(1 + i)u20(1 + i)u22(i)

+u02(i)u02(1 + i)u02(2 + i)u10(i)u11(1 + i)u21(1 + i)u22(i)

+u01(1 + i)u02(i)u02(2 + i)u10(1 + i)u12(i)u21(1 + i)u22(i)

−u00(1 + i)u02(i)u02(2 + i)u11(1 + i)u12(i)u21(1 + i)u22(i)

−u00(2 + i)u01(1 + i)u02(i)u12(i)u12(1 + i)u21(1 + i)u22(i)

−u01(2 + i)u02(i)u02(1 + i)u11(i)u12(1 + i)u20(i)u22(1 + i)

+u01(2 + i)u02(i)u02(1 + i)u10(i)u12(1 + i)u22(i)u22(1 + i)

−u00(1 + i)u01(2 + i)u02(i)u12(i)u12(1 + i)u22(i)u22(1 + i)

−u01(i)u01(1 + i)u01(2 + i)u12(i)u12(1 + i)u20(1 + i)u23(i)

−u01(i)u02(1 + i)u02(2 + i)u10(i)u11(1 + i)u21(1 + i)u23(i)

+u00(i)u02(1 + i)u02(2 + i)u11(i)u11(1 + i)u21(1 + i)u23(i)

−u01(i)u01(1 + i)u02(2 + i)u10(1 + i)u12(i)u21(1 + i)u23(i)

+u00(1 + i)u01(i)u02(2 + i)u11(1 + i)u12(i)u21(1 + i)u23(i)

+u00(2 + i)u01(i)u01(1 + i)u12(i)u12(1 + i)u21(1 + i)u23(i)

−u01(i)u01(2 + i)u02(1 + i)u10(i)u12(1 + i)u22(1 + i)u23(i)

+u00(i)u01(2 + i)u02(1 + i)u11(i)u12(1 + i)u22(1 + i)u23(i)

+u00(1 + i)u01(i)u01(2 + i)u12(i)u12(1 + i)u22(1 + i)u23(i)

+u01(1 + i)u01(2 + i)u02(i)u11(i)u12(1 + i)u20(i)u23(1 + i)

−u00(1 + i)u01(2 + i)u02(i)u11(i)u12(1 + i)u21(i)u23(1 + i)

−u01(1 + i)u01(2 + i)u02(i)u10(i)u12(1 + i)u22(i)u23(1 + i)

+u01(i)u01(1 + i)u01(2 + i)u10(i)u12(1 + i)u23(i)u23(1 + i)

−u00(i)u01(1 + i)u01(2 + i)u11(i)u12(1 + i)u23(i)u23(1 + i).
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Thus the total time to compute the sparse difference resultant R of system (11) is 51.688 +

4.641 = 56.329 seconds. Though the time is not very good, it is the first computable algorithm for

the sparse difference resultant while the algorithm in Li (2015b) is not performed on computer.

3.4.2. Several practical examples

We show how to solve difference problems with the sparse difference resultant algorithm by

considering several practical examples.

Example 1. The n-th Fibonacci number

The second example is also about the n-th Fibonacci number Fn. We show the sequence

An := F2n satisfy a nonlinear difference equation (Ekhad , 2014). Let Bn = F2n+1. Then standard

identities of Fibonacci numbers implies two difference equations (Ovchinnikov , 2020)

P0 = An+1 − An(2Bn − An) = 0, P1 = Bn+1 − A2
n − B2

n = 0. (14)

After rewriting system (14) in the Mathematica form P0 = u(i+1)−u(i)(2y(1, i)−u(i)), P1 =

y(1, i+1)−u(i)2−y(1, i)2, then with our SDResultant algorithm, we take 0.922 seconds to obtain

the strong essential system

{
− 2z(1)u(i) + u(i)2 + u(i + 1),−2z(2)u(i+ 1) + u(i + 1)2 + u(i + 2),−u(i)2 − z(1)2 + z(2)

}
.

Then eliminate the variables z(1) and z(2) by means of the mixed subdivision algorithm, we take

0.015 seconds and obtain a 4 × 4 matrix whose determinant is −5u(i + 1)u(i)4 + 2u(i + 2)u(i)2 −

u(i+ 1)3 = 0 which is the required nonlinear difference equation in An by recovering the original

variables.

Example 2. The stage structured Leslie-Gower model

The third example is to consider the stage structured Leslie-Gower model (Henson , 2007)

P0 = (1 + d1An)Jn+1 − b1An,

P1 = (1 + Jn + c1 jn)An+1 − e1Jn,

P2 = (1 + d2an) jn+1 − b2an,

P3 = (1 + c2Jn + jn)an+1 − e2 jn. (15)

We want to eliminate An, Jn and jn to find the relation of an. Again rewriting system (15) in

the Mathematica form, and by means of the package SDResultant, we take 40.499 seconds to

find the strong essential system

{
− b1z(1) + d1z(3)z(1) + z(3), c1z(4)z(1) − e1z(2) + z(2)z(1) + z(1),

z(5) (d2u(i + 2) + 1) − b2u(i + 2), c2z(2)u(i + 2) + z(4) (u(i + 2) − e2) + u(i + 2),

z(4) (d2u(i) + 1) − b2u(i), c2z(3)u(i + 4) + z(5) (u(i + 4) − e2) + u(i + 4)
}
, (16)

where u[i] = an and z(i) (i = 1, . . . , 5) are temporary variables.

Then one can use mixed subdivision method to get the sparse resultant of system (16), we

spend 0.954 seconds to obtain a 8 × 8 matrix M1 and a 2 × 2 matrix M2. Then the quotient of
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|M1|/|M2| is the condition for an

an+4 (d2an+2 + 1) (∆ − b1c2e1an+2 (d2an + 1))

+b2

[
an+2an+4 (∆ − b1c2e1an (d2an+2 + 1)) + e2an+2 (b1c2d2e1anan+4 − ∆) + e2b1c2e1anan+4

]
,

where ∆ = b2e2 (d1e1 + 1) an − an+2 (d1e1 + 1) ((b2 + d2) an + 1) − c2an+2 (an (b2c1 + d2) + 1).

Example 3. The May-Leonard model for 2-plant annual competition

The fourth example is to consider the May-Leonard model for 2-plant annual competition.

We first verify whether yn can be eliminated from the May-Leonard model for 2-plant annual

competition which was considered in (Roeger , 2004; Ovchinnikov , 2020),

P0 = (xn+1 − bxn)(xn + α1yn) + (b − 1)xn,

P1 = (yn+1 − byn)(α2xn + yn) + (b − 1)yn, (17)

where b, αi, (i = 1, 2) are parameters.

We regard xn as a parameter variable and yn as unknown variable, then the Jacobi numbers

are J0 = 1, J1 = 0. Then difference P0 by once, and together with P1 we obtain three difference

polynomials. By the package SDResultant, input system (17) in Mathematica form

P0 = (u(i + 1) − bu(i)) (α1y(1, i) + u(i)) + (b − 1)u(i),

P1 = (y(1, i + 1) − by(1, i)) (+y(1, i) + α2u(i)) + (b − 1)y(1, i),

where xn = u(i), yn = y(1, i). Then we spend 2.418 seconds to find the strong essential system

{
z(1) (α1u(i + 1) − α1bu(i)) + u(i)(−bu(i)+ b + u(i + 1) − 1),

z(2) (α1u(i + 2) − α1bu(i + 1)) + u(i + 1)(−bu(i + 1) + b + u(i + 2) − 1),

z(1) (−α2bu(i) + b − 1) − bz(1)2 + α2z(2)u(i) + z(2)z(1)
}
. (18)

Then with the mixed subdivision method to eliminate the variables z(1) and z(2) from system

(18), we get a 4 × 4 square matrix whose determinant is the the difference polynomial after

recovering u[i] to xn

(α1α2 − 1) b3x3
n (bxn+1 − xn+2) + b2x2

n

[
xn+1 ((b − 1) (−α1 (α2(b − 1) + b) + 2b − 1)) xn+2

+3xn+1 (α1α2 − 1) (1 − bxn+1) + (α1 (α2 + 1) − 2) (b − 1)xn+2

]
+ α1α2 x3

n+1(xn+2 − bxn+1 + b − 1)

+bxn

[
3 (α1α2 − 1) x3

n+1(bxn+1 − xn+2) + x2
n+1 ((b − 1) (α1α2(b − 2) + 2bα1 − 3b + 2))

+(b − 1)xn+1 ((b − 1) (α1b − b + 1) − (α1 (α2 + 2) − 3) xn+2) − (α1 − 1) (b − 1)2xn+2

]

+xn+1 (b + xn+1 − 1)
(
−xn+1 (α1(b − 1)b + b + xn+2 − 1) + α1(b − 1)xn+2 + bx2

n+1

)
.

Example 4. The May-Leonard model for 3-plant annual competition

Finally, we consider the May-Leonard model for 3-plant annual competition and verify

whether yn and zn can be eliminated from it which was considered in (Roeger , 2004; Ovchinnikov ,
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2020),

P0 = (xn+1 − bxn)(xn + α1yn + β1zn) + (b − 1)xn,

P1 = (yn+1 − byn)(α2xn + yn + β2zn) + (b − 1)yn,

P2 = (zn+1 − bzn)(α3xn + β3yn + zn) + (b − 1)zn, (19)

where b, αi, βi (i = 1, 2, 3) are parameters. By means of SDResultant algorithm, we take xn

as a parameter variable and yn, zn as two unknown variables, then the Jacobi numbers are J0 =

2, J1 = J2 = 1. Then difference P0 by twice, P1 and P2 by once respectively, and we obtain seven

difference polynomials. Again by the package SDResultant, input system (19) in Mathematica

form

P0 = (u(i + 1) − bu(i)) (α1y(1, i) + β1y(2, i) + u(i)) + (b − 1)u(i),

P1 = (y(1, i + 1) − by(1, i)) (β2y(2, i) + y(1, i) + α2u(i)) + (b − 1)y(1, i),

P2 = (y(2, i + 1) − by(2, i)) (β3y(1, i) + y(2, i) + α3u(i)) + (b − 1)y(2, i),

where xn = u(i), yn = y(1, i), zn = y(2, i), it takes 12.032 seconds to obtain the strong essential

system

{
(u(i + 1) − bu(i)) (u(i) + α1z(1) + β1z(4)) + (b − 1)u(i),

(u(i + 2) − bu(i + 1)) (u(i + 1) + α1z(2) + β1z(5)) + (b − 1)u(i + 1),

(u(i + 3) − bu(i + 2)) (u(i + 2) + α1z(3) + β1z(6)) + (b − 1)u(i + 2),

(z(2) − bz(1)) (α2u(i) + β2z(4) + z(1)) + (b − 1)z(1),

(z(3) − bz(2)) (α2u(i + 1) + β2z(5) + z(2)) + (b − 1)z(2),

(z(5) − bz(4)) (α3u(i) + β3z(1) + z(4)) + (b − 1)z(4),

(z(6) − bz(5)) (α3u(i + 1) + β3z(2) + z(5)) + (b − 1)z(5)
}
. (20)

Then regarding (20) as an algebraic polynomial system about z(i) (i = 1, . . . , 6), with the

mixed subdivision method we spend 16.812 seconds to get the sparse resultant of system (20)

which is the sparse difference resultant of system (19). The sparse difference resultant is the

quotient of two determinants, the determinant of a 163 × 163 matrix divided by the one of a

122 × 122 matrix, of total degree at most 41 in the parameter variables. In general, the com-

putation of determinant of large matrixes including parameters is not an easy work while for

some specializations of the parameters one can resort to division method and the greatest com-

mon divisor technique (Canny , 2000). Note that the sparse difference resultant is not equal to

zero identically since it is not zero for the particular values b = 2, α3 = β1 = 0 and the other

parameters α1 = α2 = β2 = β3 = 1, but it is still very large.

In Table 1, the runtimes of computing the sparse difference resultants for the above examples

are collected in the first three columns while the runtimes of the algorithm in Ovchinnikov

(2020) are listed in the fourth column. In particular, the column “Difference” represent the

running time implemented in Mathematica for finding the strong essential polynomial system

while the column “Algebraic” are the ones using the mixed subdivision method in Canny (1995)

to get the matrix representation of sparse difference resultant. The column “Total” denote the

sums of the running time in the two columns “Difference” and “Algebraic” and the running time

of computing the determinants found by the function “AbsoluteTiming()” in Mathematica. Note
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Table 1: Comparisons of the runtimes and the sizes of matrix

Examples Difference(s) Algebraic(s) Total(s) Ovchinnikov (2020) Our sizes Li (2015b)

Artificial 94.614 4.641 99.256 # 10 × 9 13 × 12

1 0.922 0.015 0.938 0.06 3 × 2 3 × 2

2 40.499 0.954 41.456 18.71 13 × 12 13 × 12

3 2.418 0.063 2.483 0.6 3 × 2 3 × 2

4 12.032 16.812 > 1000 > 1000 7 × 6 7 × 6

that the running time for computing the determinant of lower-order matrixes are very short, but

for Example 4, we can not get the explicit expression from the matrix representation within 1000

seconds. The last two columns are the comparisons of the matrix sizes of our algorithm with

the one in Li (2015b). The matrixes for the comparison are the symbolic support matrixes,

which respectively correspond to the difference polynomial system by difference the new super-

essential system in step 4 with the new Jacobi number and the ones by difference the super-

essential system in step 3 with the original Jacobi number.

Table 1 shows that for the simple examples, the runtimes by the algorithm in Ovchinnikov

(2020) is shorter than ours, but for some complex example, such as the artificial example, our

algorithm can give the matrix representation of the sparse difference resultant and find the corre-

sponding eliminated polynomial, while with the package in Ovchinnikov (2020) we encounter

an error. In particular, for example 4, both our algorithm and the one in Ovchinnikov (2020)

runs the times larger than 1000 seconds, where the difficulty for the former is the computation

of determinant of large matrixes while the latter calls Gröbner basis algorithm, but our algorithm

can represent the eliminated polynomial as the quotient of determinants of two matrixes and give

the explicit result for some specializations of the parameters.

4. Conclusion

Sparse difference resultant for a Laurent transformally essential system is further studied and

new order bounds are obtained. We use the difference specialization technique to simplify the

computation of the sparse difference resultant. Based on these results, we give an efficient al-

gorithm to compute sparse difference resultants. We analyze the complexity of the algorithm

and illustrate the efficiency by an artificial and several practical examples. To the best of our

knowledge, our algorithm and its implementation are the first automatic algorithm to compute

the sparse difference resultant and to give the matrix representations. The polynomial time com-

plexity makes our algorithm more efficient for some complicated examples.
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G. Staglian ò, A package for computations with sparse resultants, 2020. URL https://arxiv. org/abs/2010.00286.

22

http://arxiv.org/abs/1201.5810
http://arxiv.org/abs/0911.2674

	1 Introduction
	2 Preliminaries
	2.1 blackOn the sparse resultant
	2.2 Sparse difference resultant

	3 Main results
	3.1 Theoretical preparations
	3.2 A new algorithm for sparse difference resultant
	3.3 Complexity of the algorithm
	3.4 Implementation and Examples
	3.4.1 An artificial example
	3.4.2 Several practical examples


	4 Conclusion

