
GRAM SPECTRAHEDRA OF TERNARY QUARTICS

JULIAN VILL

Abstract. The Gram spectrahedron of a real form f ∈ R[x]2d parametrizes

all sum of squares representations of f . It is a compact, convex, semi-alge-
braic set, and we study its facial structure in the case of ternary quartics,

i.e. f ∈ R[x, y, z]4. We show that the Gram spectrahedron of every smooth

ternary quartic has faces of dimension 2, and generically none of dimension 1,
thus answering a question in [9] about the existence of positive dimensional

faces on such Gram spectrahedra. We complete the proof in [9] showing that
the so called Steiner graph of every smooth quartic is isomorphic to K4

∐
K4.

Moreover, we show that the Gram spectrahedron of a generic psd ternary

quartic contains points of all ranks in the Pataki interval.

1. Introduction

Given a real homogeneous polynomial f ∈ R[x1, . . . , xn]2d of degree 2d (d ∈
N) that is a sum of squares, i.e. that can be written in the form f =

∑r
i=1 p

2
i

for some p1, . . . , pr ∈ R[x1, . . . , xn]d. In general, there are many non-equivalent
ways to write f in such a form. The Gram spectrahedron of f parametrizes all
sos-representations up to orthogonal equivalence. It carries in a natural way the
structure of a spectrahedron, especially, it is a closed, convex and semi-algebraic
set. As such its boundary is the union of its faces.

The facial structure of spectrahedra has first been studied by Ramana and Gold-
man [13]. In [15] Scheiderer formulates these results in a coordinate-free way which
we introduce in Section 2. To this end we define the Gram spectrahedron of f as
the set

Gram(f) = {ϑ ∈ S2R[x1, . . . , xn]d : ϑ � 0, µ(ϑ) = f}

consisting of all symmetric, positive semidefinite tensors ϑ that are mapped to f via
the Gram map µ : S2R[x1, . . . , xn]d → R[x1, . . . , xn]2d,

∑r
i=1 pi⊗ qi 7→

∑r
i=1 piqi.

We are mostly concerned with the case n = 3, d = 2 of ternary quartics. Sum
of squares representations of ternary quartics have already been studied by Hilbert
[6] in 1888, who showed that every real psd ternary quartic can also be written as
a sum of squares, and every such quartic can be written as a sum of three squares.
Later, it was shown in [12] that every smooth psd quartic admits exactly eight such
representations as a sum of three squares (up to orthogonal equivalence).

In [9] the authors relate the sum of squares representation of length 3 to the 28
bitangent lines of the quartic curve and their combinatorial structure. A modern
treatise of the combinatorics of bitangents can be found in Dolgachev’s book [2]
which we regularly use as a reference. They also observe that the eight correspond-
ing Gram tensors of rank 3 split into two groups of four such that in every group all
line segments between two of them are contained in the boundary of Gram(f). The
stronger statement that additionally for any two Gram tensors in different groups
the line segment is not part of the boundary is also claimed for generic forms but
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2 JULIAN VILL

only partially proven. We complete the proof of this statement for all smooth quar-
tics. The graph having these eight Gram tensors as vertices is called the Steiner
graph of the form f .

In this paper we largely complete the picture of the facial structure for Gram
spectrahedra of ternary quartics. First, we proof that the Steiner graph of any
smooth psd ternary quartic is isomorphic to K4

∐
K4 (Theorem 4.14). This mostly

finishes our study of the rank 3 Gram tensors and we turn to tensors of rank
4 and 5. Up to now, these were not understood at all, it was even unknown
whether there exist any faces of positive dimension other than the faces containing
the line segments represented in the Steiner graph ([9, p.18]). These rank 4 and
rank 5 tensors form the whole boundary of Gram(f) together with the eight rank
3 tensors for any smooth form f . We show that faces of rank 4 may either be
extreme points or have dimension 1. These 1-dimensional faces however, may only
appear on Gram spectrahedra of smooth forms f if the automorphism group of
the curve {f = 0} has even order (Corollary 5.11). Faces of rank 5 are very
different in this aspect. Firstly, faces of rank 5 can only be of dimension 0 or 2
if the quartic is smooth (Corollary 5.4). Moreover, the Gram spectrahedron of a
generic psd quartic has faces of rank 5 both of dimension 0 and 2 (Corollary 5.15).
As the Gram spectrahedron of every smooth psd quartic has extreme points of
rank 4 (Proposition 5.16) this also shows that for generic psd quartics, the Gram
spectrahedron has points of all ranks in the Pataki interval which contains the
numbers 3, 4 and 5. This is the smallest combination of dimension and size of the
matrices where the Pataki interval has length three.

We briefly comment on the methods and the organization of the paper. There are
two very different types of arguments used in the paper. To understand dimensions
of faces, we make use of the fact that these can be calculated purely algebraically.
Let f ∈ Σn,2d and F ⊆ Gram(f) a face. Let ϑ ∈ F be a relative interior point with

image U ⊆ R[x1, . . . , xn]d. The dimension of F is now given by
(
dimU+1

2

)
− dimU2

where U2 is the subspace of R[x1, . . . , xn]2d spanned by all products pq with p, q ∈
U . It is therefore enough to study possible dimensions of squares of subspaces. On
the other hand, if we want to show the existence of faces with certain properties
we use the well-studied, classical approach of connecting sos-representations of a
smooth form f with the 28 bitangents of the curve {f = 0}. This is especially
necessary to show additional properties of the Steiner graph (e.g. Proposition 5.13).

As to the organization of the paper. In Section 2 we review results about the fa-
cial structure of Gram spectrahedra as shown in [13] and [15]. Section 3 contains a
brief introduction to the classical theory of bitangents and determinantal represen-
tations of ternary quartics. Section 4 is devoted to the study of the Steiner graph.
We start by recalling some facts about the configuration of bitangents, mostly using
Dolgachev’s book [2] as a reference. We then show that the Steiner graph of any
smooth psd ternary quartic is isomorphic to K4

∐
K4 (Theorem 4.14), thereby also

recalling the part of the proof contained in [9]. In Section 5 we study faces of rank
4 and rank 5 on Gram spectrahedra. If the psd ternary quartic f is smooth, faces
of rank 5 may only have dimension 0 or 2 (Corollary 5.4) and there always exists a
face of dimension 2 (Corollary 5.15). On the other hand, faces of rank 4 are always
extreme points if the automorphism group of the curve {f = 0} does not have even
order which is the case for generic f . In the case where the automorphism group
does have even order, there may be faces of rank 4 and dimension 1 and we also
relate this to the configuration of the bitangents (Theorem 5.7).
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2. Facial structure of Gram spectrahedra

We first explain the facial structure of Gram spectrahedra. All results are orig-
inally due to Ramana and Goldman [13], and the coordinate-free approach we are
going to use has been introduced by Scheiderer [15].

Let n, d ≥ 1. For any subspace V ⊆ R[x]d, x = (x1, . . . , xn), we denote by S2V
the second symmetric power of V and identify it with the subset of V ⊗V consisting
of all symmetric tensors. A symmetric tensor ϑ =

∑r
i=1 pi ⊗ qi ∈ S2V induces a

symmetric bilinear map bϑ : V ∨×V ∨ → R, (λ, ν) 7→
∑r
i=1 λ(pi)ν(qi). Furthermore,

this also induces a linear map φϑ : V ∨ → V via λ 7→ bϑ(·, λ) = bϑ(λ, ·).
We define the image of ϑ as the image of the linear map φϑ, written as imϑ,

and the rank of ϑ as the dimension of its image, denoted by rkϑ. Especially, this
means that if p1, . . . , pr and q1, . . . , qr are linearly independent sets, then imϑ =
span(p) = span(q).

We say that the tensor ϑ ∈ S2V is positive semidefinite, ϑ � 0 , if bϑ(λ, λ) ≥ 0
for every λ ∈ V ∨ and write S+2 V for the set of all psd tensors in S2V . Additionally,
if bϑ(λ, λ) > 0 for every 0 6= λ ∈ V ∨ we say that ϑ is positive definite and write
ϑ � 0.

After choosing a basis p1, . . . , pr of V , every tensor ϑ ∈ S2V can be written as
ϑ =

∑r
i,j=1 aijpi ⊗ pj with aij = aji ∈ R. This identifies ϑ with the symmetric

matrix (aij)i,j ∈ Sr. Hence, S2V is identified with the space of all symmetric r× r
matrices and S+2 V with the cone of all psd r × r matrices. Especially, S+2 V is a
full-dimensional, convex cone inside S2V .

Furthermore, since every real symmetric matrix can be diagonalized, we can
write ϑ =

∑r
i=1 aiqi ⊗ qi for some q1, . . . , qr ∈ V and a1, . . . , ar ∈ R. Moreover, ϑ

is psd if and only if all ai are non-negative.
The multiplication map R[x]⊗R[x]→ R[x], f ⊗g 7→ fg induces a multiplication

map µ : S2R[x]d → R[x]2d on the symmetric tensors. This is exactly the Gram map,
written in a coordinate-free way. For any f ∈ Σn,2d, we therefore define

Gram(f) := µ−1(f) ∩ S+2 R[x]d.

We denote by V 2 the subspace of R[x]2d spanned by all product pq with p, q ∈ V .
Let f ∈ Σn,2d and let ϑ ∈ Gram(f). By diagonalizing, the Gram tensor ϑ gives

rise to a sos-representation f =
∑r
i=1 p

2
i . If p1, . . . , pr are linearly independent, the

image of ϑ is given by the span of the forms p1, . . . , pr, and r is equal to the rank
of ϑ, or equivalently the dimension of its image.

Theorem 2.1 ([15, Proposition 3.6.]). Let f ∈ Σn,2d. Let F ⊆ Gram(f) be a face,
and let ϑ ∈ F be a relative interior point of F . With U := im(ϑ), the dimension of
F is given by

dimF = dimS2U − dimU2 =

(
dimU + 1

2

)
− dimU2.

Moreover, if W ⊆ V is a subspace such that f =
∑r
i=1 pi for some basis p1, . . . , pr

of W , then Gram(f) has a face G such that every relative interior point ϑ of G
satisfies im(ϑ) = W . The dimension of G is given by S2W − dimW 2.

We also call complex tensors Gram tensors and only restrict to real tensors
whenever necessary. I.e., let f ∈ R[x]2d, then any ϑ ∈ S2C[x]d is called a Gram
tensor of f if µ(ϑ) = f if we extend µ by tensoring everything with C.

Example 2.2. Consider the Fermat quartic f = x4 +y4 + z4 ∈ R[x, y, z]4, then we
have the rank 3 sos decomposition f = (x2)2 + (y2)2 + (z2)2. The corresponding
Gram tensor can for example be written as ϑ = x2 ⊗ x2 + y2 ⊗ y2 + z2 ⊗ z2, since
we have µ(ϑ) = (x2)2 + (y2)2 + (z2)2 = f and ϑ is psd.
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As with Gram matrices, any diagonalized Gram tensor of a form f immediately
gives rise to a sos representation of f .

Example 2.3. Consider again the Fermat quartic f = x4 + y4 + z4. Since f
is positive definite, we see that f ∈ int Σ3,4. Then the dimension of the Gram
spectrahedron of f is given by

dim Gram(f) =

(
dimR[x]2 + 1

2

)
− dimR[x]4 = 21− 15 = 6.

Moreover, the Gram tensor ϑ = x2 ⊗ x2 + y2 ⊗ y2 + z2 ⊗ z2 is an extreme point of
Gram(f). Indeed, the six forms x4, x2y2, x2z2, y4, y2z2, z4 are linearly independent
and therefore ϑ is an extreme point of Gram(f) by Theorem 2.1.

Remark 2.4. If we are working with a fixed number of variables and a fixed degree,
the dimension of a face only depends on the dimension of U and the dimension of
U2. This means that we can determine dimensions purely algebraically. It turns
out that it is more convenient to talk about the codimensions of U and U2 some of
the time. In these cases this should always be understood as the codimension of U
as a subspace of R[x]d. Analogously reading U2 as a subspace of R[x]2d.

A special kind of face is the extreme point. These are by definition faces of
dimension 0. The next result is originally due to Pataki in [8], this formulation can
be found in [1, Proposition 3.1.]. It determines bounds for the ranks of extreme
points of generic spectrahedra and Gram spectrahedra.

Proposition 2.5. Let dimV = n, let L ⊆ S2V be an affine-linear subspace with
dimL = m, and let S = L ∩ S+2 V .

(i) For every extreme point ϑ of S, the rank rkϑ = r satisfies

m+

(
r + 1

2

)
≤
(
n+ 1

2

)
.

(ii) When L is chosen generically among all affine-linear subspaces of dimen-
sion m, every ϑ ∈ S satisfies

m ≥
(
n− rkϑ+ 1

2

)
.

Example 2.6. Let n = 3, d = 2, and let f ∈ Σ3,4 be a generic ternary quartic.
Then the ranks r of extreme points of the Gram spectrahedron Gram(f), satisfy
the inequalities(

r + 1

2

)
≤ dimR[x]4 = 15 and

(
7

2

)
≥
(

7− r
2

)
+ 15

which is equivalent to r ≤ 5 and r ≥ 3. Hence, the Pataki interval is given by
3 ≤ r ≤ 5.

In this case, a generic form f does have a Gram tensor of every rank in the
Pataki interval as we will see in Remark 5.18.

3. Introduction to ternary quartics

For the rest of this article, we fix n = 3. We use the notation A = C[x, y, z], x =
(x, y, z), R[x] = R[x, y, z] and write Σ := Σ3,4.

Since we will do some calculations in this section, we also sometimes fix a basis
of R[x]2 and write Gram tensors as Gram matrices wrt to this basis. Whenever
we do so, we use the monomial basis ordered as follows: x2, y2, z2, xy, xz, yz. Let
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f ∈ R[x]4 with f =
∑
α∈Z3

+,|α|=4 cαx
α and cα ∈ R for α ∈ Z3

+, |α| = 4, then the

Gram matrices of f are given by

c400 λ1 λ2
1
2c310

1
2c301 λ4

λ1 c040 λ3
1
2c130 λ5

1
2c031

λ2 λ3 c004 λ6
1
2c103

1
2c013

1
2c310

1
2c130 λ6 c220 − 2λ1

1
2c211 − λ4

1
2c121 − λ5

1
2c301 λ5

1
2c103

1
2c211 − λ4 c202 − 2λ2

1
2c112 − λ6

λ4
1
2c031

1
2c013

1
2c121 − λ5

1
2c112 − λ6 c022 − 2λ3


for choices of λ1, . . . , λ6 ∈ C. Denote by X the row vector (x2, y2, z2, xy, xz, yz)
containing the six monomials of degree 2. Then by definition XGXT = f for every
Gram matrix G of f .

For a positive definite ternary quartic, the dimension of its Gram spectrahedron
is 6 and wrt X is given by all matrices of the form above that are psd.

Next, we give an introduction to bitangents and determinantal representations
of ternary quartics. A modern and more abstract point of view can be found in [2].
We mostly use a similar notation to [9].

Definition 3.1. Let f ∈ R[x]4 be smooth and let L ⊆ P2 be a line. Then L is called
a bitangent of f , if all intersection points of V(f) and L have even multiplicity.

We refer to [4] for an introduction to intersection numbers of plane curves.
An important tool for the main proof of Section 4 is Noether’s AF+BG Theorem,

a special version of Lasker’s Theorem. A proof as well as several historical notes
can be found in [3] or [4].

Theorem 3.2 (Noether’s AF +BG Theorem, [4, section 5.5.],[3, Theorem 8]). Let
f, g ∈ C[x] be forms of degrees d1, d2 such that V(f, g) is finite, and let h ∈ C[x]d
with d ≥ d1, d2. If for every point P ∈ V(f, h), the intersection multiplicity of f
and h in P is at least the intersection multiplicity of f and g in P , then there exist
a ∈ C[x]d−d1 and b ∈ C[x]d−d2 such that h = af + bg.

Remark 3.3. Let L = V(l) for some linear form l ∈ A1. By Theorem 3.2 L is a
bitangent of f if and only if there exist q ∈ A2 and h ∈ A3 such that f = q2 + hl.

Most of the time, we work with such an equation rather than considering bitan-
gents as subsets of P2.

Notation 3.4. Let L = V(l), l ∈ A1, be a bitangent of f . For convenience, we also
call the linear form l a bitangent of f , as well as its projective point [l] ∈ PA1.

We then say that two bitangents l1, l2 ∈ A1 are different if V(l1),V(l2) ⊆ P2 are
different lines.

Especially, when counting bitangents, this should be understood as counting
lines L ⊆ P2, and not counting forms l ∈ A1, as every non-zero scalar multiple of
such a linear form is also a bitangent.

In 1834, Plücker showed that every smooth ternary quartic has exactly 28 dif-
ferent bitangents. As was more recently shown in [7], the 28 bitangents uniquely
determine the smooth quartic f ∈ A4 up to a non-zero scalar.

Theorem 3.5 ([10]). If f ∈ R[x]4 is smooth, then f has exactly 28 different bitan-
gents.

Using the 28 bitangents of a smooth form f ∈ Σ, it was shown in [9] that one
can calculate all linear symmetric determinantal representations of f , as well as all
eight sos representations of f as a sum of three squares.
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Definition 3.6. Let f ∈ R[x]4. Then a linear symmetric determinantal represen-
tation of f is a matrix M = Ax+By+Cz such that f = det(M), and A,B,C are
symmetric 4× 4 matrices over C.

Let f ∈ R[x]4, then two linear symmetric determinantal representations of f are
called equivalent if they are conjugate to each other under the action of GL4(C).

Theorem 3.7 ([5]). Every smooth quartic f ∈ R[x]4 has exactly 36 inequivalent
linear symmetric determinantal representations.

Definition 3.8. Let f ∈ R[x]4 be a smooth quartic and fix one linear symmetric
determinantal representation M = Ax + By + Cz of f . The Cayley octad of M
is defined as the eight solutions O1, . . . , O8 ∈ P3 of the system uAuT = uBuT =
uCuT = 0 with u = (u0 : · · · : u3) ∈ P3.

Intersecting three quadratic hypersurfaces in P3, we expect there to be exactly
eight different intersection points O1, . . . , O8. Using the fact that f is smooth this
is indeed true as proven in [2, Proposition 6.3.3.].

This enables us to enumerate the bitangents of f in the following way.

Proposition 3.9 ([9, Proposition 3.3.]). Let f ∈ R[x]4 be a smooth quartic. Let
M be a linear symmetric determinantal representation of f with Cayley octad
O1, . . . , O8. Then the 28 bitangents of f are given by Lij with Lij = V(OiMOTj ),
1 ≤ i < j ≤ 8.

Remark 3.10. (i) Since M is symmetric, we have OiMOTj = OjMOTi for every
i, j ∈ {1, . . . , 8}, i 6= j. Thus, for every i, j ∈ {1, . . . , 8}, i 6= j, the line Lij =
V(OiMOTj ) = Lji is a bitangent of f and we do not have to pay attention to the
order of the indices.

(ii) With a fixed Cayley octad, we write bij ∈ A1 (1 ≤ i < j ≤ 8, i 6= j) for the
bitangents of f where Lij = V(bij) and set bij := bji for all 1 ≤ j < i ≤ 8, i 6= j.
This is mostly for convenience to avoid unnecessary scaling later on.

(iii) This enumeration of the bitangents is dependent on the choice of a linear
symmetric determinantal representation of f and on the order of the Cayley octad.

(iv) By [17, §0] every smooth real quartic has a real linear symmetric determi-
nantal representation. The Cayley octad corresponding to this linear symmetric
determinantal representation contains only real points or points appear in complex
conjugate pairs.

Remark 3.11. Recall that we defined Gram tensors not only as the real tensors
that are mapped to a form via the Gram map, but also the complex ones.

By Gram tensor we always mean a possibly complex one, and where necessary
we say real Gram tensor to specify.

Next, we follow the algorithm in [9, §5] to construct all 63 Gram tensors of f
and to determine combinatorially from a Cayley octad which are real.

Definition 3.12. Let f ∈ R[x]4. Then a quadratic symmetric determinantal rep-

resentation (QDR) of f is a matrix Q =

(
q0 q1
q1 q2

)
with q0, q1, q2 ∈ A2 such that

f = det(Q).

Proposition 3.13 ([14, section 254],[9, Proposition 5.7.]). Let f ∈ R[x]4 be a
smooth quartic and let Q be a QDR of f . Then the variety {λQλT : λ ∈ P1} ⊆
PA2 contains exactly six products of two bitangents of f . I.e. there exist twelve
bitangents l1, l

′
1, . . . , l6, l

′
6 ∈ A1 of f such that [lil

′
i] ∈ λQλT .

3.14. Let f ∈ R[x]4 be a smooth quartic, and let Q =

(
q0 q1
q1 q2

)
be a QDR of f .
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This means f = q0q2 − q21 which gives rise to a sos representation of f over C as
follows

f =

(
1

2
q0 +

1

2
q2

)2

+

(
1

2i
q0 −

1

2i
q2

)2

+ (iq1)2.

We call the Gram tensor ϑ corresponding to this sos representation of f the Gram
tensor corresponding to Q. Then imC ϑ = span(q0, q1, q2). ϑ is well-defined:
let f = p0p2 + p21 (p0, p1, p2 ∈ A2) be any other representation of f such that
span(p0, p1, p2) = span(q0, q1, q2). Then the Gram tensor corresponding to this

equation has the same image as ϑ. As the map S2 imC(ϑ)
µ→ A4 is injective, we see

that there is only one Gram tensor with this image, hence the two are equal.

Corresponding to every quadratic symmetric determinantal representation of a
form f , we cannot only associate a Gram tensor of f as above, but also a Steiner
complex. These are also in one-to-one correspondence with quadratic symmetric
determinantal representations of f but are of a more combinatorial nature.

Theorem 3.15. Let f ∈ R[x]4 be a smooth quartic, and let l1, l
′
1, . . . , l6, l

′
6 ∈ A1

be twelve different bitangents of f . Write S = {{li, l′i} : i = 1, . . . , 6}, then the
following are equivalent:

(i) The six quadrics [l1l
′
1], . . . , [l6l

′
6] are on the hypersurface λQλT , λ ∈ P1,

for a quadratic symmetric determinantal representation Q of f .
(ii) For ever i 6= j, there exist q ∈ A2 and λ ∈ C such that f = λlil

′
ilj l
′
j + q2,

i.e. the intersection points of V(lil
′
ilj l
′
j) and V(f) lie on a conic V(q).

(iii) Let M be a linear symmetric determinantal representation of f and
O1, . . . , O8 the corresponding Cayley octad. Then

S = {{bik, bjk} : {i, j} = I, k ∈ Ic} for some I ⊆ {1, . . . , 8}, |I| = 2 or

S = {{bij , bkl} : {i, j, k, l} = I or {i, j, k, l} = Ic} for some I ⊆ {1, . . . , 8}, |I| = 4.

(Ic = {1, . . . , 8} r I denotes the complement of I in {1, . . . , 8}) Any sextuple S
satisfying the equivalent conditions (i)-(iii), is called a Steiner complex of f .

From this, we can also calculate the number of Steiner complexes. There are(
8
2

)
= 28 Steiner complexes of the first type and 1

2 ·
(
8
4

)
= 35 of the second type. In

the second case we get the same Steiner complex if we choose I or Ic.
We say that two quadratic symmetric determinantal representation are equiv-

alent if the images of the corresponding Gram tensors are the same. Up to this
equivalence there are exactly 63 quadratic symmetric determinantal representation
of a smooth quartic f and these are in one-to-one correspondence with the 63
Steiner complex.

After fixing a linear symmetric determinantal representation and a Cayley octad
of f , the rank 3 Gram tensors of f can be enumerated in the same way the Steiner
complexes can, i.e. by subsets of {1, . . . , 8} as above.

For ease of notation, we write I = ijkl instead of I = {i, j, k, l} ⊆ {1, . . . , 8},
|I| = 4, and I = ij instead of I = {i, j} ⊆ {1, . . . , 8}, |I| = 2.

There was already some computational evidence found by Powers and Reznick
[11] that a smooth psd ternary quartic has exactly 15 real Gram tensors of rank
3. Later, in [12] this was proven using the connection of quadratic symmetric
determinantal representation with 2-torsion points of the corresponding curve. In
[9] the authors found a way to identify these representations using the combinatorial
properties of Steiner complexes.

Let f ∈ Σ be a smooth quartic, and let M be a real linear symmetric deter-
minantal representation of f . Since f is smooth, the curve defined by f contains
no real points, i.e. V(f)(R) = ∅. Using table 1 in [9], this means that there is
no real point in the Cayley octad, hence it consists of four conjugate pairs. After
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reordering the Cayley octad, we may assume that Oi = Oi+1 for i = {1, 3, 5, 7}
where · denotes complex conjugation. Then the real Gram tensors of rank 3 of f
are given as follows.

Theorem 3.16 ([9, Theorem 6.2. & 6.3.]). The eight real psd Gram tensors of
rank 3 of f correspond to the following eight Steiner complexes:

1357, 1368, 1458, 1467,

1358, 1367, 1457, 1468.

The other seven real Gram tensors of rank 3 correspond to the Steiner complexes
given by

1234, 1256, 1278,

12, 34, 56, 78.

4. The Steiner graph

Definition 4.1. Let f ∈ Σ be smooth. Consider the graph whose vertices corre-
spond to the eight real psd rank 3 Gram tensors of f (or equivalently their Steiner
complexes). We draw an edge between two vertices if the line segment connecting
the two corresponding Gram tensors on Gram(f) is contained in the boundary of
Gram(f). This graph is called the Steiner graph of f .

We show that the Steiner graph of a smooth psd quartic is the union of two
K4, where K4 denotes the complete graph on four vertices. This graph has already
been considered in [9] where it is shown that it contains the disjoint union of two
K4. The fact that there are no additional edges in the Steiner graphs seems to be
claimed as well in the paper, but without proof. In this section, we show that this
is indeed the case. For this, we need some more facts about possible arrangements
of bitangents which we show first.

A similar graph was constructed and studied for binary forms in [15].

Remark 4.2. We show that for a smooth quartic f ∈ Σ the Steiner graph of f
has the form in Fig. 1. It is the disjoint union of two complete graphs on four
vertices and the vertices in them are given by the four Steiner complexes in a row
in Theorem 3.16.

The proof that the graph below is contained in the Steiner graph is given in
Lemma 4.7 which is taken from [9, Lemma 6.4.].

1357

1368

1458

1467 1358

1367

1457

1468

Figure 1. The Steiner graph of a smooth quartic.

We fix a smooth quartic f ∈ Σ, a linear symmetric determinantal representation
of f , and a Cayley octad.

Proposition 4.3. Let S1, S2 be two different Steiner complexes. Then one of the
following holds:



GRAM SPECTRAHEDRA OF TERNARY QUARTICS 9

(i) There exist four different bitangents l1, . . . , l4 such that {l1, l2}, {l3, l4} ∈
S1 and {l1, l3}, {l2, l4} ∈ S2, or

(ii) there exist six bitangents l1, . . . , l6 such that {li, l′i} ∈ S1 and {li, l′′i } ∈ S2
for every i = 1, . . . , 6 where li, l

′
i, l
′′
i , i = 1, . . . , 6 are 18 different bitangents.

Proof. This follows from [2, Lemma 5.4.8., Proposition 6.1.6.]. �

Definition 4.4. In the situation of Proposition 4.3, the two Steiner complexes are
called syzygetic if they satisfy (i) and azygetic if they satisfy (ii).

With a fixed linear symmetric determinantal representation and a Cayley oc-
tad, being syzygetic or azygetic for a pair of Steiner complexes translates into the
following statements about subsets of {1, . . . , 8} representing the Steiner complexes.

Lemma 4.5. Let I, J ⊆ {1, . . . , 8} be subsets such that |I|, |J | = 4 and I 6= J, Jc.
Let S1,S2 be the corresponding Steiner complexes. Then S1 and S2 are syzygetic if
and only if |I ∩ J | = 2.

Proof. See [9, Lemma 6.5]. �

Example 4.6. We consider the Steiner complexes 1358 and 1457 in the Steiner
graph. These form a syzygetic pair. Indeed, by Lemma 4.5 we only have to check
that the sets 1358 and 1457 contain exactly two common elements. This is true
and the elements are 1 and 5.

Moreover, we see from the proof of Lemma 4.5 that the four bitangents in Propo-
sition 4.3 (i) are given by b15, b38, b47, b26. The pairs {b15, b38}, {b47, b26} are con-
tained in 1358 and {b15, b47}, {b38, b26} are contained in 1457. It is now natural
to consider the Steiner complex containing {b15, b26}, {b47, b38} which is the third
possibility to form two pairs from the four bitangents. This Steiner complex is
therefore 1256. We note that it does correspond to a real rank 3 tensors which is
not psd by Theorem 3.16.

We can now give the proof that the Steiner graph of f contains all the edges
shown in Remark 4.2.

Lemma 4.7 ([9, Lemma 6.4.]). Let S1,S2 be two Steiner complexes corresponding
to real psd Gram tensors, that are in the same line in Theorem 3.16. Then the line
between the corresponding Gram tensors on Gram(f) is contained in the boundary
of Gram(f).

I.e. if ϑ1, ϑ2 are the corresponding Gram tensors, then for every λ ∈ [0, 1] the
point λϑ1 + (1− λ)ϑ2 is on the boundary of Gram(f).

Proof. By Lemma 4.5 the two Steiner complexes S1, S2 are syzygetic, hence there
exist bitangents l1, . . . , l4 such that {l1, l2}, {l3, l4} ∈ S1 and {l1, l3}, {l2, l4} ∈ S2.
Let q ∈ A2, λ ∈ C such that f = λl1l2l3l4 + q2, which is possible by Theorem 3.15.
Then q is contained in the (complex) images of ϑ1 and ϑ2. Hence dim(imC(ϑ1) +
imC(ϑ2)) ≤ 5. Since ϑi is real, imC(ϑi) has a real C-basis (i = 1, 2), thus it follows
that dim(im(ϑ1 + ϑ2)) = dim (im(ϑ1) + im(ϑ2)) ≤ 5. �

We now work towards showing that the Steiner graph of a smooth quartic is the
disjoint union of two K4. We start with some facts about bitangents.

Definition 4.8. Let f ∈ R[x]4 be smooth, and let l1, l2, l3 be three different bitan-
gents of f . The triple is called syzygetic if there exists a Steiner complex S such
that {l1, l2}, {l3, l} ∈ S for another bitangent l of f . Otherwise, the triple is called
azygetic. Analogously, a 4-tuple l1, . . . , l4 of bitangents is called syzygetic if one
(equivalently any) subset consisting of three bitangents in syzygetic.

Lemma 4.9. Let l1, l2, l3 be three bitangents. The following are equivalent:
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(i) There exist bitangents l′1, l
′
2, l
′
3 such that l1, l2, l3, l

′
1, l
′
2, l
′
3 are pairwise dif-

ferent, and there exists a Steiner complex S such that
{l1, l′1}, {l2, l′2}, {l3, l′3} ∈ S.

(ii) The bitangents l1, l2, l3 are azygetic.

Proof. (i)⇒(ii): [2, Lemma 6.1.6.]. (ii)⇒(i): [2, Proposition 6.1.4.]. �

Lemma 4.10. Three azygetic bitangents cannot intersect in a common point.

Proof. Let l1, l2, l3 be three azygetic bitangents. By Lemma 4.9 we can find a
Steiner complex S such that {l1, l′1}, {l2, l′2}, {l3, l′3} ∈ S for some bitangents l′1, l

′
2, l
′
3.

The image of the corresponding Gram tensor is then given by span(l1l
′
1, l2l

′
2, l3l

′
3).

If l1, l2, l3 would intersect in a point, then this space has a base-point and thus f
has a singularity at this point. �

Remark 4.11. Summarizing some facts about syzygetic and azygetic bitangents
and Steiner complexes.

Let l1, l2, l3 be three syzygetic bitangents. Then there is a unique fourth bitan-
gent l4 and three (necessarily) syzgetic Steiner complexes S1,S2,S3 such that

{l1, l2}, {l3, l4} ∈ S1, {l1, l3}, {l2, l4} ∈ S2, and {l1, l4}, {l2, l3} ∈ S3.
Furthermore, any two syzygetic Steiner complexes determine a unique third one,
defined as above.

Let l1, l2, l3 be three azygetic bitangents. Then, these three cannot intersect
in a common point, and they are contained in a Steiner complex such that each
of the three bitangents belongs to a different pair in the Steiner complexes (see
Lemma 4.9). This Steiner complex is not unique, and any two such azygetic Steiner
complexes have exactly six common bitangents where each bitangent belongs to a
different pair in each Steiner complex.

Example 4.12. Consider the two different Steiner complexes {{li, l′i} : i = 1, . . . , 6}
and {{li, l′′i } : i = 1, . . . , 6}. Then these are azygetic and have exactly the six
bitangents l1, . . . , l6 in common. These could for example be the Steiner complexes
corresponding to the subsets I = 1357 and J = 1358 after fixing a Cayley octad
and a linear symmetric determinantal representation.

We need one last simple lemma before turning to the main theorem of this
section.

Lemma 4.13. Let n ≥ 2, d ≥ 1. Let f ∈ Σn,2d and let ϑ ∈ Gram(f) with
corresponding subspace U = im(ϑ) of dimension r. If p1, . . . , pr ∈ U form a basis
of U , then there exist aij ∈ R (1 ≤ i ≤ r, 1 ≤ j ≤ i) such that

f =

r∑
i=1

 i∑
j=1

aijpj

2

.

I.e. the i-th summand is a linear combination of only the first i forms p1, . . . , pi.

Proof. This can be shown using the QL-decomposition of a matrix. Let f1, . . . , fr ∈
U be a basis such that f =

∑r
i=1 f

2
i . Let A be the r × r matrix containing the

coordinates of fi wrt the basis p1, . . . , pr in its i-th row. Then

f = (f1, . . . , fr)(f1, . . . , fr)
T = (p1, . . . , pr)A

TA(p1, . . . , pr)
T .

As A is a rank r square matrix there exists an orthogonal matrix O ∈ O(r) and a
lower triangular r × r real matrix L such that A = OL. This shows

f = (p1, . . . , pr)(OL)T (OL)(p1, . . . , pr)
T = (p1, . . . , pr)L

TL(p1, . . . , pr)
T .

Since L is lower triangular, this sos representation of f has the required form. �
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We now show the following theorem which is our goal in this section.

Theorem 4.14. Let f ∈ Σ be a smooth quartic. Then the Steiner graph of f is
the union of two disjoint K4.

We already know that there are two disjoint K4 contained in the Steiner graph,
hence we need to show that there are no additional edges. We first show that none
of those edges can have rank ≤ 4.

For the rest of this section, we fix the following setup. Let f ∈ Σ smooth and
let ϑ1, ϑ2 ∈ Gram(f) be two real psd rank 3 Gram tensors with corresponding
Steiner complexes S1, S2 such that S1 and S2 are azygetic. By Lemma 4.7 these
are the Gram tensors left to consider. Equivalently, syzygetic Steiner complexes in
the Steiner graph are connected by an edge and azygetic ones are not.

Proposition 4.15. dim (im(ϑ1) + im(ϑ2)) ≥ 5.

Proof. Since S1 and S2 are azygetic, we can pick pairs of bitangents such that

{l1, l′1}, {l2, l′2}, {l3, l′3} ∈ S1 and {l1, l′′1}, {l2, l′′2} ∈ S2.

Assume dim(im(ϑ1)+im(ϑ2)) ≤ 4. Then the quadratic forms l1l
′
1, l2l

′
2, l3l

′
3, l1l

′′
1 , l2l

′′
2

are linearly dependent. We therefore find λ1, . . . , λ5 ∈ C not all zero such that

0 = λ1l1l
′
1 + λ2l2l

′
2 + λ3l3l

′
3 + λ4l1l

′′
1 + λ5l2l

′′
2

= l1(λ1l
′
1 + λ4l

′′
1 ) + l2(λ2l

′
2 + λ5l

′′
2 ) + λ3l3l

′
3.

Let P ∈ P2 be the intersection point V(l1, l2). Then either l3 or l′3 has to vanish
at P if λ3 6= 0. But both triples l1, l2, l3 and l1, l2, l

′
3 are azygetic by Lemma 4.9,

hence cannot intersect in a common point by Lemma 4.10. This means that λ3 = 0
which shows

0 = l1(λ1l
′
1 + λ4l

′′
1 ) + l2(λ2l

′
2 + λ5l

′′
2 ).

Since two bitangents cannot be multiples of each other, l1 ∈ span(l′2, l
′′
2 ) and l2 ∈

span(l′1, l
′′
1 ). But again the triples l1, l

′
2, l
′′
2 and l2, l

′
1, l
′′
1 are azygetic by the next

lemma and therefore cannot intersect in a common point. �

Lemma 4.16. With everything as in Proposition 4.15, the triples l1, l
′
2, l
′′
2 and

l2, l
′
1, l
′′
1 of bitangents are azygetic.

Proof. Consider the Steiner complex S1 = {{li, l′i} : i = 1, . . . , 6} and the four
bitangents l1, l

′
1, l2, l

′
2. Then, there exist Steiner complexes T1, T2 such that T1

contains {l1, l2}, {l′1, l′2} and T2 contains {l1, l′2}, {l′1, l2}. By [2, Theorem 5.4.10.]
any of the 28 bitangents of f is contained in one the three Steiner complexes.
Especially, one contains the bitangent l′′1 . This bitangent cannot be contained in T2:
otherwise T2 contains {l1, l′2}, {l′1, l2} and {l′′1 , L} for some bitangent L. Especially
l1, l2, l

′′
1 are azygetic by Lemma 4.9. But S2 contains {l1, l′′1} and {l2, l′′2}. Hence

l1, l2, l
′′
1 are syzygetic, a contradiction.

Therefore l′′1 is contained in the Steiner complex T1. Then l′1, l
′′
1 , l2 are contained

in T1 as in Lemma 4.9, hence the triple is azygetic.
An analogous argument shows that l1, l

′
2, l
′′
2 form an azygetic triple. �

Remark 4.17. We first sketch the second part of the proof of Theorem 4.14. If
dim (imC(ϑ1) + imC(ϑ2)) = 5 and q ∈ A2 spans the intersection of the images, then
we get representations p1p2 + q2 = cf and q1q2 + q2 = df for some p1, p2 ∈ imC(ϑ1),
q1, q2 ∈ imC(ϑ2) and c, d ∈ C.

Let P1, . . . , P8 be the intersection points of V(q) and V(f). The equations show
that the products q1q2 and p1p2 are tangent to f at the points P1, . . . , P8. A form
g ∈ PA2 has 5 degrees of freedom and we require V(g) to be tangent at 4 points.
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Therefore, it seems unlikely to find two different products of two quadratic forms
satisfying the conditions.

In the case where the two Steiner complexes S1, S2 are syzygetic, this is easily
possible: as in Lemma 4.7 there can be four bitangents l1, l2, l3, l4 ∈ A1 of f such
that q1 = l1l2, q2 = l3l4 and p1 = l1l3, p2 = l2l4.

We prepare with an application of Theorem 3.2.
Assume we have an equation f = p1p2+q2 for some p1, p2, q ∈ A2. Let V(f, p1) =

{P1, . . . , P4} and V(f, p2) = {P5, . . . , P8} with P1, . . . , P8 ∈ P2 (not necessarily
different). For any two different points P,Q ∈ P2, we write PQ for the line through
P and Q. Let

L1 = P1P2, L2 = P3P4, L3 = P5P6, L4 = P7P8

if all points are different. If any two points Pi, Pj are the same, the line PiPj should
be understood as the tangent line at Pi of V(p1) or V(p2) depending on whether
1 ≤ i ≤ 4 or 5 ≤ i ≤ 8. Moreover, for i = 1, . . . , 4 write li ∈ A1 for the linear form
such that V(li) = Li.

Proposition 4.18. In the situation above, if q is also irreducible, there exists
h ∈ span(p1, p2, q) ⊆ A2 and 0 6= λ ∈ C such that

f = λl1l2l3l4 + qh.

Proof. By Theorem 3.2, there exist λ1, . . . , λ6 ∈ C such that

λ1p1 = λ2l1l2 + λ3q, λ4p2 = λ5l3l4 + λ6q

by choice of the forms l1, . . . , l4. If λ2λ5 = 0, then either q = νp1 or q = νp2 for some
ν ∈ C. However, the image of the Gram tensor corresponding to the representation
f = p1p2 + q2 has image span(p1, p2, q). Hence, this Gram tensor has rank 2 which
is not possible since f is smooth. If λ1λ4 = 0, then q was reducible, contradicting
the assumption.

We therefore see span(p1, p2, q) = span(l1l2, l3l4, q). Multiplying the two equa-
tions, we get

λ1λ4p1p2 = λ2λ5l1l2l3l4 + q(λ3λ5l3l4 + λ3λ6q + λ2λ6l1l2).

Substituting with the equation f = p1p2 + q2, we get

λ1λ4(f − q2) = λ2λ5l1l2l3l4 + q(λ3λ5l3l4 + λ3λ6q + λ2λ6l1l2),

and thus

f =
λ2λ5
λ1λ4

l1l2l3l4 + q

(
λ3λ5
λ1λ4

l3l4 +
λ3λ6
λ1λ4

q +
λ2λ6
λ1λ4

l1l2 + q

)
︸ ︷︷ ︸

h:=

.

�

Proof of Theorem 4.14. Let span(q) = im(ϑ1)∩ im(ϑ2). By Lemma 4.13 there exist
p1, p2 ∈ imC(ϑ1), q1, q2 ∈ imC(ϑ2), and 0 6= c, d ∈ R such that

f = p1p2 + (cq)2, (1)

f = q1q2 + (dq)2. (2)

If c2 = d2 6= 0, subtracting equations (1) and (2) yields p1p2 = q1q2. There-
fore, either im(ϑ1) = im(ϑ2) or all these forms are reducible and we can write
p1 = l1l2, p2 = l3l4 and q1 = l1l3, q2 = l2l4 for some l1, l2, l3, l4 ∈ A1. But the equa-
tions show that l1, . . . , l4 are bitangents and {l1, l2}, {l3, l4} are in the first Steiner
complex and {l1, l3}, {l2, l4} are in the second. Hence the two Steiner complexes
are syzygetic, a contradiction.
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Assume q is irreducible. By Proposition 4.18 there exist h1 ∈ imC(ϑ1), h2 ∈
imC(ϑ2), and 0 6= ν, λ ∈ C such that

f = λl1l2l3l4 + qh1, (3)

f = νl1l2l3l4 + qh2. (4)

Subtracting the two equations, we get

(ν − λ)l1l2l3l4 = q(h1 − h2).

Since q is irreducible, it follows that ν = λ and h1 = h2. Hence, h1 = h2 ∈
imC(ϑ1) ∩ imC(ϑ2) = span(q) and equations (3) and (4) now read

f = λl1l2l3l4 + λ′q2

f = νl1l2l3l4 + ν′q2

for some λ′, ν′ ∈ C. This shows that l1, . . . , l4 are bitangents of f . Moreover, wlog

{l1, l2}, {l3, l4} ∈ S1 and {l1, l3}, {l2, l4} ∈ S2,

which means that S1 and S2 are syzygetic, a contradiction.
Now, we may assume q is reducible. We write q = l1l2 for some l1, l2 ∈ A1. If

any of the forms p1, p2, q1, q2 was divisible by l1 or l2, the form f was as well. Thus
all forms p1, p2, q1, q2 can only share two points with l1 and l2.

Let V(f, l1) = {P1, . . . , P4} and V(f, l2) = {P5, . . . , P8}. Then, wlog we may
assume

V(p1, f) = {P1, P2, P5, P6}, V(p2, f) = {P3, P4, P7, P8}, (5)

V(q1, f) = {P1, P2, P7, P8}, V(q2, f) = {P3, P4, P5, P6}. (6)

Firstly, V(q1) cannot share more than two points with any of the lines V(l1) and
V(l2) due to the reasoning above. However, it may also not share more than two
points with V(pi) (i = 1, 2) since q1 and pi are both tangent to f at these points.
Otherwise, by Bézouts Theorem either q1 ∈ span(pi) which shows dim(imC(ϑ1) +
imC(ϑ2)) ≤ 4 contradicting Proposition 4.15, or q1 and pi are reducible and not
multiples of each other. Again this leads to a contradiction as follows: assume wlog
i = 1, q1 = h1h2 and p1 = h1h3 for some h1, h2, h3 ∈ A1. Then,

f = h1h3p2 + (cq)2,

f = h1h2q2 + (dq)2.

Subtracting the two equations and plugging in q = l1l2, we get

h1(h3p2 − h2q2) = (d2 − c2)l21l
2
2.

From the beginning of the proof we know d2 − c2 6= 0, hence h1 ∈ span(l1) or
h1 ∈ span(l2). In either case, f is reducible, a contradiction. This shows that the
only way to split the points P1, . . . , P8 is the one given in (5) and (6).

Again, we use Theorem 3.2 and find λ1, . . . , λ4 ∈ C such that

p1 = λ1l
2
1 + λ2q1, p2 = λ3l

2
1 + λ4q2.

However, this means

imC(ϑ1) + imC(ϑ2) = span(p1, p2, q1, q2, q) = span(l21, q1, q2, q),

but by Proposition 4.15, this is impossible.
To finish the proof of Theorem 4.14, we note that im(ϑ1)+im(ϑ2) = im(ϑ1 +ϑ2)

since ϑ1, ϑ2 are real psd Gram tensors. Therefore, any tensor λϑ1 + (1 − λ)ϑ2
(λ ∈ [0, 1]) has image im(ϑ1) + im(ϑ2) which has dimension 6. �
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Remark 4.19. We briefly sketch a second possible proof. By slightly adjusting
Proposition 4.15, we can show that dim(im(ϑ1)+im(ϑ2)) = 5 if and only if there are
certain linear relations between bitangents. In [2, Theorem 6.1.9] it is shown how
to construct all bitangents of a smooth quartic by prescribing seven of them. Most
importantly, the coefficients of all other bitangents can be computed by solving
linear systems in the coefficients of the given bitangents.

Solving all linear equations symbolically, we get one polynomial equation in the
given coefficients such that this equation has a solution if and only if dim(im(ϑ1) +
im(ϑ2)) = 5. Using a computer, one can show that there are indeed no solutions
corresponding to smooth quartics.

We note that this does not give any geometric insight but it does give a different
proof.

5. The Gram spectrahedron

5.1. Rank 5 Gram tensors. A general f has a rank 5 extreme point. Con-
sider the sos map φ : R[x]52 → Σ. Let V ⊆ R[x]52 be the (dense) subset of all
tuples (p1, . . . , p5) that are quadratically independent, i.e. such that the Gram
map S2 span(p1, . . . , p5)→ R[x]4 is injective. The fiber of any element in the image
of V has dimension at most 5. We get dimφ(V ) = 5 · 6 −

(
5
2

)
− dimF where F

is the dimension of a generic fiber. We see that we need to have dimF = 5 and
dimφ(V ) = 15 in order for the equation to hold.

Remark 5.1. This is in fact true for the Gram spectrahedron of any smooth psd
ternary quartic.

Proposition 5.2. Let U ⊆ A2 be a subspace of codimension 1. Then codimU2 ∈
{0, 2} if V(U) = ∅ and codimU2 = 3 if V(U) 6= ∅.

Proof. Let span(q) = U⊥ with q ∈ A2. After a change of coordinates q is either x2,
x2 + y2 or x2 + y2 + z2. For all three cases we check the claim immediately. Note
that the rank of q is 1 iff V(U) 6= ∅. �

Remark 5.3. A similar statement holds in any number of variables. If the rank
of the quadratic form q is greater or equal to 3, then codimU2 = 0. If the rank is
2, we also get codimU2 = 2. And the rank being 1 is equivalent to V(U) 6= ∅ and
to codimU2 = n.

Corollary 5.4. Let f ∈ Σ be smooth. Let ϑ ∈ Gram(f) be a rank 5 Gram tensor.
Then the supporting face of ϑ has dimension 0 or 2.

Proof. Let U := im(ϑ) and let F be the supporting face of ϑ. Then

dimF =

(
6

2

)
− dimU2 ∈ {0, 2}.

�

Remark 5.5. The shape of a 2-dimensional face of rank 5 is usually an oval with a
smooth boundary. However, faces may also degenerate and have singularities and
line segments on their boundaries as shown in Fig. 2.

The face on the left-hand side has a smooth and irreducible boundary and rep-
resents a ’general’ face. The face on the right-hand side is also a 2-dimensional face
of rank 5. Hence, interior points have rank 5 and points on the boundary are of
rank 4 or lower. Here, we can find three singular points on the boundary which
are rank 3 extreme points. The rest of the boundary consists of two 1-dimensional
faces of rank 4 and a semi-algebraic set of dimension 1 containing rank 4 extreme
points.



GRAM SPECTRAHEDRA OF TERNARY QUARTICS 15

Figure 2. The face on the left-hand side has a smooth boundary
whereas the face on the right-hand side has three singular points
and two line segments as part of its boundary.

5.2. Rank 4 Gram tensors. We show that for a generic quartic there are no
faces of rank 4 and dimension 1. Those faces only appear on Gram spectrahedra of
quartics that are invariant under some automorphism of C3 of order 2. Moreover,
the dimension of the set of all rank 4 extreme points is 3 for a generic quartic.

We start by considering faces of rank 4 and dimension 1. Since the boundary of
any rank 4 face consists of tensors of rank at most 3, it follows that if the quartic is
smooth, the rank 4 faces can only occur as line segments between the eight rank 3
tensors. Since we know the Steiner graph, there are at most 12 1-dimensional faces
on the Gram spectrahedron.

Definition 5.6. Let f ∈ A4 and C = V(f) ⊆ P2. We denote by Aut(f) (or
Aut(C)) the automorphism group of f (or C) embedded in PGL3(C).

Theorem 5.7. Let f ∈ Σ be a smooth quartic, then the following are equivalent.

(i) The automorphism group of f has even order.
(ii) There exist four different bitangents of f that intersect in a common point.
(iii) After a linear change of coordinates f = (z2−f2)2−4xy(ax+by)(cx+dy)

with f2 ∈ C[x, y]2 and a, b, c, d ∈ C.
(iv) There are three pairwise syzygetic Steiner complexes S1,S2,S3 (and corre-

sponding Gram tensors ϑ1, ϑ2, ϑ3) and four different bitangents l1, . . . , l4
such that
(a) {l1, l2}, {l3, l4} ∈ S1,
(b) {l1, l3}, {l2, l4} ∈ S2,
(c) {l1, l4}, {l2, l3} ∈ S3,

and dim(imC(ϑi) + imC(ϑj)) ≤ 4 for all i, j = 1, 2, 3.

Proof. (i)⇒(ii),(iii): After a linear change of coordinates, the automorphism oper-
ates as (a, b, c) 7→ (a, b,−c) on C3 and therefore no odd powers of z appear in f .
Hence, we can write f as

z4 + z2f2(x, y) + f4(x, y) = (z2 + g2(x, y))2 + g4(x, y)

where fi, gi ∈ C[x, y, z]i for i = 2, 4. Since g4 is a form in 2 variables, it is a product
of four linear forms. By definition, those are bitangents of f and intersect in the
point (0 : 0 : 1).

(ii)⇒(iii): After scaling f , we may assume that f is monic in z. As f is smooth,
the monomial z4 appears in f . Wlog the common intersection point of the bitan-
gents is (0 : 0 : 1), then the four bitangents l1, . . . , l4 lie in C[x, y]1. As four bitan-
gents can only intersect in a common point if they are syzygetic by Lemma 4.10,
there exists a Steiner complex containing the pairs {l1, l2}, {l3, l4}. Hence, there
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exists q ∈ A2, λ ∈ C such that

f = q2 + λl1l2l3l4.

We write q = z2+zf1(x, y)+f2(x, y) for some fi ∈ C[x, y]i (i = 1, 2) and f1 = ax+by
for some a, b ∈ C. Then, the coordinate change z 7→ −a2x−

b
2y+z yields the desired

form in (iii).
(iii)⇒(i): The form g := (z2 − f2)2 − 4xy(ax+ by)(cx+ dy) with a, b, c, d ∈ C is

invariant under the action of the automorphism σ defined by (x, y, z) 7→ (x, y,−z).
Let φ be the automorphism of C3 mapping f to g. Since g is invariant under σ,
the form f is invariant under φ−1σφ.

(ii)⇒(iv): Let l1, l2, l3, l4 be the four bitangents intersecting in a common point,
and let S1,S2,S3 be the Steiner complexes that contain {l1, l2}, {l3, l4} and
{l1, l3}, {l2, l4} and {l1, l4}, {l2, l3} respectively. Let ϑ1, ϑ2, ϑ3 be the corresponding
Gram tensors.

We prove the statement for ϑ1, ϑ2, the other ones work analogously.
Let q ∈ A2 be the quadratic form such that f = q2 + λl1l2l3l4 for some λ ∈ C.

Then, we have imC(ϑ1) = span(l1l2, l3l4, q), imC(ϑ2) = span(l1l3, l2l4, q), and

imC(ϑ1) + imC(ϑ2) = span(l1l2, l3l4, l1l3, l2l4, q).

By assumption, there are non-zero scalars λ1, . . . , λ4 ∈ C such that

l1 = λ1l2 + λ2l3 and l4 = λ3l2 + λ4l3.

This gives

0 = l1l4 − l1l4
= l1(λ3l2 + λ4l3)− l4(λ1l2 + λ2l3)

= −λ1l2l4 − λ2l3l4 + λ3l1l2 + λ4l1l3.

This shows that the products l1l2, l3l4, l1l3, l2l4 are linearly dependent and thus

dim span(l1l2, l3l4, l1l3, l2l4, q) ≤ 4.

(iv)⇒(ii): Again, consider the Steiner complexes S1 and S2, the bitangents, and
the quadratic form q as above. Then, we know

imC(ϑ1) = span(l1l2, l3l4, q) and imC(ϑ2) = span(l1l3, l2l4, q).

By assumption, there exist λ1, . . . , λ5 ∈ C not all zero such that

0 = λ1l1l2 + λ2l3l4 + λ3l1l3 + λ4l2l4 + λ5q.

We claim that λ5 = 0. Assume otherwise, then

q = − 1

λ5
(λ1l1l2 + λ2l3l4 + λ3l1l3 + λ4l2l4).

This gives

f = (
1

λ5
(λ1l1l2 + λ2l3l4 + λ3l1l3 + λ4l2l4))2 + λl1l2l3l4.

But the right-hand side and its derivatives vanish at the intersection point of l1 and
l4 which means that this point is a singular point of f .

Hence, we get the equation

λ1l1l2 + λ3l1l3 = −λ2l3l4 − λ4l2l4,
or equivalently

l1(λ1l2 + λ3l3) = l4(−λ2l3 − λ4l2).

Since any two bitangents are no scalar multiple of each other, there exist 0 6=
ν1, ν2 ∈ C such that

l1 = ν1(−λ2l3 − λ4l2) and l4 = ν2(λ1l2 + λ3l3).



GRAM SPECTRAHEDRA OF TERNARY QUARTICS 17

This means that all four bitangents intersect in a common point, namely V(l2, l3).
�

Remark 5.8. In the situation of Theorem 5.7, assume that f has an automorphism
σ of order 2. Let l1, . . . , l4 be the four bitangents constructed in (ii). We see that
σ fixes the 2-dimensional subspace span(l1, . . . , l4) ⊆ A1. As dimA1 = 3 and σ has
order 2, this defines σ.

Therefore, the four bitangents are uniquely defined by σ. Indeed, Lemma 5.9
shows that there is no other bitangent of f contained in span(l1, . . . , l4) and there-
fore no other bitangent is fixed by σ.

Lemma 5.9. Let f ∈ R[x]4 be a smooth quartic. There can be at most four
bitangents of f intersecting in a common point.

Proof. Assume there are five bitangents l1, . . . , l5 of f intersecting in a common
point. Since no three azygetic bitangents can intersect in a common point by
Lemma 4.10, the bitangents l1, . . . , l4 are syzygetic. Let S1,S2,S3 be the three
syzygetic Steiner complexes containing the bitangents l1, . . . , l4 in the three dif-
ferent ways. Since any two of them only have these four bitangents in common
(Proposition 4.3), the three Steiner complexes contain 3 · 12− 8 = 28 bitangents in
total. Hence, one of them contains l5. Assume this is S1 and {l1, l2}, {l3, l4} ∈ S1.
Then, the three bitangents l1, l3, l5 are azygetic by Lemma 4.9, hence cannot inter-
sect in a common point, especially l1, . . . , l5 do not intersect in a common point. �

Remark 5.10. The semi-algebraic set of all f ∈ R[x]4 such that Aut(f) contains an
element of order 2 has codimension 2 in R[x]4. Especially, a generic form f ∈ R[x]4
does not have an automorphism of order 2.

Corollary 5.11. Let f ∈ Σ be a smooth quartic.

(i) If the Gram spectrahedron of f has a face of dimension 1, then f has an
automorphism of order 2.

(ii) If f has an automorphism of order 2, there are three rank 3 Gram ten-
sors ϑ1, ϑ2, ϑ3 such that dim (imC(ϑi) + imC(ϑj)) ≤ 4 for all i, j = 1, 2, 3.
If two of those three rank 3 Gram tensors are real and psd, the Gram
spectrahedron has a face of dimension 1.

Especially, if f ∈ Σ is chosen generically, its Gram spectrahedron has no faces of
rank 4 and dimension 1.

Proof. (i): If Gram(f) has a face F of dimension 1 and rank 4, the boundary of F
consists of two Gram tensors ϑ1, ϑ2 of rank 3, since f is smooth.

As dim (imϑ1 + imϑ2) = dim im(ϑ1 + ϑ2) = 4, it follows from Theorem 5.7 that
there exists an automorphism of f of order 2.

(ii) immediately follows from Theorem 5.7. �

Next, we give an example of a psd ternary quartic with an automorphism of
order 2 such that there is no 1-dimensional face on Gram(f).

Remark 5.12. Consider the following family of quartics

fα,β = (z2 + αx2 + βy2)2 +

4∏
j=1

(jx+ y)

and α, β ∈ R. Then f := fα,β is psd and smooth if α, β are chosen large enough
and generic. Moreover, since α, β are chosen generically, this quartic has an auto-
morphism group isomorphic to C2 by [2, Theorem 6.5.2.].

The lines V(jx+ y) (j = 1, . . . , 4) are bitangents of f and intersect in a common
point. Let S1,S2,S3 be the three syzygetic Steiner complexes that contain these four
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bitangents as in Theorem 5.7. Let ϑ1, ϑ2, ϑ3 be the corresponding Gram tensors.
It follows from Theorem 5.7 that dim(imC(ϑi) + imC(ϑj)) ≤ 4 for all i, j = 1, 2, 3.

However, since all four of these bitangents are real, it follows from [9, Propo-
sition 6.6.] that the Gram tensors ϑ1, ϑ2, ϑ3 are not real psd. Especially, this
automorphism of order 2 does not give rise to a face of dimension 1 on the Gram
spectrahedron.

In fact, there is no 1-dimensional face on Gram(f) at all. Assume there are
another four bitangents l1, . . . , l4 intersecting in a common point. By Lemma 5.9
they intersect in a different point. From Remark 5.8 we know that the non-trivial
automorphism fixes the 2-dimensional subspace of C[x, y, z]1 spanned by the four
bitangents. This shows that the automorphism cannot fix the first 4 bitangents
because then it would fix the whole space. Hence, there are two different automor-
phisms of order 2, contradicting the fact that Aut(f) ∼= C2.

This shows that although four bitangents are intersecting in a common point,
there is no 1-dimensional face on the Gram spectrahedron.

We have already seen that 1-dimensional faces can only appear as line segments
between two rank 3 tensors. However, not all faces represented in the Steiner graph
of a smooth quartic can be of rank 4 at the same time.

Proposition 5.13. Let f ∈ Σ be smooth. There can be at most six 1-dimensional
faces on Gram(f).

Proof. Let S1, S2 be two syzygetic Steiner complexes that appear in the Steiner
graph. As they are syzygetic, they contain four common bitangents as in Proposi-
tion 4.3. If the edge in the Steiner graph connecting the two corresponds to a face
of dimension 1 on Gram(f), these four bitangents intersect in a common point.

Looking at the Steiner graph, we see that in every case such a 4-tuple of bitan-
gents contains two bitangents b1j , b2i with {i, j} ∈ {{3, 4}, {5, 6}, {7, 8}}. Moreover,
every of the six edges in one K4 corresponds to a different choice of {i, j}, namely

b13, b24, b14, b23, b15, b26, b16, b25, b17, b28, b18, b27,

and these are all possibilities.
Assume there are seven or more 1-dimensional faces. Then there exist two

1-dimensional faces corresponding to the 4-tuples of bitangents b1j , b2i, l1, l2 and
b1j , b2i, l3, l4 each intersecting in a common point for some {i, j} ∈ {{3, 4}, {5, 6},
{7, 8}} and some bitangents l1, . . . , l4. However, as b1j , b2i are contained in both
4-tuples, all bitangents b1j , b2i, l1, l2, l3, l4 intersect in a common point which is not
possible by Lemma 5.9. Note that l1, l2 and l3, l4 cannot be the same bitangents as
they correspond to different edges in the Steiner graph. �

Remark 5.14. It is not clear if there exists a smooth quartic such that Gram(f)
contains six 1-dimensional faces. Even on the Gram spectrahedron of the Fermat
quartic x4 + y4 + z4, which has a large automorphism group, there are only three
1-dimensional faces.

This also has implications for rank 5 faces.

Corollary 5.15. For every smooth f ∈ Σ, the Gram spectrahedron Gram(f) has
a face of rank 5 and dimension 2.

Proof. At most 6 faces in the Steiner graph have rank 4 by Proposition 5.13. There-
fore, the other faces have rank 5 and dimension 2. �

Proposition 5.16. Let f ∈ Σ be a smooth quartic. Then the Gram spectrahedron
Gram(f) has an extreme point of rank 4.
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Proof. By Proposition 5.13 there are at most six one-dimensional faces. Let F be
any 2-dimensional face in the Steiner graph, say between vertices ϑ1 and ϑ2. If F
is not a polytope, there exists a 1-dimensional semi-algebraic set of rank 4 extreme
points on the boundary of F . Assume F is a polytope, then F is bounded by four
1-dimensional faces. (Note that three are not enough as the line segment connecting
ϑ1 and ϑ2 has to be in the interior of F .)

However, now in the second K4 of the Steiner graph there are at most two 1-
dimensional faces. Especially any 2-dimensional face in that K4 is not a polytope.

�

Remark 5.17. It is true more generally that there are no polyhedral faces of
dimension 2 or higher on Gram spectrahedra of (not necessarily smooth) ternary
quartics.

Remark 5.18. By generalizing [15, Corollary 5.4.] we can also calculate the di-
mension of all rank strata: We see that for all f in an open, dense, semi-algebraic
subset of Σ, the semi-algebraic set of all rank 4 extreme points of Gram(f) has
dimension 3, and the set of rank 5 extreme points is dense in the boundary of
Gram(f) and has dimension 5. Moreover, the set of all rank 5 points contained in
the relative interior of a face of dimension 2 forms a semi-algebraic set of dimension
4.

Summarizing, we have the following table for f ∈ int Σ. The first column gives
all possible ranks of Gram tensors of f . The second one contains all possible dimen-
sion of the supporting face of a Gram tensor such rank. The third column gives the
dimension of the semi-algebraic set of all rank r tensors lying in the interior of a face
of dimension s, and the last one tells us for which ternary quartics such faces appear.

rank dimension of face dimension of semi-algebraic set appearance
3 0 0 every smooth f
4 0 3 (generic f) every smooth f
4 1 1 only if 2|# Aut(f)
5 0 5 (generic f) every smooth f
5 2 4 (generic f) every smooth f

Example 5.19. We consider the Fermat quartic f = x4 + y4 + z4. The automor-
phism group of f has order 96 and can be found in [2, Theorem 6.5.2.]. We therefore
should expect to find several 1-dimensional faces on Gram(f). This is true, and we
can even visualize a 3-dimensional slice of Gram(f) where we can see one of the
two K4 in the Steiner graph as well as the 2-dimensional faces (see Fig. 3).

We consider the 3-dimensional affine slice of Gram(f) spanned by the four rank
3 Gram tensors in one K4 of the Steiner graph of f . More precisely, it is the K4

containing the Gram tensor corresponding to the sos representation f = (x2)2 +
(y2)2 + (z2)2. In Fig. 3 we see the algebraic boundary of this affine slice. It is given
by the determinant of the matrix pencil

G(λ1, λ2, λ3) = ϑ0 + λ1(ϑ1 − ϑ0) + λ2(ϑ2 − ϑ0) + λ3(ϑ3 − ϑ0)

where

ϑ0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , ϑ1 =


1 −1 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,
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ϑ2 =


1 0 −1 0 0 0
0 1 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0

 , ϑ3 =


1 0 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2

 .

The part that is contained in Gram(f) is the inner convex part of the red orthant,
or more precisely, the (closure of the) connected component of the complement of

the algebraic boundary containing the tensor 1
4

∑3
i=0 ϑi. The Gram tensor ϑ0

corresponding to the representation f = (x2)2 + (y2)2 + (z2)2 is the intersection
point of the three hyperplanes and lies in the middle of this figure. The other
three rank 3 psd tensors in the same K4 in the Steiner graph are ϑ1, ϑ2, ϑ3. All
of them are connected to ϑ0 via a rank 4 and dimension 1 face which is the line
segment contained in the intersection of two of the hyperplanes. All other line
segments connecting two rank 3 tensors are contained in a 2-dimensional face, each
contained in one of the three hyperplanes.

Contrary to what we might expect at first, due to the size of the automorphism
group, the other K4 in the Steiner graph of f does not contain any 1-dimensional
faces at all.

ϑ2

ϑ3

ϑ0
ϑ1

Figure 3. The algebraic boundary of the Gram spectrahedron of
the Fermat quartic intersected with the 3-dimensional affine space
spanned by the four rank 3 psd Gram tensors ϑ0, . . . , ϑ3.
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