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Abstract

Polynomial system solving arises in many application areas to model non-linear geometric properties.

In such settings, polynomial systems may come with degeneration which the end-user wants to exclude

from the solution set. The nondegenerate locus of a polynomial system is the set of points where the

codimension of the solution set matches the number of equations.

Computing the nondegenerate locus is classically done through ideal-theoretic operations in commu-

tative algebra such as saturation ideals or equidimensional decompositions to extract the component of

maximal codimension.

By exploiting the algebraic features of signature-based Gröbner basis algorithms we design an algo-

rithm which computes a Gröbner basis of the equations describing the closure of the nondegenerate locus

of a polynomial system, without computing first a Gröbner basis for the whole polynomial system.

1 Introduction

Problem Statement Fix a field K with an algebraic closure K and a polynomial ring R := K[x1, . . . , xn]
over K. Let f1, . . . , fc ∈ R and V :=

{
p ∈ K

n ∣
∣ f1(p) = · · · = fc(p) = 0

}
. Further define the ideal

I := 〈f1, . . . , fc〉 = {
∑c

i=1 qifi | qi ∈ R}. The algebraic set V is a finite union of irreducible components. By
the Principal Ideal Theorem [21, Theorem 10.2] the codimension of the K-irreducible components of V is at
most c. Let Vc denote the union of the components of V of codimension exactly c. In particular Vc = ∅

when c > n.
The goal of this paper is to compute a Gröbner basis of an ideal whose zero set is Vc, which we call the

nondegenerate locus of the system f1, . . . , fc (note that we may not compute a radical ideal).
Prior works and scientific locks. State-of-the-art algorithms to compute the nondegenerate locus of

f1, . . . , fc rely on the more general problem of computing the equidimensional decomposition of the ideal
that they generate. There is a vast body of literature split along what data structure is used for the output
into two research lines.

The first family of algorithms computes a Gröbner basis of the ideal of each component. There are two
different approaches in this line. The first uses projections, computed with elimination orderings, to reduce
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the problem to a problem for hypersurfaces [7; 26; 34]. The second relies on homological characterizations
of the dimension and the computation of free resolutions [22]. See [14; 30; 43] and references therein for
further references. Both approaches use Gröbner basis algorithms as a black box for performing various
ideal-theoretic operations, in particular ideal quotients (also known as colon ideals).

A second family of algorithms outputs equidimensional components of I or its radical through lazy
representations, i.e. as complete intersections over a non-empty Zariski open set. This is the case for the
so-called regular chains which go back to Wu-Ritt characteristic sets [46].

These put into practice a kind of D5 principle [17] to split geometric objects by enforcing an equipro-
jectability property. See [1; 11; 31; 37; 44; 45] and references therein for further references. When the base
field K has characteristic 0 (or large enough characteristic), geometric resolution algorithms [27] can also
be used. These culminate with the incremental algorithm in [35; 36] which avoids equiprojectability issues
by performing a linear change of variables to ensure Noether position properties. One feature is that input
polynomials are encoded with straight-line programs to take advantage of evaluation properties. See also [33]
for a similar approach. It also gives the best known complexity for equidimensional decomposition: linear in
the evaluation complexity of the input system and polynomial in some algebraic degree.

As of software, the computer algebra systems Singular [16], Macaulay2 [29] and Magma [5] implement the
algorithm of [22] to perform equidimensional decomposition. Maple implements algorithms for computing
regular chains [8; 9; 12; 13; 38] and algorithms based on Gröbner bases. The algorithm by Gianni et al. [26]
is used for prime decomposition and, combined with techniques from [2], for equidimensional decomposition.
All these implementations use Gröbner basis algorithms as a black box.

Main results By contrast with previous work, we only focus on computing the nondegenerate locus of a
system, not the full equidimensional decomposition of the corresponding ideal. The main difference to other
Gröbner basis based techniques to compute equidimensional decompositions is that we enlarge I while a
Gröbner basis for I is computed and return a Gröbner basis of a nondegenerate locus of I when this Gröbner
basis computation is finished. Modifying or splitting the ideal in question in the middle of Gröbner basis
algorithms is a natural and appealing idea [e.g. 28].

This idea requires one to answer (i) when the ideal in question should be enlarged and (ii) how to
minimize the cost of enlarging the ideal in question. The algorithm we propose tackles both issues.

We tackle problem (i) by following the incremental structure of the sGB algorithms on which our work is
based [24; 25]. We describe this sGB algorithm in section 3. Incremental means here that these algorithms
proceed by computing first a Gröbner basis for 〈f1, f2〉 then use the result to compute a Gröbner basis
for 〈f1, f2, f3〉 and so on. In addition, sGB algorithms keep track of an auxiliary data structure, called a
signature, which is attached to each considered polynomial. This enables one to exclude certain polynomials
from the set of polynomials to be processed by reduction in Buchberger’s algorithm.

As a consequence they have the feature that, having computed a Gröbner basis for Ii−1 := 〈f1, . . . , fi−1〉,
a reduction to zero happens in the Gröbner basis computation for Ii if any only if fi is a zero divisor
modulo Ii−1. In this case Vi−1 := V (Ii−1) has irreducible components on which fi is identically zero (the
union of which is henceforth denoted Vi−1,fi=0) and components which are not contained in the hypersurface
V (fi) (the union of which is henceforth denoted Vi−1,fi 6=0). Assuming that V (Ii−1) is equidimensional of
codimension i− 1, to compute an ideal representing the nondegenerate locus of V (Ii) we may then proceed
as follows (see Algorithm 1):

1. Compute ideals representing Vi−1,fi=0 and Vi−1,fi 6=0 (via the ideal-theoretic operation of saturation).

2. Compute an ideal representing W := Vi−1,fi 6=0 ∩ V (fi).

3. Remove from W all components contained in Vi−1,fi=0 (again via saturation).
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Iterating over the set of input equations with these three steps, using the result of each iterative step
as input for the next invocation of this loop and slightly adapting the third step to remove all components
which are contained in components of higher dimension then yields an ideal representing the nondegenerate
locus of I. We describe this algorithm from a purely algebraic perspective in section 2.

To tackle problem (ii) we exploit a feature of the incremental sGB algorithms first captured in the G2V
algorithm [25]: The data of a signature can be enlarged so as to simultaneously compute a Gröbner basis
for Ii and the quotient ideal (Ii−1 : fi) := {g ∈ R | gfi ∈ Ii−1} (which, if Ii−1 is a radical ideal, corresponds
precisely to V (Ii−1,fi 6=0)) in each incremental step.

Using this idea we modify the baseline sGB algorithm we use to simultaneously perform steps 1 and
2 of the above loop (i.e. in a single Gröbner basis computation). This is done essentially by immediately
inserting an element g ∈ (Ii−1 : fi) once it is identified during the run of the sGB algorithm. We manage
this insertion of elements that do not lie in the original ideal I with a data structure we call an sGB tree (see
section 3.3) which allows us to perform this modification with the needed technical properties of signatures
ensured. This yields a signature-based version of Algorithm 1, Algorithm 8. Besides managing the insertion
of new generators into some initial ideal, the sGB data structure also leaves open the future possibility of
designing signature-based ideal decomposition algorithms.

We finally show experimentally in section 5.2 that the consequence of this simple modification is a
massive cost reduction in the overhead compared to a “naive” implementation of Algorithm 1 where one
uses saturation procedures as a blackbox. As is also shown, it additionally enables us to compute the
nondegenerate locus of systems which are out of the reach of equidimensional decomposition algorithms
available in state of the art computer algebra systems.

2 The basic algorithm

Consider a codimension k irreducible variety X ⊆ K
n

and a polynomial f ∈ R. Either X ⊆ V (f), and
so X∩V (f) = X , or X∩V (f) is equidimensional of codimension k+1 (that is, all the irreducible components
of X ∩ V (f) have codimension k + 1). If X is not irreducible, then X ∩ V (f) may not be equidimensional.
Yet, the alternative above applies to each irreducible component of X . The components of X which are not
included in V (f) are exactly the components of the closure of X \ V (f), while the components of X which
included in V (f) are exacly the components of the closure of X \(X \ V (f)). This leads to the decomposition
of X ∩ V (f) as the union of two equidimensional varieties of codimension k and k + 1 respectively:

X =
(

X \X \ V (f)
)

∪
(

X \ V (f) ∩ V (f)
)

.

This is the basic identity that we leverage to compute, incrementally, the codimension c components of an
ideal 〈f1, . . . , fc〉. In an ideal theoretic language, this reformulates as follows.

For two ideals I, J ⊆ R, we write I
rad
= J for the equality of the radicals

√
I =

√
J . An ideal I is

equidimensional if all the irreducible components of V (I) have the same dimension. Recall that I : J is
the ideal {p ∈ R | pJ ⊆ I}. Recall also that I : Jk yields an increasing sequence of ideals as k → ∞, so
it eventually stabilizes in an ideal denoted I : J∞, the saturation of I by J . If J is generated by a single
element f , it is simply denoted I : f∞.

Lemma 2.1. For any ideal J ⊆ R and any f ∈ R we have

J + 〈f〉rad=
(
(J : f∞) + 〈f〉

)
∩
(
J : (J : f∞)

)

Moreover, if J is equidimensional of codimension c < n and if f /∈
√
J then ((J : f∞) + 〈f〉) is equidimen-

sional of codimension c+ 1 and (J : (J : f∞)) is equidimensional of codimension c.
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Algorithm 1 Computation of the nondegenerate locus

Input: A set of generators f1, . . . , fc for an ideal I in R where c ≤ n
Output: A set of generators G for the nondegenerate part of f1, . . . , fc
1: J ← 0, as an ideal of R
2: K ← ∅

3: for k ∈ {1, . . . , c} do

4: H ← J : f∞
k

5: K ← K ∪ {J : H}
6: J ← H + 〈fk〉
7: for K ∈ K do

8: J ← J : K∞

9: end for

10: end for

11: return J

Proof. For the left-to-right inclusion, it is clear that J is included in the right-hand side, so it remains to
check that f is in the radical of both terms of the intersection. It is obvious that f ∈ (J : f∞) + 〈f〉, so it
remains to prove that f is in the radical of J : (J : f∞). So let g ∈ J : f∞, that is gf ℓ ∈ J for some ℓ ≥ 0,
which we may rewrite as f ∈ √J : g. To conclude, we observe that

√

J : (J : f∞) =
⋂

g∈J:f∞

√

J : g,

so f ∈
√

J : (J : f∞).
Conversely, let p ∈ ((J : f∞) + 〈f〉) ∩ (J : (J : f∞)). Write p = q + af where q ∈ (J : f∞) and a ∈ R.

Since p ∈ (J : (J : f∞)), we have pq ∈ J . But pq = q2 + aqf , so q2 ∈ J + 〈f〉. It follows that q ∈
√

J + 〈f〉,
thus proving the stated equality.

For the statement on equidimensionality, we may rely on the geometric interpretation above: the zero
set of J : f∞ + 〈f〉 is X \ V (f) ∩ V (f), where X = V (J). The equidimensionality of J : (J : f∞) is slightly
more technical because the geometric interpretation only gives information on J : (J : f∞)∞. Yet, both are
equal up to radical: V (J : (J : f∞)) is the union of the component of V (J) that are included in V (f) [32,
Proposition 23].

We are now ready to describe Algorithm 1. To do this we suppose for now that we have an algorithm for
computing the quotient ideal J : K and the saturation J : K∞, given generators for J and K. Given c ≤ n
elements f1, . . . , fc ∈ R the core loop of Algorithm 1 starts with the ideal J = 〈f1〉 and to continously replace
it with (J : f∞

k )+ fk for each k. By Lemma 2.1 the resulting ideal will be equidimensional of codimension c.
Note however that it may have components that the original ideal I = 〈f1, . . . , fc〉 does not have, as shown
by the following example. In the algorithm, these additional components are removed with saturations at
every iterative step with the loop on line 7.

Example 2.2. Let R = k[x, y, z] and f1 = xy, f2 = xz. Then (xy : xz∞) + xz = 〈y, xz〉 which has the
component 〈y, x〉 which is not a component of 〈f1, f2〉 = 〈x〉 ∩ 〈y, z〉.

To prove the correctness of Algorithm 1 we also need the following proposition:

Lemma 2.3. For any ideals I, J ⊆ R and any f ∈ R, we have

(i) (I ∩ J) + 〈f〉rad= (I + 〈f〉) ∩ (J + 〈f〉);

4



(ii) I ∩ J
rad
= (I : J∞) ∩ J ;

(iii) if f ∈ I, then I : J∞ = I : (J + 〈f〉)∞.

Proof. For the first item,

(I + 〈f〉) ∩ (J + 〈f〉)rad= (I + 〈f〉)(J + 〈f〉)rad= IJ + 〈f〉rad= (I ∩ J) + 〈f〉.

For the second one, the left-to-right inclusion is clear. Conversely, let f ∈ (I : J∞) ∩ J and let k > 0 such
that fJk ∈ I. In particular fk+1 ∈ I. So f ∈

√
I.

For the last item is trivial from the definition of saturation.

Theorem 2.4. On input f1, . . . , fc ∈ R with c ≤ n, Algorithm 1 terminates and outputs an ideal J such
that V (J) is the nondegenerate locus of the input system.

Proof. We define J0 := 〈0〉, and then, by induction on i,

Ki := (Ji−1 : (Ji−1 : f∞
i )),

and Ji :=

(

(Ji−1 : f∞
i ) + 〈fi〉 :

(∏i
j=1 Kj

)∞
)

.

It is clear that Algorithm 1 returns the ideal Jc. Now, let Ii = 〈f1, . . . , fi〉. The main loop invariant, that
we prove by induction on i, is

Ii
rad
= Ji ∩

i⋂

j=1

(Kj + 〈fj+1, . . . , fi〉) . (1)

From this, we deduce that the zero set of Jc is contained in the algebraic set defined by f1 = · · · = fc =
0. We will prove later that Jc is equidimensional of codimension c, that the components of the ideals
(Kj + 〈fj+1, . . . , fc〉) have codimension less than c and do not contain any components of Jc.

It is trivially true that (1) holds for i = 0. For i > 0, we have

Ii = Ii−1 + 〈fi〉 = Ji−1 ∩
i−1⋂

j=1

(Kj + 〈fj+1, . . . , fi−1〉) + 〈fi〉

rad
= (Ji−1 + 〈fi〉) ∩

i−1⋂

j=1

(Kj + 〈fj+1, . . . , fi〉) , by Lemma 2.3(i).

Besides, by Lemma 2.1,

Ji−1 + 〈fi〉rad= ((Ji−1 : f∞
i ) + 〈fi〉) ∩ (Ji−1 : (Ji−1 : f∞

i ))

= ((Ji−1 : f∞
i ) + 〈fi〉) ∩Ki.

For short, let J ′
i = (Ji−1 : f∞

i ) + 〈fi〉. Combining the equalities above, we have

Ii
rad
= J ′

i ∩
i⋂

j=1

(Kj + 〈fj+1, . . . , fi〉)

rad
=

(

J ′
i :

(∏i

j=1 Ki

)∞
)

∩
i⋂

j=1

(Kj + 〈fj+1, . . . , fi〉) ,
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using Lemma 2.3(ii) and (iii) (note that f1, . . . , fi ∈ Hi). This last equality is exactly (1).
Now, we analyze the dimensions and show that V (Ji) is exactly the nondegenerate locus of f1, . . . , fi.

Indeed, using Lemma 2.1, we check by induction on i that Ji is equidimensional of codimension i (unless Ji =
〈1〉) and that Ki is equidimensional of codimension i−1 (unless Ki = 〈1〉). It follows that all the components
of Kj + 〈fj+1, . . . , fi〉 have codimension at most i− 1. Moreover, no component of Ji is included in any Kj,
for j ≤ i, since Ji is saturated by the Kj . Therefore, using (1), the codimension i components of Ii are
exactly the components of Ji.

Hence, we deduce that Jc is equidimensional of codimension c whose components are not contained in
the ones of Kj + 〈fj+1, . . . , fc〉, the components of which have codimention less than c. Besides, we already
observed that its zero set is contained in the one defined by the input polynomials f1, . . . , fc. Since (1) holds,
we conclude that V (Jc) is the nondegenerate locus of the input system.

3 Signature-based Gröbner basis computations

We will rely on the theory of signature-based Gröbner bases in order to implement efficiently Algorithm 1.

3.1 Signatures and extended sig-poly pairs

We fix in the following a monomial order on R and a sequence of polynomials f1, . . . , fr ∈ R. Let I :=
〈f1, . . . , fr〉 and Ii := 〈f1, . . . , fi〉. We describe an algorithm which computes simultenously a Gröbner basis
for I and presents the following features:

1. It computes a Gröbner basis for I incrementally, i.e. first for 〈f1〉 then for 〈f1, f2〉 etc.

2. It simultaneously computes Gröbner bases for each ideal (〈f1, . . . , fi−1〉 : fi), i = 2, . . . , r.

This algorithm belongs to the class of so called signature based Gröbner basis algorithms, the first of which
was the F5 algorithm presented in [24]. Since then the class of signature-based algorithms has been greatly
extended, see [18] for a survey. The idea of leveraging signature-based algorithms to compute simultane-
ously some colon ideals first appeared in [25]. The algorithm we present here is closely related, with some
elements from the F5 algorithm. The algorithm presented in this section is fully encompassed by the general
algorithmic framework presented in [18].

We start by defining signatures.

Definition 3.1. A signature is a pair σ = (i,m) of an index in {1, . . . , r} and a monomial in R. The first
component is called the index, and denoted ind(σ). The second component is called the monomial part of σ.

We order the signatures lexicographically, i.e. by writing

(i,m) < (j, n)⇔ i < j or i = j and m < n.

The product of a monomial a ∈ R and a signature σ = (i, h) is defined by aσ = (i, ah). A signature σ
divides another signature τ if there is a monomial a such that aσ = τ , so in particular ind(σ) = ind(τ).

The possible indices of a signature are the indices of the input equations. This relation between the index
of a signature and one of the equations fi is made stronger by the following object:

Definition 3.2. An extended sig-poly pair is a triple α = (f, σ, h), where f, h ∈ R and σ is a signature such
that lm(h) is equal to the monomial part of σ. The first component f is called the polynomial part of α,
denoted poly(α), the second component σ is called the signature, denoted s(α), and the third component is
called the quotient, denoted quo(α). The index of α, denoted ind(α) is the index of its signature. We further
impose that

poly(α) − quo(α)find(α) ∈ Iind(α)−1. (2)
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Algorithm 2 Regular reduction

1: procedure RegularReduction(α, G)
2: f ← poly(α)
3: h← quo(α)
4: while {β ∈ G | lm(poly(β)) divides lm(f)} 6= ∅ do

5: β ← some element of {β ∈ G | lm(poly(β)) divides lm(f)}
6: b← lt(poly(β))/ lt(f)
7: if bs(β) < s(α) then

8: f ← f − b poly(β)
9: if ind(β) = ind(α) then

10: h← h− b quo(β)
11: end if

12: end if

13: end while

14: return (f, s(α), h)
15: end procedure

The product of a monomial a ∈ R and an extended sig-poly pair γ is defined by

poly(aα) = a poly(α), s(aα) = as(α), and quo(aα) = a quo(α).

The concept of an S-pair from Buchberger’s algorithm extends to extended sig-poly pairs. Given two
extended sig-poly pairs α and β with s(α) > s(β) let c = lcm(lm(poly(α)), lm(poly(β))), a = c/ lt(poly(α))
and b = c/ lt(poly(β)), then define the S-pair of α and β, denoted sp(α, β) by

poly(sp(α, β)) = a poly(α) − b poly(β), s(sp(α, β)) = max(s(aα), s(bβ)),

and

quo(sp(α, β)) =

{

a quo(α) if ind(α) > ind(β),

a quo(α) − b quo(β) if ind(α) = ind(β).

In particular, the polynomial part of sp(α, β) is the usual S-pair of poly(α) and poly(β). We say that α
and β form a regular S-pair if s(aα) 6= s(bβ). (We will only consider such S-pairs.) It is easy to check that
Invariant (2) is preserved.

The regular reduction of an extended sig-poly pair α with respect to a set G of sig-poly pairs is defined
to be the output of Algorithm 2. The procedure tries to reduce the leading term of poly(α) using some
multiple bβ of an extended sig-poly pair β ∈ G such that bs(β) < s(α). The procedure stops when there
is no such reducer. Compared to the usual division algorithm in polynomial rings, only reduction by lower
signature elements is allowed. Moreover, there is some extra computations to preserve Invariant (2).

We may now describe a variant of Buchberger’s using extended sig-poly pairs and regular reduction, see
Algorithm 3. In line 6 we always choose the S-pair with minimal signature for reduction, and signatures are
ordered first by indices. As a result, signatures are processed in index 1 (which may produce further S-pairs
with index ≥ 1), then in index 2 (which may produce further S-pairs with index ≥ 2), etc. So a Gröbner basis
for I is computed incrementally: first for 〈f1〉, then for 〈f1, f2〉 etc. Computing with extended sig-poly pairs
makes it possible to simultaneously compute a Gröbner basis for I and for all the ideals (〈f1, . . . , fi−1〉 : fi)
for i = 2, . . . , r. Indeed, if for an extended sig-poly pair γ we find during the run of Algorithm 3 that
poly(γ) = 0, then quo(γ) is an element of the quotient ideal Iind(γ)−1 : find(γ), in view of Definition 3.2.

7



Algorithm 3 Buchberger with signatures

Input: f1, . . . , fr ∈ R
Output: Gröbner bases of 〈f1, . . . , fr〉 and of 〈f1, . . . , fk−1〉 : fk (1 ≤ k ≤ r)
1: procedure Buchberger(f1, . . . , fr)
2: G← {ǫi | 1 ≤ i ≤ r}
3: S1, . . . , Sr ← ∅

4: P ← {(α, β) | α, β ∈ G form a regular S-pair}
5: while P 6= ∅ do

6: (α, β)← the pair in P with s(sp(α, β)) minimal
7: P ← P \ {(α, β)}
8: γ ← RegularReduction(sp(α, β), G)
9: G← G ∪ {γ}

10: if poly(γ) 6= 0 then

11: P ← P ∪ {(γ, β) | β ∈ G forms a regular S-pair with γ}
12: else (record the quotient of the zero reduction)
13: Sind(γ) ← Sind(γ) ∪ {quo(γ)}
14: end if

15: end while

16: return {poly(β) | β ∈ G}, S1, . . . , Sr

17: end procedure

Proposition 3.3. On input f1, . . . , fr ∈ R, Algorithm 3 terminates and the set {poly(α) | α ∈ G} is a
Gröbner basis of the ideal 〈f1, . . . , fr〉. The sets Si are Gröbner bases of the ideals 〈f1, . . . , fi−1〉 : fi for each
i = 2, . . . , r.

We skip the proof as we will only rely on the stronger Theorem 3.5 below.

3.2 From Buchberger to sGB

The signature and the quotient of each extended sig-poly pair in the data makes it possible to compute
the colon ideals 〈f1, . . . , fi−1〉 : fi as a by-product of an incremental computation of a Gröbner basis
of 〈f1, . . . , fr〉. Moreover, this is the discovery of Faugère [24], signatures make it possible to discard many
S-pairs while preserving the essential properties of Algorithm 3. The overarching principle is the following:
at most one sig-poly pair has to be regular-reduced at each signature. This is made precise by the following
statement.

Lemma 3.4 ([20, Lemma 4]). In the course of Algorithm 3, assume that only S-pairs in signature ≥ σ :=
(i,m) are left in P . Then for any extended sig-poly pairs γ and γ′ with s(γ) = s(γ′) = σ,

RegularReduction(γ,G) = RegularReduction(γ′, G)

This leads to Algorithm 5. It is similar to Algorithm 3, the only difference is the check on line 9, the
rewritability check, which trim many computations. At a given signature, this check will retain at most one
element of P . The condition on line 7 discards even more S-pairs by predicting that they will reduce to zero.

More precisely, in the context of Lemma 3.4, we can predict that all S-pairs with signature γ will reduce to
the same element. The first effect of the rewritability check is the discarding of all S-pairs with signature σ,
except at most one. Secondly, Lemma 3.4 may be used to predict that a S-pair will reduce to zero. There
are two criteria for that:

8



Algorithm 4 The rewritability criterion

Input: α a sig-poly pair, m a monomial, G a set of sig-poly pairs with α ∈ G
Output: Returns true if mα is rewritable w.r.t. G; false otherwise
1: procedure Rewritable(α, m, G)
2: for δ ∈ G do

3: if s(δ) divides s(mα) and δ was added to G later than α then

4: return true (Singular criterion)
5: else if s(δ) divides s(mα) and poly(δ) = 0 then

6: return true (Syzygy criterion)
7: else if ind(δ) < ind(α) and lm(poly(δ)) divides lm(quo(α)) then

8: return true (Koszul criterion)
9: end if

10: end for

11: return false
12: end procedure

Algorithm 5 sGB with recording of syzygies

Input: f1, . . . , fr ∈ R
Output: See Theorem 3.5
1: procedure sGB(f1, . . . , fr)
2: G← {(fi, (i, 1), 1) | 1 ≤ i ≤ r}
3: S1, . . . , Sr ← ∅

4: P ← {(α, β) | α, β ∈ G form a regular S-pair}
5: while P 6= ∅ do

6: (α, β)← the element in P with minimal signature
7: P ← P \ {(α, β)}
8: a, b← the monomials such that a poly(α)− b poly(β) = poly(sp(α, β))
9: if not Rewritable(α, a, G) and not Rewritable(β, b, G) then

10: γ ← RegularReduction(sp(α, β), G)
11: G← G ∪ {γ}
12: if poly(γ) 6= 0 then

13: P ← P ∪ {(γ, β) | β ∈ G forms a regular S-pair with γ}
14: else (record the quotient of the zero reduction)
15: Sind(γ) ← Sind(γ) ∪ {quo(γ)}
16: end if

17: end if

18: end while

19: return {poly(β) | β ∈ G}, S1, . . . , Sr

20: end procedure
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Syzygy criterion If an element in signature τ has reduced to zero, then every element in signature aτ (for
any monomial a) will reduce to zero;

Koszul criterion If we have a sig-poly pair h with index < ind(σ) and, then every element in signa-
ture (a lmh, ind(σ)) will reduce to zero, (because hfind(σ) will obviously reduce to zero).

This explains the different checks in the rewritability criterion (Algorithm 3.2), see [18, section 7.1] for a
detailed discussion.

Theorem 3.5. On input f1, . . . , fr ∈ R, Algorithm 5 terminates and outputs subsets G, S1, . . . , Sr of R
such that:

(i) G is a Gröbner basis of 〈f1, . . . , fr〉;

(ii) Ii−1 + 〈Si〉 = Ii−1 : fi.

Moreover, on line 15, when a polynomial g is inserted in some Si, then lm(g) is not divided by the leading
monomial of any element of Ii−1 or any element previously inserted in Si.

Proof. Termination and the first two points are a special case of [18, Theorem 7.1], where we only compute
partial information about the syzygy module.

The last point is a consequence from the rewritability check. We first note that every time a polynomial h
is inserted into Si, the extended sig-poly pair (0, (i, lmh), h) has been inserted into G just before. (The
monomial part of the signature is always the leading monomial of the quotient, this is an invariant of sig-
poly pairs.) Next, in the context of line 15, if g = quo(γ), then s(γ) = (ind(γ), lm(g)). Moreover, γ comes
from a S-pair sp(α, β), so s(γ) = as(α) or bs(β), and both Rewritable(α, a, G) and Rewritable(β, b, G)
were false.

The Syzygy criterion implies that s(γ) is not divided by any s(δ), where δ ∈ G and poly(δ) = 0. In other
words, lm(g) is not divided by any lm h, where h has been previously inserted into Si.

The Koszul criterion implies that lm(g) is not divided by any lm(poly(δ)), where δ ∈ G and ind(δ) < i.
But due to the incremental nature of the algorithm, the set {poly(δ) | δ ∈ G, ind(δ) < i} is a Gröbner basis
of Ii−1. So lm(g) is not divided by any element in Ii−1.

3.3 The sGB tree datastructure

3.3.1 Specification

We now specify a data structure, called sGB tree. It is meant to extend the sGB algorithm presented above
in two ways: by offering the possibility to add new input equations during the computation; and by offering
the possibility to split the computation into different branches while sharing the common base.

An sGB tree represents a rooted tree T where each node holds an element of the polynomial ring R. The
nodes are partially ordered by the ancestor-descendant relation: ν ≤T µ if ν is on the unique path from µ
to the root of T (or, equivalently, if µ is in the subtree rooted at ν). For a node ν, the polynomial contained
in ν is denoted poly(ν), and the ideal generated by the polynomials contained by the ancestors of ν (not
including ν) is denoted I<ν . An sGB tree offers the following three operations. How we implement them is
the matter of the next section.

Node insertion Insert a new node, containing a given polynomial f , anywhere in the tree, as a new leaf
or on an existing edge. Denoted InsertNode(T , f , position).

Gröbner basis Given a node ν, outputs a Gröbner basis of the ideal generated by the polynomials contained
in the nodes ≤T ν. Denoted Basis(T , ν).
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Get a syzygy Given a node ν, outputs an element of I<ν : poly(ν). Denoted GetSyzygy(T , ν).

If GetSyzygy(T , ν) outputs zero, then I<ν + J = I<ν : poly(ν), where J is the ideal generated by
all previous invocations of GetSyzygy(T , ν).

It is guaranteed that GetSyzygy(T , ν) eventually outputs zero after sufficiently many invocation,
even if nodes are inserted or GetSyzygy is called on other nodes in between.

3.3.2 Implementation

From the point of implementation, an sGB tree is made of:

(a) a rooted tree T containing whose nodes are labelled with integers;

(b) a set G of extended sig-poly pairs whose indices are nodes of T (see below);

(c) a set P of pairs of elements of G forming regular S-pairs;

(d) for each node ν of T , a subset Sν of R.

The sets G, P and Sν have the same role as their counterparts in the sGB algorithm (Algorithm 5).
The main difference is a twist in the definition of signatures and indices. In §3.1, an index (that is the first
component of a signature) is a nonnegative integer. From now on, indices are nodes in T . Indices are partially
ordered by the ancestor-descendant relation ≤T . Note that for a given node ν, the subset {µ | µ ≤T ν} is
totally ordered: it is the set of nodes on the path from the root of T to ν. Lastly, we adjust the definition of a
regular S-pair. We say that sig-poly pairs α and β form a regular S-pair if ind(α) and ind(β) are comparable
(that is either ind(α) ≤T ind(β) or ind(β) ≤T ind(α)) and s(aα) 6= s(bβ), with a and b as in §3.1. To
analyze the behavior of the sGB-tree data structure, we always consider totally ordered subsets of indices,
thus reducing to the context of Algorithm 5.

To implement Basis(T , ν), we process the S-pairs with index ≤T ν. The indices of these S-pairs are
totally ordered, so we are actually in the situation of §3.2 and we may apply the main loop of Algorithm 5.
The body of this loop is isolated in procedure ProcessSPair (Algorithm 6), with the appropriate alterations.

The implementation of GetSyzygy(T , ν) is similar, with the difference that we abort the computation
as soon as the set Sν is not empty and return an element of it, see Algorithm 6. If Sν is still empty after
having processed all S-pairs which may lead to new elements in Sν , the value 0 is returned.

We assume that the state of a sGB tree always results from a sequence of calls to InsertNode, Basis

or GetSyzygy applied to an initially empty tree.

Proposition 3.6. Let T be a sGB tree and let ν be a node of T . Basis(T , ν) (Algorithm 6) terminates
and outputs a Gröbner basis of Iν .

Proof. This algorithm considers only S-pairs whose signatures are above a given node ν. After this restriction,
the signature are totally ordered, so Basis behaves exacly like Algorithm 5 (sGB). We note that, contrary to
sGB, Basis may start in a state where several S-pairs have already been processed, in an unspecified order,
by earlier calls to Basis or GetSyzygy on different nodes. This does not invalidate neither the termination
proof given in [20], nor the proof of correctness.

Proposition 3.7. Let T be a sGB tree and let ν be a node of T . GetSyzygy(T , ν) (Algorithm 6) terminates
and outputs some f ∈ R such that:

(i) f ∈ I<ν : poly(ν);

(ii) if f 6= 0, then lm(f) is not divisible by the leading monomial of any other polynomial previously output
by GetSyzygy(T , ν), or any polynomial in I<ν ;
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Algorithm 6 Implementation of the sGB tree data structure

Input: An sGB tree T and a label of T
Output: Process the pair in P with index above ν with smallest signature
1: procedure ProcessSPair(T , ν)
2: (restrict to S-pairs whose indices are above ν)
3: P ′ ← {(α, β) | max {ind(α), ind(β)} ≤T ν}
4: if P ′ 6= ∅ then

5: (α, β)← the pair in P ′ with s(sp(α, β)) minimal
6: P ← P \ {(α, β)}
7: a, b← the monomials such that a poly(α)− b poly(β) = poly(sp(α, β))
8: if not Rewritable(α, a, G) and not Rewritable(β, b, G) then

9: γ ← RegularReduction(sp(α, β), G)
10: G← G ∪ {γ}
11: if poly(g) 6= 0 then

12: P ← P ∪ {(γ, β) | β ∈ G forms a regular S-pair with γ}
13: else (record the quotient of the zero reduction)
14: Sind(γ) ← Sind(γ) ∪ {quo(γ)}
15: end if

16: end if

17: end if

18: end procedure

Input: A sGB tree T and a label ν of T
Output: A Gröbner basis of I<ν

1: procedure Basis(T , ν)
2: while there is a pair in P with index ≤T ν do

3: ProcessSPair(T , ν)
4: end while

5: return {poly(α) | α ∈ G and ind(α) ≤T ν}
6: end procedure

Input: A sGB tree T and a label ν of T
Output: An element of the quotient ideal I<ν : poly(ν) not contained in I<ν

1: procedure GetSyzygy(T , ν)
2: while there is a pair in P with index ≤T ν and Sν = ∅ do

3: ProcessSPair(T , ν)
4: end while

5: if Sν 6= ∅ then

6: pick and remove some h in Sν

7: return h
8: else

9: return 0
10: end if

11: end procedure
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Algorithm 7 The sGB tree data structure, insertion of a node

Input: A sGB tree T , a polynomial f and a description of the position of the new node in T
Output: The label of the newly inserted node
1: procedure InsertNode(T , f , position)
2: ν ← (largest label in T ) + 1
3: insert a node in T with label ν, as described by “position”
4: Sν ← ∅

5: ǫ← (f, (ν, 1), 1)
6: P ← {(ǫ, β) | β ∈ G and (ǫ, β) is regular}
7: G← G ∪ {ǫ}
8: return ν
9: end procedure

(iii) if f = 0, then I<ν : poly(ν) is generated by I<ν and the polynomials previously output by Get-

Syzygy(T , ν).

Proof. Termination follows from the termination of Basis since the main loop is similar, but with the
possibility of earlier termination. Correctness follows from Theorem 3.5 after restricting to indices above ν.

As a consequence of Proposition 3.7(ii), it is guaranteed that GetSyzygy(T , ν) eventually outputs
zero after sufficiently many invocation, even if nodes are inserted or GetSyzygy is called on other nodes
in between. Indeed, the leading monomial of a nonzero output of GetSyzygy(T , ν) is constrained to be
outside the monomial ideal generated by the leading monomials of previous output. By Dickson’s lemma,
this may only happen finitely many times.

4 Computation of the nondegenerate locus

The sGB-tree data structure may can be used to implement an efficient variant of Algorithm 1 for computing
the nondegenerate locus. We use a sGB tree to compute efficiently saturations I : f∞, and also double
quotient I : (I : f∞), with the idea to exploit as soon as possible newly discovered relations to simplify
further computations. This leads to Algorithm 8, which we describe informaly as follows.

Similarly to Algorithm 1, we introduce the equations f1, . . . , fr one after the other. We maintain a sGB
tree which, at the beginning of the kth iteration, that is after having processed f1, . . . , fk−1, has the following
shape:

g1 ← f1 ← p1 ← · · · ← gk−1 ← fk−1 ← pk−1 ← 0
︸︷︷︸

ν

ւ h1

← h2

...

,

where bold letters represent a sequence of zero, one or several nodes. The tree grows from the node labeled ν,
by adding new leaf nodes, or inserting nodes just above ν. Using the notations of Algorithm 1, the nodes gi

are related to the saturation G : f∞
i , the leaf nodes hi are generic elements of the ideals in the set K, and

the nodes pi are related to the cleaning steps G : K∞. The leaf nodes hi are generic in the sense that they
are either each a random linear combination of generators of the ideals in K or each a linear combination of
of generators of the ideals in K with each coefficient a new variable.
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The kth iteration proceeds as follows. Firstly, a new node µ containing fk is created just above ν:

· · · ← fk
︸︷︷︸

µ

← 0
︸︷︷︸

ν

← · · · .

As long as GetSyzygy(T , µ) returns nonzero elements (g1, g2, . . . ), we insert them above µ:

· · · ← g1 ← g2 ← · · · ← fk
︸︷︷︸

µ

← 0
︸︷︷︸

ν

← · · · .

This saturation has the effect of completing I<µ into I<µ : f∞
k . Each time we insert a polynomial gi in a

node, say γ, we also record the syzygies GetSyzygy(T , γ), take a generic linear combination and insert it
as a new leaf node. These syzygies are related to the double quotient I<µ : (I<µ : f∞

k ). Before going to the
next iteration, insert above ν all the syzygies obtained from the children of ν. Which again has the effect of
saturating I<ν by the polynomials contained in these nodes.

After all the input equations have been processed, the ideal I<ν is a nondegenerate part of the input
ideal, which we prove by comparing with Algorithm 1.

Theorem 4.1. Algorithm 8 terminates and is correct.

Proof. Termination follows from the assumption that for any node ν of an sGB tree T , GetSyzygy(T , ν)
eventually returns 0 after sufficiently many calls.

To prove correctness, we show that Algorithm 8 computes the same ideal as Algorithm 1. Let Jk−1 be the
value of Iν at the beginning of the kth iteration. After line 4, we also have I<µ = Jk−1, while I<ν = I<µ+〈fk〉.

We first examine the loop on line 5. It inserts above the node µ all the polynomials obtained from
GetSyzygy(T , µ). Every node inserted on line 11 is in I<µ : fk. No other node is inserted above µ. So by
induction, it follows that all along the loop, we have I<µ ⊆ Jk−1 : f∞

k . Moreover, after the loop terminates,
we have I<µ : fk = I<µ, due to the specification of GetSyzygy (Proposition 3.7). It follows that before
line 23, we have

I<µ = Jk−1 : f∞
k and I<ν = (Jk−1 : f∞

k ) + 〈fk〉. (3)

Next, we examine the loop on line 23 and its inner loop on line 24. By the same argument as above, the
inner loop has the effect of saturating I<ν by pol(β). So after the loop on line 23, we have

I<ν = Jk = ((Jk−1 : f∞
k ) + 〈fk〉) :

(
∏

β child of ν

pol(β)

)∞

. (4)

It remains to understand the nature of the children of ν. They all come from the insertion of h on line 21.
And h is simply a generic linear combination of the return values of GetSyzygy(T , γ). So h is a generic
linear combination of some h1, . . . , hr such that I<γ + 〈h1, . . . , hr〉 = I<γ : poly(γ) (by Proposition 3.7). For
each node γ inserted on line 11, let Lγ denote the ideal I<γ : poly(γ). If g1, . . . , gs are the successive return
values of GetSyzygy(T , µ) on line 6, and γ1, . . . , γr the corresponding nodes, we have L<γi

= I<γi
: gi

and I<γi
= Jk−1 + 〈g1, . . . , gi〉. By Lemma 4.2, it follows that

Lγ1
∩ · · · ∩ Lγr

rad
= Jk−1 : 〈g1, . . . , gr〉∞. (5)

Moreover, by (3), we obtain that before line 23

I<µ = Jk−1 + 〈g1, . . . , gr〉 = Jk−1 : f∞
k , (6)
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Algorithm 8 Computation of the nondegenerate locus with an sGB tree

Input: f1, . . . , fc ∈ R
Output: A Gröbner basis G of a nondegenerate locus of (f1, . . . , fc)
1: T ← an empty sGB tree
2: ν ← InsertNode(T , 0)
3: for k from 1 to c do

4: µ← InsertNode(T , fk, just above ν)
5: loop

6: g ← GetSyzygy(T , µ)
7: if g = 0 then

8: break

9: end if

10: P ← P ∪ {(poly(µ), (µ, 1), 1)}
11: γ ← InsertNode(T , g, just above µ)
12: h← 0
13: t← a random scalar (or the slack variable, see Remark 4.1)
14: loop

15: h′ ← GetSyzygy(T , γ)
16: if h′ = 0 then

17: break

18: end if

19: h← th+ h′

20: end loop

21: InsertNode(T , h, as a child of ν)
22: end loop

23: for all child β of ν do

24: loop

25: b← GetSyzygy(T , β)
26: if b = 0 then

27: break

28: end if

29: InsertNode(T , b, just above ν)
30: end loop

31: end for

32: end for

33: return Basis(ν)
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so, combining with (5),

Lγ1
∩ · · · ∩ Lγr

rad
= Jk−1 : 〈g1, . . . , gr〉∞ (7)

= Jk−1 :
(
Jk−1 + 〈g1, . . . , gr〉

)∞
(8)

rad
= Jk−1 : (Jk−1 : f∞

k ). (9)

As remarked above, the loop on line 24 has the effect of saturating I<ν by pol(β). By the analysis above,
pol(β) is actually a generic linear combination of some h1, . . . , hr such that I<γ +〈h1, . . . , hr〉 = Lγ , for some
node γ above ν. By Lemma 4.3, saturating by pol(β) is the same as saturating by 〈h1, . . . , hr〉. Besides, I<ν

contains I<γ , so saturating I<ν by 〈h1, . . . , hr〉 is the same as saturating by Lγ . Back to (4), we conclude
from (9) that saturating I<ν by all the pol(β) is the same as saturating by all the ideals Ji−1 : (Ji−1 : f∞

i ),
for i ≤ k.

Therefore Jk satisfies the same recurrence relation as its analogue defined the proof of Theorem 2.4:

Jk =

(

(Jk−1 : f∞
k ) + 〈fk〉

)

:

(
⋂

i≤k

(
Ji−1 : (Ji−1 : f∞

i )
)
)∞

. (10)

This proves that Algorithm 8 and Algorithm 1 compute the same ideal.

Lemma 4.2. Let I, J ⊆ R be two ideals and let J = 〈g1, . . . , gt〉. Then

(I : J)
rad
= (I : g1) ∩ ((I + 〈g1〉) : g2) ∩ · · · ∩ ((I + 〈g1, . . . , gt−1〉) : gt).

Proof. The inclusion ”⊆” is obvious. Now, let p ∈ R be such that

pm ∈ (I : g1) ∩ ((I + 〈g1〉) : g2) ∩ · · · ∩ ((I + 〈g1, . . . , gt−1〉) : gt)

for some m ∈ N. Then we have in particular pmg1 ∈ I. Now let i > 1. By induction, if for some k ∈ N we
have pkgj ∈ I for all j ≤ i then

pkmgi+1 = pkf + pka1g1 + · · ·+ pkaigi ∈ I

for a suitable f ∈ I, a1, . . . , ai ∈ R and so pkm ∈ (I : gi+1). We deduce that a power of p actually lies in
(I : J) which ends the proof.

Lemma 4.3. Let I, J ⊆ R be two ideals with J = 〈g1, . . . , gt〉.
1. There exists a Zarisiki-open subset D ⊂ K

t such that for any (a1, . . . , at) ∈ D we have (I : J∞) = (I :
(
∑t

j=1 ajgj)
∞).

2. If K
rad
= J then (I : K∞)

rad
= (I : J∞).

Proof. (1) easily follows e.g. from [21, Exercise 15.41]. For (2), if p ∈ R such that pkJ l ∈ I for k, l ∈ N then
for a suitably large m ∈ N we have Km ⊆ J l so pkKm ∈ I and hence p ∈

√

(I : K∞).

Remark 4.1 (Deterministic variant). The cleaning steps in Algorithm 8 can be made in a randomized way,
with a possibility of undetected error, or in a deterministic way. The only change to operate is on line 13.
For a randomized algorithm, favoring speed over certain correctness, choose t to be a random scalar. For
a deterministic algorithm, choose t to be a slack variable, unused in the input equation. It is guaranteed
that such a t is generic enough. Whenever we introduce such a slack variable we can extend the monomial
ordering on R in any way we like, since all cofactors of syzygies that are inserted as new nodes only involve
the variables of R. The implementation discussed in the next section exclusively chooses t to be a random
scalar.
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5 Implementation and Experiments

5.1 Further Implementational Considerations

We start by describing some further optimizations in our implementations of Algorithms 5 and 8.
Both these implementations use an F4-like reduction strategy. This means that several S-pairs are selected

out of the pairset at once and are subsequently, together with their regular reducers, organized in a matrix
whose rows are labeled by the selected extended sig-poly pairs and whose columns are labeled by all the
monomials occuring in the polynomial parts of these extended sig-poly pairs. This matrix is then put into
row echelon form and the rows of this reduced matrix whose first entry has changed during the computation
of this row echelon form are then processed as new basis elements or newly identified zero divisors, depending
on if this reduced row is zero or not. We refer to [23] for the original F4 algorithm or to [18, section 13] for
an explanation as to how to combine the F4 algorithm with signature-based techniques.

For Algorithm 8, this has the consequence that the GetSyzygy routine has the ability to return several
zero divisors g1, . . . , gs at once and Algorithm 8 may benefit from it. We implemented the following proba-
bilistic optimization: We replaced g1 by a random linear combination g′1 :=

∑s

j=1 aigi. Let ν1, . . . , νs be the
nodes assigned to g′1, g2, . . . , gs in Algorithm 8. Then, if the choice of the ai was “sufficiently random”, we
know by Lemma 4.3 that for h ∈ R we have

hg′1 ∈ I<ν1 ⇔ hgi ∈ I<ν1∀i.
If then GetSyzygy(T , ν1) returned such an element h 6= 0 we regarded the signatures (ν2, lm(h)), . . . , (νs, lm(h))
as known signatures of syzygies during the calls to Rewriteable, i.e. GetSyzygy(T , νi) would, for
i = 2, . . . , s, only return a non-zero result if there exists an element h′ ∈ (I<νi : gi) with lm(h′) not divisible
by lm(h). Furthermore, only the zero divisors of h of g′1 as above were considered in the loop from line 14-20
of Algorithm 8.

We implemented both Algorithm 5 and 8 in the programming language Julia [4] with an interface to the
Singular.jl Julia-library [16]. An interface to the new computer algebra system OSCAR [41] is planned for
the future. The implementation is available at

https://github.com/RafaelDavidMohr/SignatureGB.jl

In this implementation we use our own data structures for polynomials and polynomial arithmetic.
The linear algebra routines for computing row echelon forms in our implementations closely follow the
corresponding routines presented in [40]. Additionally, our implementation makes use of the modifications
to Algorithm 5 presented in [19]. Currently the implementation works only for fields of finite characteristic.

While our implementation is currently not competitive with optimized implementations of Gröbner basis
algorithms such as in Maple [39] or msolve [3], we do make use of some standard optimization techniques in
Gröbner basis algorithm implementations such as monomial hash tables and divisor bitmasks (see e.g. [42]
for a description of these techniques).

5.2 Experimental Results

We used the following examples to benchmark our implementations:

1. Cyclic(8), coming from the classical Cyclic(n) benchmark.

2. Pseudo(n), encoding pseudo-singularities as follows

f1 = · · · = fn−1 = g1 · · · = gn−1

with fi ∈ K[x1, . . . , xn−2, z1, z2], fi ∈ K[y1, . . . , yn−2, z1, z2], fi being chosen as a random dense quadric
and gi equalling fi when substituting y1, . . . , yn−2 by x1, . . . , xn−2.
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3. Sos(s, n), encoding the critical points of the restriction of the projection on the first coordinate to a
hypersurface which is a sum of s random dense quadrics in K[x1, . . . , xn].

f,
∂f

∂x2
, . . . ,

∂f

∂xn

, f =

s∑

i=1

g2i .

4. Sing(n), encoding the critical points of the restriction of the projection on the first coordinate to a
(generically singular) hypersurface which is defined by the resultant of two random dense quadrics A,B
in K[x1, . . . , xn+1]:

f,
∂f

∂x2
, . . . ,

∂f

∂xn

, f = resultant(A,B, xn+1).

5. The Steiner polynomial system, coming from [6].

All these systems are generated by a number of polynomials equal to the number of variables of the underlying
polynomial ring. They all have components of different dimensions, one of those being zero-dimensional, i.e.
they have a nontrivial nondegenerate locus.

In Table 1 we compare Algorithm 8 and a straightforward implementation of ours of Algorithm 1 in Maple.
In this implementation, we saturated an ideal J by an ideal K by picking a random linear combination p of
generators of K and saturating J by p using Maple’s internal saturation routine. Table 1 shows the improve-
ment of Algorithm 8 over Algorithm 1: While Maple’s Gröbner basis engine beats our implementation of Al-
gorithm 5 by a wide margin the ratio between the timings of our F5 implementation and our implementation
of Algorithm 8 is much better than the ratio between the time it took to compute a Gröbner basis in Maple
and our Maple implementation of Algorithm 1. This can be seen by looking at the two respect “ratio”-columns
of table 1. To additionally show the overhead of Algorithm 8 over Algorithm 5 we noted the number of arith-
metic operations in K when running each of the two algorithms on the polynomial system in question. Our im-
plementation of Algorithm 8 never takes more than 10 times the number of arithmetic operations Algorithm
5 takes, on certain examples we compare very favorably in terms of arithmetic operations to Algorithm 5.

In Table 2 we compare Algorithm 8 to other ideal decomposition methods available in the computer
algebra systems Singular, Maple and Macaulay2 [29]. In Singular there is an elimination method [15] and
an implementation of the algorithm for equidimensional decomposition presented in [22]. In Maple we
compared against the Regular Chains package [9; 10]. In Macaulay2 one is able to compute the intersection
of all components of non-minimal dimension again with the method presented in [22]. We then saturated
the original ideal by the result to obtain the nondegenerate locus. On a high level, our algorithm works
similarly, incrementally obtaining information about the component of higher dimension and then removing
it via saturation. One should keep in mind that all of these methods, compared to Algorithm 8, work
more generally: Except for what we tried in Macaulay2 they are all able to obtain a full equidimensional
decomposition of the input ideal.

We gave all of these methods at least an hour for each polynomial system and at most roughly 50 times
the time our implementation of Algorithm 8 took. We indicated when these times were exceeded by using
”>” in Table 2. We computed all examples on a single Intel Xeon Gold 6244 CPU @ 3.60GHz with a limit
of 200G memory. If this limit was exceeded, or if another segfault occured, we indicate it with ’segfault’ in
Table 2.
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Table 1: Comparing Algorithm 1 and Algorithm 8
Alg. 5 arith. op. Alg. 8 arith. op. Alg. 5 Alg. 8 Ratio GB in Maple Alg. 1 in Maple Ratio

Cyclic 8 1.2 · 1010 1.3 · 1011 4m 40m 10 1.2s 154m 7700
Pseudo(2, 12) 5.3 · 107 3.1 · 108 1.16s 5.2s 4.5 0.268s 3.44s 13
Sing(2, 10) 5.6 · 107 6.5 · 107 1.9s 2.9s 1.5 0.11s 1.642s 14.5
Sing(2, 9) 2.5 · 107 2.9 · 107 1.1s 1.4s 1.27 0.06s 0.788s 13.1
Sos(2,5,4) 1.3 · 108 1.1 · 108 8.5s 7.3s 0.85 0.022s 0.479s 21.3
Sos(2,6,3) 2.1 · 107 2.1 · 107 1.11s 1.4s 1.26 0.021s 0.261s 12.4
Sos(2,6,4) 4.8 · 109 3.8 · 109 148s 169s 1.14 0.172s 22.7s 132
Sos(2,6,5) 4.2 · 109 2.0 · 109 75s 43s 0.57 0.458s 10.38s 22.7
Sos(2,7,3) 1.3 · 108 6.7 · 108 5.2s 41s 7.9 0.047s 7.162s 152.4
Sos(2,7,4) 6.5 · 109 4.5 · 1010 3m 32m 10.7 0.433s 1h 8314
Sos(2,7,5) 7.2 · 1010 3.5 · 1011 25m 20h 48 2.294s >359h > 4.4 · 106

Sos(2,7,6) 1.7 · 1012 3.0 · 1012 31h 73h 2.4 14.348s 5.5h 23
Steiner 3.1 · 1010 2.3 · 1011 4.2m 42m 10 27s 13m 28.9

Table 2: Comparing with other Decomposition Methods

Algorithm 8 Singular: Elimination Method Singular: Algorithm in [22] Maple: Regular Chains Macaulay2

Cyclic 8 40m segfault >35h >35h >35h
Pseudo(2, 10) 0.3s 40s >1h >1h >1h
Pseudo(2, 12) 5.2s >1h >1h >1h >1h
Pseudo(2, 6) 0.008s <1s <1s 0.29s 0.07s
Pseudo(2, 8) 0.03s <1s 23m 5.82s 13.78s
Sing(2, 10) 2.9s >1h >1h >1h >1h
Sing(2, 4) 0.02s 1s >1h 91.32s 0.42s
Sing(2, 5) 0.07s 4s >1h >1h 1.94s
Sing(2, 6) 0.15s 56s >1h >1h 16.64s
Sing(2, 7) 0.35s 8m >1h >1h 289s
Sing(2, 8) 0.68s 23m >1h >1h >1h
Sing(2, 9) 1.4s >1h >1h >1h >1h
Sos(2,4,2) 0.03s <1s <1s 19.4s 0.16s
Sos(2,4,3) 0.03s 1s 3m 14m 0.63s
Sos(2,5,2) 0.02s <1s >1h >1h 0.37s
Sos(2,5,3) 0.34s >1h >1h >1h 9.35s
Sos(2,5,4) 7.3s >1h >1h >1h 183s
Sos(2,6,2) 0.17s <1s >1h >1h 0.7s
Sos(2,6,3) 1.4s >1h >1h >1h 107s
Sos(2,6,4) 169s >140m >140m >140m >140m
Sos(2,6,5) 43s >1h >1h >1h >1h
Sos(2,7,2) 2.91s <1s >1h 2.94s 0.18s
Sos(2,7,3) 41s >1h >1h >1h >1h
Sos(2,7,4) 32m >26h segfault >26h >26h
Sos(2,7,5) 20h segfault segfault >200h >200h
Sos(2,7,6) 73h segfault segfault >334h >500h
Steiner 42m >50h segfault >50h >50h
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