
ON MAGIC DISTINCT LABELLINGS OF SIMPLE GRAPHS
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Abstract. A magic labelling of a graph G with magic sum s is a labelling of the
edges of G by nonnegative integers such that for each vertex v ∈ V , the sum of labels
of all edges incident to v is equal to the same number s. Stanley gave remarkable
results on magic labellings, but the distinct labelling case is much more complicated.
We consider the complete construction of all magic labellings of a given graph G. The
idea is illustrated in detail by dealing with three regular graphs. We give combinatorial
proofs. The structure result was used to enumerate the corresponding magic distinct
labellings.

Mathematic subject classification: Primary 05A19; Secondary 11D04; 05C78.
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1. Introduction

Throughout this paper, we use standard set notations R,Z,N,P for real numbers,
integers, nonnegative integers, and positive integers respectively.

Let G = (V,E) be a finite (undirected) graph with vertex set V = {v1, . . . , vm} and
edge set E = {a1, . . . , an}. A magic labelling of G is a labelling of the edges in E by
nonnegative integers such that for each vertex v ∈ V , the weight wt(v) of v, defined to
be the sum of labels of all edges incident to v, is equal to the same number s, called
magic sum (also called index by some authors). More precisely, let µ : E 7→ N be the
labelling. Then

wt(vi) :=
m∑

j=1,(vi,vj)∈E

µ(vi, vj) = s, i = 1, 2, . . . ,m.(1.1)

A magic distinct labelling is a magic labelling whose labels are distinct. It is said to be
pure if the labels are 1, 2, . . . , n. These concepts were introduced by graph theorists as
an analogous of magic squares, which have been objects of study for centuries.

Plenty work has been done for graph labellings. Magic labellings of simple graphs
seem first introduced in [9] as vertex magic labellings. Vertex magic total labelling of a
simple graph indeed corresponds to our magic labelling of the same graph with a loop
attached to each vertex. For related research, see [3, 5, 6, 7, 8, 11, 16]. Note that “magic”
may have different meaning in different context.

In the 1970s, Stanley [13] proved some remarkable facts for magic labellings:

Theorem 1. Let G be a finite graph and define hG(s) to be the number of magic labellings
of G of index s. There exist polynomials PG(s) and QG(s) such that hG(s) = PG(s) +
(−1)sQG(s). Moreover, if the graph obtained by removing all loops from G is bipartite,
then QG(s) = 0, i.e., hG(s) is a polynomial of s.
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In terms of generating functions, the theorem asserts that FG(y) =
∑

s≥0HG(s)ys

is a rational function with denominator factors 1± y.

Though magic labellings of graphs behave nicely, magic distinct labellings of graphs
behave very badly because of the “distinct” condition on the labels. For instance, for

the graph G4 depicted in Figure 4, the generating function for magic labellings is 1+y+y2

(1−y)5 ,

but the generating function for magic distinct labellings is

72y12 (1− y)2N4(y)

(1− y3)2 (1− y4) (1− y5) (1− y6) (1− y7) (1− y8)
,

where N4(y) is a polynomial of degree 19. See (3.2) and (3.3) for details.

Our starting point is a simple structure result for magic labellings, from which we
are able to extract information about magic distinct labellings.

The set of magic R-labellings of G is

SR(G) := {ααα = (α1, . . . , αn) ∈ Rn : (1.1) holds for µ(ak) = αk, 1 ≤ k ≤ n, s = wt(v1)}.
Clearly, SR(G) is a subspace of Rn and its basis can be easily computed by linear algebra.
Even the structure of SZ(G) = SR(G)∩Zn is easy: it is a finitely generated abelian group,
and there are known algorithms for finding the generators. But the set of magic labellings
S(G) = SR(G)∩Nn only forms a (commutative) monoid (semi-group with identity), and
it is usually not the case that the monoid is free; that is, there exists ααα1, . . . ,αααd ∈ S(G),

called generators, such that every ααα ∈ S(G) can be written uniquely as
∑d

i=1 kiαααi where
ki ∈ N.

We will decompose S(G) into some shifted free monoids, whose elements can be

uniquely written as γ +
∑d

i=1 kiαααi, where γ is fixed and usually in S(G), and ααα1, . . . ,αααd
are still called the generators. We illustrate the idea by three examples. We give combi-
natorial proofs.

In terms of generating functions, we define

FG(x) =
∑

ααα∈SN(G)

xααα,

where xααα is short for xα1
1 · · ·xαnn . It is known that FG(x) is a rational function with

denominator
∏

β(1−xβ) where β ranges over all extreme rays of S(G). See [12, Theorem

4.6.11]. There are existing algorithms for computing FG(x), such as the Mathematica
package Omega in [2], the Maple packages Ell in [17] and CTEuclid in [15]. But the
representation of FG(x) by computer is usually not ideal.

Our decomposition give rise a rational function decomposition: FG(x) = F1(x) +
F2(x) + · · · , where each Fj(x) (corresponding to a shifted free monoid) is of the form

xγ

(1− xααα1)(1− xααα2) · · · (1− xαααd)
.

The paper is organized as follows. Section 1 is this introduction. In Section 2 we
deal with three graphs G1, G2, and G3. We give detailed construction of their magic
labellings, and combinatorial proofs. In Section 3 we introduce basic idea of MacMahon’s
partition analysis, outline the result for G4, and setup basic tools for attacking magic
distinct labellings of graphs. In particular, we compute the generating functions for
several graphs.
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2. Three examples

In this section, we illustrate our decomposition by considering the magic labellings
of three graphs depicted in Figures 1,2 and 3. These graphs are all regular, i.e., the
degree for each vertex is the same.

In what follows we will often use ei to denote the i-th unit vector in Rn. Then
ααα = (α1, . . . , αn) ∈ Rn will be written as ααα =

∑n
i=1 αiei. The dimension n will be clear

from the context.

For ααα ∈ S(G), the magic sum s = s(ααα) is determined by ααα, so it can be treated as
a redundant variable. It is convenient for us to use the generating function

FG(x, y) =
∑

ααα∈SN(G)

xαααys(ααα).

Then FG(x) = FG(x, 1) and setting xi = 1 for all i gives the enumerating generating
function

FG(y) = FG(1, y) =
∑
s≥0

hG(s)ys,

where hG(s) counts the number of magic labellings of G with magic sum s.

2.1. Example 1. Let G1 = K4 be the complete graph with V = {vi, i = 1, 2, · · · , 4}
and E = {ai, i = 1, 2, · · · , 6} as shown in Figure 1.

1 2

34

1

24

3

6
5

Figure 1. The complete graph G1 = K4

Suppose the magic labelling is given by µ(ai) = xi, i = 1, 2, . . . , 6. Then the fulfilled
equations (1.1) becomes

(2.1)


x1 + x4 + x5 = s,

x1 + x2 + x6 = s,

x2 + x3 + x5 = s,

x3 + x4 + x6 = s.

Then

ααα ∈ SR(G1)⇔ A(ααα, s)T = 0, A =


1 0 0 1 1 0 −1

1 1 0 0 0 1 −1

0 1 1 0 1 0 −1

0 0 1 1 0 1 −1

 .

Thus SR(G1) can be identified with the null space of A, which is a subspace in R7. Since
rank(A) = 4, dimSR(G1) = 7− 4 = 3.

Indeed, we have the following result.
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Proposition 2. For G1 as above, the magic labelling of G1 forms a free monoid with
generators ααα1 = e2 + e4,ααα2 = e1 + e3,ααα3 = e5 + e6.

Proof. It is straightforward to check that they are linearly independent and hence form
a basis of SR(G1).

Let ααα = k1ααα1 +k2ααα2 +k3ααα3 = k2e1 +k1e2 +k2e3 +k1e4 +k3e5 +k3e6 ∈ SR(G1). Then
ααα ∈ S(G1) if and only if k1, k2, k3 ∈ N. Therefore ααα1,ααα2 and ααα3 freely generate S(G1).

Note that ααα1,ααα2,ααα3 correspond to perfect matchings of G1.

Corollary 3. Let G1 be as above. Then

FG1(x, y) =
1

(1− yx2x4) (1− yx1x3) (1− yx5x6)
.

Consequently,

FG1(y) =
1

(1− y)3
= 1 + 3 y + 6 y2 + 10 y3 + 15 y4 + 21 y5 + 28 y6 + 36 y7 + · · · .

2.2. Example 2. Let G2 be the graph with V = {vi, i = 1, 2, · · · , 6} and E = {ai, i =
1, 2, · · · , 9} as shown in Figure 2. Suppose the magic labelling is given by µ(ai) = xi, i =

1

2

35

6

4

1

2

5

4

6

7

8

93

Figure 2. The Graph G2 with 6 vertices and 9 edges.

1, 2, . . . , 9. Then the fulfilled equations (1.1) becomes

(2.2)



x4 + x6 + x8 = s,

x1 + x2 + x7 = s,

x4 + x5 + x9 = s,

x2 + x3 + x8 = s,

x5 + x6 + x7 = s,

x1 + x3 + x9 = s.

It is easy to see the following properties hold:

i) dimSR(G2) = 4;

ii) βββ1 = e1 + e5 + e8, βββ2 = e2 + e6 + e9, βββ3 = e3 + e4 + e7, βββ4 = e7 + e8 + e9 are

linearly independent and hence form a basis of SR(G2), and they correspond to the 4
perfect matchings of G2;

iii) βββ5 = e1 + e2 + e3 + e4 + e5 + e6 ∈ S(G2) is not a nonnegative linear combination
of βββ1, . . . ,βββ4. Indeed we have βββ5 = βββ1 + βββ2 + βββ3 − βββ4.

Proposition 4. Let G2 be as in Figure 2. Then every βββ in S(G2) can be uniquely written
in one of the following two types.
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B1 : l1βββ1 + l2βββ2 + l3βββ3 + l4βββ4, li ∈ N (1 6 i 6 4);
B2 : βββ5 + l1βββ1 + l2βββ2 + l3βββ3 + l4βββ5, li ∈ N (1 6 i 6 4).

Proof. By property ii), any element βββ ∈ SR(G2) can be written as βββ = k1βββ1 + k2βββ2 +
k3βββ3 + k4βββ4 where ki ∈ R, 1 6 i 6 4.

Then βββ = k1e1+k2e2+k3e3+k3e4+k1e5+k2e6+(k3+k4)e7+(k1+k4)e8+(k2+k4)e9.
It belongs to S(G2) if and only if k1, k2, k3, k1 + k4, k2 + k4, k3 + k4 ∈ N. Note that we
can only deduce that k4 ∈ Z.

When k4 ∈ N, such βββ naturally corresponds to the type B1 case (by setting li =
ki ∈ N (1 6 i 6 4)).

When k4 < 0, i.e., −k4 ∈ P we need to rewrite

βββ = k1βββ1 + k2βββ2 + k3βββ3 + k4(βββ1 + βββ2 + βββ3 − βββ5)

= βββ5 + (k1 + k4)βββ1 + (k2 + k4)βββ2 + (k3 + k4)βββ3 + (−k4 − 1)βββ5.

By comparing with the type B2 case, we shall have li = ki + k4 for i = 1, 2, 3 and
l4 = −k4− 1. The conditions on the ki’s transform exactly to li ∈ N, 1 ≤ i ≤ 4. Finally,
the uniqueness follows by the linear independency of βββ1,βββ2,βββ3,βββ5.

Corollary 5. Let G2 be as above. Then

FG2(x, y) =
1

(1− yx1x5x8)(1− yx2x6x9)(1− yx3x4x7)(1− yx7x8x9)

+
y2x1x2x3x4x5x6

(1− yx1x5x8)(1− yx2x6x9)(1− yx3x4x7)(1− y2x1x2x3x4x5x6)

.

Consequently,

FG2(y) =
1 + y + y2

(1− y)3 (1− y2)
= 1 + 4 y + 11 y2 + 23 y3 + 42 y4 + 69 y5 + 106 y6 + · · · .

2.3. Example 3. Let G3 be the graph with V = {vi, i = 1, 2, · · · , 8} and E = {ai, i =
1, 2, · · · , 12} as shown in Figure 3. Suppose the magic labelling is given by µ(ai) =

1 2

3

4

5

8

7
6

1

2

34

5

10

6

12

9

11
8

7

Figure 3. The Graph G3 with 8 vertices and 12 edges.
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xi, i = 1, 2, . . . , 12. Then the fulfilled equations (1.1) become

(2.3)



x4 + x5 + x6 = s,

x1 + x2 + x7 = s,

x2 + x3 + x8 = s,

x3 + x4 + x9 = s,

x4 + x5 + x10 = s,

x7 + x8 + x11 = s,

x9 + x11 + x12 = s,

x6 + x10 + x12 = s.

It is easy to see that dimSR(G3) = 5. The structure of S(G3) is indeed pretty
complicated. Our combinatorial proof is guided by but independent of the algebraic
decomposition described in Section 3.

We need the following vectors

γγγ1 = e1 + e3 + e10 + e11, γγγ2 = e2 + e4 + e6 + e11,

γγγ3 = e3 + e5 + e7 + e12, γγγ4 = e2 + e5 + e6 + e7 + e8 + 2e9 + e10,

γγγ5 = e2 + e3 + e5 + e6 + e7 + e9 + e10 + e11, γγγ6 = e1 + e4 + e8 + e12,

γγγ7 = e2 + e4 + e5 + e6 + e7 + e8 + e9 + e12, γγγ8 = e1 + e8 + e9 + e10.

(2.4)

The γγγi’s are the extreme rays which are computed by other methods. The following
relations can be easily checked.

Proposition 6. The γγγi(1 6 i 6 8) have the following relationship.

(2.5)

(b) γγγ5 = γγγ1 + γγγ4 − γγγ8

(c1) γγγ4 = −γγγ1 + γγγ2 + γγγ3 − γγγ6 + 2γγγ8

γγγ5 = γγγ2 + γγγ3 − γγγ6 + γγγ8

(c2) γγγ1 = γγγ2 + γγγ3 − γγγ6 + 2γγγ8

γγγ5 = γγγ2 + γγγ3 − γγγ6 + γγγ8

(c3) γγγ1 = γγγ2 + γγγ3 + γγγ4 + γγγ6 − 2γγγ7

γγγ5 = γγγ2 + γγγ3 + γγγ4 − γγγ7

In order to the Theorem 9, we give the following Lemma.

Lemma 7. Any γγγ ∈ SR(G3) can be uniquely written as γγγ = k1γγγ1+k2γγγ2+k3γγγ3+k4γγγ4+k5γγγ5
for some ki ∈ R (1 6 i 6 5). It belongs to S(G3) if and only if the following properties
hold true.

(2.6)

k1, k2, k3, k4,

k1 + k2 + k5, k1 + k3 + k5, k1 + k4 + k5, k2 + k4 + k5, ∈ N
k3 + k4 + k5, 2k4 + k5.

Consequently, k5 ∈ Z.
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Proof. The first part follows by the linear independency of γγγ1, . . . , γγγ5. By writing in the
ei basis, we have

γγγ =k1e1 + (k2 + k4 + k5)e2 + (k1 + k3 + k5)e3 + k2e4

+ (k3 + k4 + k5)e5 + (k2 + k4 + k5)e6(2.7)

+ (k3 + k4 + k5)e7 + k4e8 + (2k4 + k5)e9

+ (k1 + k4 + k5)e10 + (k1 + k2 + k5)e11 + k3e12.

Now γγγ ∈ S(G3) if and only if each coordinate belongs to N. This is the second part.
The consequence k5 ∈ Z is obvious.

From now on, we will identify γγγ ∈ SR(G3) with (k1, . . . , k5) ∈ R5. For a set S of
(k1, . . . , k5) ∈ R5 and a property P , we will use P (S) to denote the subset of S satisfying
P . We will use the following properties.

P : ki ∈ N(1 6 i 6 4), k5 ∈ Z;
Pa: k5 ∈ N, ki ∈ N(1 6 i 6 4);
Pb: −k5 ∈ P, min{k1, k4} > −k5, ki ∈ N(1 6 i 6 4);
Pc1: −k5 ∈ P, min{k1, k4} < −k5, k1 > k4, ki ∈ N(1 6 i 6 4);
Pc2: −k5 ∈ P, min{k1, k4} < −k5, k1 < k4, 2k1 + k5 > 0, ki ∈ N(1 6 i 6 4);
Pc3: −k5 ∈ P, min{k1, k4} < −k5, k1 < k4, 2k1 + k5 < 0, ki ∈ N(1 6 i 6 4).

It is easy to see that P (R5) = Pa(R5) ] Pb(R5) ] Pc1(R5) ] Pc2(R5) ] Pc3(R5), where ]
denotes disjoint union. This implies that

P (S(G3)) = Pa(S(G3)) ] Pb(S(G3)) ] Pc1(S(G3)) ] Pc2(S(G3)) ] Pc3(S(G3)).

Lemma 8. Let h be any of a, b, c1, c2 and c3. Then Ph(S(G3)) = {(l1, . . . , l5) ∈ N5 :
li are given in Table 2.8}.
(2.8)

Types l1 l2 l3 l4 l5

Pa(S(G3)) k1 k2 k3 k4 k5

Pb(S(G3)) k1 + k5 k2 k3 k4 + k5 −k5 − 1

Pc1(S(G3)) k1 − k4 k2 + k4 + k5 k3 + k4 + k5 −k5 − k4 − 1 2k4 + k5

Pc2(S(G3)) k2 + k1 + k5 k3 + k1 + k5 k4 − k1 − 1 −k5 − k1 − 1 2k1 + k5

Pc3(S(G3)) k2 + k1 + k5 k3 + k1 + k5 k4 + k1 + k5 k1 −k5 − 2k1 − 1

Proof. We only prove the case of h = c1, namely, Pc1(S(G3)) = {(l1, . . . , l5) ∈ N5 : l1 =
k1− k4, l2 = k2 + k4 + k5, l3 = k3 + k4 + k5, l4 = −k5− k4− 1, l5 = 2k4 + k5}. Other cases
are similar.

“ j ” If (k1, k2, k3, k4, k5) ∈ Pc1(S(G3)), then we have −k5 ∈ P, min{k1, k4} <
−k5, k1 > k4 and ki ∈ N(1 6 i 6 4). We get l1 = k1−k4 ∈ N and l4 = −k5−k4− 1 ∈ N.
In addition, by Table 2.6 in Lemma 7, we get l2 = k2 + k4 + k5, l3 = k3 + k4 + k5 and
l5 = 2k4 + k5 are all in N.

“ k ” If (l1, l2, l3, l4, l5) ∈ {(l1, . . . , l5) ∈ N5 : l1 = k1 − k4, l2 = k2 + k4 + k5, l3 =
k3 + k4 + k5, l4 = −k5 − k4 − 1, l5 = 2k4 + k5}, then we get l1 = k1 − k4 ∈ N and
l4 = −k5 − k4 − 1 ∈ N. So k1 > k4 and min{k1, k4} = k4. Also, by inversely solving the
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ki’s from the li’s, we obtain k5 = −2l4 − l5 − 2 < 0. Hence, −k5 ∈ P and min{k1, k4} =
k4 < −k5. Thus, (k1, k2, k3, k4, k5) ∈ Pc1(S(G3)).

Now we are ready to state and prove our result.

Theorem 9. Let G3 be the graph in Figure 3. Then any γγγ ∈ S(G3) can be uniquely
written in one of the following five types.

Ta : l1γγγ1 + l2γγγ2 + l3γγγ3 + l4γγγ4 + l5γγγ5;
Tb : γγγ8 + l1γγγ1 + l2γγγ2 + l3γγγ3 + l4γγγ4 + l5γγγ8;
Tc1 : γγγ6 + l1γγγ1 + l2γγγ2 + l3γγγ3 + l4γγγ6 + l5γγγ8;
Tc2 : γγγ4 + γγγ6 + l1γγγ2 + l2γγγ3 + l3γγγ4 + l4γγγ6 + l5γγγ8;
Tc3 : γγγ7 + l1γγγ2 + l2γγγ3 + l3γγγ4 + l4γγγ6 + l5γγγ7,

where γγγj, 1 ≤ j ≤ 8 are given by Equation (2.4) and li ∈ N, 1 ≤ i ≤ 5.

Proof. Let γγγ ∈ S(G3) be written as

(2.9) γγγ = k1γγγ1 + k2γγγ2 + k3γγγ3 + k4γγγ4 + k5γγγ5, k1, . . . , k5 ∈ R.

Then γγγ ∈ Ph(S(G3)) for h ∈ {a, b, c1, c2, c3}.
We can use Table 2.5 to rewrite γγγ. The results are given in the following table.

Types γγγ

Pa(S(G3)) k1γγγ1 + k2γγγ2 + k3γγγ3 + k4γγγ4 + k5γγγ5

Pb(S(G3)) γγγ8 + (k1 + k5)γγγ1 + k2γγγ2 + k3γγγ3 + (k4 + k5)γγγ4 + (−k5 − 1)γγγ8

Pc1(S(G3)) γγγ6 + (k1 − k4)γγγ1 + (k2 + k4 + k5)γγγ2 + (k3 + k4 + k5)γγγ3

+(−k5 − k4 − 1)γγγ6 + (2k4 + k5)γγγ8

Pc2(S(G3)) γγγ4 + γγγ6 + (k2 + k1 + k5)γγγ2 + (k3 + k1 + k5)γγγ3 + (k4 − k1 − 1)γγγ4

+(−k5 − k1 − 1)γγγ6 + (2k1 + k5)γγγ8

Pc3(S(G3)) γγγ7 + (k2 + k1 + k5)γγγ2 + (k3 + k1 + k5)γγγ3 + (k4 + k1 + k5)γγγ4 + k1γγγ6

+(−k5 − 2k1 − 1)γγγ7

By Lemma 8, Ph(S(G3)) is transformed exactly to type Th for each h.

Corollary 10. Let G3 be as above. Then we have the decomposition

FG3(x, y) =
∑

γγγ∈S(G3)

xγγγys(γγγ) =
5∑
i=1

FG3
i (x, y), where

FG3
1 (x, y) = 1

(1−xγγγ1y)(1−xγγγ2y)(1−xγγγ3y)(1−xγγγ4y2)(1−xγγγ5y2) ;

FG3
2 (x, y) = xγγγ8y

(1−xγγγ8y)(1−xγγγ2y)(1−xγγγ3y)(1−xγγγ1y)(1−xγγγ4y2) ;
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FG3
3 (x, y) = xγγγ6y

(1−xγγγ6y)(1−xγγγ8y)(1−xγγγ2y)(1−xγγγ3y)(1−xγγγ1y) ;

FG3
4 (x, y) = x(γγγ4+γγγ6)y3

(1−xγγγ3y)(1−xγγγ2y)(1−xγγγ8y)(1−xγγγ6y)(1−xγγγ4y2) ;

FG3
5 (x, y) = xγγγ7y2

(1−xγγγ6y)(1−xγγγ2y)(1−xγγγ3y)(1−xγγγ4y2)(1−xγγγ7y2) .

Consequently,

FG3(y) =
1 + 2 y + 4 y2 + 2 y3 + y4

(1− y)3 (1− y2)2
= 1 + 5 y + 18 y2 + 46 y3 + 101 y4 + 193 y5 + · · · .

3. MacMahon’s Partition Analysis and Magic Distinct Labellings

We first introduce the basic idea of MacMahon’s partition analysis and discuss
possible applications of our results.

3.1. MacMahon’s Partition Analysis. MacMahon’s partition analysis was intro-
duced by MacMahon in [10], and has been restudied by Andrews and his coauthors
in a series of papers starting with [1]. The Mathematica package Omega was developed
in [2]. The main idea of MacMahon’s partition analysis is to replace linear constraints
by using new variables and MacMahon’s Omega operators on formal series:

Ω
=

∞∑
k=−∞

ciλ
i = c0, Ω

≥

∞∑
k=−∞

ciλ
i =

∞∑
k=0

ci.

MacMahon’s operators always acting on the λ variables, which will be clear from the
context. We explain to how to compute FG1(x, y) in Example 1. By (2.1), we have

FG1(x, y) =
∑

(ααα,s)∈N7

xα1
1 · · ·xα6

6 y
s
Ω
=
λα1+α4+α5−s
1 λα1+α2+α6−s

2 λα2+α3+α5−s
3 λα3+α4+α6−s

4

= Ω
=

λ1λ2λ3λ4
D1(x, y)

, where

D1(x, y) = (1− λ1λ4x1) (1− λ1λ2x2) (1− λ2λ3x3) (1− λ3λ4x4) (1− λ2λ4x5) (1− λ1λ3x6) (−y + λ1λ2λ3λ4) .

Eliminating the λ’s will give a representation of FG1(x, y). The whole theory relies on
unique series expansion of rational functions. See [17] for the field of iterated Laurent
series and the partial fraction algorithm implemented by the Maple package Ell. The
maple package CTEuclid in [15] is better in most situations.

The normal form of FG1(x, y) (by Maple) already has combinatorial meaning. The
normal form of FG2(x, y) is

FG2 =
1− y3x1x2x3x4x5x6x7x8x9

(1− yx7x8x9) (1− yx2x6x9) (1− yx1x5x8) (1− yx3x4x7) (1− y2x1x2x3x4x5x6)
,

which can be easily decomposed by inspection.

For the graph G3, CTEuclid gives an expression of FG3(x, y) quickly, but the normal
form of FG3(x, y) is

FG3(x, y) =
N(x, y)

(1− yxγγγ1)(1− yxγγγ2)(1− yxγγγ3)(1− y2xγγγ4)(1− y2xγγγ5)(1− yxγγγ6)(1− y2xγγγ7)(1− yxγγγ8)
,
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where

N(x, y) =1− y3x1x2x4x5x6x7x82x92x10x12 − y3x1x2x3x5x6x7x8x92x102x11
− 2 y3x1x2x3x4x5x6x7x8x9x10x11x12 − y4x22x3x4x52x62x72x8x92x10x11x12
+ y4x1

2x2x3x4x5x6x7x8
2x9

2x10
2x11x12 + 2 y5x1x2

2x3x4x5
2x6

2x7
2x8

2x9
3x10

2x11x12

+ y5x1x2
2x3x4

2x5
2x6

2x7
2x8

2x9
2x10x11x12

2 + y5x1x2
2x3

2x4x5
2x6

2x7
2x8x9

2x10
2x11

2x12

− y8x12x23x32x42x53x63x73x83x94x103x112x122,

is polynomial of 10 terms. It is not clear how to decompose FG3(x, y) as a sum of
simple rational functions. We guessed such a decomposition (in Corollary 10) by certain
criterion. The verification of the formula by computer is easy.

We should mention that for some complicated graphs G, Maple will stuck when
normal FG(x, y).

We conclude the subsection by reporting the following result. Let G4 be given in
Figure 4, with 6 vertices and 9 edges.

1

2

3 4

5

6

2

1

3

4

5

6

9

8

7

Figure 4. Regular graph G4 with 6 vertices and 9 edges.

Then

FG4(x, y) =
yx2x4x6

(1− yx1x4x8) (1− yx2x4x6) (1− yx2x5x9) (1− yx3x6x7) (1− yx1x3x5)

+
1

(1− yx1x4x8) (1− yx2x5x9) (1− yx3x6x7) (1− yx7x8x9) (1− yx1x3x5)

+
y2x2x4x6x7x8x9

(1− yx7x8x9) (1− yx3x6x7) (1− yx2x5x9) (1− yx2x4x6) (1− yx1x4x8)
.

(3.1)

FG4(y) =
1 + y + y2

(1− y)5
= 1 + 6 y + 21 y2 + 55 y3 + 120 y4 + 231 y5 + 406 y6 + · · · .(3.2)

It is not hard to give a combinatorial proof using similar ideas.

3.2. Magic Labellings. The complete generating function FG(x, y) encodes almost all
information of S(G).

Let S∗(G) be the set of magic distinct labellings of G. In some literature, the
technique condition “positive” is added because it is possible that any ααα ∈ S(G) must
have label 0 on some edges. For instance, if G is given by Figure 5 (a), then it is easy to
check that S(G) only contains the all 0 labelling; if G is given by Figure 5 (b), then for
any ααα ∈ S(G) the labels of 2 and 3 must be 0. In deed, we have FG5(b)(x, y) = 1

1−yx1x4 .
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1

2

3

4
5

1

3

4

5

2

6

(a)

1

2

3 4
1

2

3

4

(b)

Figure 5. Graph G5(a) with 5 vertices and 6 edges and graph G5(b) with
4 vertices and 4 edges.

For a d regular graph G, the all 1 labelling 1 is magic with magic sum d. Thus
SP(G) = 1 + S(G) = {1 +ααα : ααα ∈ S(G)}. In this sense, the positive condition makes no
difference for magic labellings of a regular graph.

The graphs G1, G2, G3 in our examples are all regular graphs. It is an accident that
none of them have magic distinct labellings. Indeed, they do not have magic distinct
R-labellings. To see this for G3, any γγγ ∈ SR(G3) can be written as in (2.7) for some
k1, . . . , k5 ∈ R. Then the a2 and a6 labels are the same. The situation for the other two
graphs are similar: look at the a1 and a3 labels for G1, and the a1 and a5 labels for G2.

In general, the structure of S∗(G) is pretty complicated. It is obtained by slicing
out all ααα ∈ S(G) in the

(
n
2

)
hyper planes αi = αj, 1 ≤ i < j ≤ n. Using inclusion and

exclusion principle will be too expensive since that will involve 2(n2) cases. It is possible
to obtain the generating function

EG(x, y) =
∑

ααα∈S∗(G)

xαααys(G)

by MacMahon’s partition analysis.

Here we introduce two operators that can be realized by MacMahon’s partition
analysis. If A(x, y) =

∑
i,j≥0 ai,jx

iyj is a formal power series in x and y. Then the
diagonal operator defined by

diag
x,y

A(x, y) =
∑
i≥0

ai,ix
iyi =

∑
i,j≥0, i−j=0

ai,jx
iyj

can be realized by MacMahon’s Omega (linear) operator. We have

diag
x,y

A(x, y) =
∑
i,j≥0

ai,jx
iyjΩ

=
λi−j = Ω

=

∑
i,j≥0

ai,j(λx)i(y/λ)j = Ω
=
A(λx, y/λ).

Similarly, if we define

diag
x>y

A(x, y) =
∑
i>j≥0

ai,jx
iyj =

∑
i,j≥0, i−j−1≥0

ai,jx
iyj,

then it can be realized by

diag
x>y

A(x, y) =
∑
i,j≥0

ai,jx
iyjΩ
≥
λi−j−1 = Ω

≥

∑
i,j≥0

ai,jλ
−1(λx)i(y/λ)j = Ω

≥
λ−1A(λx, y/λ).
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We have

EG(x, y) =
∏

1≤i<j≤n

(1− diag
xi,xj

)FG(x, y),

whose expansion is just the inclusion and exclusion result. We can normal the result
after each application of 1 − diagxi,xj , provided that the result would not explode, i.e.,
the numerator becomes too large for Maple to handel. Note that the computation highly
relies on the order of the operators. For instance, (1− diagx2,x6)F

G3(x, y) = 0. But the
result quickly explodes for some orders.

Another way is to use the natural decomposition

S∗(G) =
⊎
π∈Sn

Sπ(G),

where π ranges over all permutations of {1, 2, . . . , n}, and Sπ(G) consists of all ααα =
(α1, . . . , αn) ∈ S(G) compatible with π, i.e., απ1 > απ2 > · · · > απn .

The generating function EG,π(x, y) of Sπ(G) can be extracted from FG(x, y) by
applying MacMahon’s Omega operator. We have

EG,π(x, y) = diag
xπ1>xπ2

· · · diag
xπn−1>xπn

FG(x, y).

For FG4(x, y) with the combinatorial decomposition as F1 +F2 +F3 as in (3.1), and
for each Fi, i = 1, 2, 3, we can extract

Eπ
i = diag

xπ1>xπ2

· · · diag
xπ8>xπ9

Fi(x, y).

for any particular π ∈ S9. Only 432 = 2433 out of 362880 = 9! permutations give non-
varnishing results. And the three sets of permutations do not overlap. Each result are
simple rational functions with numerator either a monomial or a binomial. For instance,

E134568279
1 =

x74x
3
2x

5
6y

15x101 x
8
3x

6
5x

4
8x

2
7 (1− x47x23x65y15x110x38x56x84x72)

D(x, y)
,

where

D(x, y) =
(
1− y3x1x2x3x4x5x6x7x8x9

) (
1− y4x13x2x32x42x52x6x8

)
×
(
1− y5x13x2x33x42x52x62x7x8

) (
1− y6x14x2x33x43x52x62x7x82

)
×
(
1− y7x15x2x34x43x53x62x7x82

) (
1− y8x15x22x34x44x53x63x7x82

)
.

There are total of 2434 = 1296 permutations π such that EG4,π(x, y) 6= 0.

As a consequence, we have

EG4(y) =
72y12 (1− y)2N4(y)

(1− y3)2 (1− y4) (1− y5) (1− y6) (1− y7) (1− y8)
(3.3)

= 72(y12 + 2 y13 + 4 y14 + 8 y15 + 12 y16 + 20 y17 + 29 y18 + 42 y19 + 54 y20 + · · · )

where N4(y) is given by

1 + 4 y + 11 y2 + 24 y3 + 44 y4 + 73 y5 + 109 y6 + 152 y7 + 192 y8 + 233 y9 + 258 y10

+ 274 y11 + 268 y12 + 249 y13 + 207 y14 + 166 y15 + 117 y16 + 79 y17 + 41 y18 + 18 y19.



ON MAGIC DISTINCT LABELLINGS OF SIMPLE GRAPHS 13

The 72 in the numerator seems a surprise. Observe that the symmetry group of G4

is the Dihedral group D6 which is of cardinality 12. Thus we have the following result.

Corollary 11. Let h̃(s) be the number of magic distinct labellings of G4 of magic sum
s up to isomorphism under the Dihedral group D6. Then it is divisible by 6 for all s.

Proof. Clearly we have

EG4(y)/12 =
∑
s≥0

h̃(s)ys.

The corollary then follows by the formula (3.3).

Corollary 11 needs a combinatorial proof. We list in Figure 6 all non-isomorphic
magic labellings of G4 with minimum magic sum s = 12.
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6

4

8

3

(a)

3

6

0
5

7

2

4

8

1

(b)
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7
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5

6

2

3

8

0

(c)
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5

3
7

2

6

1

8

0

(d)

8

2

5
7

0

4

6

1

3

(e)

7

8

6

4

2

3

1

5

0

(f)

Figure 6. All non-isomorphic magic labellings of G4 with minimum
magic sum s = 12. The edges are labeled by the blue boxed numbers.

4. Concluding Remark

We have studied the complete construction of magic labelling of graphs S(G). Our
aim is to decompose S(G) into some shifted free monoids. We have achieved this for
four graphs, and give combinatorial proofs of the decompositions.

In general, there are algorithms to compute the generating functions FG(x, y). Then
the decomposition corresponds to algebraic decomposition of FG(x, y). Such a decom-
position seems easier to attack, and it is a guide for combinatorial proofs.

Our approach to magic distinct labellings is by using MacMahon’s partition analysis,
especially the Maple package CTEuclid. The package extracts constant term of an
Elliott-rational function, i.e., a rational function whose denominator is a product of
binomials. The number of binomials in the denominator affects the performance of
Maple significantly. This is why we prefer a good decomposition of FG(x, y).

Magic distinct labellings of the cube was studied in [18], where the cube has 8
vertices and 12 edges. The generating function is more complicated than that of G4. It
seems that the more edges the graph have, the more complex the generating function is.
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Another direction is to restrict the number of vertices. In an upcoming paper, we
will report the results for all graphs with 5 vertices.
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