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Abstract

The purpose of this note is to report, in narrative rather than rigorous style, about the nice
geometry of 6-division points on the Fermat cubic F and various conics naturally attached to them.
Most facts presented here were derived by symbolic algebra programs and the idea of the note is
to propose a research direction for searching for conceptual proofs of facts stated here and their
generalisations. Extensions in several directions seem possible (taking curves of higher degree and
contact to F , studying higher degree curves passing through higher order division points on F ,
studying curves passing through intersection points of already constructed curves, taking the duals
etc.) and we hope some younger colleagues might find pleasure in following proposed paths as well
as finding their own.

1 Introduction

Any complex elliptic curve E can be embedded as a smooth cubic in the projective plane P
2. With

the embedding some points on E are distinguished by the way they interact with certain other curves
in the plane. For example, it is well-known that there are exactly 9 flex points on E, i.e., points where
the tangent line is hyper-tangent by what we mean that it intersects E with multiplicity 3 rather than
the multiplicity 2 as an ordinary tangent line does. This was observed already in the 18th century by
Maclaurin.

From the intrinsic point of view choosing one of the inflexion points as the origin (in the group
law on E) the set of all 9 flex points is exactly the set of 3-division points E[3] on E, i.e., points P

subject to the condition 3P = 0 in the addition law on E. This link between the intrinsic and extrinsic
geometry is justified by Abel’s Theorem [17, Theorem IV.4.13B].

Since flex points of a smooth curve are well known to be common zeroes of the equation f defining
this curve and the Hessian H(f) = H1(f), this provides an extrinsic, concrete way to obtain the ideal
of all 3-division points E[3] on E as a complete intersection ideal generated by f and H(f).

In the middle of the 19th century Cayley [5], [6] observed that the interplay between hyperoscu-
lating lines (flex lines) and 3-division points can be extended in a natural manner. More specifically,
points admitting hyperosculating curves of higher degree are precisely higher order division points on
the cubic curve. In the present note we focus on hyperosculating conics. Our interest in these curves
and their arrangement is partly motivated by the considerable grow of interest in arrangements of
curves of higher degree in the last couple of years, see e.g. [22], [23], [10], [9], [18]. This interest
in turn has roots in various deep problems in combinatorics, singularities theory and construction of
surfaces of general type with certain prescribed invariants.

Throughout the note, by a slight abuse of notation, we denote by the same symbol, say Γ a
homogeneous polynomial in C[x, y, z] and its set of zeroes, i.e., the plane curve it defines. We hope
that it will be clear from the context if we have an algebraic or geometric object in mind.
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2 Flex points and flex lines

We recall briefly properties of flex lines and determine them explicitly in the case of the Fermat cubic

F = x3 + y3 + z3.

Its Hessian is readily computed (up to a scalar) as

H(F ) = xyz,

i.e., the set of zeroes of the Hessian splits in three coordinate lines. Every flex point lies on one of
these lines. They are evenly distributed: three flex points on each of the coordinate lines. Explicit
coordinates of these points are:

P1 = (1 : −1 : 0), P2 = (1 : −ε : 0), P3 = (1 : −ε2 : 0),
P4 = (1 : 0 : −1), P5 = (1 : 0 : −ε), P6 = (1 : 0 : −ε2),
P7 = (0 : 1 : −1), P8 = (0 : 1 : −ε), P9 = (0 : 1 : −ε2),

where ε is a primitive root of 1 of order 3.
Since the lines tangent to F at flex points have the order of tangency 3, any line passing through

two of flex points necessarily meets F in a third flex (it must be a flex by Abel’s Theorem) different
from the two flexes determining the line. Thus there are altogether 12 lines meeting F in three
mutually distinct flex points. This gives rise to a

(123, 94)

arrangement, which is known as the Hesse arrangement. It is an arrangement enjoying many properties
interesting in various branches of mathematics. We just mention here a recent work of Bassa and Özgür
Kişisel [2], where they claim the only complex 4-net is the Hesse. The equations of the 12 lines can
be given explicitly:

L1 = x, L2 = y, L3 = z,

L4 = x + y + z, L5 = x + εy + z, L6 = x + ε2y + z,

L7 = x + y + εz, L8 = x + y + ε2z, L9 = x + εy + εz

L10 = x + εy + ε2z, L11 = x + ε2y + εz, L12 = x + ε2y + ε2z,

Dualizing, we obtain a
(94, 123)

arrangement of 9 lines with a peculiar property that whenever two of them intersect there is a third
one passing through the intersection point. Thus there are only triple intersection points among the
lines forming this configuration. It is one of very few known configurations of this type, see [15, Open
Problem 1.16]. It is an interesting and challenging problem to either show that the list in [15, Remark
1.1.4] is complete or to construct new examples.

The 12 points in which the lines of the dual Hesse arrangement intersect form a configuration very
interesting from the algebraic point of view. Let I be the saturated ideal of these 12 points. Then its
third symbolic power I(3) fails to be contained in the second ordinary power I2. The witness for the
non-containment is the product of equations of the 9 configuration lines, i.e., the polynomial

(x3 − y3)(y3 − z3)(z3 − x3).

This property of I was discovered in 2013 by Dumnicki, Tutaj-Gasińska and the first author [12]. This
finding led to considerable development of the containment theory between symbolic and ordinary
powers of homogeneous ideals reflected in a large and still growing number of articles on this subject
[1, 3, 4, 7, 8, 11, 13, 16, 19, 20, 24]. See our previous joint work [26] for an introduction to this circle
of ideas.
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3 Sextactic points and derived objects

Cayley proved in [5] that for a smooth point on a plane curve of degree ≥ 3 there exists a unique
osculating conic, whose local intersection multiplicity with the curve at the point of contact is at least
5. This is a degree 2 analogy of a tangent line, which is distinguished among all lines passing through
a smooth point of a plane curve by having the local intersection multiplicity with the curve at least 2.
As we saw in the previous section, in some points of the curve the tangent lines have an even greater
contact, namely the local intersection multiplicity is ≥ 3. Points with this property are of course the
flex points of the curve and they can be identified for a smooth plane curve as the intersection points
of the curve with its Hessian. Thus an irreducible curve of degree d has at most 3d(d− 2) flexes.

In [6] Cayley realised that a plane curve, in analogy to flexes, possesses points where the osculating
conic has contact ≥ 6. He introduced the terminology of sextactic points and named accordingly the
hypo-osculating conics as sextactic conics. Note that at the flexes of the curve, the sextactic conic is
easily identified as the tangent line taken twice.

It is natural to wonder if the set of sextactic points of a plane curve Γ can be identified by
intersecting Γ with some other curve derived out of its equation. In order to answer this question
Cayley introduced the notion of the second Hessian of a curve and proved that the sextactic points
are, in analogy to the flexes, the common points of the curve and its second Hessian, which defines
a curve of degree 12 deg(Γ) − 27. Only recently Maugesten and Moe [21] checked Cayley’s formula
carefully and pinned down an inaccuracy in its coefficients. Since the erroneous formula was repeated
in the literature for over 150 years, we state it here in the correct form following the notation of [21].
The inaccuracy of Cayley was to write 40 in the place of the coefficient 20 appearing in the third
line of the formula in Definition 3.1. We refer also to our Singular script [25] for a verification of the
formula.

Definition 3.1 (The second Hessian, Cayley 1865, Maugesten, Moe 2019). Let Γ be a plane curve of
degree d. Then, its second Hessian H2(Γ) is

H2(Γ) = (12d2 − 54d + 57)H(Γ) Jac (Γ,H(Γ),ΩH)

+ (d− 2)(12d − 27)H(Γ) Jac (Γ,H(Γ),ΩΓ)

− 20(d− 2)2 Jac (Γ,H(Γ),Ψ).

Of course now the explanation of symbols appearing in Definition 3.1 is due. We proceed step by
step. For polynomials f, g, h we have

Jac (f, g, h) = det





fx fy fz
gx gy gz
hx hy hz



 ,

where fu denotes as usual the partial derivative of f with respect to u. The Hesse matrix of a
polynomial Γ is thus

Hess(Γ) =





Γxx Γxy Γxz

Γyx Γyy Γyz

Γzx Γzy Γzz



 .

Let us abbreviate its determinant by H = H(Γ) = det(Hess(Γ)). Then H is itself a polynomial of
degree 3(deg(Γ) − 2) and we can consider its Hesse matrix

Hess(H) =





Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz



 .

Then
Ω = tr

(

Hess(Γ)adj · Hess(H)
)
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or more explicitly Ω is the scalar product

Ω =

















ΓyyΓzz − Γ2
yz

ΓxxΓzz − Γ2
xz

ΓxxΓyy − Γ2
xy

ΓxyΓxz − ΓxxΓyz

ΓxyΓyz − ΓyyΓxz

ΓxzΓyz − ΓzzΓxy

















T

·

















Hxx

Hyy

Hzz

2Hyz

2Hxz

2Hxy

















.

For a variable u ∈ {x, y, z} we have then finally

(ΩΓ)u =

















(ΓyyΓzz − Γ2
yz)u

(ΓxxΓzz − Γ2
xz)u

(ΓxxΓyy − Γ2
xy)u

(ΓxyΓxz − ΓxxΓyz)u
(ΓxyΓyz − ΓyyΓxz)u
(ΓxzΓyz − ΓzzΓxy)u

















T

·

















Hxx

Hyy

Hzz

2Hyz

2Hxz

2Hxy

















.

and

(ΩH)u =

















ΓyyΓzz − Γ2
yz

ΓxxΓzz − Γ2
xz

ΓxxΓyy − Γ2
xy

ΓxyΓxz − ΓxxΓyz

ΓxyΓyz − ΓyyΓxz

ΓxzΓyz − ΓzzΓxy

















T

·

















(Hxx)u
(Hyy)u
(Hzz)u
(2Hyz)u
(2Hxz)u
(2Hxy)u

















.

Finally Ψ is defined as

Ψ = − det









0 Hx Hy Hz

Hx Γxx Γxy Γxz

Hy Γxy Γyy Γyz

Hz Γxz Γyz Γzz









.

4 Sextactic points and conics

Applying Definition 3.1 to the Fermat cubic F (we omit the dull calculations for the check of which
we refer to our Singular script [25]) we obtain up to a scalar

H2(F ) = (x3 − y3)(y3 − z3)(z3 − x3).

Thus, similarly as in the case of the ordinary Hessian, the second Hessian splits completely into linear
factors. The lines defined by these linear forms are arranged in the Fermat configuration of order 3
or equivalently in the dual Hesse arrangement, which we have already encountered in the previous
section! Together with the Hessian, we have

H1(F ) ·H2(F ) = xyz(x3 − y3)(y3 − z3)(z3 − x3),

which is the extended Fermat arrangement. For more details on exciting properties of Fermat arrange-
ments we refer to [27].

The set of all sextactic points on the Fermat cubic is thus a complete intersection of the cubic
F and its second Hessian H2(F ). They can be individually computed explicitly and we obtain the
following list:



5

S1 =
[

−1
2εµ

2 : −1
2εµ

2 : 1
]

, S2 = [1 : (ε + 1)µ : 1], S3 = [(ε + 1)µ : 1 : 1],

S4 =
[

1
2(ε + 1)µ2 : −(12 )µ2 : 1

]

, S5 = [ε : −εµ : 1], S6 = [−µ : −ε− 1 : 1],

S7 =
[

−1
2µ

2 : 1
2 (ε + 1)µ2 : 1

]

, S8 = [−ε− 1 : −µ : 1], S9 = [−εµ : ε : 1],

S10 =
[

−1
2µ

2 : −1
2µ

2 : 1
]

, S11 = [1 : −µ : 1], S12 = [−µ : 1 : 1],

S13 =
[

1
2εµ

2 : 1
2 (ε + 1)µ2 : 1

]

, S14 = [ε : (ε + 1)µ : 1], S15 = [−εµ : −ε− 1 : 1],

S16 =
[

1
2(ε + 1)µ2 : −1

2εµ
2 : 1

]

, S17 = [−ε− 1 : −εµ : 1], S18 = [(ε + 1)µ : ε : 1],

S19 =
[

1
2(ε + 1)µ2 : 1

2(ε + 1)µ2 : 1
]

, S20 = [1 : −εµ : 1], S21 = [−εµ : 1 : 1],

S22 =
[

−1
2µ

2 : −(12)εµ2 : 1
]

, S23 = [ε : −µ : 1], S24 = [(ε + 1)µ : −ε− 1 : 1],

S25 =
[

−1
2εµ

2 : −(12)µ2 : 1
]

, S26 = [−ε− 1 : (ε + 1)µ : 1], S27 = [−µ : ε : 1],

where ε is as above a primitive root of 1 and µ is the real third root of 2.

Remark 4.1. It is worth to point out that the points S1, . . . , S27 listed above are nothing other but
the 6-division points on F , which are not 3-division points.

Endowing F with a level 6 structure, i.e., fixing a group isomorphism

α : F [6] → Z6 × Z6

the 3-division points F [3] correspond to pairs of even integers (a, b) with 0 ≤ a, b ≤ 4.
Since the flex points are aligned in an unusual way, it is natural to expect that the sextactic points

behave in an unexpected way with respect to conics. Given explicit coordinates of points S1, . . . , S27

and running a brute-force computer calculation we are able to enumerate conics passing through six-
tuples of the sextactic points. Note that 6 is the maximal number of sextactic points which can be
contained in a conic. Indeed, any conic through 7 or more of sextactic points would be a component
of F by Bezout’s Theorem. Of course the Fermat cubic is smooth and so, in particular, irreducible so
that this situation cannot happen.

Lemma 4.2. There are exactly 8 244 conics containing six of the sextactic points.

Proof. Direct computer computation, see [25]. Alternatively one can use the isomorphism α mentioned
above. Then the task amounts to identifying 6-tuples of pairs of integers (with at least one of them
odd)

(a1, b1), . . . , (a6, b6) ∈ Z6 × Z6

with the property
6

∑

i=1

ai = 0 mod (3) and
6

∑

i=1

bi = 0 mod (3).

Indeed, it follows from the Abel Theorem that 6 points on an elliptic curve are contained in conic if
and only if their sum (in the addition law on the elliptic curve) is a 2-division point.

Corollary 4.3. Since the configuration of the sextactic points is symmetric, it follows that there are
exactly 1 832 conics among those from Lemma 4.2 passing through a fixed sextactic point.

Remark 4.4. Unlike in the case of flex lines, which passing through two flex points must pass through
a third one, there are many conics passing just through 5 of the sextactic points. However, all such
conics do not have any additional intersection points with the Fermat cubic. It turns out that all such
conics are tangent at one of the sextactic points to F .

Among the 8 244 conics mentioned above, there is a number of reducible and a number of irreducible
ones. More precisely the following holds.
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Lemma 4.5. There are exactly 5 976 smooth conics containing six of the sextactic points.

Proof. The proof is computational. Alternatively one can identify those conics which split into lines.
To this end one can first identify the 81 lines from Lemma 4.8. The argument here is in turn a
simplified version of the argument presented in the proof of Lemma 4.2. Collinear triples of sextactic
points correspond under the isomorphism α to pairs (a1, b1), (a2, b2) ∈ Z6 × Z6 such that at least one
of the sums a1 + a2 or b1 + b2 is odd.

In the analogy to Corollary 4.3 we have now.

Corollary 4.6. There are 1 328 smooth conics among those from Lemma 4.5 passing through a fixed
sextactic point.

Putting Lemma 4.3 and Lemma 4.6 together we obtain the following result.

Corollary 4.7. There are 2 268 conics among those from Lemma 4.2 splitting into two lines. More-
over, there are exactly 3 sextactic points on each of the lines and the intersection points of the lines
forming such a conic are not in the set of the sextactic points.

With a little more effort we arrive to a rather surprising fact that there are altogether only 81 lines
of which reducible conics are composed. More precisely we obtain the following arrangement.

Lemma 4.8. The 81 lines and the 27 sextactic points form a (813, 279) arrangement, i.e., each line
contains 3 points and through each point there are 9 lines passing.

As a byproduct from Lemma 4.8 we derive the following somewhat surprising fact.

Lemma 4.9. The product of the equations of all 81 lines from Lemma 4.8 is defined over Z.

5 Perspectives

It has been observed by Gattazzo [14] that a smooth plane cubic contains points which are special
from the perspective of unexpectedly high contact with curves of higher degree. More precisely he
defines points of type 3k for k ≥ 1 as follows.

Definition 5.1 (Type 3k points). Let Γ be a smooth plane cubic. A point P ∈ Γ is of type 3k, if
there exists an irreducible curve of degree k intersecting Γ in P with multiplicity 3k.

Thus flex points are type 3 points and the sextactic points are type 6 points.
Gattazzo observed that there are 72 points of type 9 on a smooth plane cubic. We finish this note

with the following challenges.

Problem 5.2. Check if there exists a curve of degree 24 which intersects a smooth elliptic curve in
type 9 points.

Problem 5.3. Compute explicit coordinates of type 9 points on the Fermat cubic.

Acknowledgement. Our research was partially supported by National Science Centre, Poland,
Opus Grant 2019/35/B/ST1/00723.
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