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THE ANISOTROPIC PART OF A QUADRATIC FORM

OVER A NUMBER FIELD

PRZEMYSŁAW KOPROWSKI AND BEATA ROTHKEGEL

Abstract. It is well known that every non-degenerate quadratic form
admits a decomposition into an orthogonal sum of its anisotropic part
and a hyperbolic form. This decomposition is unique up to isometry. In
this paper we present an algorithm for constructing an anisotropic part
of a given form with coefficients in an arbitrary number field.

1. Introduction

The notion of isotropy is central to the theory of quadratic forms. Recall
that a form q is called isotropic, if there is a non-zero vector v such that
q(v) = 0. In geometric terms, this means that v is self-orthogonal with
respect to q. The celebrated Witt decomposition theorem (see e.g., [28,
Chapter 12]) says that every non-degenerate quadratic form q is isometric
to an orthogonal sum

qa ⊥ w × 〈1,−1〉,
for some anisotropic form qa, called an anisotropic part of q, and some w ≥ 0,
called the Witt index of q. The anisotropic part of q is determined uniquely
up to isometry. Its dimension is called the anisotropic dimension of q and
denoted dima(q), hereafter.

From the computational point of view, given a non-degenerate quadratic
form q, the following four problems arise immediately:

(1) determine whether q is isotropic or not;
(2) compute the anisotropic dimension of q;
(3) construct its anisotropic part;
(4) if q is isotropic, find an isotropic vector.

The problems above are listed in increasing order of difficulty. Indeed, if one
can solve (2), then it suffices to compare dim q with dima q to solve (1). If
one can construct an anisotropic part qa of q, then dima q = dim qa. Finally,
if one can solve (4), then one may find on anisotropic part of q removing
successive hyperbolic planes till only an anisotropic form is left.

It is not at all surprising that most effort have been focused on forms over
the rational. For such forms solutions to problem (4) have a long history
dating back to Lagrange. Efficient algorithms for this task were devised by
Cremona and Rusin in [13], Simon in [27] and Castel in [9]. More recently,
Quertier in [25] presented a method for finding a vector such is simultane-
ously isotropic with respect to two forms (of dimension at least 13) with
rational coefficients. For forms over R(x) task (1) was solved by the first
author in [21], while the task (3), and consequently also (4), was proved to
be unsolvable in general. Nonetheless, for forms of dimension 3 there is a
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2 P. KOPROWSKI AND B. ROTHKEGEL

solution even to problem (4), which is due to Schicho (see [26]). To some
extend it resembles Lagrange approach for forms over Q. Schicho’s method
was subsequently generalized by van Hoeij and Cremona [29] to forms with
coefficients in multivariate rational function fields over either a finite field or
the rationals. For forms with coefficients in real algebraic fields, tasks (1)
and (2) are solved in [18]. Algorithmic solutions to (1) and (2) for forms
over number fields are given in [20]. Analogous algorithms for global func-
tion fields have been recently invented by Darkey-Mensah (see [14]). Also
recently, a solution to task (3) has been found in [15] by the present authors
and Darkey-Mensah. The goal of this paper is to present an algorithm that
solves problem (3) over an arbitrary number field. For forms of anisotropic
dimension 2, the proposed algorithm is a generalization of the algorithm in
[15]. For forms of anisotropic dimension 3 or more (except anisotropic di-
mension 4 over non-real fields) the algorithms presented in this paper are
completely new. All the described algorithms were implemented in Magma
package CQF [19].

This paper is organized as follows. In Section 2 we establish the nota-
tion used throughout the paper and recall most of the relevant terminology.
The two subsequent sections describe some auxiliary algorithms used in the
main part. Section 3 presents an algorithm for constructing the group of S-
singular elements (modulo squares) of a number field. Next, in Section 4 we
discuss methods for finding elements that have prescribed signs with respect
to different orderings of the field. The main result of this paper is the algo-
rithm for constructing an anisotropic part of a given form. It is described
in Section 5, which is divided into three subsections, dealing with different
anisotropic dimensions. Finally, in Section 6 we show an explicit example of
how the algorithm works in practice.

Our algorithm for constructing an anisotropic part of a quadratic form
depends on a number of auxiliary procedures. We assume that, beside the
basic linear algebra routines, we have at our disposal the following tools from
the arsenal of the computational algebraic number theory:

• An algorithm that checks if an ideal is principal, and if so finds its
generator (see e.g., [11, Section 6.5.5]).

• Factorization of an ideal into prime ideals. There is a vast bibliogra-
phy concerning this problem, see e.g., [12, Algorithm 2.3.22] or [17,
§2.2]. In fact we will need only to factorize principal ideals.

• A method for isolating real roots of a polynomial. There are probably
hundreds of known techniques that can be used here. See for example
[1, 2, 3].

• Closely connected to the previous point, are algorithms for enumer-
ating all the real embeddings of a number field, see e.g., [4, §3.1].

• A method for computing the S-class group for some finite set S, see
for example [12, Algorithm 7.4.6] and [10, 5, 6]

• A related problem is the construction of the group of S-units, see
e.g. [12, Algorithm 7.4.8] or [10].

• Computation of the anisotropic dimension (or equivalently of the
Witt index) of a quadratic form. This is described in [20, Algo-
rithm 9].
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• An algorithm for computing Hilbert symbol is given in [30, Algo-
rithm 6.6].

All these algorithm are implemented in existing computer algebra systems,
like for instance Magma [7] (see also [16]).

2. Notation

Throughout this paper we use the following notation conventions. K al-
ways denotes a number field, that is a finite extension of Q. The set of
all places (classes of valuations) of K is denoted ΩK . We use fraktur let-
ters p, q, r, . . . for non-archimedean places of K. If p is such a place, then
ordp : K

× → Z is the associated discrete valuation, K(p) is the residue field
and Kp the completion of K at p. Recall (see e.g. [22, Theorem VI.2.2])
that if p is nondyadic (i.e. it does not divide 2), then the square class group
K×

p/K×2

p consists of four cosets represented by 1, up, πp and upπp, where πp is
a p-uniformizer and up satisfies the conditions:

ordp up = 0 and up /∈ K×2
p .

For any two elements a, b ∈ K×, we write (a, b)p for the Hilbert symbol of a
and b at p (see e. g., [22, Chapter VI]). If q = 〈a1, . . . , an〉 is a quadratic
form, then

sp(q) :=
∏

i<j

(ai, aj)p

is the Hasse invariant of q at p (see e.g., [22, Definition V.3.17]).
Further, disc(q) is the discriminant of q, that is (see eg., [28, Defini-

tion 15.2.1]):

disc(q) = (−1)
1
2
n(n−1) ·

n
∏

i=1

ai.

Moreover, we denote

P(q) :=
{

p ∈ ΩK | ordp(ai) is odd for some i ≤ n
}

the set of primes of K where at least one of the coefficients has an odd
valuation.

The set of similarity classes of non-degenerate forms, equipped with binary
operations induced by orthogonal sum and tensor product, is called the Witt
ring of K and denoted WK (see e.g., [22, 28] for further information). The
ideal class group of K is denoted CK . If S is any finite set of places of K,
then CS is the associate S-class group.

3. Group of singular elements

In this section we gather some results concerning the group of S-singular
elements, modulo squares. Let S be a finite set of places of K, containing
all archimedean places. We say that an element α ∈ K× is S-singular

if it has even valuation at every prime p /∈ S. The set of all S-singular
elements is denoted ES . Observe that 1 ∈ ES and for every α ∈ ES , we
have α ·K×2 ⊂ ES . Thus, the notion of S-singularity extends canonically to
square classes of K. We denote ES := ES/K×2. Therefore we have

ES =
{

α ∈ K×/K×2 | ordp α is even for all p /∈ S
}

.
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Assume that S contains all dyadic primes of K. Recall that an element
α ∈ K× is called an S-unit if ordp α = 0 for every p /∈ S. The set of S-
units is denoted US . It is clear that US ⊂ ES . The canonical embedding
US/U2

S
֌ K×/K×2 lets us identify US/U2

S
with a subset of ES. We shall denote

this subset by US.
The construction of the group ES of singular elements modulo squares is

closely related to the computation of US . One method, sketched in Magma
manual [8], is to enlarge S to a new set S′, such that the S′-class number is
odd. (It suffices to adjoin to S a set of primes whose classes form a basis of
CS/C2

S
.) Then, it is known that US′ = ES′, and so one can obtain ES as a

F2-subspace of ES′.
Below we present an alternative approach, which is due to Alfred Czogała.

Algorithm 1. Let S be a finite set of places of a number field K, that

contains all the infinite and dyadic places. This algorithm constructs a basis

(over F2) of the group ES.

(1) Let 2CS be the subgroup of the S-class group CS, consisting of ele-

ments of order ≤ 2.
(2) Find a set B of primes that form a basis of 2CS.
(3) For every b ∈ B find an element λb that generates the (principal)

ideal b2.

(4) Find a basis B of US.

(5) Output B ∪ {λb | b ∈ B}.

Proof of correctness. Consider a map ψ : ES → 2CS given by the formula:

ψ(α) :=

[

∏

p/∈S

p
(ordp α)/2

]

S

.

It is clear that ψ is a group epimorphism. Observe that the kernel of ψ
coincides with US ·K×2. Indeed, suppose that ψ(α) vanishes for some α ∈
K×. This means that the ideal

∏

p/∈S

p
(ordp α)/2

is principal. Hence, there is β ∈ K× such that 2 ordp β = ordp α for every
p /∈ S. Then α/β2 is an S-unit. This proves the inclusion kerψ ⊂ US ·K×2.
To show the other inclusion, observe first that US is trivially contained in
kerψ and if α ∈ K×2, say α = β2 for some β ∈ K×, then ψ(α) = [(β)]S = 1.
This way, we have proved the claim.

Now, let B = {b1, . . . , bm} be a basis of 2CS . Then [bi]
2
S is principal for

every i ≤ m. Hence, the corresponding generator λbi exists. It is clear that
λbi ∈ ES. Consider an exact sequence

0 → US
i−→ ES

ψ−→ 2CS → 0,

where i is the canonical inclusion. The sequence splits since all three groups
are F2-vector spaces. This shows that B∪{λb1 , . . . , λbm} is a basis of ES. �
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4. Elements of independent signs

When dealing with formally real number fields, we often need to construct
elements of independent signs in distinct real embeddings of the number field.
Here we shortly explain how to construct them. The method presented in
Algorithm 2 below is not new, however, the authors are not aware of any
easily accessible reference. Hence, for the reader’s convenience, we provide
an explicit pseudo-code.

Algorithm 2. Given a number field K = Q(θ) with r real embeddings,

denoted hereafter σ1, . . . , σr, and a subset I ⊆ {1, . . . , r}, this algorithm

returns an element ρ ∈ K× such that σi(ρ) < 0 for i ∈ I and σj(ρ) > 0 for

j /∈ I.

(1) Let f be the defining polynomial for K and ξ1 := σ1(θ), . . . , ξr :=
σr(θ) ∈ R be all the real roots of f .

(2) Find intervals (ai, bi) for i ≤ r, with rational endpoints, that isolate

roots of f i.e. ξi ∈ (ai, bi) for every i.
(3) Set ηi := (θ − ai)(θ − bi) for i ≤ r.
(4) Output ρ :=

∏

i∈I
ηi.

The algorithm is simple enough that we take the liberty to omit a rigorous
proof of its correctness. Let us only mention that in a practical implemen-
tation, the elements η1, . . . , ηr are, of course, constructed only once and
cached between successive executions of this algorithm. Unfortunately this
algorithm is not fully sufficient for applications we have in mind. In particu-
lar we need ρ to be a local square at some fixed primes. This goal is achieved
in Algorithm 4 below, but first we need to introduce the following auxiliary
procedure.

Algorithm 3. Given a finite set S = {p1, . . . , pn} of non-archimedean

places, corresponding exponents k1, . . . , kn, and elements λ1, . . . , λn ∈ K×,

this algorithm constructs a totally positive element α ∈ K× such that

α ≡ λi (mod pkii )

for every i ≤ n.

(1) Using Chinese Remainder Theorem construct β ∈ K× such that

β ≡ λi (mod pkii )

for every i ≤ n.
(2) Let S′ be the set of all prime numbers dominated by elements in S.

(3) For every p ∈ S′ set

m(p) := max{ki | pi dominates p, pi ∈ S}.
(4) Set

s :=
∏

p∈S′

pm(p).

(5) Find a positive integer t such that

t · s > max{σj(−β) | j ≤ r},
where σ1, . . . , σr : K ֌ R are all the real embeddings of K.
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(6) Output α := β + t · s.
Proof of correctness. First, we prove that α is totally positive. Fix any real
embedding σj : K ֌ R. We have:

σj(α) = σj(β + t · s) = σj(β) + t · s > σj(β) + σj(−β) = 0.

Thus, α is indeed totally positive. Next, observe that for every i ≤ n we
have ordpi s ≥ ki, hence

α ≡ β ≡ λi (mod pkii )

and this ends the proof. �

Algorithm 4. Let K = Q(θ) be a formally real number field with r real

embeddings, denoted σ1, . . . , σr, hereafter. Given a subset I ⊆ {1, . . . , r} and

a finite set S of non-archimedean places, this algorithm returns an element

ρ ∈ K× such that

(i) σi(ρ) < 0 for i ∈ I,
(ii) σi(ρ) > 0 for i /∈ I,

and ρ is a local square at every p ∈ S.

(1) Construct an element α1 ∈ K× such that

sgnσi(α1) =

{

−1 if i ∈ I

1 if i /∈ I,

for every i ≤ r.
(2) Use Algorithm 3 to construct a totally positive element α2 ∈ K×,

that is congruent to α1 modulo p1+ordp 4 for every p ∈ S.

(3) Output ρ = α1 · α2.

Proof of correctness. Since α2 is totally positive, it is clear that sgnσi(ρ) =
sgnσi(α1) satisfies conditions (i) and (ii). Moreover, for every prime p ∈ S,
we have

ρ = α1 · α2 ≡ α2
1 (mod p1+ordp 4).

Thus, ρ is a local square by the well known consequence of the Local Square
Theorem (see e.g. [22, Corollary VI.2.20]). �

5. Computing the anisotropic part

In this section we present our main algorithm that constructs an aniso-
tropic part of a given quadratic form. Except for forms of an anisotropic
dimension one, that are trivial to handle (see Observation 5.3), the general
idea is to construct the anisotropic part incrementally. In each step we will
drop the anisotropic dimension by one, till we obtain a form that has a
binary anisotropic part. The different anisotropic dimensions are discussed
in a separate subsections.

5.1. Anisotropic dimension four and above.

Algorithm 5. Given a quadratic form q = 〈a1, . . . , an〉 of anisotropic di-

mension d ≥ 4, this algorithm constructs an element α ∈ K× such that

dima

(

q ⊥ 〈−α〉
)

= d− 1.

(1) If K is non-real, then output 1 and quit.
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(2) Let σ1, . . . , σr : K ֌ R be all the real embeddings of K.

(3) Set

I+ :=
{

i ≤ r | sgnσi(q) = d
}

, I− :=
{

i ≤ r | sgnσi(q) = −d
}

.

(4) Construct on element α ∈ K× such that σi(α) > 0 for all i ∈ I+ and

σi(α) < 0 for all i ∈ I−.

(5) Output α.

Proof of correctness. Let us begin with the case of non-real fields. It is
well known that over a non-real global field every form of dimension ≥ 5
is isotropic (see e.g., [22, Corollary VI.3.5]). Hence, if this is the case, then d
must be 4 and the form q ⊥ 〈−1〉 is isotropic. Since the parity of the dimen-
sion and anisotropic dimension coincide, we have dima

(

q ⊥ 〈−1〉
)

= d − 1.
This proves the correctness of step (1).

In what follows we assume that K is formally real. Over C every form
of dimension greater than 1 is always isotropic. Consequently, the local
anisotropic dimension of q ⊥ 〈−α〉 at any complex place cannot exceed 1,
hence is trivially strictly smaller than d. In turn, fix a real embedding σi
of K. If i ∈ I+∪I−, then by the definition of α we have

∣

∣sgnσi
(

q ⊥ 〈−α〉
)∣

∣ =
d − 1. Conversely suppose that i /∈ I+ ∪ I−. Then | sgnσi(q)| ≤ d − 2 and
consequently

∣

∣sgnσi
(

q ⊥ 〈−α〉
)∣

∣ ≤ d−1. Finally, take a completion Kp of K
at some finite prime p. Every form of dimension ≥ 5 over Kp is isotropic,
hence dima

(

(q ⊥ 〈−α〉) ⊗Kp

)

≤ 4 ≤ d and if d = 4 the parity preservation

implies dima

(

(q ⊥ 〈−α〉) ⊗ Kp

)

≤ 3. All in all, it follows from the local-
global principle (see e.g., [22, Setion VI.3]) that the anisotropic dimension
of q ⊥ 〈−α〉 is d− 1, as claimed. �

5.2. Anisotropic dimension three. We will now deal with forms of an-
isotropic dimension three. As in the previous section, the idea is to find an
element α ∈ K× such that by adding 〈−α〉 to q we will further drop the
anisotropic dimension. For clarity of exposition we will deal with real and
non-real cases separately. We begin with non-real fields, where the situation
is considerably simpler.

Algorithm 6. Let K be a non-real number field and q be a quadratic form

over K of the anisotropic dimension 3. This algorithm construct an element

α ∈ K× such that dima

(

q ⊥ 〈−α〉
)

= 2.

(1) Set S := P(q)∪{d1, . . . , dl}, where d1, . . . , dl are all the dyadic primes

of K.

(2) Using Chinese Remainder Theorem find α ∈ K× such that

α ≡
{

disc(q)− 1 (mod p) if ordp disc(q) /∈ 2Z
πp (mod p2) if ordp disc(q) ∈ 2Z

for every prime p ∈ S.

(3) Output α.

Proof of correctness. Let qa = 〈a, b, c〉 be the sought anisotropic part of q.
We have

q ∼= 〈a, b, c〉 ⊥ w × 〈1,−1〉,
where w = w(q) is the Witt index of q. Let α ∈ K× be the element con-
structed by the algorithm. We claim that qa ⊥ 〈−α〉 is isotropic. Take a
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prime p /∈ S ∪ P(qa). Then a, b and c have even valuations at p, hence
qa⊗Kp, being a ternary form, is isotropic (by [22, Corollary VI.2.5]). There-
fore dima(qa ⊗ Kp) equals 1, since it must have the same parity as the di-
mension of qa. It follows that

dima

(

(qa ⊥ 〈−α〉)⊗Kp

)

∈ {0, 2}
and so qa ⊥ 〈−α〉 is locally isotropic at p.

Next, take a prime p ∈ P(qa) \ S. In particular p is non-dyadic. We have
ordp disc(q) ≡ 0 (mod 2), hence precisely two of the coefficients a, b and c
must have an odd valuation at p. Without loss of generality we may assume
that these are a and b. The second residue homomorphism WKp →WK(p)
vanishes at q ⊗ Kp so it must vanish on qa ⊗ Kp, as well. It follows that
〈a, b〉 ⊗Kp is hyperbolic and consequently dima(qa ⊗Kp) = 1. This way we
show that dima

(

(qa ⊥ 〈−α〉) ⊗Kp

)

≤ 2.
Finally, pick a prime p ∈ S. Be it dyadic or non-dyadic. It is well known

(see e.g. [22, Theorem VI.2.10 and Corollary VI.2.15]) that 〈1,−u,−πp, uπp〉
is a unique (up to isometry) anisotropic form over Kp. The determinant
of this form is 1. In particular, in the square class group K×

p/K×2

p , every
coefficient of this form is a product of the other three. Suppose a contrario
that qa ⊥ 〈−α〉 is anisotropic. Therefore

qa ⊥ 〈−α〉 = 〈a, b, c,−α〉 ∼= 〈1,−u,−πp, uπp〉,
and so we have α ≡ −abc = disc(q) (mod K×2

p ). Hence, α = x2 · disc(q) for

some x ∈ K×
p . Consider two cases. If ordp disc(q) is odd, then α ≡ disc(q)−1

(mod p) and so it has even valuation. This is impossible since at the same
time α = x2 · disc(q) has odd valuation.

Conversely, suppose that ordp disc(q) is even. Then α ≡ πp (mod p2)
has odd valuation which contradicts the fact that α = disc(q) · x2 must
have even valuation. The contradiction follows from the supposition that
〈a, b, c,−α〉 ⊗Kp can be anisotropic.

We have shown that qa ⊥ 〈−α〉 is locally isotropic at every finite place
of K. Since K is non-real, every infinite place of K is complex and qa ⊥ 〈−α〉
is trivially locally isotropic at complex places. The local-global principle
asserts that qa ⊥ 〈−α〉 is isotropic over K and this implies that dima

(

q ⊥
〈−α〉

)

< 3. �

We may now turn our attention to formally real fields.

Algorithm 7. Given a quadratic form q = 〈a1, . . . , an〉 of the anisotropic

dimension dima(q) = 3 over a formally real number field K, this algorithm

constructs an element α ∈ K× such that dima

(

q ⊥ 〈−α〉
)

= 2.

(1) Set S := P(q)∪{d1, . . . , dl}, where d1, . . . , dl are all the dyadic primes

of K.

(2) Let σ1, . . . , σr : K ֌ R be all the real embeddings of K. Call Algo-

rithm 4 to find an element α1 ∈ K× such that

(♠) sgnσi(α1) =

{

+1, if sgnσi(q) > 0,

−1, if sgnσi(q) < 0

and α1 is a local square at every prime p ∈ S.
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(3) Using Algorithm 3 construct a totally positive element α2 such that

α2 ≡
{

disc(q)− 1 (mod p) if ordp disc(q) ≡ 1 (mod 2)
πp (mod p2) if ordp disc(q) ≡ 0 (mod 2)

for every p ∈ S.

(4) Output α := α1 · α2.

Proof of correctness. We follow similar lines as in the proof of correctness of
Algorithm 6. We shall show that qa ⊥ 〈−α〉 is isotropic, where qa = 〈a, b, c〉
is the sought anisotropic part of q.

It is trivially isotropic at complex places. Now, take a real embedding σi
of K. We know that α2 is totally positive. Thus, we infer from (♠) that

sgnσi
(

qa ⊥ 〈−α〉
)

= sgnσi
(

q ⊥ 〈−α1〉
)

∈ {0,±2}
and so σi

(

qa ⊥ 〈−α〉
)

is indeed isotropic.
Now, it is time to turn our attention to non-archimedean places. For a

prime p not in S the same arguments as used for Algorithm 6 show that
dima

(

((qa ⊥ 〈−α〉)⊗Kp

)

≤ 2. For primes p sitting in S the arguments used
in the abovementioned proof show that

dima

(

(qa ⊥ 〈−α2〉)⊗Kp

)

≤ 2.

But for these primes we have α1 ∈ K×2
p , hence 〈−α〉 ∼= 〈−α2〉. This means

that qa ⊥ 〈−α〉 is locally isotropic at every place of K. Consequently it is
isotropic over K by the local-global principle. It follows that

dima

(

q ⊥ 〈−α〉
)

≤ 2

and this proves the correctness of the algorithm. �

5.3. Anisotropic dimensions one and two. Once we managed to re-
duce the anisotropic dimension to two, it is time to explicitly construct an
anisotropic part of a given form. This task is achieved by the following
algorithm.

Algorithm 8. Given a quadratic form q = 〈a1, . . . , an〉 of an anisotropic

dimension 2, with coefficients in a number field K, this algorithm constructs

an anisotropic part qa of q.

(1) If the Witt index w(q) of q is not divisible by 4, then replace q by

q ⊥ w′ × 〈−1, 1〉, where w′ + w(q) ≡ 0 (mod 4).
(2) Compute the discriminant d := disc q.
(3) Set S := P(q)∪{d1, . . . , dl}, where d1, . . . , dl are all the dyadic primes

of K.

(4) Let σ1, . . . , σr : K ֌ R be the real embeddings of K such that σi(d)
is negative.

(5) Repeat the following steps:

(a) Construct a basis {β1, . . . , βm} of the group ES of S-singular

elements modulo squares.

(b) For every real embedding σi with i ≤ r, set

vi :=

{

1 if sgnσi(q) = −2,

0 if sgnσi(q) = 2.
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(c) Let S = {p1, . . . , ps}. For i ≤ s, set

wi :=

{

1 if spiq = −1,

0 if spiq = 1.

Here spiq is the Hasse invariant of q ⊗Kpi .

(d) Construct a matrix A = (aij) with r rows (indexed by the real

embeddings σ1, . . . , σr) and m columns (indexed by the elements

of the basis of ES computed in step (5a)), setting

aij :=

{

1 if σi(βj) < 0,

0 if σi(βj) > 0.

(e) Construct a matrix B = (bij) with s rows (indexed by the primes

p1, . . . , ps in S) and m columns, setting

bij :=

{

1 if (βj , d)pi = −1,

0 if (βj , d)pi = 1.

Here (βj , d)pi is the pi-adic Hilbert symbol.

(f) If the following system of F2-linear equations

(♣)

(

A
B

)

·







ε1
...

εm






=



















v1
...

vr
w1
...

ws



















has a solution, then set

α :=
m
∏

i=1

βεii

and exit the loop.

(g) Otherwise find a new non-archimedean place q /∈ S, append it

to S, and reiterate the loop.

(6) Output qa := 〈α,−α · d〉.
The proof of correctness of the algorithm needs to be preceded by two

lemmas.

Lemma 5.1. Let q be a quadratic form over a number field K and d1, . . . , dl
be all the dyadic places of K. If dima(q) = 2, then there is a non-archimedean

place q such that among all (necessarily isometric) anisotropic parts of q,
there is at least one, denoted qa hereafter, satisfying the condition

P(qa) ⊆ P(q) ∪ {d1, . . . , dl} ∪ {q}.
Proof. As in step (3) of the algorithm, denote S := P(q) ∪ {d1, . . . , dl}. By
assumption, dima(q) = 2, hence there is α ∈ K× such that

(1) q ∼= 〈α,−αd〉 ⊥ w × 〈1,−1〉,
where d := disc(q) is the discriminant and w := w(q) is the Witt index of q.
We will show that α can be selected to be

(

S∪{q}
)

-singular for some place q.
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Fix any α that satisfies condition (1). It follows from [23, Lemma 2.1]
that there is a place q /∈ S and an element γ ∈ K× such that:

(C1) sgnσ(γ) = sgnσ(α) for every real embedding σ of K;
(C2) γ ≡ α (mod p) for every non-dyadic prime p ∈ S;

(C3) γ ≡ α (mod d
1+orddi 4
i ) for every dyadic prime di, i ≤ l;

(C4) ordq γ = 1;
(C5) ordr γ = 0 for every prime r /∈ S ∪ {q}.

It is clear that γ is
(

S ∪{q}
)

-singular. We claim that the following isometry
holds:

〈γ,−γd〉 ∼= 〈α,−αd〉.
It holds locally at every archimedean place—indeed, for complex places this is
trivial and for the real ones it follows from (C1). Consider now a prime p ∈ S,
either dyadic or non-dyadic. By (C2/C3) and the Local Square Theorem, we
obtain γ ·K×2

p = α ·K×2
p and so 〈γ,−γd〉⊗Kp

∼= 〈α,−αd〉⊗Kp. Conversely,
take a prime p not in S but distinct from q. Then

ordp d ≡ ordp γ = 0 (mod 2).

We need to consider two cases. If ordp α is also even, then

〈α,−αd〉 ⊗Kp
∼= 〈1,−d〉 ⊗Kp

∼= 〈γ,−γd〉 ⊗Kp.

On the other hand, if ordp α is odd, we consider the second residue homo-
morphism WKp → WK(p). The forms q and qa are similar, hence they
map to the same class in WK(p), but p /∈ P(q), thus q is mapped to the
null element of WK(p). Consequently 〈α,−αd〉 ⊗ Kp is hyperbolic and so
is 〈γ,−γd〉 ⊗Kp. Therefore, the two forms are again isometric. Finally, we
consider the localization of K at the singled out place q. From the previous
part we obtain that the Hilbert symbols (α, d)p and (γ, d)p coincide for ev-
ery prime p 6= q. The Hilbert reciprocity law implies that (α, d)q = (γ, d)q,
as well. This way we have proved that 〈α,−αd〉 and 〈γ,−γd〉 are locally
isometric at every place of K, hence they are isometric over K by the local-
global principle. This proves the claim. It follows that, the form 〈γ,−γd〉 is
the anisotropic part of q that we are looking for. �

Lemma 5.2. Let K be a real closed field, a, b ∈ K× and let w be a positive

integer. The form q = 〈a, b〉 ⊥ w × 〈1,−1〉 is hyperbolic if and only if its

discriminant is positive.

Proof. The discriminant of q is disc(q) = −ab. If the form is hyperbolic,
then disc(q) is a square, hence it is positive. Conversely if disc(q) > 0, then
a and b have opposite signs. Thus, q is hyperbolic. �

We are now in a position to prove correctness of the presented algorithm.

Proof of correctness of Algorithm 8. Lemma 5.1 asserts that there exists an
anisotropic part qa of q whose coefficients are

(

P(q) ∪ {d1, . . . , dl} ∪ {q}
)

-
singular for some prime q of K. This implies that the algorithm terminates.
All we need to prove is that it outputs a correct result. Let

α := βε11 · · · βεmm
be the element constructed in step (5f). We shall show that q and qa =
〈α,−α ·d〉 are locally similar at every place of K. This is trivial for complex
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places. Consider a real embedding σ : K ֌ R. First assume that σ(d) > 0
so σ is not one of the embeddings we consider in step (4). Then, obviously
σ(qa) is hyperbolic. Lemma 5.2 says that σ(q) is hyperbolic, as well. Thus,
the two forms are similar, as claimed.

Conversely assume that σ = σi is one of the embeddings in step (4), hence
σi(d) < 0. We have

sgnσi(α) =
m
∏

j=1

sgnσi(β
εj
j

)

= (−1)ai1ε1 · · · (−1)aimεm

= (−1)vi

=
1

2
sgnσi(q),

since ε1, . . . , εm form a solution to the system (♣).
We now turn our attention to finite places of K. First, fix a prime p /∈ S.

Then α as well as all the coefficients a1, . . . , an of q (consequently d, too)
have even valuations at p. It follows from [22, Corollary V1.2.5], and the
very definition of the Hasse invariant, that both the Hasse invariants spq
and spqa vanish. We constructed qa in such a manner that the discriminants
of q and qa coincide. It follows from [22, Theorem V.3.21] that q ⊗Kp and
qa ⊗Kp are similar.

Finally, fix a non-archimedean place pi ∈ S with i ≤ s. It can be either
dyadic or non-dyadic. We have

spiqa = spi〈α,−α · d〉
= (α,−α · d)pi
= (α, d)pi

=
(

βε11 · · · βεmm , d
)

pi

=
∏

j≤m
(βj ,d)pi=−1

(−1)εj

= (−1)bi1ε1 · · · (−1)bimεm

= (−1)wi = spq.

Thus, the same argument as in the previous part shows that q ⊗ Kp and
qa⊗Kp are similar. Notice that the fact that the Witt index of q is divisible
by 4, ensures that the Hasse invariants coincide also for dyadic primes.

All in all, q and qa are locally similar everywhere. Consequently they are
similar over K by the local-global principle. The fact that the anisotropic
dimension of q is 2 implies that qa is the sought anisotropic part of q. �

For the sake of completeness we should also discuss forms of the anisotropic
dimension equal one. This case, however, is completely trivial.

Observation 5.3. If the anisotropic dimension of q is 1, then 〈disc(q)〉 is

an anisotropic part of q.



THE ANISOTROPIC PART OF A QUADRATIC FORM OVER A NUMBER FIELD 13

6. Example

Below we present a simple example illustrating how the algorithms de-
scribed in this paper work. Take K = Q(

√
−7) and the quadratic form

q :=
〈

−3− 9
√
−7,−1,−2 − 6

√
−7, 1−

√
−7,

− 6 + 4
√
−7,−3 + 2

√
−7, 4− 4

√
−7

〉

The anisotropic dimension of q equals 3 and the discriminant is disc q =
−61056 − 342912

√
−7. There are precisely four primes that matter for q,

including the two dyadic primes of K. These are:

d1 =
(

2, 12(1 +
√
−7)

)

, d2 =
(

2, 12(7 +
√
−7)

)

p1 = (3), p2 =
(

37, 12 (7 +
√
−7)

)

Using Algorithm 6, we find that dima

(

q ⊥ 〈−1406〉
)

= 2, since

1406 ≡ disc q − 1 (mod p1) and 1406 ≡ πp (mod p2)

for p ∈ {d1, d2, p2}.
Subsequently, we apply Algorithm 8 to the form q′ := q ⊥ 〈−1406〉. There

are two new primes that originate from the inclusion of −1406. These primes
are

p3 = (19), p4 =
(

37, 20 +
√
−7

)

.

Moreover, for system (♣) to become solvable, we append three more primes
to the set S. The additional primes are:

p5 = (5), p6 =
(√

−7
)

, p7 =
(

11, 2 +
√
−7

)

.

The system (♣) becomes:





























0 0 1 0 1 1 1 1 1 1
0 1 1 0 0 1 1 0 0 0
0 0 1 1 1 0 1 1 1 1
0 1 1 0 1 1 0 1 1 1
0 1 0 0 0 0 1 1 0 0
0 1 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





























·

































ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10

































=





























0
0
0
1
0
1
0
0
0





























Then, V = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0) is a solution. This solution corresponds
to α = 1

2

(

−27 − 19
√
−7

)

. Therefore, q′a = 〈α,−α · disc q′〉 is an anisotropic
part of the form q′. Consequently,

qa = 〈1406〉 ⊥ q′a

=
〈

1406, 12 (−27− 19
√
−7), 30903025152 − 7324337664

√
−7

〉

is the sought anisotropic part of q.
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7. Conclusion

In this paper we present an explicit method for constructing an anisotropic
part of a given quadratic form over a number field. The algorithm described
in this paper have been implemented in CQF package [19] for the computer
algebra system Magma [7]. This let us verify how the algorithms behave
in practice. In order to test the efficiency of our solution we prepared two
test-suits, both consisting of 20 randomly generated quadratic forms. In
the first test-suit we used 20 forms, each of dimension 20, over a non-real
field of degree 20 [24, Number field 20.0.569468379011812486801.1]. In the
other test-suit we used 20 forms of dimension 10 over a formally real field
[24, Number field 10.10.80803005003125.1], which has 10 distinct orderings.
Both test-suits were executed on a budget PC (Intel i5-9400F, 2.9 GHz with
32GB of RAM). The computation times for the first test varied from 276
to 365 second, with the mean value of 324 seconds. The figures for the
second test-suits were: 0.24s, 3.42s and 2.82s, respectively. This shows that
the presented method works in practice.

Acknowledgments. We wish to thank Alfred Czogała, who showed us Algo-
rithm 1 and allowed us include it in this paper.
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