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Abstract

In analogy to the disjoint cycle decomposition in permutation groups, Ore and Specht
define a decomposition of elements of the full monomial group and exploit this to
describe conjugacy classes and centralisers of elements in the full monomial group.
We generalise their results to wreath products whose base group need not be finite
and whose top group acts faithfully on a finite set. We parameterise conjugacy classes
and centralisers of elements in such wreath products explicitly. For finite wreath
products, our approach yields efficient algorithms for finding conjugating elements,
conjugacy classes, and centralisers.

1 Introduction

Wreath product constructions feature prominently in the theory of permutation groups,
see for example [1, 8] and references therein. A general approach to working with per-
mutation groups is first to apply a reduction to primitive groups and subsequently to
study primitive groups. Many problems for primitive groups are solved with the help of
the O’Nan-Scott Theorem, see for example [4, 10], in which most classes are defined via
wreath products.
To our knowledge, Specht was the first to describe the conjugacy classes of the full mono-
mial group, namely K ≀ΓSym(Γ) for a finite set Γ, see [14, Sätze II, III, IV]. Specht and Ore
define a wreath cycle decomposition for elements of full monomial groups in analogy to
the disjoint cycle decomposition of elements of the symmetric group. Moreover, Ore gives
criteria when two elements are conjugate in the group and determines the centraliser of
an element, see [11, Theorem 8].
In order to make Specht’s and Ore’s theory more widely known, we have decided to restate
their results in the modern language of wreath products. Moreover, we have extended the
results to the more general setting of arbitrary wreath products K ≀Γ H. We no longer
require H to be the full symmetric group on Γ, however, we assume that H acts faithfully
on Γ. For a detailed description of the groups we investigate, see Hypothesis A.
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We describe the wreath cycle decomposition and define a territory decomposition for an el-
ement of K ≀Γ H, see Definition 23, which generalises the type of a wreath product element
defined by Specht [14, (8b)]. Viewing elements in wreath products in a disjoint wreath cy-
cle decomposition quickly becomes very intuitive and highlights much of the underlying
structure. For example, it is just as easy to read off the order of an element in disjoint
wreath cycle decomposition in a wreath product as it is to read off the order of an element
from its disjoint cycle decomposition in the symmetric group. Additionally, it is a very
efficient way of representing elements of wreath products on a computer.
The main aim of this paper is to prove several results that can be summarised as follows:

Theorem 1. Two elements w = ( f , h) and v = (e, g) of K ≀ΓSym(Γ) are conjugate in K ≀Γ H

if and only if there exists an element t ∈ H that conjugates h to g and maps the territory
decomposition of w to that of v. Moreover, there exists an explicit, computable bijection
from an iterated cartesian product into the conjugacy classes of K ≀Γ H.

Theorem 2. There exists an explicit, computable bijection from an iterated cartesian
product into the centraliser of an element of K ≀ΓSym(Γ) in K ≀Γ H. Moreover, this cen-
traliser is an extension of two groups.

The statements of our main theorems facilitate efficient computation of centralisers, con-
jugacy classes of elements and conjugacy testing on a computer. This approach has been
implemented in the GAP-package WPE [12] by the third author. For example, one is now
able to test elements for conjugacy and to compute conjugating elements in groups as
large as S25 ≀S100 in a few seconds. For further computational results, see Section 6.
Cannon and Holt describe algorithms in [3] to compute centralisers and conjugacy classes
of elements and perform conjugacy testing in a finite group with trivial soluble radical.
They embed the given group into a direct product of certain wreath products and solve
these tasks for each direct factor. Hulpke, see [6], presents an algorithm to compute the
conjugacy classes in finite permutation groups in which he considers a more general situ-
ation of subdirect products of the base group. Compared to both [3] and [6], our methods
are further reaching for wreath products as we exploit the underlying wreath cycle de-

composition. We translate the explicit descriptions in Theorems 1 and 2 into very efficient
algorithms in practice, see Section 6. We hope that our methods could be used to improve
the algorithms of Cannon and Holt when treating the wreath products that occur as direct
factors.

1.1 The structure of this paper

In Section 2 in Theorem 9 we restate, in the modern language of wreath products, Ore’s
decomposition of a wreath product element generalising the decomposition of a permu-
tation into disjoint cycles. In Section 3 we first define the territory decomposition of a
wreath product element, see Definition 23. Next, we give a criterion to decide whether two
elements of K ≀ΓSym(Γ) are conjugate in K ≀Γ H and, if they are, construct a conjugating
element, see Theorem 27. Theorem 35 in Section 4 parameterises the conjugacy classes of
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K ≀Γ H explicitly. Theorem 1 immediately follows from Theorems 27 and 35. Theorem 47
parameterises the centraliser of a wreath product element in K ≀Γ H explicitly. Together
with Theorem 48 this immediately implies Theorem 2. As some of the results may seem
quite technical on first reading, we have illustrated them with several examples. The final
section gives evidence of the computational power of our results.

2 Wreath Cycle Decompositions in Wreath Products

The aim of this section is to generalise the concept of a disjoint cycle decomposition of per-
mutations to arbitrary elements of wreath products. The main statement of this section
is Theorem 9 in which we give an explicit decomposition of wreath product elements as a
product of disjoint wreath cycles. This result is well known, see for example Ore [11] or
Kerber et. al. [7, Section 4.2]. We adapt this theorem to our notation and give an explicit
constructive formula for the decomposition of a wreath product element. For a permuta-
tion h ∈ Sym(Γ), we denote by suppΓ(h) its support on Γ, i.e. the set of points in Γ moved
by h. The set of fixed points of a permutation h is denoted by fixΓ(h). If the choice of Γ is
clear from the context we omit it. For the entire paper, we fix the following setting:

Hypothesis A. Let K be a not necessarily finite group, Γ a finite set and H ≤ Sym(Γ).
Further, set W := K ≀Γ H := KΓ

⋊H = {( f , h) : f ∈ KΓ, h ∈ H} and denote by S := K ≀Γ Sym(Γ)
the full monomial group (on K with respect to Γ). We denote the set of functions from Γ to
K by KΓ and apply functions from the right, i.e. we write [γ] f for the image of γ ∈ Γ under
f ∈ KΓ. Accordingly, all groups act from the right.

We start by extending the concepts of support and cycles in permutation groups to ar-
bitrary wreath products. Wreath cycles were already introduced by Ore [11] who called
them monomial cycles.

Definition 3. Let w := ( f , h), v := (e, g)∈ K ≀ΓH.

1. The element h ∈ H is called the top component of w= ( f , h) and the element f ∈ KΓ

is called the base component of w.

2. We define terrΓ(w) := suppΓ(h)∪ {γ ∈ Γ : [γ] f 6= 1K }. We call terrΓ(w) the territory

of w. If the choice of Γ is clear from context or of no importance, we write terr(w)
instead.

3. We call w= ( f , h) a wreath cycle if either h induces the identity on Γ and |terr(w)| = 1
or h induces a single non-trivial cycle in its action on Γ and terr(w)= supp(h).

4. We say w and v are disjoint if terr(w)∩ terr(v)=;.

If Γ= {1, . . . , n}⊆ Z>0, we denote an element w := ( f , h)∈ W as ( f , h)= ( f1, . . . , fn; h), where
for i ∈ Γ the element f i := [i] f is called the i-th base component of w. For v := (e, g) =
(e1, . . ., en; g)∈W, multiplication is given by

w ·v=

(

f · eh−1
, h · g

)

=
(

f1 · e1h , . . . , fn · enh ; h · g
)
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and hence inverses are given by

w−1
=

(

(

f −1)h
, h−1

)

=

(

(

f1h−1

)−1 , . . . ,
(

f
nh−1

)−1 ; h−1
)

.

Example 4. Let K := Sym({1, . . .,4}), Γ := {1, . . . ,8} and S := K ≀Sym(Γ). Throughout this
paper the element

w :=
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

(1,2),
5

(1,2,3),
6

() ,
7

(1,2),
8

() ;
top

( 1,2 )( 3,4 )( 5,6 )
)

with w= ( f , h)∈ S is used in all examples. The territory of w is

terr(w)= { 1,2,3,4,5,6 }∪ { 1,2,4,5,7 }= {1,2,3,4,5,6,7}.

In Lemma 6 we prove that elements with disjoint territories commute, which can be
viewed of as an extension of the fact that permutations with disjoint support commute.
Now consider the following two elements of S:

v :=
(

1

() ,
2

() ,
3

() ,
4

() ,
5

() ,
6

() ,
7

(1,2),
8

() ;
top
()

)

,

u :=
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

() ;
top

( 1,2 )
)

.

These elements are examples of the two different types of wreath cycles in part 3 of Def-
inition 3. For v, the top component acts trivially on Γ and |terr(v)| = |{7}| = 1. For u,
we observe that the top component of u induces the single cycle (1,2) on Γ and terr(u) =
{1,2}= supp((1,2)).

It is sometimes useful to write the territory of a wreath product element as a disjoint
union of the support of the top component and the fixed points of the top component that
are contained in the territory of the wreath product element. This will be used throughout
this paper in several proofs.

Remark 5. Let w := ( f , h)∈ K ≀Γ H. Then terr(w)= supp(h)∪· (fix(h)∩ terr(w)).

The next lemma shows that disjoint wreath product elements commute.

Lemma 6. Let w = ( f , h) and v = (e, g) be two disjoint elements of K ≀Γ H. Then w and v

commute.

Proof. Let w= ( f , h) and v= (e, g) be disjoint. We first show

f e = e f , eh
= e and f g

= f .

As g and h are disjoint, it follows that [γ] f = 1K or [γ]e = 1K and thus we have [γ]( f · e)=
[γ](e · f ) for any γ ∈ Γ. Further, for all γ ∈ supp(h) we have γ, γh 6∈ terr(v) and therefore
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[γ]eh−1
= [γh]e = 1K = [γ]e. Additionally, if γ 6∈ supp(h) we have [γ]eh−1

= [γh]e = [γ]e.
This, together with a similar argument for f g−1

, shows that

f eh−1
= f e = e f = e f g−1

Furthermore, h and g are disjoint permutations of Γ and therefore commute. Thus

( f , h)(e, g)= ( f eh−1
, hg)= (e f g−1

, gh)= (e, g)( f , h).

Analogously to a disjoint cycle decomposition for permutations we define a wreath cycle
decomposition of a wreath product element into disjoint wreath cycles. Just as the in-
dividual cycles in a disjoint cycle decomposition of a permutation need not be elements
of the group, the wreath cycles in the disjoint wreath cycle decomposition need not be
elements of the wreath product.

Definition 7. A wreath cycle decomposition for a wreath product element w ∈W = K ≀Γ H

is a decomposition of w as w=
∏ℓ

i=1 wi where the wi ∈ S = K ≀ΓSym(Γ) are pairwise disjoint
wreath cycles for all i = 1, . . . ,ℓ.

Our next aim is to give a formula to compute a wreath cycle decomposition and to show
that it is unique up to ordering of the factors. Throughout this paper, the following func-
tion simplifies the definition of certain elements. In particular, it is used in the construc-
tion of a disjoint wreath cycle decomposition.

Definition 8. Let Ω⊆Γ. For a map f :Γ→ K we define

f
∣

∣

Γ

Ω
:Γ→ K ,γ 7→

{

[γ] f , if γ ∈Ω

1K , else.

For simplicity, we set f
∣

∣

Γ

γ
:= f

∣

∣

Γ

{γ} for γ ∈Γ.

Note that the function f
∣

∣

Γ

Ω
agrees with f on all of Ω and maps the elements of Γ\Ω to 1K .

Theorem 9. Every element of K ≀Γ H can be written as a finite product of disjoint wreath
cycles in S. This decomposition is unique up to ordering of the factors.

Proof. Let w := ( f , h) ∈ K ≀Γ H. We prove the first statement of this theorem by giving an
explicit wreath cycle decomposition of w.
Let h = h1 · · ·hℓ be the disjoint cycle decomposition of h in Sym(Γ). We claim that the
following is the desired decomposition of w:

w=

ℓ
∏

i=1
( f

∣

∣

Γ

supp(hi )
, hi) ·

∏

γ∈fix(h)∩terr(w)
( f

∣

∣

Γ

γ,1H).

Note that all factors are disjoint wreath cycles because their territories are pairwise dis-
joint. We now show equality by using Lemma 6, i.e. the fact that disjoint wreath product
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elements commute:

ℓ
∏

i=1
( f

∣

∣

Γ

supp(hi )
, hi) ·

∏

γ∈fix(h)∩terr(w)
( f

∣

∣

Γ

γ ,1H)

=

(

ℓ
∏

i=1
( f

∣

∣

Γ

supp(hi )
,1H) · (1KΓ , hi)

)

·
∏

γ∈fix(h)∩terr(w)
( f

∣

∣

Γ

γ,1H)

=

(

ℓ
∏

i=1
( f

∣

∣

Γ

supp(hi )
,1H) ·

∏

γ∈fix(h)∩terr(w)
( f

∣

∣

Γ

γ,1H)

)

·

ℓ
∏

i=1
(1KΓ , hi)

= ( f ,1H) · (1KΓ , h)= ( f , h)= w.

(1)

To prove uniqueness, suppose w =
∏m

i=1(e i, g i) is another disjoint wreath cycle decompo-
sition of w. Thus h = g1 · · · gm is a disjoint cycle decomposition of h and we may assume
g1, . . . , gk 6= 1H and gk+1, . . . , gm = 1H for some 1 ≤ k ≤ m. As the g i are pairwise disjoint
and due to the uniqueness of the cycle decomposition in Sym(Γ) we have k = ℓ and there
exists a permutation σ ∈ Sym(ℓ) such that hi = g iσ for all i ∈ {1, . . .,ℓ}. Hence, without loss
of generality we may assume hi = g i for all i ∈ {1, . . .,ℓ}. By a calculation along the lines of
computation (1) above, we obtain

∏m
i=1 e i = f . For a given γ ∈ terr(w) with [γ] f 6= 1K , there

exists a unique j ∈ {1, . . . , m} such that [γ]e j = [γ] f .
First assume γ ∈ supp(hi) for some i ∈ {1, . . . ,ℓ}. Note

γ ∈ terr((e j, g j))= supp(g j) and γ ∈ supp(hi)= terr
(

( f
∣

∣

Γ

supp(hi )
, hi)

)

and since h = g1 · · · gℓ = h1 · · ·hℓ are two cycle decompositions of the same permutation h

we must have i = j. Since the (e j, g j) are pairwise disjoint wreath cycles for all j = 1, . . ., m

and f = e1 · · · em we obtain e i = f
∣

∣

Γ

supp(hi )
for all i ∈ {1, . . . ,ℓ}.

Now we assume γ ∈fix(h)∩terr(w). As γ ∈fix(h), we have j > ℓ. As g j = 1H and |terr((e j, g j))| =

1 we have e j = f
∣

∣

Γ

γ.

Example 10. Let K := Sym({1, . . . ,4}), Γ := {1, . . .,8} and S := K ≀Sym(Γ). We give an ex-
ample of a wreath cycle decomposition by considering the element w = ( f , h) ∈ S from
Example 4:

w :=
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

(1,2),
5

(1,2,3),
6

() ,
7

(1,2),
8

() ;
top

( 1,2 )( 3,4 )( 5,6 )
)

.

We obtain the decomposition by applying the steps of the proof of Theorem 9 to w. We
know terr(w)= {1,2,3,4,5,6,7} and supp(h)= {1,2,3,4,5,6}. A disjoint cycle decomposition
of h is h = h1 · h2 · h3 with h1 = ( 1,2 ), h2 = ( 3,4 ) and h3 = ( 5,6 ). Next we com-

pute base components in KΓ for each cycle in the disjoint cycle decomposition of h, which
are given by f1 := f

∣

∣

Γ

supp( h1 )
, f2 := f

∣

∣

Γ

supp( h2 )
and f3 := f

∣

∣

Γ

supp( h3 )
As an example, we

consider

f1 = f
∣

∣

Γ

supp( h1 )
:Γ→ K ,γ 7→

{

[γ] f , if γ ∈ {1,2}

(), else
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and compute some images under this map explicitly. The image of 1 under f1 is [1] f1 =

[1] f = (1,2)(3,4) and [3] f1 = (). Note fix(h)∩ terr(w) = { 7 }, so the only remaining point

for which we need to compute a base component in KΓ is the point 7 which is given by
f4 := f

∣

∣

Γ

{7}
. We set h4 = () and wi = ( f i, hi) for 1 ≤ i ≤ 4. This yields a wreath cycle

decomposition of w into the product of the following four wreath cycles in S:

w1 =
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

() ;
top

( 1,2 )
)

,

w2 =
(

1

() ,
2

() ,
3

() ,
4

(1,2),
5

() ,
6

() ,
7

() ,
8

() ;
top

( 3,4 )
)

,

w3 =
(

1

() ,
2

() ,
3

() ,
4

() ,
5

(1,2,3),
6

() ,
7

() ,
8

() ;
top

( 5,6 )
)

,

w4 =
(

1

() ,
2

() ,
3

() ,
4

() ,
5

() ,
6

() ,
7

(1,2),
8

() ;
top
()

)

.

3 Solving the conjugacy problem in wreath products

Recall the setting from Hypothesis A. The main result of this section, Theorem 27, gives a
solution to the conjugacy problem for wreath product elements: Given two wreath product
elements w and v of S, decide whether they are conjugate in W and give a conjugating
element if it exists. Theorem 1 is an immediate consequence.
The wreath cycle decomposition plays a crucial role in the solution of the conjugacy prob-
lem. It turns out that it suffices to define many concepts only for wreath cycles and then
apply them to every cycle in the wreath cycle decomposition. We first define a property of
a wreath cycle which is invariant under conjugation by elements of S. For this we need
the following function.

Definition 11. Define C (W) := {w ∈W : w is a wreath cycle} as the set of all wreath cycles
in W and the Yade-map by

[−,−]Yade: Γ×C (W)→ K , (γ, ( f , h)) 7→
|h|−1
∏

i=0
[γ]

(

f h−i
)

=

|h|−1
∏

i=0

[

γhi
]

f .

Given a wreath cycle w= ( f , h) and γ ∈ Γ we call [γ,w]Yade the Yade of w in γ.

Yade stands for Yet another determinant since, after choosing a suitable matrix represen-
tation of K ≀Γ Sym(Γ), the Yade-map can be interpreted as a matrix determinant whence
Ore called it a determinant in [11, p. 19]. James and Kerber also introduce this map in
[7, Section 4.3] and call it a cycle product.
Observe that [γ,w]Yade= 1K for all γ 6∈ terr(w) for a wreath cycle w ∈ S. In computations
involving the Yade-map, it is therefore enough to consider the restriction [−,w]Yade

∣

∣

terr(w).
Suppose that w is a wreath cycle. The next lemma shows that [α,w]Yade and [β,w]Yade
are K -conjugate whenever α and β are contained in the territory of w. We also give a
conjugating element explicitly.

7



Lemma 12. Let w= ( f , h)∈ K ≀Γ H be a wreath cycle. Then [α,w]Yade and [β,w]Yade are
conjugate in K for every α,β ∈ terr(w). For some j ∈ {0, . . . , |h|−1} with αh j

=β, we have

([α,w]Yade)y
= [β,w]Yade, where y=

j−1
∏

i=0

[

αhi
]

f .

Proof. As w is a wreath cycle we prove this statement by distinguishing two cases accord-
ing to part 3 of Definition 3: Either h =1H and terr(w) is a singleton or h induces a single
non-trivial cycle on Γ and terr(w)= supp(h).
First, consider the case of h = 1H . Then α = β since terr(w) is a singleton and the claim
becomes trivial. Now consider the case of h being a non-trivial cycle. Let α,β ∈ supp(h).
Then we have

a := [α,w]Yade=
|h|−1
∏

i=0
[α] f h−i

=

|h|−1
∏

i=0
[αhi

] f

and

b := [β,w]Yade=
|h|−1
∏

i=0
[β] f h−i

=

|h|−1
∏

i=0
[βhi

] f .

Since h is a cycle there is a j ∈ {0, . . . , |h|−1} such that αh j

=β. A straight forward compu-

tation shows that for y :=
∏ j−1

i=0

[

αhi
]

f we have b = ay thus a and b are conjugate in K and
the claim follows.

The previous lemma justifies the following definition.

Definition 13. Let w = ( f , h) ∈ S be a wreath cycle and let α ∈ terr(w) be fixed. We call
the conjugacy class ([α,w]Yade)K of [α,w]Yade in K the Yade-class of w.

The following example shows how to compute the Yade-map.

Example 14. Let K := Sym({1, . . .,4}), Γ := {1, . . . ,8} and S := K ≀Sym(Γ). Consider the
wreath cycles from Example 4:

v :=
(

1

() ,
2

() ,
3

() ,
4

() ,
5

() ,
6

() ,
7

(1,2),
8

() ;
top
()

)

,

u := (e, g)=
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

() ;
top

( 1,2 )
)

.

We compute the Yade of u in 1:

[1, u]Yade=
|g|−1
∏

i=0

[

1gi
]

e = [1]e · [2]e = (1,2)(3,4) · (3,4)= (1,2).

Then

[−,v]Yade :=
(

1

() ,
2

() ,
3

() ,
4

() ,
5

() ,
6

() ,
7

(1,2),
8

()
)

,

[−, u]Yade :=
(

1

(1,2),
2

(1,2),
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

()
)

.
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The following corollary shows how to compute the order of a wreath cycle as a product of
the order of its top component and of an element in K . This and the following lemma are
stated in Ore, see [11, Theorem 4]. Note that by |w| we denote the order of w ∈W.

Corollary 15. Let w= ( f , h)∈ S be a wreath cycle. Then for any γ ∈ terr(w) we have

|w| =
∣

∣[−,w]Yade
∣

∣ · |h| =
∣

∣[γ,w]Yade
∣

∣ · |h|,

where
∣

∣[−,w]Yade
∣

∣ is the order of [−,w]Yade as an element of KΓ.

Proof. By the definition of the Yade-map and the multiplication rule in wreath products
we have w|h| = ([−,w]Yade,1H), thus |w| =

∣

∣[−,w]Yade
∣

∣·|h|. It remains to show that for any
γ ∈ terr(w) we have

∣

∣[−,w]Yade
∣

∣=
∣

∣[γ,w]Yade
∣

∣. This follows immediately by the pointwise
multiplication in KΓ and the fact that the non-trivial images of [−,w]Yade are conjugate
in K by Lemma 12 and thus all have the same order in K .

We can generalize this observation to arbitrary wreath product elements. This can be seen
as an analogue to computing orders of permutations given in disjoint cycle decomposition.
Recall that LCM denotes the least common multiple.

Lemma 16. Let w= w1 · · ·wℓ ∈W be a wreath cycle decomposition of w with wi = ( f i, hi) ∈
S. Then

|w| =LCM(|w1|, . . . , |wℓ|)=LCM
(∣

∣[−,w1]Yade
∣

∣ · |h1|, . . . ,
∣

∣[−,wℓ]Yade
∣

∣ · |hℓ|
)

.

Proof. The elements wi and w j commute pairwise for all 1 ≤ i, j ≤ ℓ and therefore |w| =

LCM(|w1|, . . . , |wℓ|). The result follows by Corollary 15.

We now turn our attention to the conjugacy problem in wreath products and first consider
the case of wreath cycles. It turns out that a generalization of the length of a cycle, which
we call the load, will be very useful. Recall that by Lemma 12 we know that [α,w]Yade
and [β,w]Yade are conjugate in K for all α, β ∈ terr(w).

Definition 17. Let w= ( f , h)∈W be a wreath cycle and let α ∈ terr(w). We define the load

of w as the tuple

ld(w) :=
(

([α,w]Yade)K , |h|
)

.

We now prove that the load of a wreath cycle is invariant under conjugation in S.

Lemma 18. Let w = ( f , h) ∈ S be a wreath cycle. For every a = (s, t) ∈ S the conjugate
a−1wa =wa is a wreath cycle such that for each γ ∈Γ we have

[

γ, wa
]

Yade=
[

γt−1
]

s−1
·

[

γt−1
, w

]

Yade ·
[

γt−1
]

s.

In particular, ld(w)= ld(wa).
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Proof. Observe that

wa
= ( f , h)(s,t)

=

(

(

s−1)t
f tsh−1t, t−1ht

)

.

We first show that wa is a wreath cycle. For this, first consider the case of h =1H . Then

wa
=

(

( f s)t,1H

)

.

Thus the top component of wa is trivial. Since for every γ ∈Γ we have

[γ]( f s)t
=

[

γt−1
]

s−1
·

[

γt−1
]

f ·
[

γt−1
]

s

and as w is a wreath cycle with trivial top component, w has exactly one non-trivial base
component and we obtain |terr(wa)| = 1.
Now let us consider h 6= 1H . The top component h is a non-trivial cycle and hence ht is
a non-trivial cycle. Further for any γ ∉ supp(ht) we know γt−1

∉ supp(h) and γt−1h = γt−1
.

Thus we have
[γ]

(

(

s−1)t
f tsh−1t

)

=

[

γt−1
]

s−1
·

[

γt−1
]

f ·
[

γt−1
]

s = 1K ,

and thus terr(wa) = supp(ht). The claimed identity for
[

γ,wa
]

Yade follows from the fol-
lowing calculation:

[

γ,wa
]

Yade=
|ht|−1
∏

i=0
[γ]

(

(

s−1)t
f tsh−1t

)(ht)−i

=

|h|−1
∏

i=0
[γ]

(

s−1 f sh−1
)tt−1h−i t

=

|h|−1
∏

i=0

[

γt−1
]

(

(

s−1)h−i

f h−i

sh−i−1
)

=

[

γt−1
]

s−1
·

[

γt−1
, w

]

Yade ·
[

γt−1
]

s.

One can now derive the following corollary relating the territories of conjugate wreath
cycles.

Corollary 19. Let w= ( f , h)∈ S be a wreath cycle and a = (s, t)∈ S. Then

terr(wa)= terr(w)t.

Proof. The claim follows from the proof of Lemma 18 if h =1H . If h 6=1H , the claim follows
because w and wa are wreath cycles and hence

terr(wa)= supp(ht)= supp(h)t
= terr(w)t.

Next we show the converse of Lemma 18, i.e. that two wreath cycles with the same load
are always conjugate in S. In order to do so, we need the following lemma, which is
[11, Theorem 2] (we repeat the proof as we require the constructed elements).

Lemma 20. Let K be a group, ℓ ∈Z>0, a0,a1, . . . ,aℓ−1, b0, b1, . . . , bℓ−1 ∈ K and set

a := a0a1 · · ·aℓ−1 and b := b0b1 · · ·bℓ−1.

Then there exist c0, . . . , cℓ ∈ K where c0 = cℓ such that bi = c−1
i

a i c i+1 for every i ∈ {0, . . . ,ℓ−
1} if and only if a and b are conjugate in K .
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Proof. Let a and b be conjugate in K and c0 ∈ K such that ac0 = b, in particular (a0a1 · · ·aℓ−1)c0 =

b0b1 · · · bℓ−1. Define c i := a−1
i−1a−1

i−2 · · ·a
−1
0 c0b0b1 · · ·bi−1, then a short calculation shows

that c i has the desired property. Conversely, if such c0, . . . , cℓ ∈ K exist, we have (a0a1 · · ·aℓ−1)c0 =

b0b1 · · ·bℓ−1 and thus ac0 = b.

This enables us to show the following lemma, which is [11, Theorem 6] restated in our
notation.

Lemma 21. Let w, v ∈ S be wreath cycles. Then w and v are conjugate in S if and only if
they have the same load.

Proof. The if direction is Lemma 18. Now consider the wreath cycles w= ( f , h), v = (e, g)∈
S with the same load

(

kK , j
)

. We construct an element a = (s, t)∈ S with wa = v.
First assume j = 1. Then |terr(w)| = |terr(v)| = 1 and for some γ0 ∈ terr(w) there exists a
t ∈Sym(Γ) with γt

0 ∈ terr(v). As the Yade-classes of w and v agree there exists a c ∈K with

c−1
· [γ0] f · c = c−1

· [γ0,w]Yade·c = [γt
0,v]Yade= [γt

0]e.

Using

s :Γ→ K ,γ 7→

{

c, if γ= γ0

1K , else

we conclude w(s,t) = v.
Now assume j > 1. As the order of h equals that of g there exists a t ∈ Sym(Γ) with
ht = g. We continue by constructing the base component s of a conjugating element. Fix
γ0 ∈ supp(h). As

[γ0,w]Yade=
j−1
∏

i=0
[γ0] f h−i

and
[

γt
0,v

]

Yade=
j−1
∏

i=0
[γt

0]eg−i

∈ K

are conjugate in K , by Lemma 20 there exist c0, . . ., c j ∈ K where c0 = c j such that

c−1
i · [γ0] f h−i

· c i+1 =
[

γt
0

]

eg−i

.

Now define

s : Γ→ K ,γ 7→

{

1K , if γ 6∈ terr(w),

c i, if γ= γhi

0 for 0≤ i < j.

We now show that a = (s, t) has the desired property. First note

terr(v)= supp(g) = supp(h)t
= terr(w)t

and
wa

= ( f , h)(s,t)
=

(

(s−1)t
· f t

· sh−1·t, t−1
·h · t

)

=

(

(s−1)t
· f t

· sh−1·t, g
)

.

Next we prove that the base component of wa equals that of v. Let γ ∈Γ and observe

[γ]
(

(s−1)t
· f t

· sh−1·t
)

=

[

γt−1
]

s−1
·

[

γt−1
]

f ·
[

γt−1·h
]

s (2)

We now distinguish two cases for γ ∈Γ:
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• γ 6∈ terr(v): Using Corollary 19 we obtain terr(wa)= terr(w)t = terr(v) and hence

[γ]
(

(s−1)t
· f tsh−1·t

)

= 1K = [γ]e.

• γ ∈ terr(v) = supp(g): Then γt−1
∈ supp(h) and there exists an i ∈ {0, . . ., j −1} with

γt−1
= γhi

0 . By Equation 2

[γ]
(

(s−1)t
· f t

· sh−1 t
)

=

[

γt−1
]

s−1
·

[

γt−1
]

f ·
[

γt−1·h
]

s = c−1
i ·

[

γhi

0

]

f · c i+1

=
[

γt
0

]

eg−i

=

[

γ
t·gi

0

]

e =
[

γt·(t−1·h·t)i

0

]

e =
[

γhi ·t
0

]

e = [γ]e

which concludes the proof.

We generalise the above results to arbitrary wreath product elements. For this, we need
to introduce a few additional concepts.

Definition 22. Let w = ( f , h) = w1 · · ·wℓ ∈ W be an arbitrary wreath product element in
disjoint wreath cycle decomposition, i.e. the wi ∈ S are disjoint wreath cycles. Define
C (w) := {w1, . . .,wℓ} as the set of all wreath cycles in a disjoint wreath cycle decomposition
of w and

L (w) := { ld(z) : z ∈C (w) } and for L ∈L (w) set C (L,w) := { z ∈C (w) : ld(z)= L} .

Further, set C
∗(w) := {z = (e, g) ∈ C (w) : g 6= 1H} as the set of all wreath cycles of w with

non-trivial top component.

Note that the above sets are well-defined as the cycles in a wreath cycle decomposition
are unique up to permutation. Moreover, one can now write

w= w1 · · ·wℓ =
∏

L∈L (w)

∏

z∈C (L,w)
z. (3)

The disjoint cycle decomposition of a permutation induces a partition of the underlying
set by considering the support of each cycle. We extend this concept and decompose the
territory of each wreath product element in accordance with the decomposition given in
Equation 3.

Definition 23. Let w ∈W and define the territory decomposition of w as

P (w) = ×
L∈L (w)

{terr(z) : z ∈C (L,w)}.

Remark 24. Suppose that K has finitely many conjugacy classes kK
1 , . . . , kK

r and let w ∈W.
Suppose that A =×L∈L (w) AL is a set indexed by L (w). In our examples and in analogy
to the example by Specht in [14] we illustrate A as an r ×|Γ|-matrix M via Mi, j = AL, if
L = (kK

i
, j)∈ L(w) and Mi, j =; else.
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Example 25. Let K :=Sym({1, . . . ,4}), Γ := {1, . . . ,8} and S := K ≀Sym(Γ). We give an exam-
ple for P (w) by considering the wreath cycle decomposition of the element w = ( f , h) ∈ S

from Example 10. For this we choose

R(K ) := { k1 := (), k2 := (1,2), k3 := (1,2)(3,4), k4 := (1,2,3), k5 := (1,2,3,4) }

as a set of representatives for the conjugacy classes of K and set r := |R(K )| = 5. Recall
the wreath cycle decomposition of w given by the following four wreath cycles:

w1 =
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

() ;
top

( 1,2 )
)

,

w2 =
(

1

() ,
2

() ,
3

() ,
4

(1,2),
5

() ,
6

() ,
7

() ,
8

() ;
top

( 3,4 )
)

,

w3 =
(

1

() ,
2

() ,
3

() ,
4

() ,
5

(1,2,3),
6

() ,
7

() ,
8

() ;
top

( 5,6 )
)

,

w4 =
(

1

() ,
2

() ,
3

() ,
4

() ,
5

() ,
6

() ,
7

(1,2),
8

() ;
top
()

)

.

The Yade classes for each of the wi are

[ 1 , w1 ]Yade= (1,2)(3,4) · (3,4)= (1,2)∈ kK
2 ,

[ 3 , w2 ]Yade= () · (1,2)= (1,2)∈ kK
2 ,

[ 5 , w3 ]Yade= (1,2,3) · ()= (1,2,3)∈ kK
4 ,

[ 7 , w4 ]Yade= (1,2)∈ kK
2 .

We write P (w) in matrix notation, where according to Remark 24 the entry in position
(i, j) is

⋃

z∈C (w){terr(z) : ld(z)= (kK
i

, j)}. We omit the additional set braces for each entry of
P (w) and write • if an entry of P (w) is the empty set, so

P (w)=

1 2 3 4 5 6 7 8




























• • • • • • • • k1

{ 7 } { 1,2 }, { 3,4 } • • • • • • k2

• • • • • • • • k3

• { 5,6 } • • • • • • k4

• • • • • • • • k5

.

Corollary 26. Let w= ( f , h)∈W and a = (s, t)∈W. Then P (wa)=P (w)t and in particular
terr(wa)= terr(w)t.

Proof. By Lemma 18 we have ld(z) = ld(za) for all z ∈C (w) and thus C (L,wa) = C (L,w)a

for all L ∈L (w). Therefore,

P (wa)= ×
L∈L (wa)

{terr(z) : z ∈C (L,wa)}= ×
L∈L (w)

{terr(za) : z ∈C (L,w)}

= ×
L∈L (w)

{terr(z)t : z ∈C (L,w)}=P (w)t

by Corollary 19.
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The following theorem, which is an explicit version of Theorem 1, gives us a way to test
whether two elements of the wreath product S are conjugate in W after having computed
their wreath cycle decomposition. The proof of this theorem is constructive as it shows
how to construct a conjugating element if it exists and therefore solves the conjugacy
problem.

Theorem 27. Two elements w= ( f , h), v = (e, g)∈ S are conjugate in W if and only if there
exists a t ∈ H such that ht = g and P (w)t =P (v).

Proof. We first show the if direction: If there exists a = (s, t) ∈ W such that wa = v, then
ht = g and by Corollary 26 the claim follows.
We now show the only-if direction, so assume the existence of a t ∈ H with P (w)t = P (v)
and ht = g, hence L (w)=L (v). As we can identify each cycle with its territory, t induces

a unique bijection σ : C (w)
1:1
−−→ C (v) such that σ maps C (L,w) to C (L,v) bijectively for

all L ∈ L (w) and terr(z)t = terr([z]σ) for all z ∈ C (L,w). Moreover, t conjugates the top
component of z ∈ C (L,w) to the top component of [z]σ as ht = g. Additionally, ld(z) =
ld([z]σ) for all z ∈C (L,w).
We now construct a base component s ∈ KΓ such that a = (s, t)∈W satisfies wa = v. As in
the proof of Lemma 21, for each z ∈C (L,w), we can find an sz ∈ KΓ with (sz, t)−1 ·z ·(sz, t)=
[z]σ. Define

s :=
∏

z∈C (w)
sz

as the product of all these maps for all disjoint wreath cycles in a decomposition of w. By
construction [γ]s = [γ]sz if γ ∈ terr(z) since [γ]sy = 1K for all y 6= z. Thus

wa
=

∏

z∈C (w)
z(s,t)

=
∏

z∈C (w)
(sz, t)−1

· z · (sz, t)=
∏

z∈C (w)
[z]σ= v,

which concludes the proof.

There are several ways of finding a conjugating element. One could formulate this as a
single backtrack problem seeking an element t ∈ H which simultaneously conjugates h

to g and maps P (w) to P (v). Alternatively, one could first find an element t ∈ H with
h = gt, then compute CH(h) and check if P (v)t is in the orbit of P (w) under CH(h). If not,
w and v are not conjugate. Backtrack may also be helpful in the second approach. The
implementation by the third author in [12] uses the second approach. For many search
problems in permutation groups, partition backtrack is still the state of the art algorithm.
For an exposition on the backtrack strategy frequently used, namely partition backtrack,
see for example [9].
The special case of H = Sym(Γ) is already described in [7, Theorem 4.2.8]. We obtain the
same result as a corollary to the above theorem.

Corollary 28. Two elements w, v ∈ S are conjugate in S if and only if L (w) = L (v) and
|C (L,w)| = |C (L,v)| for all L ∈L (w).

Applying the above theory, we give an example for conjugacy testing in wreath products.
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Example 29. We use the notation from Example 25 and highlight wreath cycle decom-
positions by colouring points of Γ. We computed a wreath cycle decomposition of w in
Example 10 and P (w) in Example 25 using the same colours. Consider the elements
w= ( f , h), v= (e, g)∈ S:

w :=
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

(1,2),
5

(1,2,3),
6

() ,
7

(1,2),
8

() ;
top

( 1,2 )( 3,4 )( 5,6 )
)

,

v :=
(

1

(3,4),
2

() ,
3

() ,
4

(1,2,3),
5

(1,2),
6

() ,
7

() ,
8

(3,4);
top

( 1,2 )( 3,4 )( 5,6 )
)

.

The top components of w and v are equal and we have

1 2 3 4 5 6 7 8




























• • • • • • • • k1

{ 7 } { 1,2 }, { 3,4 } • • • • • • k2

P (w) = • • • • • • • • k3

• { 5,6 } • • • • • • k4

• • • • • • • • k5

1 2 3 4 5 6 7 8




























• • • • • • • • k1

{ 8 } { 1,2 }, { 5,6 } • • • • • • k2

P (v) = • • • • • • • • k3

• { 3,4 } • • • • • • k4

• • • • • • • • k5

.

Observe L (v) = L (w) and |C (L,v)| = |C (L,w)| for all L ∈ L (v) and thus v and w are
conjugate in S = K ≀Sym(Γ) by Corollary 28.
Now let us consider three different choices for the top group Hi (1 ≤ i ≤ 3) for the wreath
product Wi := K ≀Hi and decide whether w and v are conjugate in W. For this we need to
check if P (v) ∈P (w)CH (h). We use three different top groups:

H1 := 〈 (1,2)(3,4), (1,2,3,4), (5,6), (7,8) 〉 ∼= D8×C2 ×C2,
H2 := 〈 (1,2)(3,4)(5,6), (3,5)(4,6)(7,8) 〉 ∼= C2×C2,
H3 := 〈 (1,2)(3,4)(5,6), (7,8) 〉 ∼= C2×C2.

Since the submatrix induced by the columns from 3 to 8 in P (w) consists of empty entries,
we condense the notation and write • for a matrix of appropriate dimension with empty
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entries. We have

P (w)CH1 (h)
=











































1 2 3,...,8
























• • •

{7} {1,2}, {3,4} •

• • •

• {5,6} •

• • • ,

1 2 3,...,8
























• • •

{8} {1,2}, {3,4} •

• • •

• {5,6} •

• • •











































,

P (w)CH2 (h)
=











































1 2 3,...,8
























• • •

{7} {1,2}, {3,4} •

• • •

• {5,6} •

• • • ,

1 2 3,...,8
























• • •

{8} {1,2}, {5,6} •

• • •

• {3,4} •

• • •











































,

P (w)CH3 (h)
=P (w)CH1 (h).

Hence w and v are not conjugate in W1 and W3, but are conjugate in W2. Now let us
construct an element a = (s, t) ∈ W2 with wa = v. First we compute an element t ∈ CH2 (h)
with P (w)t =P (v), for example t = (3,5)(4,6)(7,8) ∈ CH2(h). Using the above colouring to
encode the wreath cycles, we write w and v in a disjoint wreath cycle decomposition as in
Equation 3, where wi, j,ℓ denotes the ℓ-th wreath cycle of load (kK

i
, j):

w= w2,1,1 · w2,2,1 · w2,2,2 · w4,2,1 ,

v= v2,1,1 · v2,2,1 · v2,2,2 · v4,2,1 .

Suppose wi, j,ℓ = ( f i, j,ℓ, hi, j,ℓ) and vi, j,ℓ = (e i, j,ℓ, hi, j,ℓ). Next, compute the bijection σ : C (w)
1:1
−−→

C (v) recording the mapping induced by a, i.e. za = [z]σ for every z ∈C (w), where the base
component of a = (s, t) is yet to be constructed. As σ only depends on the top component
of a, it is already determined by [wi, j,ℓ]σ = vi, j,ℓ. Now it remains to construct the base
component s ∈KΓ of the conjugating element a. For this we construct elements s i, j,ℓ ∈ KΓ,

such that w
(si, j,ℓ, t)
i, j,ℓ = vi, j,ℓ as in the proof of Theorem 27. We demonstrate this for the

wreath cycle w2,2,1 which takes the place of the cycle z in the proof. First we compute
two Yades:

[1, w2,2,1 ]Yade= (1,2)(3,4) · (3,4)= (1,2),
[

1t, v2,2,1

]

Yade= (3,4) · ()= (3,4).

Next, note that x := (1,3)(2,4) ∈ K conjugates (1,2) to (3,4). Then compute the following
elements of K used in Lemma 20:

c0 := x = (1,3)(2,4)

c1 := [1] f2,2,1
−1

· c0 ·
[

1t
]

e2,2,1 =
(

(1,2)(3,4)
)−1

· (1,3)(2,4) · (3,4)= (1,3,2,4).
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We proceed to define the element s2,2,1 as

s2,2,1 : Γ→ K ,γ 7→







1K , if γ 6∈ terr( w2,2,1 ),

c i, if γ= 1
hi

2,2,1 for 0≤ i ≤ 1.

Hence we have

s2,2,1 =
(

1

(1,3)(2,4),
2

(1,3,2,4),
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

()
)

.

Analogously we compute s2,1,1 , s2,2,1 and s4,2,1 . This yields

a =
(

1

(1,3)(2,4),
2

(1,3,2,4),
3

() ,
4

(1,2),
5

() ,
6

(1,3,2),
7

(1,3)(2,4),
8

() ;
top

(3,5)(4,6)(7,8)
)

.

4 Conjugacy classes in wreath products

Recall the setting from Hypothesis A. In this section, we parameterise the W-conjugacy
classes wW of arbitrary elements w ∈ S. This is achieved via defining bijections between
certain iterated cartesian products and wW . The notation is chosen to reflect the way we
construct these conjugacy classes. When using a cartesian product A×B to parameterise
a set, one should view this as first choosing an element in A and then in B.
The conjugacy class sizes and the number of conjugacy classes in the full monomial group
S are already known, see for example James and Kerber [7, 4.2.9, 4.2.10].
The maps we define to parameterise the W-conjugacy classes of elements of S are con-
structed in such a way that they can be implemented directly in computer algebra systems
such as GAP[5] or MAGMA[2]. For instance, the third author implemented computation
of W-conjugacy classes in this way in the GAP package WPE, see [12].
We extend the notation C (W) from Definition 11 naturally to refer to wreath cycles of W

with a fixed top component h.

Definition 30. For h ∈ H denote the set of all wreath cycles of W with top component h

by
C (W, h) := {( f , h)∈W : ( f , h) is a wreath cycle}.

Let 1H 6= h ∈ H be a single cycle and γ0 ∈ supp(h). Given an x ∈ K , we construct all wreath
cycles w= ( f , h)∈ K ≀Γ H with top component h and [γ0,w]Yade= x. The image of the map
[h,γ0, x,−]B defined in the following lemma yields the base components of the desired
wreath cycles.

Lemma 31. Let 1H 6= h ∈ H be a cycle, γ0 ∈ supp(h) and x ∈ K . Define

[h,γ0, x,−]B : K supp(h)\{γ0}
,→ KΓ, d 7→ [h,γ0, x, d]B

17



where

[h,γ0, x, d]B= γ 7→



















x ·
|h|−1
∏

i=1

[

γh|h|−i
]

d−1, if γ= γ0

[γ]d, if γ ∈ supp(h)\{γ0}

1K , if γ ∈Γ\supp(h).

Then the following statements hold:

1. [h,γ0, x,−]B is an injection.

2. w := ([h,γ0, x, d]B, h)∈C (W, h), i.e. w is a wreath cycle of W with top component h.

3. The map [h,γ0, x,−]B induces a bijection

ϕ : K supp(h)\{γ0} 1:1
−−→ {w ∈C (W, h) : [γ0,w]Yade= x}, d 7→ ([h,γ0, x, d]B, h).

4. If K is finite, we have

|{w ∈C (W, h) : [γ0,w]Yade= x}| = |K |
|h|−1.

Proof. First note that [h,γ0, x,−]B is injective since we embed d in supp(h)\{γ0}. Next we
show that ϕ is well-defined. Let d ∈ K supp(h)\{γ0}, define f := [h,γ0, x, d]B and w := ( f , h).
Then terr(w)= supp(h) and

[γ0,w]Yade=
|h|−1
∏

i=0

[

γhi

0

]

f = x ·

|h|−1
∏

i=1

[

γh|h|−i

0

]

d−1
·

|h|−1
∏

i=1

[

γhi

0

]

d = x.

This shows im(ϕ) ⊆ {w ∈ C (W, h) : [γ0,w]Yade = x} and clearly ϕ is injective. Now let
w = ( f , h) ∈ {w ∈C (W, h) : [γ0,w]Yade= x}. We construct an element d ∈ K supp(h)\{γ0} with
[h,γ0, x, d]B = f . Define d : supp(h) \ {γ0} → K ,γ 7→ [γ] f and e := [h,γ0, x, d]B. For any
γ ∈ Γ\{γ0} we have [γ]e = [γ] f . Now suppose γ= γ0. Then

[γ0]e = [γ0,w]Yade ·
|h|−1
∏

i=1

[

γh|h|−i

0

]

f −1
= [γ0] f .

In particular e = f and thus part 3 follows immediately.

Example 32. Let K := Sym({1, . . . ,4}), Γ := {1, . . .,8} and S := K ≀Sym(Γ). We compute the
image of d under [h,γ0, x,−]B, where

4

h := (1,4) , γ0 := 1, x := (3,4) and d :=
(

(1,2,3,4)
)

.

Let e := [h,γ0, x, d]B. For all points γ ∈ Γ\ supp(h) = {2,3,5,6,7,8}, we obtain [γ]e = 1K .
Next we compute the images of the points of supp(h) = {1,4} under e: [1]e = x ·

[

1h
]

d−1 =

(3,4) · (1,4,3,2)= (1,4,2) and [4]e = [4]d = (1,2,3,4). Then

[h,γ0, x, d]B =
(

1

(1,4,2),
2

() ,
3

() ,
4

(1,2,3,4),
5

() ,
6

() ,
7

() ,
8

()
)

.
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In particular,

(

[h,γ0, x, d]B, h
)

= ((1,4,2), (), (), (1,2,3,4), (), (), (), () ; (1,4))

is contained in {w ∈C (W, h) : [γ0,w]Yade= x}.

Using the above lemma we can derive the proportion of wreath cycles with non-trivial
top-component whose Yade in a given point lies in a given subset P ⊆ K .

Corollary 33. Let K be finite, 1 6= h ∈ H a single cycle, γ ∈ supp(h) and P ⊆ K . Then

|{w ∈C (W, h) : [γ,w]Yade∈ P}|

|C (W, h)|
=

|P|

|K |
.

Proof.

|{w ∈C (W, h) : [γ,w]Yade∈ P}| =
∣

∣

⋃

·
x∈P

{w ∈C (W, h) : [γ,w]Yade= x}
∣

∣

=
∑

x∈P

|{w ∈C (W, h) : [γ,w]Yade= x}| = |K |
|h|−1

|P|.

The result follows as |C (W, h)| = |K ||h|.

We now turn towards parameterising conjugacy classes of arbitrary wreath product ele-
ments.
We commence our investigation with the W-conjugacy class of a single wreath cycle in S.
Note that if the top component of a wreath cycle is the identity we require an embedding
of Γ×K into the base component, which we achieve via the map E defined in the following
lemma, replacing the map B from Lemma 31.

Lemma 34. Let w = ( f , h) ∈ S be a wreath cycle and γ0 ∈ terr(w). Then, for h 6= 1H , the
map

hH
×

(

[γ0,w]Yade
)K

×K terr(w)\{γ0} 1:1
−−→ wW , (ht, x, d) 7→

([

ht,γt
0, x, d t

]

B, ht
)

and for h = 1H , the map

γH
0 ×

(

[γ0,w]Yade
)K 1:1

−−→ wW , (γt
0, x) 7→ ([γt

0, x]E ,1H)

are bijections into the conjugacy class of w in W, where B is as in Lemma 31 and

E : Γ×K ,→ KΓ, (γ′, x) 7→ [γ′, x]E

with

[γ′, x]E : Γ→ K ,γ 7→

{

x, if γ= γ′

1K , if γ 6= γ′

is an injection.
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Proof. Let v = (e, g) ∈ S. Using Theorem 27, w is conjugate to v in W if and only if v

is a wreath cycle, there exists a t ∈ H with ht = g and P (w)t = P (v). As w and v are
wreath cycles and the load of a wreath cycle is invariant under conjugation we know that
P (w)t =P (v) holds if and only if

(

[γt
0,v]Yade

)K
=

(

[γ0,w]Yade
)K .

We now parameterise the different elements v ∈ S one can construct with these properties.
Suppose first h 6= 1H . Then we need to choose an element g = ht ∈ hH as a possible top
component for v and an element x ∈

(

[γ0,w]Yade
)K as the Yade of v at the point γt

0. By
Lemma 31, the possible elements v with the above requirements are parameterised by
the following bijection

K terr(w)\{γ0} 1:1
−−→ {v ∈C (S, g) : [γt

0,v]Yade= x}, d 7→
([

ht,γt
0, x, d t

]

B, ht
)

,

observing K terr(w)\{γ0} 1:1
−−→ K supp(ht)\{γt

0}, d 7→ d t is a bijection.
Now let h = 1H . Then the top component of v must equal 1H . Since v is a wreath cycle,
we must have |terr(v)| = 1. For the territory of v, we need to choose γt

0 ∈ γH
0 and x =

[γt
0]e = [γt

0,v]Yade ∈
(

[γ0,w]Yade
)K . These choices fix the element v, which must equal

([γt
0, x]E ,1H).

We now parameterise the W-conjugacy class of arbitrary wreath product elements w ∈ S.
Recall the definition of C (w) and C

∗(w) from Definition 22.

Theorem 35. Let w = ( f , h) ∈ S be an arbitrary wreath product element and for each
z ∈C (w) choose γz ∈ terr(z). Fix a transversal {t1, . . . , tm} of the right cosets of CH(h) in H.
Then the W-conjugacy class of w is parameterised by the following bijection

hH
×P (w)CH (h)

× ×
z∈C (w)

(

[γz, z]Yade
)K

× ×
z∈C ∗(w)

K supp(hz)\{γz } 1:1
−−→ wW ,

(hta ,P (w)c, x, d) 7→
∏

z∈C (w)\C ∗(w)

(

[γba
z , xz]E ,1H

)

·
∏

z∈C
∗(w)

(

[hba
z ,γba

z , xz, d
ba
z ]B, h

ba
z

)

,

where ba := c · ta.

Proof. Let v = (e, g) ∈W. By Theorem 18, w and v are conjugate in W if and only if there
exists a t ∈ H with g = ht and P (v)=P (w)t. We first claim that

hH
×P (w)CH (h) 1:1

−−→
{(

ht,P (w)t
)

: t ∈ H
}

, (hta ,P (w)c) 7→ (hcta ,P (w)cta )

is a bijection and first show injectivity. Fix 1 ≤ a, b ≤ m and c, c′ ∈ CH(h) and assume
(hcta ,P (w)cta ) = (hc′ tb ,P (w)c′ tb ). Then ta = tb as they are representatives of right cosets
of CH(h) in H and hence P (w)c = P (w)c′ . Surjectivity follows as, for an arbitrary t ∈ H,
there exists 1≤ a ≤ m and c ∈CH(h) with t = cta.
Now fix (ht,P (w)t) for some t ∈ H. In order to parameterise all elements x of W with top
component ht and territory decomposition P (w)t, we consider a wreath cycle decomposi-
tion for each such element x = x1 · · · xℓ ∈W. Note that for each wreath cycle xi ∈ S in such
a decomposition, its load, top component and territory are fixed by our hypothesis. Thus
for each xi, we only need to consider its base component. By using the maps E and B one
proceeds as in Lemma 34.
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Example 36. We use the notation from Example 29 and highlight wreath cycle decom-
positions by colouring points of Γ. We computed a wreath cycle decomposition of w in
Example 10 and P (w) in Example 25 using the same colours. Consider the element
w= ( f , h)∈ S

w :=
(

1

(1,2)(3,4),
2

(3,4),
3

() ,
4

(1,2),
5

(1,2,3),
6

() ,
7

(1,2),
8

() ;
top

( 1,2 )( 3,4 )( 5,6 )
)

with
1 2 3 4 5 6 7 8





























• • • • • • • • k1

{ 7 } { 1,2 }, { 3,4 } • • • • • • k2

P (w) = • • • • • • • • k3

• { 5,6 } • • • • • • k4

• • • • • • • • k5

.

Using this colouring to encode the wreath cycles, we write w in a disjoint wreath cycle
decomposition as in Equation 3, where wi, j,ℓ denotes the ℓ-th wreath cycle of load (kK

i
, j):

w= w2,1,1 · w2,2,1 · w2,2,2 · w4,2,1

Further let wi, j,k = ( f i, j,k, hi, j,k) and fix points in the territory of each wreath cycle:

γ2,1,1 := 7 , γ2,2,1 := 1 , γ2,2,2 := 3 , γ4,2,1 := 5 .

Recall the three different top groups:

H1 := 〈 (1,2)(3,4), (1,2,3,4), (5,6), (7,8) 〉 ∼= D8×C2 ×C2,
H2 := 〈 (1,2)(3,4)(5,6), (3,5)(4,6)(7,8) 〉 ∼= C2×C2,
H3 := 〈 (1,2)(3,4)(5,6), (7,8) 〉 ∼= C2×C2

Using the computations from Example 29 we compute the cardinality of the conjugacy
class wWi , where Wi := K ≀ Hi for 1 ≤ i ≤ 3. First note that two factors of the cartesian
product occurring in the source of the bijection defined in Theorem 35 do not depend on
the chosen top group, namely

∣

∣

∣

∣

(

[ 7 , w2,1,1 ]Yade
)K

×

(

[ 1 , w2,2,1 ]Yade
)K

×

(

[ 3 , w2,2,2 ]Yade
)K

×

(

[ 5 , w4,2,1 ]Yade
)K

∣

∣

∣

∣

=

∣

∣

∣kK
2 ×kK

2 ×kK
2 ×kK

4

∣

∣

∣= 63
·8= 1,728

and
∣

∣

∣

∣

K
{ 1,2 }\{ 1 }

×K
{ 3,4 }\{ 3 }

×K
{ 5,6 }\{ 5 }

∣

∣

∣

∣

= 243
= 13,824.

We have
∣

∣

∣wW1

∣

∣

∣=

∣

∣

∣hH1

∣

∣

∣ ·

∣

∣

∣P
CH1 (h)

∣

∣

∣ ·1,728 ·13,824= 2 ·2 ·1,728 ·13,824= 95,551,488 ,
∣

∣

∣wW2

∣

∣

∣=

∣

∣

∣hH2

∣

∣

∣ ·

∣

∣

∣P
CH2 (h)

∣

∣

∣ ·1,728 ·13,824= 1 ·2 ·1,728 ·13,824= 47,775,744 ,
∣

∣

∣wW3

∣

∣

∣=

∣

∣

∣wW2

∣

∣

∣ .
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Let Φ be the bijection from Theorem 35 for the wreath product W1, where we fix the
transversal {t1 := (), t2 := (2,4)} of the right cosets of CH1(h) in H1. We choose an element
from the domain of Φ using the same notation as in the above Theorem:

ta := t2, c := (7,8)∈CH1 (h),

1 2 3 4 5 6 7 8




























• • • • • • • • k1

(2,4) (3,4) , (1,4) • • • • • • k2

x= • • • • • • • • k3

• (1,4,3) • • • • • • k4

• • • • • • • • k5

2 3 4 5 6 7 8












































• • • • • • • k1

2
(

(1,2,3,4)
)

,
4

(

(1,4,3)
) • • • • • • k2

d = • • • • • • • k3

6
(

(2,3,1)
) • • • • • • k4

• • • • • • • k5

.

We compute the image of (hta , c, x, d) under Φ by computing each non-trivial factor in the
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product separately:

u2,1,1 =
(

[ γ2,1,1
cta , x2,1,1 ]E , ()

)

=
(

1

() ,
2

() ,
3

() ,
4

() ,
5

() ,
6

() ,
7

() ,
8

(2,4);
top
()

)

,

u2,2,1 =
(

[ h2,2,1
cta , γ2,2,1

cta , x2,2,1 , d2,2,1
cta ]B, h2,2,1

cta
)

=
(

1

(1,4,2),
2

() ,
3

() ,
4

(1,2,3,4),
5

() ,
6

() ,
7

() ,
8

() ;
top

(1,4)
)

,

u2,2,2 =
(

[ h2,2,2
cta , γ2,2,2

cta , x2,2,2 , d2,2,2
cta ]B, h2,2,2

cta
)

=
(

1

() ,
2

(1,4,3),
3

(3,4),
4

() ,
5

() ,
6

() ,
7

() ,
8

() ;
top

(2,3)
)

,

u4,2,1 =
(

[ h4,2,1
cta , γ4,2,1

cta , x4,2,1 , d4,2,1
cta ]B, h4,2,1

cta
)

=
(

1

() ,
2

() ,
3

() ,
4

() ,
5

(1,4,2),
6

(1,2,3),
7

() ,
8

() ;
top

(5,6)
)

.

Then u := (e, g) = u2,1,1 · u2,2,1 · u2,2,2 · u4,2,1 ∈ wW1 is a wreath cycle decomposition of

u =
[

hta , c, x, d
]

Φ, where ui, j,ℓ denotes the ℓ-th wreath cycle of load (kK
i

, j). Note that by
construction we have hcta = g and P (w)cta =P (u).

In the following theorem we construct representatives of all conjugacy classes of elements
of W. For this, we need to consider orbits under the natural action of CH(h) on {P (w) :
w = ( f , h) ∈ S} for a fixed h ∈ H. Note that as K need not be finite, the index set I in the
theorem below need not be finite either.

Theorem 37. Let h ∈ H and define Ω := {P (w) : w = ( f , h) ∈ S} as the set of all territory
decompositions of elements of S with fixed top component h. Fix a set of representatives
{P (wi) : i ∈ I} of the orbits under the action of CH(h) on Ω, where I is some index set.
Denote by γz the minimum of terr(z) with respect to a fixed total ordering on Γ. Then the
map

ϕh : {P (wi) : i ∈ I } ,→W, P (w) 7→

(

∏

z∈C (w)

([

γz, [γz, z]Yade
]

E ,1H

)

)

· (1KΓ , h),

is an injective map and im(ϕh) consists of a system of representatives of conjugacy classes
of elements of W whose top component is conjugate to h in H.
In particular, a system of representatives of W-conjugacy classes is given by

R(W)=
⋃

·
x∈R(H)

im(ϕx),
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where the union ranges over a system of representatives R(H) of H-conjugacy classes.

Proof. Note that for i ∈ I the elements wi and vi := [P (wi)]ϕh are conjugate in W by
Theorem 27, since P (wi) = P (vi ) and the top components of wi and vi are identical. We
first prove that elements of im(ϕh) for fixed h ∈ H are non-conjugate. Let i 6= j ∈ I. By
Theorem 27 wi and w j are conjugate in W if and only if there exists a t ∈ H with ht = h

and P (wi)t =P (w j), so t ∈CH(h). As P (wi) and P (w j) are in different centraliser orbits
we conclude that wi and w j are not conjugate in W.
Let ( f , ht) ∈ W for some t ∈ H. We now show that ( f , ht) is conjugate to an element in
im(ϕh). Note ( f , ht)(1KΓ ,t−1) = (e, h) for a suitable e ∈ KΓ, so it suffices to show that (e, h) is
conjugate to an element of im(ϕh). There exists an i ∈ I and a c ∈ CH(h) with P ((e, h)) =
P (wi)c, hence [P (wi)]ϕh is conjugate to (e, h) in W.

Example 38. Recall the groups Hi and Wi from Example 36. The number of conjugacy
classes of Hi for i = 1,2,3 is

|R(H1)| = 20, |R(H2)| = 4, |R(H3)| = 4

and using the above theorem we compute

|R(W1)| = 92000, |R(W2)| = 103000 and |R(W3)| = 160000.

As an example we demonstrate how this is done for W2. We first choose a set R(H2) of
representatives of the H2-conjugacy classes as

{x1 := (), x2 := (3,5)(4,6)(7,8), x3 := (1,2)(3,4)(5,6), x4 := (1,2)(3,6)(4,5)(7,8)}.

For each element xi ∈R(H2), we compute the images under ϕxi
:

∣

∣im(ϕx1)
∣

∣= 99375,
∣

∣im(ϕx2)
∣

∣= 1625,
∣

∣im(ϕx3)
∣

∣= 1625,
∣

∣im(ϕx4)
∣

∣= 375.

In particular, these computations show that there are 99375 conjugacy classes in W2

whose elements have trivial top component.

5 Centralisers in wreath products

Recall the setting from Hypothesis A. We first introduce the notion of sparse wreath cy-
cles. These are wreath cycles with at most one non-trivial base component. It turns out
that every wreath cycle is conjugate in KΓ×〈1H〉 to a sparse wreath cycle and we show
that one can conjugate every wreath product element into a sparse wreath cycle decom-
position, see Corollary 40. We use this to parameterise the W-centraliser of a product of
sparse wreath cycles which, after conjugation, then parameterises the W-centraliser of
an arbitrary wreath product element. The structure of CS(w) for the full monomial group
S = K ≀ΓSym(Γ) is described in [11, Theorem 8].

Definition 39. Let w = ( f , h) ∈ W be a wreath cycle. We call w a sparse wreath cycle if
there exists a γ0 ∈Γ such that [γ] f = 1K for all γ ∈Γ\{γ0}.

24



The concept of sparse wreath cycles is described in Ore [11, Theorem 7].
Note that in a disjoint wreath cycle decomposition of an element w ∈W in Theorem 9 we
have

w= ( f , h)=
ℓ

∏

i=1
( f

∣

∣

Γ

supp(hi )
, hi) ·

∏

γ∈fix(h)∩terr(w)
( f

∣

∣

Γ

γ,1H) ∈W

and the factors ( f
∣

∣

Γ

γ,1H) are sparse wreath cycles for all γ ∈fix(h)∩ terr(w).
The following corollary shows that every wreath cycle is conjugate to a sparse wreath
cycle and that one can write a KΓ

⋊ 〈1H〉-conjugate of any wreath product element as a
product of sparse wreath cycles. The following is a corollary of Theorem 27.

Corollary 40. Let w = w1 · · ·wℓ ∈ S be a disjoint wreath cycle decomposition of w. Then
there exists an a ∈ KΓ

⋊ 〈1H〉 such that wa = wa
1 · · ·w

a
ℓ

and wa
i

is a sparse wreath cycle for
all 1≤ i ≤ ℓ. This is called a sparse wreath cycle decomposition of wa.

Proof. For 1≤ i ≤ ℓ let wi = ( f i, hi)∈ S, choose γi ∈ terr(wi) and define

e i :Γ→ K ,γ 7→

{

[γi,wi]Yade, if γ= γi

1K , else .

Now, for 1 ≤ i ≤ ℓ set vi := (e i, hi) and v := v1 · · ·vℓ. Choosing t = 1H , we obtain ht = h and
P (w)t = P (v) and the existence of an a ∈ W with wa = v and top component t follows by
the proof of Theorem 27.

We now turn towards centralisers of elements of W. It is well known that for a single cycle
h ∈ Sym(Γ), the centraliser of h in Sym(Γ) is given by CSym(Γ)(h)≃ 〈h〉×Sym(Γ\ supp(h)).
The goal of this section is to give an explicit parametrisation of the W-centraliser of an
arbitrary wreath product element w ∈W by an iterated cartesian product.
We first observe a relation between the top component of elements of CW (w) and the
stabiliser of the territory decomposition of w.

Lemma 41. Let w= ( f , h)∈ S and a = (s, t)∈CW (w). Then t ∈StabCSym(Γ)(h)(P (w)).

Proof. Let a = (s, t)∈CW (w). Then P (w)=P (wa)=P (w)t and therefore t ∈StabSym(Γ)(P (w))
by Corollary 26. It remains to show t ∈CSym(Γ)(h). Observe

( f , h)= w= wa
=

(

(

s−1)t
· f t

· sh−1·t, t−1
·h · t

)

,

which implies h = ht and the claim follows.

To describe CW (w) explicitly, Lemma 41 suggests to investigate the structure of StabCSym(Γ)(h)(P (w))
further. First, we restate the group theoretic structure of CSym(Γ)(h) for h ∈Sym(Γ).

Lemma 42 ([13, Lemma 6.1.8]). Let h ∈Sym(Γ) and {O1, . . . ,Ok} be a system of represen-
tatives of equivalence classes of orbits of 〈h〉 on Γ, where two orbits are equivalent if and
only if they have the same cardinality. Then

CSym(Γ)(h)≃
k

×
i=1

CSym(Oi )

(

〈h〉Oi

)

≀Sym
(

|Oi|

)

,
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where for all i = 1, . . . , k we denote by 〈h〉Oi the group 〈h〉 induces on the orbit Oi and Oi

denotes the equivalence class of the representative Oi.

As our goal is to describe the centraliser of a wreath product element explicitly, we require
concrete isomorphisms. Our next aim is to give a constructive version of the above lemma.

For this, we start by investigating what structure the preimage of Sym
(

|Oi |

)

must have
under such an isomorphism.
The following definition constructs an element in Sym(Γ) induced by a permutation of a
set of pairwise disjoint cycles in Sym(Γ) of the same order.

Definition 43. Let I be a finite set and, for i ∈ I, let hi ∈ Sym(Γ) be pairwise disjoint
cycles of the same order and fix γi ∈ supp(hi). Define the map Ψ via

[{(hi,γi) : i ∈ I},−]Ψ : Sym(I) ,→Sym(Γ),

σ 7→

(

γ 7→

{

[γ[i]σ] h
j

[i]σ, if γ= [γi] h
j

i
for some i ∈ I, j ∈Z>0

γ, else

)

.

The proof of the following lemma is straightforward.

Lemma 44. The map Ψ in the definition above is a monomorphism.

The next lemma is a constructive version of Lemma 42 by using the map Ψ introduced in
Definition 43 to describe CSym(Γ)(h) for h = h1 · · ·hℓ ∈ Sym(Γ) in a fixed disjoint cycle de-
composition. We consider a partition of Γ whose parts consist of the union of the supports
of cycles hi of equal order. This partition corresponds to the equivalence classes O1, . . . ,Ok

from Lemma 42. A necessary condition for an element of Sym(Γ) to centralise h is that it
stabilises this partition.

Lemma 45. Let h = h1 · · ·hℓ ∈ Sym(Γ) be in disjoint cycle decomposition and define O (h) :=
{ |hi| : 1 ≤ i ≤ ℓ} and for o ∈ O (h) define C (o, h) := {hi : |hi| = o, 1 ≤ i ≤ ℓ}. For each o ∈ O (h)
and each z ∈ C (o, h), choose γz ∈ supp(z) and define Ψo : Sym(C (o, h)) ,→ Sym(Γ),σ 7→

[((z,γz) : z ∈ C (o, h)),σ]Ψ as in Definition 43. Then the elements of CSym(Γ)(h) are pa-
rameterised by the following group isomorphism

×
o∈O (h)

(

〈(1, . . . ,o)〉 ≀C (o,h) Sym(C (o, h)
)

×Sym(Γ\supp(h))
∼
−→ CSym(Γ)(h),

((

(

(1, . . . ,o)ez
)

z∈C (o,h) , σo

)

o∈O (h)
, π0

)

7→

(

∏

o∈O (h)

(

∏

z∈C (o,h)
h

ez
z

)

· [σo]Ψo

)

·π0,

where for z ∈C (o, h), the integer ez ∈ {0, . . . ,o−1}.

As announced after Lemma 41, we give an explicit bijection from an iterated cartesian
product into StabCSym(Γ)(h)(P (w)) which is a crucial step towards the parametrisation of
CW (w). We proceed in a similar way as in Lemma 45, where we consider the partition on
Γ induced by the orders of the disjoint cycles of h. We now translate these concepts from
permutation groups to wreath products. Recall the decomposition of a wreath product
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element w into disjoint wreath cycles w = ( f , h)= w1 · · ·wℓ from Theorem 9. By Lemma 21
for each a = (s, t) ∈ CW (w) and each wi ∈C (w) we have wa

i
∈C (w) and ld(wa

i
) = ld(wi). By

Lemma 41 the top element t ∈Sym(Γ) must centralise h and stabilise P (w). This territory
decomposition can be viewed as a refinement of the partition of Γ above.

Lemma 46. Let w = ( f , h) ∈ S. For each z ∈ C (w) choose γz ∈ terr(z). For all L ∈ L (w),
define

ΨL : Sym(C (L,w)) ,→Sym(Γ), σ 7→ [{(hz,γz) : z = ( fz, hz) ∈C (L,w)},σ]Ψ,

where Ψ is as in Definition 43. Then the elements of StabCSym(Γ)(h)(P (w)) are parame-
terised by the following group isomorphism

×
L∈L (w)

(

〈hL〉 ≀C (L,w) Sym(C (L,w)
)

×Sym(Γ\ terr(w))
∼
−→StabCSym(Γ)(h)(P (w)),

((

(

h
ez

L

)

z∈C (L,w) , σL

)

L∈L (w)
, π0

)

7→

(

∏

L∈L (w)

(

∏

z∈C (L,w)
h

ez
z

)

· [σL]ΨL

)

·π0,

where for L = (kK , j) ∈L (w) we define hL := (1, . . . , j) and for each z ∈C (L,w) the integer
ez ∈ {0, . . . , |hL|−1}.

As in Corollary 40, every wreath product element w′ ∈W is conjugate to a wreath product
element w ∈W in sparse disjoint wreath cycle decomposition. Therefore, the next theorem
is only stated for elements in sparse, disjoint wreath cycle decomposition as CW (w′) =
CW (wa) = CW (w)a for a suitable a ∈ W. This element a can be constructed explicitly by
Corollary 40. We generalise Ore’s result [11, Theorem 8] for the full monomial group to
the case W = K ≀Γ H, where H need not be the full symmetric group and K need not be
finite. We remark that in the parametrisation of the elements of CW (w) the stabiliser
StabCW (w)(P (w)) arises. This is due to Lemma 41.
We first introduce some notation. Let w= ( f , h)=

∏ℓ
i=1 wi ∈W be in sparse, disjoint wreath

cycle decomposition as in Corollary 40. For each cycle z ∈ C (w), fix a point γz ∈ terr(z)
such that [γ] f = 1K for all γ ∈ terr(z) \ {γz}. Moreover, for each load L ∈L (w), choose one
representative cycle zL ∈C (L,w) and fix γL := γzL

. For any other z ∈C (L,w), fix elements
xz ∈ K with [γz] f = x−1

z · [γL] f · xz. In particular, for every element γ ∈ terr(w) and any
non-negative integer e there exists a unique z = ( fz, hz) ∈C (w) and 0 ≤ j < |hz| such that
γ= γh j−e

z .

Theorem 47. Let w = ( f , h) =
∏ℓ

i=1 wi ∈ W be in sparse, disjoint wreath cycle decompo-
sition. Then the elements of Cw(w) can be parameterised by the following bijection Φ

defined below:

Φ :
(

×
L∈L (w)

CK ([γL] f ){terr(z) : z∈C (L,w)}
×KΓ\terr(w)

)

×StabCH (h)(P (w))
1:1
−−→ CW (w),

(c, t)=

(

(

(

cL,z
)

L∈L (w), z∈C (L,w) , c0

)

,

(

∏

L∈L (w)

(

∏

z∈C (L,w)
h

ez
z

)

· [σL]ΨL

)

·π0

)

7→ (s, t),
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where t is parameterised according to the image of the map in Lemma 46 and s :Γ→ K is
defined by

[γ]s =















x−1
z · cL,z · x[z]σL

, if γ= γh j−ez

z ∈ terr(w), ez < j < |hz| or j = 0,

x−1
z · cL,z · x[z]σL

·
[

γ[z]σL

]

f , if γ= γh j−ez

z ∈ terr(w), 1≤ j ≤ ez,

[γ]c0, γ 6∈ terr(w).

Proof. We omit the proof that Φ is well-defined in order to concentrate on the more im-
portant property that Φ is surjective. A proof for well-definedness can be deduced from
the arguments below by reversing them. We show surjectivity of Φ by proving that every
element of CW (w) can be decomposed into the components of the domain of Φ.

Let a = (s, t) ∈ CW (w). Then t ∈ CH(h), since w = wa =

(

(s−1)t · f t · sh−1 t, t−1 ·h · t
)

. More-

over, t ∈ StabCH (h)(P (w)), as P (w) = P (wa) = P (w)t. By Lemma 46, we parameterise
t ∈StabCH (h)(P (w)) as

t =

(

∏

L∈L (w)

(

∏

z∈C (L,w)
h

ez
z

)

· [σL]ΨL

)

·π0,

where ez ∈Z≥0, πL := [σL]ΨL ∈ im(ΨL), the map ΨL is as in Lemma 46, and π0 ∈ Sym(Γ\
terr(w)). We now decompose a into disjoint wreath product elements. For any L ∈ L (w)
define tL :=

(

∏

z∈C (L,w) h
ez
z

)

·πL and t0 :=π0. For any L ∈L (w) define ΩL :=
⋃

· z∈C (L,w) terr(z)

and Ω0 := Γ \ terr(w). Further set sL := s
∣

∣

Γ

ΩL
, aL := (sL, tL) and a0 := (s

∣

∣

Γ

Ω0
, t0). Then

a = a0 ·
∏

L∈L (w) aL and the a0, aL are pairwise disjoint. Note that for all L ∈ L (w) we
have terr(aL) ⊆ ΩL and terr(a0) ⊆ Ω0 which shows wa =

∏

L∈L (w)
(
∏

z∈C (L,w) z
)aL since

disjoint cycles commute. In particular, since w = wa and as the load of a wreath cy-
cle is invariant under conjugation, we have

(
∏

z∈C (L,w) z
)aL

=
∏

z∈C (L,w) zaL =
∏

z∈C (L,w) z.
Fix z ∈ C (L,w) for some L ∈ L (w). Then, for y := [z]σL we have ( f y, hy) = wy = zaL =
(

(s−1
L

)tL · f
tL
z · s

h−1
z tL

L
, t−1

L
·hz · tL

)

. Note that for all γ ∈Γ we must have

[γ]
(

(s−1
L )tL · f

tL
z · s

h−1
z tL

L

)

= [γ] f y. (4)

Thus

[γy] f = [γy, y]Yade=
|hy|−1
∏

j=0
[γy] f

h
− j
y

y =

|hy|−1
∏

j=0

[

γ
h

j
y

y

]

f y

(4)
=

|hy|−1
∏

j=0

[

γ
h

j
y

y

]

(

(s−1
L )tL · f

tL
z · s

h−1
z tL

L

)

=

|hz |−1
∏

j=0

[

γ
h

j−ez
z

z

]

s−1
L ·

[

γ
h

j−ez
z

z

]

fz ·

[

γ
h

j−ez+1
z

z

]

sL

=

[

γ
h
−ez
z

z

]

s−1
L ·

(

|hz |−1
∏

j=0
·

[

γ
h

j−ez
z

z

]

fz

)

·

[

γ
h
|hz |−1−ez+1
z

z

]

sL

=

[

γ
h
−ez
z

z

]

s−1
L ·

[

γ
h
−ez
z

z , z
]

Yade ·
[

γ
h
−ez
z

z

]

sL =

[

γ
h
−ez
z

z

]

s−1
L · [γz] f ·

[

γ
h
−ez
z

z

]

sL,
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which implies
[

γ
h
−ez
z

z

]

sL ∈CK ([γz] f ) ·x−1
z ·xy = CK ([γL] f )xz ·x−1

z ·xy = x−1
z ·CK ([γL] f ) ·xy. By

Equation 4, the component
[

γ
h
−ez
z

z

]

sL uniquely determines every other component of sL

on terr(z) =
{

γ
h0

z
z , . . . ,γh

|hz |−1
z

z

}

=

{

γ
h

0−ez
z

z , . . . ,γh
|hz |−1−ez
z

z

}

, since for all j ∈ Z we can inductively
conclude:

[

γ
h

j+1−ez
z

z

]

sL =

[

γ
h

j
y

y

]

s
h−1

z tL

L

[

γ
h

j
y

y

]

(

(

f −1
z

)tL
· s

tL

L
· f y

)

=

[

γ
h

j−ez
z

z

]

f −1
z ·

[

γ
h

j−ez
z

z

]

s i ·

[

γ
h

j
y

y

]

f y

=

[

γ
h

j−ez
z

z

]

f −1
·

[

γ
h

j−ez
z

z

]

s i ·

[

γ
h

j
y

y

]

f .

Let cL,z ∈ CK ([γL] f ) such that
[

γ
h
−ez
z

z

]

sL = x−1
z · cL,z · xy. Note that for j = 0 we have

[

γh j−ez

z

]

sL = x−1
z · cL,z · x[z]σL

. By the above induction

[

γh j−ez

z

]

sL =

(

j
∏

n=1

[

γh j−n−ez

z

]

f −1

)

· x−1
z · cL,z · x[z]σL

·

(

j
∏

n=1

[

γh j−n

[z]σL

]

f

)

,

where 0 ≤ j ≤ |hz|−1. Recall [δ] f −1 = 1K for all δ ∈ supp(hy) \ {γy}. Hence, for 1 ≤ j ≤ ez,
we have

[

γh j−ez

z

]

sL = x−1
z · cL,z · x[z]σL

·
[

γ[z]σL

]

f

and for j > ez we have
[

γh j−ez

z

]

sL = [γz] f · x−1
z · cz · x[z]σL

·
[

γ[z]σL

]

f

= x−1
z · [γL] f · xz · x

−1
z · cL,z · x[z]σL

· x[z]σ−1
L
· [γL] f · x[z]σL

= x−1
z · cL,z · x[z]σL

,

which shows surjectivity of Φ. The well-definedness of Φ follows by reversing the order of
the arguments used.
We now show injectivity Φ: Suppose [(c, t)]Φ= [(b, r)]Φ. Then t = r and by comparing the
images of γz under the base components of [(c, t)]Φ and [(b, t)]Φ one obtains b = c.

Note that Φ in Theorem 47 is not a group homomorphisms. However, using Φ we can
obtain a generating set for CW (w).

Corollary 48. Assume the notation of Theorem 47. Then

{1}→ Bw
ι
,−→ CW (w)

ρ
։ StabCH (h)(P (w)) → {1}

is a short exact sequence of groups, where

Bw := ×
L∈L (w)

CK ([γL] f ){terr(z) : z∈C (L,w)}
×KΓ\terr(w),

ι : Bw ,→ CW (w), c 7→ [(c,1H)]Φ, and ρ : CW (w)։StabCH (h)(P (w)), (s, t) 7→ t.

In particular, if Bw = 〈X 〉 and StabCH (h)(P (w))= 〈Y 〉, then

CW (w)= 〈[X ]ι∪ {[(1, t)]Φ : t ∈Y }〉 .

29



Proof. It is clear that ι is a monomorphism and ρ is an epimorphism. We show im(ι) =
ker(ρ), where the inclusion ⊆ is obvious. Now suppose a ∈ker(ρ). Then a = (s,1H) ∈CW (w)
for some s ∈KΓ and therefore, for (c,1H) := [(s,1H)]Φ−1, we obtain [c]ι= a. As [[(1, t)]Φ]ρ =

t for all t ∈ Y , the claim for the generating set follows as we have an exact sequence of
groups.

Example 49. We use the notation from Example 36 and first compute |CWi
(w)| for 1≤ i ≤

3 using Theorem 47. For this we need to conjugate the element w to an element v in sparse
wreath cycle decomposition, say v := wb. Note that in this case we have CWi

(w)b = CWi
(v).

For example, using b := [1, (1,3,2,4)]E · [2, (1,3)(2,4)]E we have

v := wb =
(

1

(3,4),
2

() ,
3

() ,
4

(1,2),
5

(1,2,3),
6

() ,
7

(1,2),
8

() ;
top

( 1,2 )( 3,4 )( 5,6 )
)

with
1 2 3 4 5 6 7 8





























• • • • • • • • k1

{ 7 } { 1,2 }, { 3,4 } • • • • • • k2

P (v) = • • • • • • • • k3

• { 5,6 } • • • • • • k4

• • • • • • • • k5

.

Using this colouring to encode the sparse wreath cycles, we write u in a disjoint sparse
wreath cycle decomposition:

v= v2,1,1 · v2,2,1 · v2,2,2 · v4,2,1

Further let vi, j,ℓ = (e i, j,ℓ, hi, j,ℓ). We choose points in the territory of each sparse wreath
cycle as in Theorem 47:

γ2,1,1 := 7 , γ2,2,1 := 1 , γ2,2,2 := 4 , γ4,2,1 := 5 .

First note that the left iterated cartesian product occurring in the source of the bijection
Φ defined in Theorem 47 does not depend on the chosen top group, namely

∣

∣

∣

∣

∣

CK

(

[ 7 ] f
)

{

{7}
}

×CK

(

[ 1 ] f
)

{

{1,2} , {3,4}
}

×CK

(

[ 5 ] f
)

{

{5,6}
}

×KΓ\terr(v)

∣

∣

∣

∣

∣

=

∣

∣

∣CK

(

(1,2)
)

×CK

(

(3,4)
)2
×CK

(

(1,2,3)
)

×K
∣

∣

∣= 4,608.

We have

∣

∣CW1(v)
∣

∣= 4,608 ·
∣

∣

∣StabCH1 (h)(P (v))
∣

∣

∣= 4,608 ·8= 36,864 ,
∣

∣CW2(v)
∣

∣= 4,608 ·
∣

∣

∣StabCH2 (h)(P (v))
∣

∣

∣= 4,608 ·2= 9,216 ,
∣

∣CW3(v)
∣

∣=
∣

∣CW2 (v)
∣

∣ .
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Let Φ be the bijection from Theorem 47 for the wreath product W1, where we choose
elements x2,1,1 := (), x2,2,1 := (), x2,2,2 := (1,3)(2,4) and x4,2,1 := (). We choose an element
from the domain of Φ using the same notation as in Theorem 47

(c, t)=
(

(

{7}

(1,2)
)

,
(

{1,2} {3,4}

(3,4), (1,2)(3,4)
)

,
(

{4,5}

(1,3,2)
)(

{8}

(1,2,3,4)
)

, (1,3)(2,4)
)

and compute the image of (c, t) under Φ. For this we first need to write the element
t ∈StabCH1 (h)(P (w)) in a suitable decomposition:

t= ()e2,1,1 · [σ2,1]Ψ2,1 · (1,2)e2,2,1 · (3,4)e2,2,2 · [σ2,2]Ψ2,2 · (5,6)e4,2,1 · [σ4,2]Ψ4,2 ·π0

= (1,2) · (3,4) · [(1,2)]Ψ2,2 = (1,2) · (3,4) · (1,4)(2,3) .

Now we can compute the base component of a := (s, t)= [(c, t)]Φ. For example, the images
of s under terr(w2,2,1) = {1,2} are:

[

γ2,2,1
h

0−e2,2,1
]

s = [2] s = x−1
2,2,1 · c2,2,1 · x2,2,[1]σ2,2

= () · (3,4) · (1,3)(2,4)= (1,3,2,4),
[

γ2,2,1
h1−e2,2,1

]

s = [1] s = x−1
2,2,1 · c2,2,1 · x2,2,[1]σ2,2 · [γ2,2,[1]σ2,2]e

= () · (3,4) · (1,3)(2,4) · (1,2)= (1,3)(2,4).

Repeating this computation for the territory of each wreath cycle and Γ\ terr(v) yields

a=
(

1

(1,3)(2,4),
2

(1,3,2,4),
3

(1,4)(2,3),
4

(1,3,2,4),
5

(1,3,2),
6

(1,3,2),
7

(1,2),
8

(1,2,3,4);
top

(1,3)(2,4)
)

6 Performance of an implementation

The third author implemented the disjoint wreath cycle decomposition in the GAP pack-
age WPE [12]. Building on this, he implemented algorithms using the theory in this paper
for working in finite wreath products W = K ≀Γ H, where Γ is finite and H ≤ Sym(Γ). The
GAP-package WPE provides methods to test whether two elements of K ≀ΓSym(Γ) are
conjugate in W and, in this case, computes a conjugating element. Moreover it provides
algorithms to compute representatives of the W-conjugacy classes of elements and meth-
ods for efficient centraliser computations in W.
To highlight the efficiency of the new methods, we present sample computations. These
were performed on a 1,8GHz IntelCore i5-5350U and are presented in the following ta-
bles. The first column lists the groups we considered, the second column labelled GAP4

lists the time taken by native GAP 4.11.1 code and the final column lists the time taken
by the package WPE [12] loaded in GAP 4.11.1. For Table (a) we precomputed a set of 100
random pairs of conjugate elements (by conjugating 100 random elements by a further
100 random elements). We list the average time of computing a conjugating element. In
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some cases, the computation using native GAP4-code for a single computation took too
long and the computation was terminated after the time recorded in column GAP4. In
this case the symbol > indicates that the computation was terminated. In Table (b) we
list the average times to compute the centralisers of 100 precomputed random elements.
Finally, Table (c) lists the time taken to compute a set of representatives of the conjugacy
classes of elements of the groups W listed in the first column and the last column contains
the number of conjugacy classes of elements of that group.

Group GAP4 WPE[12]

S4 ≀S8 < 1s < 1s
S10 ≀M24 22s < 1s
S25 ≀S100 > 40m < 1s

SL(2,2) ≀PSp(4,3) < 1s < 1s
SL(2,2) ≀PSU(4,4) > 40m < 1s

PSL(5,3) ≀PSU(6,2) > 40m 20s

(a) Conjugacy problem

Group GAP4 WPE[12]

S4 ≀S8 < 1s < 1s
S10 ≀M24 22s < 1s
S25 ≀S100 > 40m < 1s

SL(2,2) ≀PSp(4,3) < 1s < 1s
SL(2,2) ≀PSU(4,4) > 40m < 1s

PSL(5,3) ≀PSU(6,2) > 40m 14s

(b) Centraliser of elements

Group GAP4 WPE[12] #Conjugacy classes

SL(2,2) ≀PSL(2,7) < 1s < 1s 216
S4 ≀S8 60s < 1s 6,765

A5 ≀M11 > 40m 125s 15,695
SU(3,2) ≀ A7 35m 22s 398,592

M24 ≀S7 > 40m 145s 9,293,050
S7 ≀PSL(2,7) > 40m 300s 15,342,750

(c) Conjugacy class representatives

Figure 1: Time comparisons between native GAP4 code and the WPE package

Our experiments show that the computations in the wreath products are roughly as hard
as the corresponding computations in the groups K and H.
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