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Abstract

We apply some of the latest techniques from machine-learning to the arith-

metic of hyperelliptic curves. More precisely we show that, with impressive

accuracy and confidence (between 99 and 100 percent precision), and in very

short time (matter of seconds on an ordinary laptop), a Bayesian classifier can

distinguish between Sato–Tate groups given a small number of Euler factors

for the L-function. Our observations are in keeping with the Sato-Tate conjec-

ture for curves of low genus. For elliptic curves, this amounts to distinguishing

generic curves (with Sato–Tate group SU(2)) from those with complex multi-

plication. In genus 2, a principal component analysis is observed to separate

the generic Sato–Tate group USp(4) from the non-generic groups. Furthermore

in this case, for which there are many more non-generic possibilities than in

the case of elliptic curves, we demonstrate an accurate characterisation of sev-

eral Sato–Tate groups with the same identity component. Throughout, our

observations are verified using known results from the literature and the data

available in the LMFDB. The results in this paper suggest that a machine can

be trained to learn the Sato–Tate distributions and may be able to classify

curves efficiently.
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1 Introduction & Summary

There is a strong tradition of machine aided computation in number theory, which

has been used to formulate and verify a wide range of arithmetic conjectures. In

this paper, we pursue a data-driven approach to a classification problem in arith-

metic geometry. In particular, we study the utility of machine-learning strategies for

determining the Sato–Tate groups of genus 1 and genus 2 curves.

The original Sato–Tate conjecture is concerned with the distribution of Euler fac-

tors associated to elliptic curves over number fields. In recent years, there has been

remarkable progress made towards this conjecture, which would be a corollary to
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establishing certain analytic properties of symmetric power L-functions. The neces-

sary analytic behaviour would be a consequence of Langlands functoriality. In fact,

it is sufficient to prove potential automorphy (automorphy after base change to a

field extension). This idea has been used to establish the Sato–Tate conjecture for

elliptic curves over various fields [Tay08], [HSBT], [ACCG+]. There is also a body of

literature for more general Hilbert modular forms.

A precise analogue of the Sato–Tate conjecture for genus 2 curves over number

fields was formulated in [KS09, FKRS12]. In this context, there are 52 possible dis-

tributions corresponding to various endomorphism types of the Jacobian. For genus

2 curves defined over Q, the number of possibilities is reduced to 34. Each distri-

bution can be described by the Haar measure of a compact Lie group known as the

Sato–Tate group. The generalized Sato–Tate conjecture asserts that the distribution

of the Euler factors converges to the distribution of the characteristic polynomials of

random matrices in the Sato–Tate group.

As with elliptic curves, the Sato–Tate conjecture for genus 2 curves would follow

from the Langlands functoriality conjectures [FKRS12, Section 1.7]. The Sato–Tate

conjecture for non-generic genus 2 curves over Q has been established by F. Fité,

A. Sutherland, C. Johansson and N. Taylor [FS14, Joh17, Tay20]. Conditional on

the Sato–Tate conjecture, one may compute the Sato–Tate group of a genus 2 curve

by evaluating moments of the coefficients appearing in normalized Euler factors and

comparing to the corresponding statistics for characteristic polynomials of random

matrices. This approach was adopted in [KS09]. The Sato–Tate groups on the

LMFDB were confirmed by an unconditional approach in [CMSV] to compute the

real endomorphism algebra. See [BSSVY, Section 4.4] for more explanation.

In parallel to the above developments, a recent programme of machine-learning

mathematical structures was initiated in [He1,He2]. Whilst this was originally moti-

vated by computing topological invariants of Calabi–Yau compactifications in super-

string theory [He2,KS,Ru,CHKN] (q.v., [HeBook] for a summary), the idea of using

machine-learning for pattern-recognition and conjecture-raising has been applied to

various branches of mathematics, such as representation theory [HK], graph theory

[HY], metric geometry [AHO], knot invariants [JKP], quiver mutations [BFHHMX],

etc. The reader is also pointed to interesting early [Sh] and recent [KV] experiments

in neural-network explorations of the famous zeros of the Riemann zeta function.

Machine learning techniques were applied to databases of elliptic curves in [ABH].

In that work, the data consisted of the Weierstraß coefficients for each curve. These

coefficients vary in size dramatically, which partially accounted for the difficulty in

mining the data. Very recently, the present authors implemented machine-learning
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strategies for a range of arithmetic structures [HLOi], [HLOii].

In this paper, we study the (conditional) computation of Sato–Tate groups via

machine-learning techniques. Naturally, this approach requires a large amount of data

to train the algorithm. Much data can be sourced from the LMFDB, which enables a

classifier to efficiently distinguish certain pairs of genus 2 Sato–Tate groups [LMFDB].

There are not enough examples of curves for the other Sato–Tate groups for a full

classification, and so we turn to random matrices to generate our training data.

Using this, we are able to establish a finer classification which, for example, can

distinguish curves from 5 Sato–Tate groups with the same identity component. The

most successful algorithm is the naive Bayes classifier. Applying the same method,

we can train a classifier with data coming from random matrices of the 34 Sato–Tate

groups for genus 2 curves over Q. Nevertheless, for the present, we are unable to

verify the accuracy of a full 34-way classification due to a lack of available data.

The organization of this paper is as follows. In Section 2, the generalized Sato–

Tate conjecture for arithmetic curves will be reviewed as the main mathematical

background for this paper. In Section 3, machine-learning techniques will be applied

to certain binary classifications of curves. In Section 4, we go beyond the binary

classification and consider a multi-way classification of genus 2 curves corresponding

to Sato–Tate groups with a common identity component. Throughout, we compare

the machine learning method with other approaches to computation of the Sato–Tate

groups, and observe that machine-learning is efficient for the task.
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2 Background

In this section we review the essential mathematical theory which constitutes the

main theme of this paper.
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2.1 CM elliptic curves

Let E be an elliptic curve over Q. With minor modifications, it is possible to replace

Q with any number field. Recall that the (Hasse–Weil) L-function depends only on

the isogeny class of E and captures many of its deep arithmetic properties. This

function is given by an Euler product:

L(s, E) =
∏
p|N

(1− app−s)−1
∏
p-N

(1− app−s + p−2s)−1 , (2.1)

where N is the conductor, which controls primes of good and bad reduction.

The elliptic curve E is said to have CM if its ring of endomorphisms is strictly larger

than the ring of integers. In terms of the Sato–Tate conjecture, a CM elliptic curve

has the distribution of normalized Euler factors converging to that of characteristic

polynomials of random matrices in the normalizer N(U(1)) of U(1) in SU(2), while

a non-CM curve has the distribution of normalized Euler factors converging to that

of characteristic polynomials of SU(2). In a rigorous sense explained in the next

subsection, non-CM curves are generic, while CM curves are exceptional.

An elliptic curve E has CM, or equivalently, its Sato–Tate group is N(U(1)) if its

j-invariant is one of 13 integers listed ∗ in [Sil2, Appendix A, Section 3]. This criterion

for CM curves is based on the result of Heegner–Baker–Stark. The j-invariant is an

elementary function in terms of the Weierstraß coefficients. On the other hand, the

Dirichlet coefficients {ap} encode CM in other ways. If E over Q has CM by the

integers in an imaginary quadratic number field K, then there is a Hecke character

ψ on A×K such that L(s, E) = L(s, ψ) [Sil2, Theorem 10.5(b)]. It follows from the

Chebotarev density theorem that the following set has density 1/2 in the set of primes:

π(E) = {p prime : ap = 0}.

On the other hand, if E does not have CM then π(E) has density 0 in the primes [Ser81]

though π(E) is still infinite as demonstrated by Elkies [Elk87]. We note that it is in

fact possible to distinguish CM from non-CM, or, equivalently, to determine whether

the Sato–Tate group is N(U(1)) or SU(2), given only finitely many ap. There is a

∗Namely:

0, 24 33 53, −215 3 53, 26 33, 23 33 113, −33 53, 33 53 173, 26 53,

−215, −215 33, −218 33 53, −215 33 53 113, −218 33 53 233 293 .
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large body of literature concerned with questions of this nature, building on [LO75].

Our approach in this paper is to use machine-learning techniques.

2.2 Generalized Sato–Tate conjecture

In this section, we briefly overview the generalized Sato–Tate conjecture, in particular,

for genus 2 curves over Q. More details can be found in [KS09,FKRS12].

Let C be a smooth, projective, geometrically irreducible algebraic curve of genus

g defined over Q. (The elliptic curves over Q lay in the subclass of g = 1.) For each

prime p where C has good reduction, we define the zeta function by

Z(C/Fp;T ) = exp

(
∞∑
k=1

NkT
k/k

)
, (2.2)

where Nk is the number of the points on C over Fpk . It is well-known that the zeta

function can be written in the form

Z(C/Fp;T ) =
Lp(T )

(1− T )(1− pT )
, (2.3)

where Lp ∈ Z[T ] is a polynomial of degree 2g with constant term 1. In particular,

when g = 1, we have Lp(T ) = 1− apT + pT 2 where ap appears in the Euler factor of

the L-function in (2.1). If we set L̄p(T ) := Lp(p
−1/2T ), then we obtain

L̄p(T ) = T 2g + a1,pT
2g−1 + a2,pT

2g−2 + · · ·+ a2,pT
2 + a1,pT + 1 . (2.4)

We see that this normalization renders the L-function palindromic.

Let PC(N) be the set of primes p ≤ N for which the curve C has good reduction.

For 1 ≤ k ≤ g and m ≥ 0, define

ak(m; g) := lim
N→∞

1

|PC(N)|
∑

p∈PC(N)

(ak,p)
m. (2.5)

Thus the values ak(m; g), m ≥ 0, are the mth moments of the distribution of ak,p.

The generalized Sato–Tate conjecture predicts that curves of fixed genus g are

classified into certain families and that ak(m; g) are all the same for curves in each

family. In particular, there is a generic family of curves for each genus g, which
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is characterized by the property that the Jacobians of its members have the trivial

endomorphism ring Z. When g = 1, the generic family exactly consists of non-CM

elliptic curves.

The generalized Sato–Tate conjecture predicts that the distributions of L̄p(T ) are

actually the same as the distributions of the characteristic polynomials of random

matrices. To be precise, let us consider the group USp(2g) with the Haar probability

measure. Let

det(I − xγ) = x2g + c1x
2g−1 + c2x

2g−2 + · · ·+ c2x
2 + c1x+ 1 (2.6)

be the characteristic polynomial of a random matrix γ of USp(2g). For each k =

1, 2, . . . , g, let Xk be the random variable corresponding to the coefficient ck and

define ck(m; g) to be the mth moment E[Xm
k ], m ∈ Z≥0, of the random variable Xk.

The following is the generalized Sato–Tate conjecture for the generic families.

CONJECTURE 1 ( [KS99]) Let C be a smooth projective curve of genus g. As-

sume that C is in the generic family. Then, for each k = 1, 2, . . . , g and m ≥ 0, we

have

ak(m; g) = ck(m; g).

In the case that g = 2, a precise formula for ck(m; 2) is given in [FKRS12, Ta-

bles 9 & 10]. Given a genus 2 curve, one may compute Euler factors for primes

less than, say, N . The finite sum 1
|PC(N)|

∑
p∈PC(N)

(ak,p)
m provides an approximation to

ak(m; 2). Conditional on the Sato–Tate conjecture, we can check whether a curve is

generic by comparison with the formula for ck(m; 2). This identification is accurate

up to a certain probability (discussed in Section 5). We refer to this as the “heuristic”

computation of the Sato–Tate group.

EXAMPLE 1 The following genus 2 curve (LMFDB label: 11109.a.766521.1) is

from the generic family:

C : y2 + (x2 + x)y = x5 − x4 + x3 − 3x2 + 2x− 1.

Conditional on the Sato–Tate conjecture the sequences {ak(m; 2)} are as follows:

a1(m; 2) : 1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, 0, 4719, . . .

a2(m; 2) : 1, 1, 2, 4, 10, 27, 82, 268, 940, . . .
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Aside from the generic family of curves whose distribution is (expected to be)

given by USp(2g), there are exceptional families of curves. As mentioned in the

previous subsection, the CM curves form the exceptional family when g = 1, and the

distribution is given by the normalizer N(U(1)) of U(1) in SU(2) ∼= USp(2).

For genus 2 curves, there are a lot more of exceptional families. Kedlaya and

Sutherland [KS09] and later with Fité and Rotger [FKRS12] made a conjectural,

exhaustive list of 34 compact subgroups of USp(4) that would classify all the distri-

butions of Euler factors for genus 2 curves over Q, and called the groups Sato–Tate

groups. They determined the moment sequences ck(m; 2), k = 1, 2, for each Sato–

Tate group. In the process they investigated a huge number of genus 2 curves to

heuristically observe that Euler factors have the same distributions as the Sato–Tate

distributions, supporting their refined, generalized Sato–Tate conjecture. As with

generic curves, one may heuristically compute the Sato–Tate group of any genus 2

curve by first computing an approximation to the moments and then comparing to

the tables given in [FKRS12, Tables 9 & 10].

Since [FKRS12] appeared, the Sato–Tate conjecture for genus 2 curves over Q has

been established by C. Johansson and N. Taylor [Joh17,Tay20] except for the generic

case USp(4). In particular, this means that the heuristic computation in these cases

is no longer conditional (though it is still only valid up to a certain probability).

The auto-correlation functions of the Sato–Tate distributions are computed in [LO]

using irreducible characters of symplectic groups, which provides an alternative way

of characterizing the Sato–Tate distributions.

EXAMPLE 2 In Section 2.1, we saw that non-generic elliptic curves were charac-

terized by the density of vanishing coefficients. This can be predicted by computation

of characteristic polynomials of cosets of the identity components as in [LO]. For

example, when g = 1, the Sato–Tate group N(U(1)) for CM curves has the coset

decomposition

N(U(1)) = U(1) t J2 U(1),

where J2 :=

(
0 1

−1 0

)
, and the characteristic polynomial of the matrices from the coset

J2 U(1) is always 1 + x2. This shows that ap = 0 with density 1/2 for CM-curves. A

similar analysis can be done for genus 2 curves by considering coset decompositions.

In what follows, we define the Sato–Tate groups for genus 2 curves over Q. We

will adopt the same notations as in [FKRS12]. We take the group USp(4) to fix the
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symplectic form

 0 I2

−I2 0

, where I2 is the 2 × 2 identity matrix. Let Eij be the

4 × 4 elementary matrix which has (i, j)-entry equal to 1 and other entries equal to

0. Set

ĥ1 = E11 − E33, ĥ2 = E22 − E44.

We embed U(1) into USp(4) by

u 7 −→ diag(u, u, u−1, u−1).

For example, eπi/n is identified with

diag(eπi/n, eπi/n, e−πi/n, e−πi/n).

Embed SU(2) and U(2) into USp(4) by

A 7 −→

A 0

0 A

 , (2.7)

where A consists of the complex conjugates of the entries of A.

We fix an embedding

SU(2)× SU(2) ↪→ USp(4) (2.8)

in such a way that the induced Lie algebra embedding sl2(C)×sl2(C)→ sp4(C) gives

(h, 0) 7 −→ ĥ1 and (0, h) 7 −→ ĥ2,

where h =

(
1 0

0 −1

)
∈ sl2(C). From this, we also obtain the embeddings

U(1)× SU(2) ↪→ USp(4), U(1)× U(1) ↪→ USp(4).

Identify SU(2) with the group of unit quaternions via the isomorphism

a+ b iii + c jjj + dkkk 7→

 a+ bi c+ di

−c+ di a− bi

 , a, b, c, d ∈ R,

and also identify them with the corresponding elements in USp(4) through the em-
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bedding SU(2) ↪→ USp(4) in (2.7). For example, with this identification, we have

j =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

. Set Q1 = {±1,±i,±j,±k, 1
2
(±1± i± j± k}) and

Q2 =
{

1√
2
(±1± i), 1√

2
(±1± j), 1√

2
(±1± k), 1√

2
(±i± j), 1√

2
(±i± k), 1√

2
(±j± k)

}
.

We write ζζζ2n =

eπi/n 0

0 e−πi/n

 ∈ SU(2), and its embedded image in USp(4) will

also be written as ζζζ2n. Let

J =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

, a =


0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

, b =


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

, c =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

.

DEFINITION 1 (Sato–Tate groups) With the notations above, the following ta-

ble gives the definitions of the 34 Sato–Tate groups of genus 2 curves over Q:

J(Cn) := 〈U(1), ζζζ2n, J〉, n = 2, 4, 6 J(Dn) := 〈J(Cn), j〉, n = 2, 3, 4, 6

J(T ) := 〈U(1), Q1, J〉 J(O) := 〈J(T ), Q2〉

Cn,1 := 〈U(1), Jζζζ2n〉, n = 2, 6 Dn,1 := 〈U(1), Jζζζ2n, j〉, n = 2, 4, 6

Dn,2 := 〈U(1), ζζζ2n, Jj〉, n = 3, 4, 6 O1 := 〈T, JQ2〉

En := 〈SU(2), eπi/n〉, n = 1, 2, 3, 4, 6 J(En) := 〈En, J〉, n = 1, 2, 3, 4, 6

Fa,b := 〈U(1)× U(1), a, b〉 Fac := 〈U(1)× U(1), ac〉

N(G1,3) := 〈U(1)× SU(2), a〉 G3,3 := SU(2)× SU(2)

N(G3,3) := 〈G3,3, J〉 USp(4)

Remark: We emphasize again that all the groups in the above table are subgroups

of USp(4). We will refer to the full USp(4) as the generic Sato-Tate group and the

proper subgroups as the non-generic.
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3 Distinguishing generic curves using the LMFDB

In this section we describe a rudimentary binary classification using machine-learning

techniques.

3.1 Generic elliptic curves

The latest LMFDB database has 3,064,705 elliptic curves over the rationals, which

organize into 2,164,260 isogeny classes [LMFDB, Elliptic curves over Q]. These curves

are labeled by data of the form:

{N, i, x} (3.9)

where N is the conductor, i is a letter or double-letter designating the isogeny class,

and x is a number indexing the particular elliptic curve within the class (a typical

entry, for instance, is ‘11a.1’). For an elliptic curve, both its L-function (up to Euler

factors at bad primes) and whether it has complex multiplication depend only on the

isogeny class. Thus, for our present purpose, we will neglect the last numerical label

x and sometimes refer to the “isogeny class of a curve” simply as “curve”. Of the

some 2 million isogeny classes of elliptic curves in the database, only 2670 have CM:

thus one can see that indeed this property is rather rare.

Let us establish a dataset as follows. Take all primes up to 10,000 (there are 1229)

and compute, using [Sage], all coefficients ap. Here we also include bad primes as their

statistical impacts seem limited. We then normalize the coefficients by ãp := ap/
√
p.

Now, take all 2670 curves with CM, and select with probability 0.001 from those

without CM (which is therefore around 2300). This gives a labeled dataset D of

around 5000 points:

D :=
{

(ãp)p<10000 −→ yes/no
}

(3.10)

where yes/no refers to the simple binary category of having or not having CM.

Now, we can follow the standard steps of machine-learning (ML), which is to split

D into the disjoint union of a training set T (taken a random sample) and a validation

set V (as the complement), and we take a 20-80 percent split:

D = T t V , |T |= 20%|D| . (3.11)

The size of V is large enough to check the validity of our results thoroughly. We

tried a few architectures such as support vector machines and simple neural network
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classifiers, but found the best performance was achieved by a Naive Bayes classifier
†. We have also tried other standard classifiers, such as decision trees and nearest

neighbours. The Naive Bayes classifier performed best, and was able to achieve

complete classification as we shall see shortly. The reader is referred to [Hastie,

Section 6.6.3] for detailed discussions and implementations of the algorithm.

We find that having seen 20% of the ãp-coefficients as lists of vectors, each of

length 1229, and labeled accordingly as yes/no, the classifier, when validated on

the remaining 80%, achieves 100% accuracy. This is really the optimal situation.

Ordinarily, a good classifier performs with precision (% agreement) and confidence ‡

in the 90’s. But here, we consistently obtain 100% accuracy with different random

sampling of T . This suggests the ML algorithm has truly learned an underlying

formula. Moreover, the algorithm is performed using [Wolf] on an ordinary laptop,

in a matter of seconds.

To get an idea of the learning, let us ask how the accuracies improve with in-

creasing number of coefficients ap being presented to the training. This is shown in

Figure 1. In other words, let us repeat the above Bayes classifier for truncated input

data: instead of using all primes up to 10,000, we use up to the first 200 primes, in

increments. While in the beginning the precision and phi are both low and sporadic,

by the time we are training on primes up to 200 (i.e., only around 40 ap coefficients),

we have stabilized to > 0.99 accuracies.

3.2 Generic genus 2 curves

Emboldened by the success with genus 1 curves, let us move on to the much more

subtle case of genus 2. The generic Sato–Tate group for a genus 2 curve over Q is

USp(4), which occurs in the case of trivial endomorphism ring. The dominance of the

generic case is reflected in the LMFDB, in which 63107 out of 66158 genus 2 curves

over Q have this Sato–Tate group [LMFDB, Genus 2 curves over Q]. Again, the good

Euler factors depend only on the isogeny class. Unlike with elliptic curves, there is

no option to ask the LMFDB for one curve per isogeny class. On the other hand, the

database has 65534 classes and so over 99% have a unique representative. With this

†Interestingly, this is the same in the situation of machine recognition of cluster mutation
[BFHHMX].
‡Matthew’s phi-coefficient [Mat], which essentially the square root of the chi-squared; the closer

it is to 1, the better the fit, the closer it is to 0, the more random and ineffective the classification
is. We need to check this in addition to the naive precision in order to avoid false positives and false
negatives.
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Figure 1: The precision and confidence of the Naive Bayes classifier for the precision and
confidence (Matthew’s phi-coefficient) against the number of ap coefficients, for p up to the
value on the X-axis, for the elliptic curve seen.

in mind, we simply accept the redundancy. Using the LMFDB data, we perform the

binary classification: Is the Sato–Tate group USp(4) or not?

Looking at Eqs. (2.3)–(2.4), we see that the zeta-function for genus 2 curves is

governed by an L-function numerator which is a degree 4 palindromic polynomial.

Hence, there are two non-trivial (normalized) coefficients, (a1,p, a2,p) of the Euler

factors. Using SAGE [Sage], we calculate the zeta function of a curve for all first 200

primes p excluding 2 (i.e., p < 1230) which is always bad.

Thus, we can establish the following dataset:

D := {(a1,p, a2,p)2<p<1230 −→ yes/no for USp(4)} (3.12)

As mentioned in the opening paragraph, the vast majority are the generic full USp(4),

so we need to down-sample in order to not bias a classifier. Thus we randomly select

3000 of the USp(4) cases and combine that with the non-USp(4) cases (which, from

above, is 66158−63107 = 3051; actually, 2440 of these non-USp(4) cases belong to the

Sato–Tate group G3,3
∼= SU(2)× SU(2)). On this balanced dataset D̃ ⊂ D, we again

perform cross-validation by taking 20% training, and validating on the remaining

80%. Using a Naive Bayes classifier as the genus 1 case, we here find precision 0.990

and Matthew’s phi 0.98, which is excellent. Again, we have tried other standard

classifiers, and we find that nearest neighbours performed similarly, though decision

trees were quite a bit worse.

To have an extra confirmation that there is inherent structure in the data. Let

us consider each of the 200 pairs (a1,p, a2,p) as a point in R400. Using principal
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component analysis (q.v., [GBC]), by projecting this point cloud of data from R400

to R2, as shown in part (a) of Figure 2, we can see that the USp(4) (marked as 1)

and non-USp(4) (marked as 0) very neatly separate.

(a)
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0

1
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Figure 2: (a) A principal component analysis (PCA) by projecting the labeled data pairs of
coefficients in R400 corresponding to generic vs. non-generic Sato-Tate to 2-dimension. (b)
The precision and confidence (Matthew’s phi-coefficient) of the Naive Bayes classifier, for the
problem distinguishing the generic Sato-Tate group USp(4), against the number of (a1,p, a2,p)
coefficients of the genus 2 hyperelliptic curve supplied to the training.

To get an idea of how effective the training is, we present a gradation of coefficients

to the classifier from a single pair (at p = 3) cumulating to more pairs of ap coefficients

as we go up in primes. This is drawn in part (b) of Figure 2. We see that in the

beginning the performance is poor but by the time it has seen around 50 primes, we

are already at 0.95 precision.

REMARK 1 In a recent paper [Zyw], D. Zywina shows that one can determine

the identity component of the Sato–Tate group of an abelian variety using just two

L-polynomials, though his algorithm does not specify which polynomials we need. It

would be interesting to consider his result in the perspective of machine-learning.

4 Distinguishing non-generic curves using random

matrices

In this section we go beyond the binary classification of the previous section. The

Sato–Tate group is a compact Lie group. For genus 2 curves, there are 6 possibilities

for its identity component. The non-generic cases occur with decreasing probability,

and ultimately the number of occurrences are too small to train the classifier. Worse

still, the complete classification of Sato–Tate groups for genus 2 curves over Q features

34 distinct cases. There is far too little data available on the LMFDB to distinguish
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these cases by machine learning, for example, only 1 curve on the database has group

D6,2 [LMFDB, Genus 2 curve 11664.a.11664.1].

To circumvent this difficulty, we generate random matrices for training the classi-

fier. The point is that the distribution of the Euler factor coefficients should converge

to the distribution of the characteristic polynomial coefficients of random matrices in

the Sato–Tate group. This allows us to train classifiers for the non-generic Sato–Tate

groups. Still, due to the lack of data, we are unable to verify the classifier’s accuracy

for curves in certain cases of rare Sato–Tate groups. Nevertheless, we will see below

in several cases where there is sufficient data to verify, the classifier does perform very

well. We keep the notations for the Sato–Tate groups in Definition 1.

Specifically, we will do the following, in light of Conjecture 1:

• We fix k different Sato–Tate groups, STi=1,2,...,k, say. For each STi, take 200

random elements within the group (as 4 × 4 matrices) and for each matrix,

compute its characteristic polynomial and extract the two non-trivial coefficients

(c1, c2) as in (2.6).

• We repeat the above 1000 times. This gives 1000 cases of 200 pairs (c1, c2) for

each STi, accordingly labeled.

• We now train a classifier (Naive Bayes, decision tree, nearest neighbour or

otherwise) to this labeled data. Note that so far, there is no input from number

theory or geometry, the classifier has only been fed group-theoretic information:

the characteristic polynomial of STi matrices.

• We can now validate the classifier on actual curve information, viz., for a genus 2

curve from LMFDB, obtain 200 pairs of normalized Euler coefficients (a1,p, a2,p)

for the first 200 primes p. The classifier will then return one of the k labels

(categories), which is then compared to the actual Sato-Tate group for the

curve. The precision and confidence for the k-category classification is then

computed between the predicted and actual.

We remark that we are not using moments of the probability distributions. Instead,

we are using sample points from the distributions to train a classifier.
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4.1 N(G1,3) and N(G3,3)

We begin with a binary classification between the non-generic genus 2 Sato–Tate

groups N(G1,3) and N(G3,3). These groups have different identity components. After

generating 1000 samples of coefficient pairs for each group, a Bayes classifier can

distinguish the corresponding distributions with 100% accuracy. There are 303 (resp.

144) curves on the LMFDB with group N(G1,3) (resp. N(G3,3)). Given coefficient

pairs for the first 200 Euler factors for these curves, the classifier could distinguish

the groups with 100% accuracy. That is, it has completely correctly sorted the 303

vs. 144 genus 2 curves with Sato-Tate group N(G1,3) vs. N(G3,3). The running time,

again, is less than 1 second on an ordinary laptop, using Mathematica [Wolf].

To get an idea how many coefficient pairs are needed to efficiently train the clas-

sifier, we repeat the above experiment starting with only one pair, and going up

gradually. This constitutes a learning curve where the accuracy and confidence are

plotted against the number of pairs seen in the training. We show this in Part (a)

of Figure 3. We see that given only the first coefficient pair, the classifier is useless.

At around 10 coefficients its accuracy is already at high 90s, and by 20 or 30 it is all

100%.
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Figure 3: (a) The precision and confidence (Matthew’s phi-coefficient) of the Naive Bayes
classifier, for the problem of distinguishing N(G1,3) and N(G3,3), against the number of pairs
of coefficients (a1,p, a2,p) of the genus 2 curve for p up to the value on the X-axis, supplied
to the training. (b) The same plot, but for the 5-way classifier of the Sato-Tate group J(En),
n ∈ {1, 2, 3, 4, 6}.

4.2 J(En), n ∈ {1, 2, 3, 4, 6}

We finally attempt a 5-way classification between the non-generic genus 2 Sato–Tate

groups J(E1), J(E2), J(E3), J(E4) and J(E6). These groups all have the same
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identity component SU(2). As before, we generate 1000 random samples of 200

coefficient pairs for each of the five J(En) groups. A Naive Bayes classifier is then

trained on these. Upon validating on the actual curve data, of which is there a paucity

from LMFDB, a total of 71 cases, we find that the confusion matrix is

M =


24. 0. 0. 0. 0.

0. 9. 0. 0. 0.

0. 0. 3. 0. 1.

0. 0. 0. 17. 0.

0. 0. 0. 0. 17.

,
which means that only a single case has been mis-classified (the 1 off-diagonal). The

accuracy is 98.59% and confidence 0.9814. This is quite impressive for a 5-way clas-

sification, in under 1 second.

Again, to get an idea of a learning curve, we show in Part (b) of Figure 3, the

accuracy and confidence attained by showing an increasing number of coefficients in

the training process. In the beginning the classifier was around 0% accuracy but by

40-50 coefficient pairs it was getting to almost 100%. All fluctuations are due to the

random sampling in the training data.

5 Conclusion & Outlook

We have observed that a Bayes classifier can be trained to distinguish the Sato–Tate

groups for genus 2 curves and that the resulting classifier performs efficiently with high

precision. Whilst a lack of data prohibited the verification of our machine-learning

approach for rare Sato–Tate groups, its determination in the more numerous cases

agrees with those predicted by moment sequences.

The results in this paper provide convincing evidence that machine-learning can

be used to classify curves according to their Sato–Tate groups. Our approach of

using Euler factors is in accordance with the setup of the Langlands program, and

we expect that many important objects in number theory can be studied through

machine-learning by analyzing data consisting of Euler factors. Indeed, examples of

this strategy are successfully adopted in [HLOi] and [HLOii], and we expect more to

come in this direction.
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[KS] D. Krefl and R. K. Seong, Machine Learning of Calabi-Yau Volumes, Phys.

Rev. D 96 (2017), no. 6, 066014.

[KS99] N. M. Katz and P. Sarnak. Random matrices, Frobenius eigenvalues, and

monodromy, American Mathematical Society Colloquium Publications 45, 1999.

[KS09] K. S. Kedlaya and A. V. Sutherland. Hyperelliptic curves, L-polynomials, and

random matrices, Contemp. Math., 487 (2019), 119–162.

[KV] J. Kampe and A. Vysogorets, Predicting Zeros of the Riemann Zeta Func-

tion Using Machine Learning: A Comparative Analysis, http://dl.icdst.org/

pdfs/files3/3ae1faec0ca92f36239b3de72064f864.pdf

[LMFDB] The LMFDB Collaboration, The L-functions and Modular Forms

Database, http://www.lmfdb.org, 2020 [Online, accessed 01 September 2020].

[LO] K.-H. Lee and S.-J. Oh, Auto-correlation functions of Sato–Tate distributions

and identities of symplectic characters, arXiv:2006.06116 [math.NT].

[LO75] J. Lagarias and A. Odlyzko, Effective versions of the Chebotarev density

theorem, Proc. Sympos. (1975), 442 - 451.

[Mat] B. W. Matthews, Comparison of the predicted and observed secondary structure

of T4 phage lysozyme, Biochimica et Biophysica Acta (BBA) - Protein Structure,

405 (1975), no. 2, 442 - 451.

[Ru] F. Ruehle, Evolving neural networks with genetic algorithms to study the String

Landscape, JHEP, 038 (2017).

[Sh] O. Shanker, Neural Network prediction of Riemann zeta zeros, Advanced Mod-

eling and Optimization, Volume 14 (2012), no. 3, 717 - 728.

[Sage] The Sage Development Team, SageMath, the Sage Mathematics Software Sys-

tem (Version 9.1.0), http://www.sagemath.org, (2020).

[Ser81] J.-P. Serre Quelques applications du theoreme de densite de Chebotarev, IHES

Publ. Math., 54 (1981), 123-201.

[Sil2] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer

Graduate Texts in Mathematics 151, 1994.

[Tay20] N. Taylor, Sato–Tate distributions on Abelian surfaces, Trans. Amer. Math.

Soc., 373 (2020), 3541–3559.

18

http://dl.icdst.org/pdfs/files3/3ae1faec0ca92f36239b3de72064f864.pdf
http://dl.icdst.org/pdfs/files3/3ae1faec0ca92f36239b3de72064f864.pdf
http://www.lmfdb.org
http://www.sagemath.org


[Tay08] R. Taylor, Automorphy for some `-adic lifts of automorphic mod ` Galois

Representations II, Pub. Math.IHES., 108 (2008), 183 - 239.

[Wolf] Wolfram Research, Inc., Mathematica 12.1, https://www.wolfram.com/

mathematica, Champaign, Illinois, 2020

[Zyw] D. Zywina, Determining monodromy groups of abelian varieties, preprint,

arXiv:2009.07441.

Yang-Hui He hey@maths.ox.ac.uk

Department of Mathematics, City, University of London, EC1V 0HB, UK;

Merton College, University of Oxford, OX14JD, UK;

School of Physics, NanKai University, Tianjin, 300071, P.R. China

Kyu-Hwan Lee khlee@math.uconn.edu

Department of Mathematics, University of Connecticut, Storrs, CT, 06269-1009, USA

Thomas Oliver Thomas.Oliver@nottingham.ac.uk

School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2QL, UK

19

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

	Introduction & Summary
	Background
	CM elliptic curves
	Generalized Sato–Tate conjecture

	Distinguishing generic curves using the LMFDB
	Generic elliptic curves
	Generic genus 2 curves

	Distinguishing non-generic curves using random matrices
	N(G_1,3) and N(G_3,3)
	J(E_n), n{1,2,3,4,6}

	Conclusion & Outlook

