
Axioms for a theory of signature bases
Pierre Lairez #�

Université Paris-Saclay, Inria, 91120 Palaiseau, France

Abstract Twenty years after the discovery of the F5 algorithm, Gröbner bases with signatures are still
challenging to understand and to adapt to different settings. This contrasts with Buchberger’s algorithm,
which we can bend in many directions keeping correctness and termination obvious. I propose an
axiomatic approach to Gröbner bases with signatures with the purpose of uncoupling the theory and the
algorithms, giving general results applicable in many different settings (e.g. Gröbner for submodules,
F4-style reduction, noncommutative rings, non-Noetherian settings, etc.), and extending the reach of
signature algorithms.

2012 ACM Subject Classification Computing methodologies→ Algebraic algorithms

Keywords and phrases Gröbner basis, F5 algorithm, signature basis

Funding This work has been supported by the European Research Council under the European Union’s
Horizon Europe research and innovation programme, grant agreement 101040794 (10000 DIGITS); and
by the ANR grant ANR-19-CE40-0018 (De Rerum Natura).

1 Introduction

Context Introduced by Faugère (2002) to compute Gröbner bases, the F5 algorithm proposes
the concept of signature to avoid the redundant computations that arise in Buchberger’s algo-
rithm (Buchberger, 1965, 1965/2006). Each polynomial handled by the algorithm is augmented
with a signature designed to enforce a fundamental postulate, which we may state as “two
elements with the same signature are substitutable”. We can find precursive ideas in the work
of Gebauer and Möller (1986) and Möller et al. (1992) and signatures also share somes ideas
with Hilbert-driven algorithms (Traverso, 1996).

Today’s situation of signature algorithms is equivocal. F5’s relevance, from the pure aspect
of performance, was demonstrated by a success on cryptographic challenges early on (Faugère
& Joux, 2003). Moreover, the predictability of F5 in certain situations enables complexity
analyses that are particularly relevant in cryptanalysis (Bardet et al., 2015). But none of the
current best implementations for computing Gröbner bases uses signatures, be it Magma
(Bosma et al., 1997), msolve (Berthomieu et al., 2021), Singular (Decker et al., 2022) or Maple.
They prefer Buchberger’s algorithm, handling S-pairs as Gebauer and Möller (1988) do and
using simultaneous reductions in the F4 style (Faugère, 1999) – see the report of Monagan and
Pearce (2015) on this approach. The theoretical benefits of signature algorithms are diminished
by a higher implementation complexity and a larger output (the signature bases computed
by signature algorithms are more constrained than Gröbner bases). More than benchmarks,
literature about signature algorithms is turned towards revealing the core ideas behind F5 and
understanding what makes a signature algorithm terminate. Termination is a very peculiar
aspect, not as transparent as termination of Buchberger’s algorithm. Nonetheless, thanks to
decisive work by Hashemi and Ars (2010), Gao et al. (2010), Arri and Perry (2011), Eder and
Perry (2011), and Gao et al. (2016) these goals have been reached in the polynomial case – see
the survey by Eder and Faugère (2017).

The point of studying signature algorithm may not be the quest of new world records for

ar
X

iv
:2

21
0.

13
78

8v
3

 [
cs

.S
C

]
 8

 J
an

 2
02

4

mailto:pierre.lairez@inria.fr

2 Axioms for a theory of signature bases

polynomial system solving, but rather the understanding of signatures themselves, and what
we can extract from them. Signature bases convey extra information compared to Gröbner
bases, related to the syzygy module of the input generators. Many ideal-theoretic operations
– intersection, quotient, saturation, Ext modules – are related to syzygy modules (Stillman,
1990), and signature algorithms seem to give an efficient access to them (Gao et al., 2010;
Sun & Wang, 2011; Faugère, 2001; Eder et al., 2023). Porting these ideas to more general
settings is a strong motivation to engage in the study of signatures. Yet, in my view, the lack of
flexibility of the theory of signature algorithms hinders further development, both practical
and theoretical. For example, modern implementations for computing Gröbner bases make it
clear that simultaneous reductions in the F4 style are key towards high performance. Yet, there
is no satisfactory description of a signature algorithm with F4-style reduction (Albrecht and
Perry (2010) do not prove termination and Eder and Faugère (2017, §13) are superficial).

This work considers the setting of a module over an algebra over a field, with well-ordered
monomials. This covers many interesting case but excludes some recent developments of
signature algorithms which demonstrate the wide applicability of the concept: signatures in
local rings (Lu et al., 2018), coefficients in Euclidean rings (Eder et al., 2017), principal ideal
domains (Francis & Verron, 2020; Hofstadler & Verron, 2023), or Tate algebras (Caruso et al.,
2020), and signatures in a tropical setting (Vaccon & Yokoyama, 2017; Vaccon et al., 2018).

Contribution I propose a set of axioms that specifies a context in which signature algorithms
are applicable. They fit many known settings – such as solvable algebras (Sun et al., 2012) and
free algebras (Hofstadler & Verron, 2022) – and some previously unknown settings, such as
differential algebras (§6.5). Very importantly, the axioms describe modules over a ring, rather
than focusing on the special case of ideals. While many ideal theoretic constructions (such as
ideal intersection) are best understood in terms of modules, they are not addressed in previous
works. The ideas of the most recent frameworks for signature algorithms (Eder & Perry, 2011;
Gao et al., 2016) work smoothly in this axiomatic setting, so many statements will of course be
familiar, yet with a wider applicability.

Working with axioms makes some useful ideas emerge. At least two of them are worth
attention. First, the concept of prebasis is introduced to precisely describe admissible inputs
for signature algorihms, or, in other words, to describe what it means for signatures to be
consistent. Previous works all starts by fixing the input, crafting specific signatures, and devel-
oping the theory with respect to these specific signatures. This is overly restrictive. Moreover,
this approach does not highlight the essential properties of signatures, ensuring correctness
and termination, among the incidental properties of this specific construction. This is also
problematic when trying to define what signatures and signature bases are. Gröbner bases are
defined by the equality ⟨lm𝐺⟩ = lm ⟨𝐺⟩, or the confluence of some rewriting system (e.g. Becker
& Weispfenning, 1993, Definition 5.37), we do not need to say a Gröbner basis of something. It
is a very desirable definition which should have an equivalent in the signature setting. The
main obstacle here is the definition of signatures, independently of the specific construction
that is usually performed for a given input. This raises an interesting question: given a set of
signatures – basically anything well-ordered on which act monomials – what are the admissible
inputs? Similarly, imagine running some signature basis algorithm from an input 𝑓1, . . . , 𝑓𝑚, and
stopping it midway. In this intermediate state, we have polynomials 𝑔1, . . . , 𝑔𝑟 with signatures
deriving from the original input by legal operations on polynomials and signatures. These
signatures must be consistent in some sense. Can we characterize this consistency property
without refering to the original input? This leads to the concept of prebasis, that is a set of

P. Lairez 3

polynomials with signatures which satisfy the fundamental postulates of signatures (elements
with equal signatures are substitutable). I prove that if a set of sigpoly pairs is a Gröbner basis
in the module representation, then it is a prebasis (Theorem 24). A concrete application is
the reuse of signatures from one computation to another, which is a way to avoid redundant
computations.

Second, I introduce sigtrees to uncouple the termination criterion from the algorithms them-
selves. Sigtrees make a “one size fits all” termination criterion. For Buchberger’s algorithm,
termination follows from a general principle, Dickson’s Lemma, not from ad hoc arguments. The
concept of sigtrees is a tentative to provide such a general argument. It proves the termination
of all known signature algorithms and also settles positively a conjecture in the classical poly-
nomial setting: the termination of signature algorithms with out-of-order signature handling
and the F5 reductant selection strategy (among all possible reductants, choose the most recent
one). We may blend in an F4-style reduction, the termination argument remains the same.

Lastly, as a didactic contribution, I try to emphasize an elemental feature of signature
bases (or rather, for that matter, rewrite bases), putting a clear distinction with Gröbner bases.
To check that a given set 𝐺 is a Gröbner basis of an ideal 𝐼 , it is enough to check that (1) 𝐺
generates 𝐼 , and (2) the S-pairs reduce to zero. Typically (1) will hold by design if 𝐺 has been
constructed from a generating set of 𝐼 by usual reduction steps. Checking (2) is more difficult
and requires arithmetic operations in the base field. This is typically a costly operation. In
constrast, to check that a given set 𝐺 with signatures is a rewrite basis of an ideal 𝐼 , it is enough
to check that (1’) 𝐺 is a prebasis of 𝐼 , and (2’) the leading monomials and the signatures satisfy
some combinatorial property (Theorem 38). The concept of prebasis is introduced in Section 3.2,
but for the moment, it is enough to say that (1’) will hold by design if 𝐺 is obtained by allowed
reduction steps from an initial prebasis of 𝐼 . The important part is the nature of (2’): it requires
no arithmetic operations to be checked, only operations on monomials. Algorithms for signature
bases are all about exploiting this combinatorial structure. This reminds of staggered linear
bases introduced by Gebauer and Möller (1986) to compute Gröbner bases, they feature a
similar combinatorial structure – and the link with signatures have recently been investigated
by Hashemi and Javanbakht (2021).

Plan In Section 2, we define the algebraic structure in which we consider signature bases,
monomial modules, that are vector spaces with a “leading monomial” map and an action of
a monoid with some compatibility rules. We also introduce the rewriting system defined by
the top reduction. In Section 3, we define signatures, signature bases, prebases, and rewrite
bases. We also state a combinatorial criterion for a set to be a rewrite basis. Section 4 gathers
secondary properties of rewrite bases, such as a precise comparison with signature bases, that
are not necessary for the next sections. Section 5 introduces Noetherian hypotheses, termi-
nation arguments and review algorithm templates. Section 6 illustrates the axioms by several
different settings in which they apply.

Acknowledgment I am grateful to Hadrien Brochet and Frédéric Chyzak for a very careful
reading and useful comments. I thank the referees for thoughtful reports.

2 Gröbner bases

Before going to signatures, we lay down some definitions. The main ones are the definitions of
a monomial space – a vector space with a concept of leading monomial, see Section 2.2 – and

4 Axioms for a theory of signature bases

a monomial module – a monomial space endowed with a linear action of a (non necessarily
commutative) monoid, compatible with leading monomials, see Section 2.3.

In monomial spaces, we develop a (short) theory of top reduction modulo tail equivalence
(Section 2.2), using the terminology of rewriting systems (Section 2.1). Using rewriting systems
to describe the theory of Gröbner bases in polynomial rings is done in several textbooks (e.g.
Becker & Weispfenning, 1993; Winkler, 1996; Kreuzer & Robbiano, 2000; Mora, 2005): in a few
words, we say that a polynomial 𝑓 can be reduced by a polynomial 𝑔 , if we can cancel out one
of the terms of 𝑓 by substracting a scalar multiple of the leading monomial of 𝑔 . The context
of signatures puts the emphasis on top reduction – the reduction of the leading monomial –
as opposed to tail reduction. The practice of Gröbner bases computation also shows that tail
reduction steps are optional. They are irrelevant as far as termination and correctness is
concerned, to perform them or not is only a matter of performance. Lastly, tail reduction does
not enjoy nice properties. For example, if 𝑔 reduces 𝑓 then𝑚𝑔 reduces𝑚𝑓 for any monomial𝑚,
in a polynomial setting. But this implication breaks if𝑚 is a polynomial rather than a monomial,
or if 𝑓 and 𝑔 lie in a Weyl algebra, unless the reduction is a top reduction. All of these hints at
replacing tail reduction by a more flexible tail equivalence and replace the customary reduction
by the top reduction modulo tail equivalence. This fits the abstract setting of “reduction modulo
equivalence” developed by Huet (1980).

2.1 Rewriting systems

Let 𝑋 be a set and 1→ a binary relation on 𝑋 . “𝑥 1→ 𝑦” reads “𝑥 reduces to 𝑦”. Following Huet
(1980), we define the following binary relations:1

𝑥 𝑛→ 𝑦, for 𝑛 > 0, if there is some 𝑧 ∈ 𝑋 such that 𝑥 1→ 𝑧 and 𝑧 𝑛−1→ 𝑦;
𝑥 → 𝑦 if 𝑥 = 𝑦 or 𝑥 𝑛→ 𝑦 for some 𝑛 > 0, this is the reflexive transitive closure of 1→;
𝑥 ↑ 𝑦 if there is some 𝑧 ∈ 𝑋 such that 𝑧 → 𝑥 and 𝑧 → 𝑦;
𝑥 ↓ 𝑦 if there is some 𝑧 ∈ 𝑋 such that 𝑥 → 𝑧 and 𝑦 → 𝑧.

The relation 1→ is Noetherian if there is no infinite sequence 𝑥0
1→ 𝑥1

1→ · · · . An element 𝑥 ∈
𝑋 is 1→-reduced if there is no 𝑦 ∈ 𝑋 such that 𝑥 1→ 𝑦. If 𝑥 → 𝑦 and 𝑦 is 1→-reduced, then 𝑦 is a
normal form of 𝑥. If 1→ is Noetherian, then every element has at least one normal form. The
relation 1→ is confluent if 𝑥 ↑ 𝑦 implies 𝑥 ↓ 𝑦 for any 𝑥, 𝑦 ∈ 𝑋 . If 1→ is confluent, then any 𝑥 ∈ 𝑋
has at most one normal form.

Moreover, given an equivalence relation ⌣ on 𝑋 , we define:

𝑥 ↑̆ 𝑦 if there are 𝑧, 𝑧′ ∈ 𝑋 such that 𝑧 ⌣ 𝑧′, 𝑧 → 𝑥 and 𝑧′ → 𝑦;
𝑥 ↓̆ 𝑦 if there are 𝑧, 𝑧′ ∈ 𝑋 such that 𝑧 ⌣ 𝑧′, 𝑥 → 𝑧 and 𝑦 → 𝑧′;

The relation 1→ is confluent modulo ⌣ if 𝑥 ↑̆ 𝑦 implies 𝑥 ↓̆ 𝑦, for any 𝑥, 𝑦 ∈ 𝑋 .

2.2 Top reduction

▶ Definition 1 (Monomial space, leading monomial, ≡lt). A monomial space over a field 𝐾 is
a 𝐾-linear space 𝑀 with a basis 𝐵 ⊂ 𝑀 endowed with a well-order relation ⩽. The leading
monomial of 𝑓 ∈ 𝑀 , denoted lm 𝑓 , is the ⩽-maximal element of 𝐵 with a nonzero coefficient in 𝑓 ,

1 Actually Huet denotes either→ or 1→ the one-step reduction, which I denote only 1→, and ∗→ the multistep
reduction, which I denote→.

P. Lairez 5

or 0 if 𝑓 = 0. The set of leading monomials of 𝑀 is defined to be the well-ordered set 𝐵 ∪ {0}
where 0 is added as the smallest element.

An equivalence relation ≡lt is defined on 𝑀 by 𝑥 ≡lt 𝑦 if 𝑥 = 𝑦 = 0 or lm(𝑥 − 𝑦) < lm 𝑥, to be
understood as “𝑥 and 𝑦 have the same leading term”.

The convention that lm 0 = 0 is useful to simplify many statements: being able to write lm 𝑓

without checking that 𝑓 ≠ 0 avoids a case distinction. From now on, we fix a field 𝐾 and a
monomial space 𝑀 over 𝐾 . The set of leading monomials of 𝑀 is denotedM.

▶ Remark 2 (Equivalent monomial spaces). Different choices of a basis 𝐵 may lead to equivalent
monomial spaces, in the following sense. Another well-ordered basis 𝐵′ of𝑀 gives an equivalent
monomial space if there is an increasing bijection 𝜄 : 𝐵 → 𝐵′ such that lm′ 𝑓 = 𝜄(lm 𝑓),
where lm′ 𝑓 is the leading monomial of 𝑓 relatively to 𝐵′. The theory is described only using lm,
not the basis 𝐵, so it does not distinguish between equivalent monomial spaces. From an
axiomatic point of view, we can check that the maps lm from 𝑀 onto a well ordered set that
come from a well-ordered basis, are exactly the maps satisfying
L1 ∀𝑥 ∈ 𝑀, lm 𝑥 = 0⇔ 𝑥 = 0;
L2 ∀𝑥, 𝑦 ∈ 𝑀, lm 𝑥 = lm 𝑦 ≠ 0⇔ ∃𝜆 ∈ 𝐾× , lm(𝑥 − 𝜆 𝑦) < lm 𝑥.
For a given 𝑓 ∈ 𝑀 , we do not define the terms of 𝑓 , its monomial support, or the coefficient of a
monomial in 𝑓 , because these notions depend on a specific choice of 𝐵, which indicates that
they are irrelevant in our setting.

▶ Example 3. For polynomial rings, the monomial basis is a very natural choice. In a noncom-
mutative setting however, there may be several natural bases. For example, the Weyl algebra𝑊1

generated by two elements 𝑥 and 𝜕 subject to the relation 𝜕𝑥 = 𝑥𝜕 + 1, the two natural bases
are 𝐵 = {𝑥𝑛𝜕𝑚} and 𝐵′ = {𝜕𝑚𝑥𝑛} (with the same possible orderings as the polynomial case).
These two bases give equivalent monomial spaces.

▶ Definition 4 (Top reduction,→𝐸). For any 𝐸 ⊆ 𝑀 , the top reduction 1→𝐸 is defined on 𝑀 by

𝑥 1→𝐸 𝑦⇔ lm 𝑦 < lm 𝑥 and ∃𝜆 ∈ 𝐾× , ∃𝑒 ∈ 𝐸, 𝑦 = 𝑥 − 𝜆𝑒.

In other words, 𝑥 1→𝐸 𝑦 if 𝑦 is the result of cancelling the leading monomial of 𝑥 using a
reducer in 𝐸. In this situation, we always have 𝜆𝑒 ≡lt 𝑥. Since 𝑥 1→𝐸 𝑦 implies lm 𝑥 < lm 𝑦, and
the set of leading monomials is well-ordered, it is clear that 1→𝐸 is Noetherian.

▶ Definition 5 (Tail equivalence, ⌣𝐸, ↑̆𝐸, ↓̆𝐸). For any subset 𝐸 ⊆ 𝑀 , we define a relation 1⌣𝐸

on 𝑀 , called tail equivalence, defined by

𝑥 1⌣𝐸 𝑦⇔ ∃𝜆 ∈ 𝐾× , ∃𝑒 ∈ 𝐸, 𝑦 = 𝑥 − 𝜆𝑒 and lm 𝑒 < lm 𝑥.

The reflexive transitive closure of 1⌣𝐸 is denoted ⌣𝐸 . The confluence relations ↑̆𝐸 and ↓̆𝐸 are
defined using ⌣𝐸 .

Note that 𝑥 ⌣𝐸 𝑦 implies 𝑥 ≡lt 𝑦. The tail equivalence is not a reduction since it is symmetric,
it is not defined which side of an equivalence 𝑥 ⌣𝐸 𝑦 is more reduced.

The following statement is a variant, in the setting of monomials spaces, of Buchberger’s
well known criterion for polynomial ideals. For 𝐸 ⊆ 𝑀 , let ⟨𝐸⟩ denote the 𝐾-linear subspace
generated by 𝐸.

▶ Theorem 6 (Buchberger’s criterion for monomial spaces). Let 𝐸 be a subset of 𝑀 . The following
assertions are equivalent:

(Characterization by leading monomials)

6 Axioms for a theory of signature bases

B1 ∀𝑥 ∈ ⟨𝐸⟩, 𝑥 ≠ 0⇒ ∃𝑒 ∈ 𝐸, lm 𝑒 = lm 𝑥.
(Characterization by rewriting)

B2 ∀𝑥 ∈ ⟨𝐸⟩, 𝑥 →𝐸 0;
(Characterizations by confluence properties)

B3 ∀𝑥, 𝑦 ∈ 𝑀, 𝑥 − 𝑦 ∈ ⟨𝐸⟩ ⇒ 𝑥 ↓̆𝐸 𝑦;
B4 →𝐸 is confluent modulo ⌣𝐸;

(Characterizations by S-pairs)
B5 ∀𝑒, 𝑓 ∈ 𝐸,∀𝜆 ∈ 𝐾× , 𝑒 ≡lt 𝜆 𝑓 ⇒ 𝑒 − 𝜆 𝑓 →𝐸 0;
B6 ∀𝑒, 𝑓 ∈ 𝐸,∀𝜆 ∈ 𝐾× , 𝑒 ≡lt 𝜆 𝑓 ⇒ 𝑒 − 𝜆 𝑓 ∈ ⟨𝑔 ∈ 𝐸 | lm 𝑔 < lm 𝑒⟩;

Proof that B1 implies B2. Let 𝑥 ∈ ⟨𝐸⟩ be a nonzero element and let 𝑦 be a→𝐸-normal form
of 𝑥. In particular 𝑦 ∈ ⟨𝐸⟩. By hypothesis, either 𝑦 = 0, or lm 𝑦 = lm 𝑒 for some 𝑒 ∈ 𝐸. The latter
would contradict the irreducility of 𝑦, so 𝑦 = 0 and 𝑥 →𝐸 0.

Proof that B2 implies B3. Let 𝑥, 𝑦 ∈ 𝑀 such that 𝑥 − 𝑦 ∈ ⟨𝐸⟩. By hypothesis, 𝑥 − 𝑦 →𝐸 0. So
there is some 𝑒 ∈ 𝐸 and 𝜆 ∈ 𝐾× such that 𝑥 − 𝑦 1→𝐸 𝑥 − 𝑦 − 𝜆𝑒→𝐸 0 (unless 𝑥 = 𝑦 but this case
is trivial). In particular 𝜆𝑒 ≡lt 𝑥 − 𝑦.

If lm 𝑥 > lm 𝑦, then 𝑥 1→𝐸 𝑥 − 𝜆𝑒 and 𝑥 − 𝜆𝑒 − 𝑦 ∈ ⟨𝐸⟩ and by induction on max(lm 𝑥, lm 𝑦),
we may assume that 𝑥 − 𝜆𝑒 ↓̆𝐸 𝑦 and therefore 𝑥 ↓̆𝐸 𝑦. The case lm 𝑦 > lm 𝑥 is similar.
If lm 𝑥 = lm 𝑦, there is some 𝜇 ∈ 𝐾× such that lm(𝑥 − 𝜇 𝑦) < lm 𝑥. There are again two cases.
If 𝜇 = 1, that is 𝑥 ≡lt 𝑦, then the sequence of top-reduction 𝑥− 𝑦 1→ 𝑢1

1→𝐸 𝑢2
1→𝐸 · · · 1→𝐸 𝑢𝑛

1→ 0
gives a sequence of tail equivalence

𝑥 = 𝑦 + (𝑥 − 𝑦) ⌣𝐸 𝑦 + 𝑢1 ⌣𝐸 · · ·⌣𝐸 𝑦 + 𝑢𝑛 ⌣𝐸 𝑦.

In particular, 𝑥 ↓̆𝐸 𝑦. If 𝜇 ≠ 1, then lm 𝑥 = lm 𝑦 = lm 𝑒, so there are reductions 𝑥 1→𝐸 𝑥 − 𝜅𝑒
and 𝑦 1→𝐸 𝑦 − 𝜈𝑒, for some 𝜅, 𝜈 ∈ 𝐾× . By induction on max(lm 𝑥, lm 𝑦), we may assume
that 𝑥 − 𝜅𝑒 ↓̆𝐸 𝑦 − 𝜈𝑒, which implies 𝑥 ↓̆𝐸 𝑦.

Proof that B3 implies B4. Let 𝑥, 𝑦 ∈ 𝑀 such that 𝑥 ↑̆𝐸 𝑦. Both 1→𝐸 and 1⌣𝐸 preserve equality
modulo ⟨𝐸⟩, so 𝑥 − 𝑦 ∈ ⟨𝐸⟩, therefore 𝑥 ↓̆𝐸 𝑦, by hypothesis.

Proof that B4 implies B5. If 𝑒 ≡lt 𝜆 𝑓 , then 𝑒 1→𝐸 𝑒−𝜆 𝑓 . Moreover 𝑒 1→𝐸 𝑒−𝑒 = 0. The confluence
hypothesis implies that 𝑒 − 𝜆 𝑓 →𝐸 𝑧 and 0→ 𝑧′ for some 𝑧, 𝑧′ ∈ 𝑀 such that 𝑧 ⌣𝐸 𝑧

′. But 0 is
reduced and only ⌣𝐸-equivalent to itself. So 𝑧 = 0 and 𝑒 − 𝜆 𝑓 →𝐸 0.

Proof that B5 implies B6. The rewriting 𝑒 − 𝜆 𝑓 →𝐸 0 implies, by definition of→𝐸 , that 𝑒 − 𝜆 𝑓 ∈
⟨𝑔 ∈ 𝐸 | lm 𝑔 ⩽ lm(𝑒 − 𝜆 𝑓)⟩. Since lm(𝑒 − 𝜆 𝑓) < lm 𝑒, this gives the claim.

Proof that B6 implies B1. Let 𝑥 ∈ ⟨𝐸⟩ and let 𝑚 ∈ M minimal such that 𝑥 ∈ ⟨𝑒 ∈ 𝐸 | lm 𝑒 ⩽ 𝑚⟩.
We can write 𝑥 = 𝜆1𝑒1 + · · · + 𝜆𝑟𝑒𝑟 with 𝑒𝑖 ∈ 𝐸, 𝜆𝑖 ∈ 𝐾 and lm 𝑒𝑖 ⩽ 𝑚. We also assume that the 𝑒𝑖
are chosen in such a way that the number 𝑁 of indices 𝑖 such that lm 𝑒𝑖 = 𝑚 is minimal. By
minimality of 𝑚, we have 𝑁 ⩾ 1.

Assume for contradiction that lm 𝑥 < 𝑚. In particular 𝑁 ⩾ 2 (otherwise, the leading
monomials of the 𝑒𝑖 cannot cancel to give lm 𝑥 < 𝑚). Up to reordering the indices, we may
assume that 𝑚 = lm 𝑒1 = lm 𝑒2. Then B6 ensures that 𝑒1 − 𝜇𝑒2 ∈ ⟨𝑒 ∈ 𝐸 | lm 𝑒 < 𝑚⟩ for some 𝜇 ∈
𝐾× . We can rewrite 𝑥 as

𝑥 = 𝜆1 (𝑒1 − 𝜇𝑒2) + (𝜆2 + 𝜆1𝜇)𝑒2 + 𝜆3𝑒3 + · · · + 𝜆𝑟𝑒𝑟 ,

in contradiction with the minimality of 𝑁 . So lm 𝑥 = 𝑚. ◀

P. Lairez 7

▶ Definition 7 (Pivot basis). A subset 𝐸 ⊆ 𝑀 is a pivot basis if it satisfies the equivalent properties
of Theorem 6.

The concept of pivot basis is similar to that of a row echelon form of a matrix. The following
minor lemma, on increasing unions of pivot bases, will be used in Sections 3.1 and 3.3.

▶ Lemma 8. Let 𝐼 be a totally ordered set and let (𝐸𝑖)𝑖∈𝐼 be a family of subsets of 𝑀 . If 𝐸𝑖 ⊆ 𝐸 𝑗
for any 𝑖, 𝑗 ∈ 𝐼 with 𝑖 < 𝑗, and if each 𝐸𝑖 is a pivot basis, then ∪𝑖∈𝐼𝐸𝑖 is a pivot basis.

Proof. We check the criterion B5. Let 𝑒, 𝑓 ∈ ∪𝑖𝐸𝑖 and 𝜆 ∈ 𝐾× such that 𝑒 ≡lt 𝜆 𝑓 . By definition, 𝑒
is in some 𝐸 𝑗 while 𝑓 is in some 𝐸𝑘 , so both 𝑒 and 𝑓 are in 𝐸max(𝑗,𝑘) . Since 𝐸max(𝑗,𝑘) is a pivot
basis, 𝑒 − 𝜆 𝑓 → 0 with respect to 𝐸max(𝑗,𝑘) . A fortiori, it rewrites to 0 with respect to ∪𝑖𝐸𝑖 , which
contains 𝐸max(𝑗,𝑘) . ◀

2.3 Monomial modules

Recall that a monoid is a set 𝐴 with an associative composition law 𝐴 × 𝐴 → 𝐴 (denoted
multiplicatively) which admits an identity element denoted 1𝐴.

▶ Definition 9 (Monomial module). A monomial module over a monoid 𝐴 is a monomial space 𝑀
with a linear action of 𝐴 on 𝑀 (denoted also multiplicatively) such that:

M1 ∀𝑎 ∈ 𝐴,∀ 𝑓 , 𝑔 ∈ 𝑀, lm 𝑓 = lm 𝑔 ⇒ lm(𝑎 𝑓) = lm(𝑎𝑔);
M2 ∀𝑎 ∈ 𝐴,∀ 𝑓 , 𝑔 ∈ 𝑀, lm 𝑓 < lm 𝑔 ⇒ lm(𝑎 𝑓) < lm(𝑎𝑔);

Note that M2 implies also the following:

M3 ∀𝑎 ∈ 𝐴,∀ 𝑓 ∈ 𝑀, lm(𝑎 𝑓) ⩾ lm 𝑓 .

Indeed, if lm(𝑎 𝑓) < lm 𝑓 , then lm(𝑎𝑘+1 𝑓) < lm(𝑎𝑘 𝑓) for any 𝑘 ⩾ 0, which would contradicts
the well-orderedness ofM. Note also that 𝑀 is torsionfree: if 𝑔 ≠ 0, then 𝑎𝑔 ≠ 0 for all 𝑎 ∈ 𝐴,
as a consequence of M2.

▶ Definition 10 (Action on the set of monomials, divisibility). The monoid 𝐴 acts on the set of
monomialsM by 𝑎 lm 𝑓 � lm(𝑎 𝑓). A divisor of 𝑚 ∈ M is an element 𝑛 ∈ M such that 𝑎𝑛 = 𝑚

for some 𝑎 ∈ 𝐴.

In the case where 𝑀 is a module over a polynomial algebra 𝑅 = 𝐾 [𝑥1, . . . , 𝑥𝑛], it is natural
to choose 𝐴 = {𝑥𝑖11 · · · 𝑥

𝑖𝑛
𝑛 | 𝑖1, . . . , 𝑖𝑛 ⩾ 0}, although 𝐴 = 𝑅 \ {0} is also a possible choice (with no

major theoretical difference). When 𝑀 is a module over a noncommutative ring, the monoid
𝐴 = 𝑅 \ {0} is a natural choice. For example, in the Weyl algebra𝑊1 (see Example 3), the set
of monomials {𝑥𝑛𝜕𝑚} is not closed under multiplication (because 𝜕𝑥 = 𝑥𝜕 + 1). We can also
choose 𝐴 to be the monoid generated by 𝑥 and 𝜕. Section 6 presents more examples.

2.4 Gröbner bases

▶ Definition 11 (Gröbner basis). Let 𝑀 be a monomial space over a monoid 𝐴. A subset 𝐺 ⊆ 𝑀 is
a Gröbner basis if 𝐴𝐺, that is {𝑎 𝑓 | 𝑎 ∈ 𝐴, 𝑓 ∈ 𝐺}, is a pivot basis.

It is naturally a key concept, see (Cox et al., 2015) for an introduction to the topic. The purpose
of signatures is not to replace the concept of Gröbner bases, but rather to give a way to compute
them.

8 Axioms for a theory of signature bases

▶ Remark 12 (Singletons). Let 𝑓 be a non zero element of 𝑀 . Is { 𝑓 } a Gröbner basis? It will
be the case in many practical settings but it is not a consequence of the axioms above. A
counterexample in a free algebra in two variables is given by Green et al. (1998) (see also
Section 6.6).

Unfolding the definitions, we see that for every singleton { 𝑓 } to be a Gröbner basis is
necessary and sufficient that:

M4 ∀ 𝑓 ∈ 𝑀,∀𝑔 ∈ ⟨𝑎 𝑓 | 𝑎 ∈ 𝐴⟩ \ {0} ,∃𝑎 ∈ 𝐴, lm 𝑔 = lm(𝑎 𝑓).
This holds in most usual settings, and all settings presented in Section 6. For example, if 𝑅 = 𝑀

is a polynomial ring, and 𝐴 ⊂ 𝑅 the monoid of monomials, then for any 𝑔 ∈ ⟨𝑎 𝑓 | 𝑎 ∈ 𝐴⟩, there
is some ℎ ∈ 𝑅 such that 𝑔 = ℎ 𝑓 and we have lm 𝑔 = lm(lm(ℎ) 𝑓).

3 Signatures

From now on, we fix a monoid 𝐴 and two monomial modules over 𝐴, denoted 𝑀 and 𝑆, with
respective sets of monomials denoted M and S. A signature is an element of S. We are
interested in computing Gröbner bases in 𝑀 while 𝑆 is the module of signatures.

In addition to the axioms for the monomial module 𝑆, we also require that

S1 ∀𝑎, 𝑏 ∈ 𝐴,∀𝜎 ∈ S,∀𝑚 ∈ M, 𝑎𝜎 = 𝑏𝜎 and 𝜎 ≠ 0⇒ 𝑎𝑚 = 𝑏𝑚.
S2 ∀𝑎, 𝑏 ∈ 𝐴,∀𝜎 ∈ S,∀𝑚 ∈ M, 𝑎𝜎 ⩽ 𝑏𝜎 and 𝜎 ≠ 0⇒ 𝑎𝑚 ⩽ 𝑏𝑚.

Naturally S2 implies S1, but we state them separately because S2 will only be useful later in
Section 5 (and specifically in Lemma 50) when we will study algorithms for computing signature
bases and termination issues. This hypothesis is called compatibility by Gao et al. (2016) and
others.

In concrete situations, we will have a natural module map 𝜙 : 𝑆 → 𝑀 (that is a 𝐾-linear
map commuting with the action of 𝐴), but it is not a requirement for the theory. As Arri and
Perry (2011), or Kambe (2023) more recently, we can define in this context a notion of signature
for the elements of 𝜙(𝑆) by

s̃ig(𝑓) � min {lm 𝑝 ∈ S | 𝑝 ∈ 𝑆 and 𝜙(𝑝) = 𝑓 } .

This lead however to conceptual difficulties, because the signatures that appear in computations
may not coincide with this definition, creating a gap between the theory and tha algorithms. In
the axiomatic approach, we do not define what is the signature of elements in 𝜙(𝑆). Instead,
we adjunct elements of 𝑀 with signatures, and describe the required consistency properties.

3.1 Signature bases

▶ Definition 13 (Sigpair, sigset, polynomial part, signature). A sigpair is an element of 𝑀 × S. A
sigset is a set of sigpairs. The first element of a sigpair 𝑓 , denoted 𝑓 ♮, is the polynomial part of 𝑓
(eventhough 𝑓 may not be a polynomial, strictly speaking). The second element of a sigpair 𝑓 ,
denoted sig 𝑓 , is the signature of 𝑓 .

▶ Definition 14 (𝐴𝐺<𝜎 , 𝐴𝐺⩽𝜎 , regular reduction). For a sigpair 𝑓 and some 𝑎 ∈ 𝐴, we define the
sigpair 𝑎 𝑓 = (𝑎 𝑓 ♮, 𝑎 sig 𝑓). For notational convenience, we also define a scalar multiplication
𝜆 𝑓 = (𝜆 𝑓 ♮, sig 𝑓), for 𝜆 ∈ 𝐾× . For any sigset 𝐺, let 𝐴𝐺 denote the sigset 𝐴𝐺 = {𝑎 𝑓 | 𝑎 ∈ 𝐴, 𝑓 ∈ 𝐺}.
For 𝜎 ∈ S, let

𝐴𝐺𝜎 � {𝑎 𝑓 ♮ | 𝑎 ∈ 𝐴 and 𝑎 sig 𝑓 = 𝜎} , 𝐴𝐺⩽𝜎 � ∪𝜏⩽𝜎𝐴𝐺𝜏 and 𝐴𝐺<𝜎 � ∪𝜏<𝜎𝐴𝐺𝜏 .

P. Lairez 9

They are subsets of𝑀 , not sigsets. Each set 𝐴𝐺<𝜎 defines a reduction rule 1→𝐴𝐺<𝜎 (Definition 4), that
we denote 1→𝜎

𝐺 , the regular reduction in signature 𝜎. On 𝑀 × S, we define 𝑓 1→𝐺 𝑔 if sig 𝑓 = sig 𝑔
and 𝑓 ♮ 1→sig 𝑓

𝐺 𝑔♮. This is the regular reduction of sigpairs. The tail equivalence relations ⌣𝜎
𝐺

and ⌣𝐺 are defined similarly using ⌣𝐴𝐺<𝜎 .

The reduction relations 1→𝜎
𝐺 , for any 𝜎 ∈ S, are Noetherian, as any top-reduction relation in

a monomial space. So 1→𝐺 is also Noetherian, and every sigpair has at least one normal form
modulo regular reduction. The regular reduction→𝐺 is the same as the regular top 𝔰-reduction
defined by Eder and Faugère (2017). In contrast, we will not make use of singular 𝔰-reductions
and tail 𝔰-reductions.

▶ Example 15 (Univariate polynomials). Let 𝑀 = 𝑆 = 𝐾 [𝑥],M = S = {𝑥𝑛 | 𝑛 ⩾ 0} ∪ {0}, with the
usual ordering. Let 𝐴 = {𝑥𝑛 | 𝑛 ⩾ 0}. Let 𝐺 be the sigset {(𝑥 − 1, 𝑥)}, made of a single sigpair
with polynomial part 𝑥 − 1 and signature 𝑥. For any 𝑚 ⩾ 0, we check that

𝐴𝐺<𝑥
𝑚

=
{
𝑥𝑘 (𝑥 − 1)

�� 0 ⩽ 𝑘 < 𝑚 − 1
}

and 𝐴𝐺⩽𝑥
𝑚

=
{
𝑥𝑘 (𝑥 − 1)

�� 0 ⩽ 𝑘 ⩽ 𝑚 − 1
}
.

Both are pivot bases.
Consider the sigpairs 𝑓1 = (𝑥2, 𝑥) and 𝑓2 = (𝑥2, 𝑥3). They have the same polynomial part 𝑥2

but not the same signature. The sigpair 𝑓1 is→𝐺 reduced. Indeed, the only possible reduction
to investigate is that of 𝑓1 by 𝑥𝑔 (where 𝑔 is the unique element of 𝐺), but sig(𝑥𝑔) = 𝑥2, which
exceeds sig(𝑓1) = 𝑥, forbidding the reduction. In contrast, we have reductions

𝑓2
1→𝐺 (𝑥, 𝑥3) 1→𝐺 (1, 𝑥3),

using 𝑥𝑔 and 𝑔 successively. This exemplifies the additional constraints that signatures impose
on reductions, compared to the usual setting without signatures.

The following statements are direct consequences of the axioms for monomial modules.

▶ Lemma 16. Let 𝐺 be a sigset, let 𝜎 ∈ S and 𝑎 ∈ 𝐴. Then

for any 𝜏 ⩽ 𝜎, 𝐴𝐺⩽𝜏 ⊆ 𝐴𝐺⩽𝜎 ;
for any 𝑓 ∈ 𝐴𝐺⩽𝜎 , 𝑎 𝑓 ∈ 𝐴𝐺⩽𝑎𝜎 ;
for any 𝑓 ∈ 𝐴𝐺<𝜎 , 𝑎 𝑓 ∈ 𝐴𝐺<𝑎𝜎 .

Signature-based algorithms for Gröbner bases actually compute something more con-
strained than Gröbner bases.

▶ Definition 17 (Signature basis). A signature basis is a sigset 𝐺 such that for any 𝜎 ∈ S the set
𝐴𝐺⩽𝜎 is a pivot basis.

Using Theorem 6, and a bit of signature manipulation to reduce from 𝐴𝐺⩽𝜎 to 𝐴𝐺<𝜎 , we can
prove a sigset 𝐺 is a signature basis if and only if regular reduction→𝐺 is confluent modulo
tail equivalence ⌣𝐺 . Signature bases are a refinement of Gröbner bases, in the sense that
forgetting the signatures in a signature basis gives a Gröbner basis.

▶ Lemma 18. If 𝐺 is a signature basis, then 𝐺♮ = { 𝑓 ♮ | 𝑓 ∈ 𝐺} is a Gröbner basis.

Proof. The set 𝐴𝐺♮ is the union of all 𝐴𝐺⩽𝜎 , with 𝜎 ∈ S. By construction, 𝐴𝐺⩽𝜎 ⊆ 𝐴𝐺⩽𝜏 if 𝜎 ⩽ 𝜏.
So Lemma 8 applies and shows that 𝐴𝐺♮ is a pivot basis. ◀

10 Axioms for a theory of signature bases

3.2 Prebases

▶ Definition 19 (Prebasis). A sigset 𝐺 is a prebasis if

P1 𝐴𝐺0 ⊆ {0𝑀 };
P2 ∀𝜎 ∈ S,∀ 𝑓 , 𝑔 ∈ 𝐴𝐺𝜎 ,∃𝜆 ∈ 𝐾× , 𝑓 − 𝜆𝑔 ∈ ⟨𝐴𝐺<𝜎⟩.

Equivalently, P2 means that any 𝑓 ∈ 𝐴𝐺𝜎 generates the quotient space ⟨𝐴𝐺⩽𝜎⟩ /⟨𝐴𝐺<𝜎⟩ as
a 𝐾-linear space. The concept of prebasis embodies the postulate that “two elements with the
same signature are substitutable”. A prebasis is an admissible input for signature algorithms.

▶ Example 20. A trivial choice for the set of signatures is S = M. Let 𝐺 be a sigset such
that sig 𝑓 = lm 𝑓 ♮ for any 𝑓 ∈ 𝐺. Then 𝐺 is a prebasis if and only if 𝐺♮ is a Gröbner basis. Indeed,
in this case, ⟨𝐴𝐺<𝜎⟩ = ⟨𝑎𝑔♮ | 𝑎 ∈ 𝐴, 𝑔 ∈ 𝐺, lm(𝑎𝑔) < 𝜎⟩. So the condition for being a prebasis is
exactly Criterion B6 for 𝐴𝐺♮ to be a pivot basis, that is for 𝐺♮ to be a Gröbner basis.

▶ Example 21. If 𝐴𝐺0 = ∅ and if 𝐴𝐺𝜎 contains exactly zero or one element for any 𝜎 ∈ S,
then 𝐺 is a prebasis. This follows directly from the definition.

In the course of computing a signature basis, or a rewrite basis, as we will see latter, we will
add new elements to a prebasis 𝐺 given as input. Naturally, the construction of new elements
must respect both the polynomial part and the signature. In particular, we want to preserve the
prebasis property. Typically, we construct new elements by regular reduction: for any 𝑎 ∈ 𝐴
and 𝑔 ∈ 𝐺, we allow the insertion of any sigpair ℎ such that 𝑎𝑔 →𝐺 ℎ. In view of using F4-style
reductions (Section 5.7), we give a wider definition of allowed extensions of a sigset, that we
call sigsafe extensions.

▶ Definition 22 (Sigsafe extension). A sigset 𝐻 is a sigsafe extension of a sigset 𝐺 if 𝐺 ⊆ 𝐻 and
for any ℎ ∈ 𝐻 , there is some 𝑓 ∈ 𝐴𝐺sigℎ and some 𝜆 ∈ 𝐾× such that ℎ♮ ≡ 𝜆 𝑓 ♮ (mod ⟨𝐴𝐺<sigℎ⟩).

The problem of computing signature bases is more formally stated as “given a prebasis 𝐺,
compute a signature basis that is a sigsafe extension of 𝐺”. For computing a Gröbner basis of
the submodule of 𝑀 generated by a set 𝐺 ⊆ 𝑀 , we will follow the steps: first, choose a signature
module 𝑆, second, we endow the elements of 𝐺 with signatures to turn it into a prebasis; third,
we compute a signature basis that is a sigsafe extension of 𝐺; four, we remove signatures to
obtain a Gröbner basis (Lemma 18).

▶ Lemma 23. Let 𝐺 be a prebasis and let 𝐻 be a sigsafe extension of 𝐺. Then:

∀𝜎 ∈ S, ⟨𝐴𝐺<𝜎⟩ = ⟨𝐴𝐻<𝜎⟩ and ⟨𝐴𝐺⩽𝜎⟩ = ⟨𝐴𝐻⩽𝜎⟩;
𝐻 is a prebasis;
if 𝐻 ′ is a sigsafe extension of 𝐻 , it is also a sigsafe extension of 𝐺.

We skip the proof, which is a simple application of Lemma 16.
Generalizing Example 20, we may construct prebases in 𝑀 from a Gröbner basis in 𝑆.

▶ Theorem 24. Let 𝜙 : 𝑆 → 𝑀 be a 𝐾-linear map commuting with the action of 𝐴. If 𝐻 ⊆ 𝑆 is a
Gröbner basis, then {(𝜙(ℎ), lmℎ) | ℎ ∈ 𝐻} ⊆ 𝑀 × S is a prebasis.

Proof. Let 𝐺 = {(𝜙(ℎ), lmℎ) | ℎ ∈ 𝐻}. We first check P1. Let 𝑓 ∈ 𝐴𝐺0. By definition, there is
some ℎ ∈ 𝐻 and 𝑎 ∈ 𝐴 such that 𝑓 = 𝜙(𝑎ℎ) and lm(𝑎ℎ) = 0. This implies 𝑎ℎ = 0, so 𝑓 = 0.

As for P2, let 𝜎 ∈ S, 𝑓 , 𝑔 ∈ 𝐺 and 𝑎, 𝑏 ∈ 𝐴 such that 𝜎 = 𝑎 sig 𝑓 = 𝑏 sig 𝑔. By definition,
there are some ℎ, 𝑘 ∈ 𝐻 such that lmℎ = sig 𝑓 , lm 𝑘 = sig 𝑔, 𝑓 = 𝜙(ℎ) and 𝑔 = 𝜙(𝑘). In

P. Lairez 11

particular 𝜎 = lm(𝑎ℎ) = lm(𝑏𝑘), and there is some 𝜆 ∈ 𝐾 such that 𝑎ℎ ≡lt 𝜆𝑏𝑘. 𝐻 is a Gröbner
basis, so 𝐴𝐻 is a pivot basis, so Criterion B6 applies and we have 𝑎ℎ − 𝜆𝑏𝑘 =

∑
𝑖 𝑚𝜇𝑖𝑐𝑖 𝑙𝑖 for

some 𝜇𝑖 ∈ 𝐾 , 𝑐𝑖 ∈ 𝐴 and 𝑙𝑖 ∈ 𝐻 such that lm(𝑐𝑖ℎ𝑖) < 𝜎. In particular, 𝑎 𝑓 − 𝜆𝑏𝑔 =
∑
𝑖 𝜇𝑖𝑐𝑖𝜙(𝑙𝑖)

and 𝑐𝑖𝜙(𝑙𝑖) ∈ 𝐴𝐺<𝜎 . ◀

▶ Remark 25 (Constructing prebases “for free”). As a special case of Theorem 24, we recover the
following classical construction which underlies all previous work on signature algorithms.
Given 𝑔1, . . . , 𝑔𝑟 ∈ 𝑀 , we want to find a signature module S and signatures 𝜎1, . . . , 𝜎𝑟 such
that {(𝑔𝑖 , 𝜎𝑖)}1⩽𝑖⩽𝑟 is a prebasis. This is the first step of the general strategy for computing
Gröbner bases using signatures. The following construction applies when each of the singletons
{𝑔𝑖} is a Gröbner basis (this is the common case, see Remark 12).

We choose the signature module 𝑆 = 𝑀𝑟 ≃ 𝑀 ⊗ 𝐾𝑟 . If 𝐵𝑀 is the distinguished basis of the
monomial space 𝑀 , we define 𝐵𝑆 = {𝑚 ⊗ 𝑒𝑖 | 𝑚 ∈ 𝐵𝑀 , 1 ⩽ 𝑖 ⩽ 𝑟} as the distinguished basis of 𝑆,
where {𝑒1, . . . , 𝑒𝑟} denotes the canonical basis of 𝐾𝑟 . Let S = 𝐵𝑆 ∪ {0} denote the set of leading
monomials of 𝑆. There are two natural well-orders on S, called position-over-term (POT) and
term-over-position (TOP): 0 is always the minimal elements, and for the nonzero monomials,

POT 𝑚 ⊗ 𝑒𝑖 ⩽S 𝑛 ⊗ 𝑒 𝑗 if 𝑖 < 𝑗 or 𝑖 = 𝑗 and 𝑚 ⩽M 𝑛;
TOP 𝑚 ⊗ 𝑒𝑖 ⩽S 𝑛 ⊗ 𝑒 𝑗 if 𝑚 <M 𝑛 or 𝑚 = 𝑛 and 𝑖 ⩽ 𝑗.

The monoid 𝐴 acts on 𝑆 by 𝑎 · (𝑓1, . . . , 𝑓𝑟) = (𝑎 𝑓1, . . . , 𝑎 𝑓𝑟), turning 𝑆 into a monomial module
over 𝐴. Moreover, S1 and S2 are satisfied, so 𝑆 is a suitable signature module, with either the
POT or the TOP ordering. Let 𝜙 : 𝑆 → 𝑀 defined by 𝜙(𝑓1, . . . , 𝑓𝑟) = 𝑓1 + · · · + 𝑓𝑟 , which commutes
with the action of 𝐴.

Since {𝑔𝑖} is a Gröbner basis in 𝑀 , for any 1 ⩽ 𝑖 ⩽ 𝑟, it follows easily that {𝑔𝑖 ⊗ 𝑒𝑖} is a
Gröbner basis in 𝑆. Moreover, the leading monomials of some 𝑎𝑔𝑖 ⊗ 𝑒𝑖 and some other 𝑏𝑔 𝑗 ⊗ 𝑒 𝑗
can never be equal, unless 𝑖 = 𝑗. So it follows that the set 𝐻 = {𝑔𝑖 ⊗ 𝑒𝑖 | 1 ⩽ 𝑖 ⩽ 𝑟} is a Gröbner
basis in 𝑆. By Theorem 24, this implies that

𝐺 = {(𝑔𝑖 , lm 𝑔𝑖 ⊗ 𝑒𝑖) | 1 ⩽ 𝑖 ⩽ 𝑟}

is a prebasis. And, by construction, 𝐺♮ = {𝑔1, . . . , 𝑔𝑟}.
This construction shows that, at least under the extra assumption M4 on 𝑀 , we have a

systematic way to construct prebases from arbitrary finite sets of 𝑀 , enabling the general
strategy of using signatures to compute Gröbner bases.

▶ Example 26. Consider the case where 𝑀 = ℚ[𝑥, 𝑦], where the monomial basis of 𝑀 is given
the degree reverse lexicographic order, with 𝑥 < 𝑦, 𝐴 =

{
𝑥𝑖 𝑦 𝑗

�� 𝑖, 𝑗 ⩾ 0
}

, and consider

𝑔1 = 𝑥2 𝑦2 − 1, 𝑔2 = 𝑦5 − 𝑥2 𝑦, and 𝑔3 = 𝑥5 − 𝑥 𝑦2,

with leading monomial underlined. This is an example of Mora (1994). Following the recipe in
Remark 25, we consider the signature module 𝑆 = 𝑀3, with the TOP ordering, and we endow
the 𝑔𝑖 with signatures sig 𝑔𝑖 = lm 𝑔𝑖 ⊗ 𝑒𝑖 , so we construct the following sigset:

𝐺 =

{(
𝑥2 𝑦2 − 1, 𝑥2 𝑦2 ⊗ 𝑒1

)
,
(
𝑦5 − 𝑥2 𝑦, 𝑦5 ⊗ 𝑒2

)
,
(
𝑥5 − 𝑥 𝑦2, 𝑥5 ⊗ 𝑒3

)}
.

In this case, the fact that 𝐺 is a prebasis follows from the trivial reason exposed in Example 21.
It is also common to choose the unshifted signature sig 𝑔𝑖 = 1 ⊗ 𝑒𝑖 . It is equally valid to

choose sig 𝑔𝑖 = 𝑚𝑖 ⊗ 𝑒𝑖 , for any non zero 𝑚𝑖 ∈ M, from the theoretical point of view. The
choice sig 𝑔𝑖 = lm 𝑔𝑖 ⊗ 𝑒𝑖 comes naturally because in the general setting of a monomial module
over 𝐴, there is no “1”, so we cannot write, in general, sig 𝑔𝑖 = 1 ⊗ 𝑒𝑖 , while we can always

12 Axioms for a theory of signature bases

write sig 𝑔𝑖 = lm 𝑔𝑖 ⊗ 𝑒𝑖 . Eder and Faugère (2017) only work in the polynomial case and
fix sig 𝑔𝑖 = 1 ⊗ 𝑒𝑖 . However, we can change the term ordering on 𝑆 to what they call lt-pot,
or Schreyer’s order (Eder & Faugère, 2017, Definition 2.5), and recover the behavior of the
choice sig 𝑔𝑖 = lm 𝑔𝑖 ⊗ 𝑒𝑖 with the TOP order on 𝑆. Eder and Faugère (2017, §14) suggest that
this natural choice sig 𝑔𝑖 = lm 𝑔𝑖 ⊗ 𝑒𝑖 , is better for performance than the unshifted signatures.
This is exemplified in Figures 2 and 4.

▶ Example 27 (Sum of submodules). Let 𝐺 and 𝐻 be two finite Gröbner bases in 𝑀 . Consider
the problem of computing a Gröbner basis 𝐽 such that ⟨𝐴𝐺⟩ + ⟨𝐴𝐻⟩ = ⟨𝐴𝐽⟩. We could use, as
in Remark 25, the signature module 𝑀#𝐺+#𝐻 to turn 𝐺 ∪ 𝐻 into a prebasis. However, this will
lead to many useless computations (reductions to zero) because we did not take into account
the fact that 𝐺 and 𝐻 are already Gröbner bases, so all the S-pairs between two elements of 𝐺
(resp. 𝐻) already reduce to 0.

Instead, we consider the monomial signature module 𝑆 = 𝑀2 with the map 𝜙 : (𝑢, 𝑣) ∈ 𝑆 →
𝑢 + 𝑣 ∈ 𝑀 . The set 𝐵 = {(𝑔, 0) | 𝑔 ∈ 𝐺} ∪ {(0, ℎ) | ℎ ∈ 𝐻} is a Gröbner basis in 𝑆 because the
elements (𝑔, 0) cannot interact with the elements (0, ℎ). By Theorem 24, the sigset

{(𝜙(𝑏), lm 𝑏) | 𝑏 ∈ 𝐵} = {(𝑔, lm 𝑔 ⊗ 𝑒1) | 𝑔 ∈ 𝐺} ∪ {(ℎ, lmℎ ⊗ 𝑒2) | ℎ ∈ 𝐻}

is a prebasis. We can use it as a starting point to compute a Gröbner basis of the sum ⟨𝐴𝐺⟩+⟨𝐴𝐻⟩.
This saves some computations because the signatures encode that elements of 𝐺 (resp. 𝐻) do
not need to be reduced with each other.

3.3 Rewrite bases

We now introduce rewrite bases. The definition is purely combinatorial, depending only on
leading monomials and signatures, in addition to the prebasis condition. We will see that a
rewrite basis is a signature basis (Corollary 31). As for pivot bases, prebases, and Gröbner
bases, being a signature basis is a matter of subtle arithmetic conditions. (One cannot change
the coefficients of a signature basis and hope that it remains a signature basis.) Somehow, we
can split these conditions into, on the one hand, the prebasis property, and on the other hand,
the combinatorial properties of rewrite bases. The concept was first introduced by Eder and
Roune (2013). It is simplified here by removing the need for what they call a “rewrite order”.
So my definition of rewrite basis is actually different from theirs, but relates more simply to
signature bases (Theorem 40).

▶ Definition 28 (Rewrite basis). For 𝜎 ∈ S, a sigset 𝐺 is a rewrite basis at 𝜎 if either 𝐴𝐺𝜎 = ∅, or
there is some→𝐺-reduced element 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎. A sigset 𝐺 is a rewrite basis if it is a
prebasis and a rewrite basis at 𝜎 for any 𝜎 ∈ S.

▶ Example 29 (continued). The sigset in Example 26 is a prebasis but not a rewrite basis. The
smallest signature at which it is not a rewrite basis is 𝜎 = 𝑥2 𝑦5 ⊗ 𝑒2. Indeed,

𝐴𝐺𝜎 =
{
𝑥2𝑔2

}
=

{(
𝑥2 𝑦5 − 𝑥4 𝑦, 𝑥2 𝑦5 ⊗ 𝑒2

)}
,

and there is a top reduction of 𝑥2𝑔2 by 𝑦3𝑔1. So 𝐴𝐺𝜎 does not contain any→𝐺-reduced element.
Note that 𝑥2𝑔2 does not reduce 𝑦3𝑔1 because sig(𝑥2𝑔2) > sig(𝑦5𝑔1), so 𝐺 is a rewrite basis
at 𝑥2 𝑦5 ⊗ 𝑒1. In constrast to the classical setting, the symmetry of critical pairs is broken by the
signatures.

P. Lairez 13

We also check that 𝐺 is a rewrite basis at any signature 𝑚 ⊗ 𝑒1, for 𝑚 ∈ M. These signatures
are not empty when 𝑚 is a multiple of lm 𝑔1 = 𝑥2 𝑦2, say 𝑚 = 𝑎 lm 𝑔1. There may be a possible
reduction when 𝑚 = 𝑏 lm 𝑔𝑖 (with 𝑖 = 2 or 3), but in this case, we have 𝑎 sig 𝑔1 = 𝑎(lm 𝑔1 ⊗ 𝑒1) =
𝑚 ⊗ 𝑒1 and, similarly, 𝑏 sig 𝑔𝑖 = 𝑚 ⊗ 𝑒𝑖 . The definition of the TOP order, ensures that 𝑎 sig 𝑔1 <

𝑏 sig 𝑔𝑖 , so the reduction is not possible.

The defining property of rewrite bases implies that of signature bases. This is the first aspect
of the definition. (See Section 4.1 for more details on the relation between rewrite bases and
signature bases.)

▶ Proposition 30. Let 𝐺 be a prebasis and let 𝜎 ∈ S such that 𝐺 is a rewrite basis at any
signature 𝜏 ⩽ 𝜎. Then 𝐴𝐺⩽𝜎 is a pivot basis.

Proof. For contradiction, assume that 𝐴𝐺⩽𝜎 is not a pivot basis, and let 𝜏 be the smallest
signature such that 𝐴𝐺⩽𝜏 is not a pivot basis. In particular, 𝐴𝐺<𝜏 is a pivot basis: indeed, 𝐴𝐺<𝜏

is the increasing union ∪𝜌<𝜏𝐴𝐺⩽𝜌. so Lemma 8 applies.
The set 𝐴𝐺𝜏 is nonempty, as otherwise 𝐴𝐺⩽𝜏 = 𝐴𝐺<𝜏 and the latter is a pivot basis. Since 𝐺

is a rewrite basis at 𝜏, there is a 𝑔 ∈ 𝐴𝐺𝜏 which is→𝜏
𝐺-reduced. Since 𝐴𝐺⩽𝜏 is not a pivot basis

there is a 𝑓 ∈ ⟨𝐴𝐺⩽𝜏⟩ such that lm 𝑓 ≠ lmℎ for any ℎ ∈ 𝐴𝐺⩽𝜏 . By the prebasis condition P2,
there is a 𝜆 ∈ 𝐾 such that 𝑓 − 𝜆𝑔 ∈ ⟨𝐴𝐺<𝜏⟩. And because 𝐴𝐺<𝜏 is a pivot basis, by hypothesis,
Criterion B3 implies that 𝑓 ↓̆𝜏𝐺 𝜆𝑔. Since both 𝑓 and 𝑔 are→𝜏

𝐺-reduced, we have in fact a tail
equivalence 𝑓 ⌣𝜏

𝐺 𝑔 , and therefore lm 𝑓 = lm 𝑔 , which is a contradiction ◀

▶ Corollary 31. If 𝐺 is a rewrite basis, then 𝐺 is a signature basis.

Proof. It follows directly from the definitions and Proposition 30. ◀

▶ Corollary 32. Let 𝐺 be a prebasis and let 𝜎 ∈ S such that 𝐺 is a rewrite basis at any signature
𝜏 < 𝜎. Then 𝐴𝐺<𝜎 is a pivot basis.

Proof. For contradiction, assume that 𝐴𝐺<𝜎 is not a pivot basis. Since 𝐴𝐺<𝜎 is the increasing
union ∪𝜏<𝜎𝐴𝐺⩽𝜏 , there is at least one 𝜏 < 𝜎 such that 𝐴𝐺⩽𝜏 is not a pivot basis, by Lemma 8.
This contradicts Proposition 30. ◀

The following statement is an effective form of the prebasis condition, it states that when𝐺 is
a rewrite basis, the regular reduction→𝐺 is able to witness the prebasis condition: two elements
with same signatures have equal→𝐺-normal forms, up to scaling and tail equivalence.

▶ Corollary 33. Let 𝐺 be a prebasis and let 𝜎 ∈ S such that 𝐺 is a rewrite basis at any 𝜏 < 𝜎. For
any 𝑓 , 𝑔 ∈ 𝐴𝐺𝜎 + ⟨𝐴𝐺<𝜎⟩, there is some 𝜆 ∈ 𝐾× such that 𝑓 ↓̆𝜎𝐺 𝜆𝑔 .

Proof. Let 𝑓 , 𝑔 ∈ 𝐴𝐺𝜎 + ⟨𝐴𝐺<𝜎⟩. P2 implies that there is some 𝜆 ∈ 𝐾× such that 𝑓 −𝜆𝑔 ∈ ⟨𝐴𝐺<𝜎⟩.
By Corollary 32, 𝐴𝐺<𝜎 is a pivot basis, so Criterion B3 implies that 𝑓 ↓̆𝜎𝐺 𝜆𝑔 . ◀

The second aspect of the definition of rewrite bases is the algorithmic content. Checking
if 𝐺 is a rewrite basis at 𝜎 involves only manipulations in 𝐴,M and S, but no operations in
the base field 𝐾 . Moreover, if 𝐺 is not a rewrite basis at some 𝜎, then it is easy to compute a
sigsafe extension of 𝐺 which is a rewrite basis at 𝜎: simply pick some 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎,
compute a→𝐺-normal form, and insert the result into 𝐺. This suggests an algorithm schema
for computing rewrite bases (Pseudo-algorithm 1).

There are two significant difficulties to turn this schema into an actual algorithm. First,
how to check that 𝐺 is a rewrite basis? And how to pick a signature at which 𝐺 is not a rewrite

14 Axioms for a theory of signature bases

Pseudo-algorithm 1 Algorithm schema for computing rewrite bases

input A prebasis 𝐺
output A sigsafe extension 𝐻 of 𝐺 that is a rewrite basis

1 while 𝐺 is not a rewrite basis do
2 pick 𝜎 ∈ S such that 𝐺 is not a rewrite basis at 𝜎
3 pick 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎 — 𝑓 is called the reductant
4 𝑔 ← any→𝐺-normal form of 𝑓
5 𝐺 ← 𝐺 ∪ {𝑔} —𝐺 is now a rewrite basis at 𝜎
6 return 𝐺

basis? These questions are addressed in Section 3.4. Second, how to ensure termination? This
is addressed, in Section 5, under Noetherian hypotheses and under some restrictions on the
choice of 𝜎 on line 2, or the choice of 𝑓 on line 3.

3.4 A criterion for rewrite bases

There is a criterion (that we will call Faugère’s criterion) to check that a prebasis is a rewrite
basis. It plays the same role as Buchberger’s criterion plays for Gröbner bases: reducing a
definition that involves infinitely many monomials or signatures to finitely many computations.
However, the analogy between the two criteria is rather thin. For one, Faugère’s criterion is not
derived from Buchberger’s one and I could not find either a derivation of Buchberger’s criterion
from Faugère’s one. Moreover, Faugère’s criterion only involves combinatorial operations (on
leading monomials and signatures) while Buchberger’s criterion involves arithmetic operations
through the reductions of S-pairs. When applying Faugère’s criterion, the arithmetic side (that
is how the coefficients are relevant) is hidden in the prebasis hypothesis.

The slogan of signature-based algorithms for Gröbner bases is “process at most one S-pair
per signature”, an algorithmic point of view on the idea that “two elements with the same
signature are substitutable”. Going one step further, we may ask at which signature we need to
process a S-pair. In what follows, the concept of S-pair, inherited from Buchberger’s algorithm,
fades in favor of a study of the signatures themselves. This approach is somewhat closer
to the concept of J-pairs proposed by Gao et al. (2016): the set of critical signatures that we
introduce below is closely related to the set of signatures of J-pairs that need to be handled in
the GVW algorithm.

Our goal here, given a prebasis 𝐺, is to define a set of signatures Σ(𝐺) such that it is enough
to check that 𝐺 is a rewrite basis at any signature in Σ(𝐺) to prove that 𝐺 is a rewrite basis.
Naturally we want Σ(𝐺) to be as small as possible. And as soon as we will have introduced
Noetherian hypotheses, we will want Σ(𝐺) to be finite and computable in a combinatorial way
(that is without arithmetic operations in the base field).

▶ Definition 34 (Critical set). For a sigset 𝐺 and a sigpair 𝑓 , the critical set of 𝑓 modulo 𝐺,
denoted Σ(𝑓 , 𝐺), is the set of all 𝜎 ∈ S such that:

C1 ∃𝑎 ∈ 𝐴, 𝑎 sig 𝑓 = 𝜎 and 𝑎 𝑓 is not→𝐺-reduced;
C2 ∀𝑏 ∈ 𝐴,

(
𝑏 sig 𝑓 is a proper divisor of 𝜎 ⇒ 𝑏 𝑓 is→𝐺-reduced

)
.

The critical set of 𝐺, is the set of signatures

Σ(𝐺) �
⋃
𝑓 ∈𝐺

Σ(𝑓 , 𝐺).

P. Lairez 15

In other words, the condition C1 defines a subset of S corresponding to the signatures at which
a multiples 𝑎 𝑓 is not→𝐺-reduced. This subset is closed under the action of 𝐴. Indeed, if there
is a reduction 𝑎 𝑓 1→𝐺 ℎ, then for any 𝑏 ∈ 𝐴, there is also a reduction 𝑏 𝑓 𝑎 1→𝐺 𝑏ℎ. Among all
these signatures, the condition C2 retains only the minimal ones for divisibility. This will be
important latter to ensure finiteness. The important property is the following.

▶ Lemma 35. For any sigset 𝐺, any sigpair 𝑓 , and any 𝑎 ∈ 𝐴, if 𝑎 𝑓 is not→𝐺-reduced, then there
is some 𝜎 ∈ Σ(𝑓 , 𝐺) which divides 𝑎 sig 𝑓 .

Proof. Let 𝑎′ ∈ 𝐴 such that 𝑎′ sig 𝑓 divides 𝑎 sig 𝑓 , 𝑎′ 𝑓 is not→𝐺-reduced, and 𝑎′ sig 𝑓 is minimal.
Let 𝜎 = 𝑎′ sig 𝑓 . We check that 𝜎 ∈ Σ(𝑓 , 𝐺). Indeed C1 follows from the definition. For C2, let 𝑏 ∈
𝐴 such that 𝑏 sig 𝑓 is a proper divisor of 𝜎. In particular, 𝑏 sig 𝑓 divides 𝑎 sig 𝑓 and 𝑏 sig 𝑓 < 𝜎.
By minimality of 𝜎, 𝑏 𝑓 is→𝐺-reduced. ◀

There is a resemblance with the notion of critical pairs in Buchberger’s criterion (see
Section 2.4) but also an important difference: critical pairs are elements of 𝑀 , while the critical
set Σ(𝑓 , 𝐺) only contains signatures, it is a combinatorial content. Note that Σ(𝑓 , 𝐺) is included
in the union ∪𝑔∈𝐺Σ(𝑓 , {𝑔}) and Σ(𝑓 , {𝑔}) may be thought as the set of signatures of the possible
S-pairs between 𝑓 and 𝑔. In the classical polynomial setting, Σ(𝑓 , {𝑔}) contains at most one
element. In the general case, Σ(𝑓 , {𝑔}) can contain zero, one, finitely many or infinitely many
elements, see Section 6 for examples.

▶ Example 36 (continued). Consider the sigset 𝐺 defined in Example 26 and developed in
Example 29. We compute that

Σ(𝑔1, 𝐺) = ∅, Σ(𝑔2, 𝐺) = {𝑥2 𝑦5 ⊗ 𝑒2}, Σ(𝑔3, 𝐺) = {𝑥5 𝑦2 ⊗ 𝑒3}.

Note that Σ(𝑔3, {𝑔1}) = {𝑥5 𝑦5 ⊗ 𝑒3}, reflecting the reduction of 𝑦5𝑔3 by 𝑥5𝑔1, but this signature
disappears in Σ(𝑔3, 𝐺) because it is divided by 𝑥5 𝑦2 ⊗ 𝑒3, which comes from the reduction
of 𝑦2𝑔3 by 𝑥3𝑔1.

▶ Proposition 37. Let 𝐺 be a prebasis and let 𝜎 ∈ S. If 𝐺 is a rewrite basis at any signature 𝜏 < 𝜎,
then 𝐺 is a rewrite basis at 𝜎, or 𝜎 ∈ Σ(𝐺).

Proof. Assume that 𝐺 is not a rewrite basis at 𝜎 and let us prove that 𝜎 ∈ Σ(𝐺). We may assume
that 𝐴𝐺𝜎 ≠ ∅, otherwise 𝐺 is a rewrite basis at 𝜎. Let 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝐺 such that 𝑎 sig 𝑓 = 𝜎.
We choose 𝑓 so that lm(𝑎 𝑓) is smallest. By hypothesis, 𝑎 𝑓 is not→𝐺-reduced (otherwise 𝐺 is a
rewrite basis at 𝜎). By Lemma 35, there is a signature 𝜏 ∈ Σ(𝑓 , 𝐺) which divides 𝜎. Let 𝑏, 𝑐 ∈ 𝐴
such that 𝑏 sig 𝑓 = 𝜏 and 𝑐𝜏 = 𝜎.

If 𝜏 = 𝜎, we are done: 𝜎 ∈ Σ(𝑓 , 𝐺). For contradiction, assume that 𝜏 < 𝜎. In particular, 𝐺 is a
rewrite basis at 𝜏. So there is some→𝜏

𝐺-reduced 𝑔 ∈ 𝐴𝐺𝜏 . By Corollary 33, there is 𝜆 ∈ 𝐾× such
that 𝑔 ↓̆𝜏𝐺 𝜆𝑏 𝑓 . Since 𝑔 is→𝜏

𝐺-reduced and 𝑏 𝑓 is not, this implies that lm 𝑔 < lm(𝑏 𝑓), and, by M2,
that lm(𝑐𝑔) < lm(𝑐𝑏 𝑓). Moreover, 𝑐𝑏 sig 𝑓 = 𝑎 sig 𝑓 , so S1 implies that lm(𝑐𝑏 𝑓) = lm(𝑎 𝑓), and
therefore lm(𝑐𝑔) < lm(𝑎 𝑓). This contradicts the minimality of lm(𝑎 𝑓). ◀

From Proposition 37, we easily deduce the following statement.

▶ Theorem 38 (Faugère’s criterion). Let 𝐺 be a prebasis. If 𝐺 is a rewrite basis at any 𝜎 ∈ Σ(𝐺),
then 𝐺 is a rewrite basis.

16 Axioms for a theory of signature bases

4 Additional properties of rewrite bases

This section gathers some properties of rewrite bases that are not central, and not used in the
next sections, but that connect to previous works.

4.1 Relation between signature bases and rewrite bases

Corollary 31 shows that rewrite bases are signature bases. With two competing definitions, it is
worth studying more precisely the relation between them.

We first introduce a classification of signatures. Let 𝐺 be a prebasis. For any 𝜎 ∈ S, ei-
ther 𝐴𝐺𝜎 = ∅, this is a trivial case, or any element of 𝐴𝐺𝜎 generates the quotient ⟨𝐴𝐺⩽𝜎⟩ /⟨𝐴𝐺<𝜎⟩.
In the latter case, either every element of 𝐴𝐺𝜎 is in ⟨𝐴𝐺<𝜎⟩, if the quotient is zero-dimensional,
or no element of 𝐴𝐺𝜎 is in ⟨𝐴𝐺<𝜎⟩, if the quotient is one-dimensional. This leaves the following
categories. A signature 𝜎 ∈ S is:

an empty signature if 𝐴𝐺𝜎 = ∅;
a nonempty signature if 𝐴𝐺𝜎 ≠ ∅.

Moreover, a nonempty signature is:

a regular signature if 𝐴𝐺𝜎 ∩ ⟨𝐴𝐺<𝜎⟩ = ∅;
a syzygy signature if 𝐴𝐺𝜎 ⊆ ⟨𝐴𝐺<𝜎⟩.

A nonempty signature is either regular or syzygy, as long as 𝐺 is a prebasis. This classification is
relative to the sigset 𝐺, but we check easily that it remains unchanged under sigsafe extensions.

▶ Example 39 (continued). Consider again the prebasis 𝐺 from Example 26. We check easily
that:

1 ⊗ 𝑒1 is an empty signature, because it is not multiple of any of the signatures in 𝐺.
𝜎 = 𝑥5 𝑦5 ⊗ 𝑒3 is a (nonempty) syzygy signature. Indeed, 𝐴𝐺𝜎 =

{
𝑦5𝑔

♮
3
}

and 𝑦5𝑔3 →𝐺 0,
using the reducer 𝑥5𝑔2. So 𝑦5𝑔

♮
3 ∈ ⟨𝐴𝐺

<𝜎⟩, and therefore 𝐴𝐺𝜎 ⊆ ⟨𝐴𝐺<𝜎⟩.
𝜎 = 𝑥2 𝑦2⊗𝑒1 is a (nonempty) regular signature. Indeed 𝐴𝐺<𝜎 = ∅, so ⟨𝐴𝐺<𝜎⟩ = 0 while 𝐴𝐺𝜎

contains the nonzero element 𝑔♮1.

▶ Proposition 40. Let 𝐺 ⊆ 𝑀 be a prebasis. 𝐺 is a signature basis if and only if 𝐺 is a rewrite
basis at any regular signature.

Proof. Assume first that 𝐺 is a signature basis. Let 𝜎 ∈ S be a regular signature and let us
prove that 𝐺 is a rewrite basis at 𝜎. Because 𝜎 is regular there is some 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎.
Let 𝑣 be a→𝐺-normal form of 𝑓 , with respect to 𝐺.

The signature 𝜎 is regular, so 𝐴𝐺𝜎∩⟨𝐴𝐺<𝜎⟩ = ∅. In particular 𝑓 ♮ is not in ⟨𝐴𝐺<𝜎⟩, and thus 𝑣♮

is not zero. Because 𝐴𝐺⩽𝜎 is a pivot basis, by definition of a signature basis, 𝑣♮ is reducible
with respect to 𝐴𝐺⩽𝜎 . So there is some 𝑔 ∈ 𝐴𝐺 such that sig 𝑔 ⩽ 𝜎 and lm 𝑔 = lm 𝑣. But 𝑣 is
→𝐺-reduced so sig 𝑔 = 𝜎. Moreover lm 𝑣 = lm 𝑔, so 𝑔 is also→𝐺-reduced. So 𝐺 is a rewrite
basis at 𝜎.

The converse follows from the same argument used in the proof of Corollary 31. ◀

The only property that a signature basis misses to be a rewrite basis, is an explicit marking of
syzygy signatures by sigpairs with polynomial parts equal to zero. The data of syzygy signatures
is a by-product of all known signature-based algorithms. So actually, they compute rewrite
bases, not only signature bases. The following statement establishes an equivalence which
does not hold for the original definition of rewrite bases by Eder and Roune (2013, §3.2), only

P. Lairez 17

the “rewrite basis⇒ signature basis” implication holds for this definition.2 This is the main
motivation for the simplified definition.

▶ Corollary 41. Let 𝐺 ⊆ 𝑀 be a prebasis. 𝐺 is a rewrite basis if and only if the following hold:
𝐺 is a signature basis;
for any syzygy signature 𝜎, there is some 𝑔 ∈ 𝐺 such that sig 𝑔 divides 𝜎 and 𝑔♮ = 0.

4.2 Minimal elements in rewrite bases

We first introduce a binary relation on the set of sigpairs.

▶ Definition 42 (Domination relation, ⊑). We say that 𝑔 dominates 𝑓 , and denote it 𝑔 ⊑ 𝑓 , if one
of the following holds:
D1 ∃𝑎 ∈ 𝐴, 𝑎 sig 𝑔 = sig 𝑓 and 𝑎 lm 𝑔 ⩽ lm 𝑓 ;
D2 ∃𝑎 ∈ 𝐴, 𝑎 sig 𝑔 < sig 𝑓 and 𝑎 lm 𝑔 = lm 𝑓 ≠ 0.
A sigpair 𝑓 is dominant in a sigset 𝐺 if 𝑓 ∈ 𝐺 and for any 𝑔 ∈ 𝐺 such that 𝑔 ⊑ 𝑓 , we also
have 𝑓 ⊑ 𝑔 .

Note that the domination relation may not be transitive, although both D1 and D2, considered
separately, define a transitive relation. Note also that D1 is the covering relation defined by
Gao et al. (2016, p. 454).

The elements of a sigset that are strictly dominated are useless in a rewrite basis. It is
important to understand why. The condition D2 means that 𝑎𝑔 can be used to top-reduce 𝑓 ,
so 𝑓 will never help any sigset containing also 𝑔 to be a rewrite basis. The interpretation of the
condition D1 splits into two cases. First, when 𝑎 lm 𝑔 = lm 𝑓 , then 𝑓 will not help because 𝑎𝑔
can serve just as well in any situation where 𝑓 would serve. When 𝑎 lm 𝑔 < lm 𝑓 , Corollary 33
proves that 𝑓 will never be reduced in a rewrite basis containing 𝑔 .

▶ Theorem 43. Let 𝐺 be a prebasis and 𝐻 be a sigsafe extension such that every element of 𝐻 is
dominated by an element of 𝐺. Let 𝜎 be a signature such that 𝐻 and 𝐺 are rewrite bases at any
signature 𝜏 < 𝜎. Then 𝐻 is a rewrite basis at 𝜎 if and only if 𝐺 is a rewrite basis at 𝜎.

Proof. A sigsafe extension of a rewrite basis is a rewrite basis, so one implication is clear.
Conversely, assume that 𝐻 is a rewrite basis at 𝜎. Because 𝐻 is a rewrite basis at 𝜎, there are
𝑏 ∈ 𝐴 and 𝑓 ∈ 𝐻 such that 𝑏 sig 𝑓 = 𝜎 and 𝑏 𝑓 is→𝐻 -reduced (and thus→𝐺-reduced too). By
hypothesis, there is some 𝑔 ∈ 𝐺 such that 𝑔 ⊑ 𝑓 . Since 𝑏 𝑓 is→𝐺-reduced, D2 cannot hold, so D1
does: there is some 𝑎 ∈ 𝐴 such that 𝑎 sig 𝑔 = sig 𝑓 and 𝑎 lm 𝑔 ⩽ lm 𝑓 .

Since 𝐻 is a sigsafe extension of 𝐺, 𝑓 ∈ 𝐴𝐺𝜎 + ⟨𝐴𝐺<𝜎⟩ (maybe after a scalar multiplication),
by definition. By Corollary 33, there is some 𝜆 ∈ 𝐾× such that 𝑏 𝑓 ↓̆𝐺 𝜆𝑏𝑎𝑔. Since 𝑏 𝑓 is→𝐺-
reduced, this implies lm(𝑏 𝑓) ⩽ lm(𝑏𝑎𝑔). Combining with the previous inequality, we obtain
that lm(𝑏𝑎𝑔) = lm(𝑏 𝑓). So 𝑏𝑎𝑔, which has same leading monomial and signature as 𝑏 𝑓 , is
→𝐺-reduced and thus 𝐺 is a rewrite basis at 𝜎. ◀

Combining with Theorem 38, we obtain the following corollary which may be used to reduce
the number of signatures to consider when computing a rewrite basis. It allows, during the
computation of a rewrite basis, to consider only the critical signatures relative to the dominant
elements, while retaining the nondominant elements for computing the reductions.

2 With the simplified definition, there must be at least one→𝐺 -reduced element per signature. With the original
signature, one specific element must be→𝐺 -reduced.

18 Axioms for a theory of signature bases

▶ Corollary 44. Let 𝐺 be a prebasis and 𝐻 be a sigsafe extension such that every element of 𝐻 is
dominated by an element of 𝐺. If 𝐻 is a rewrite basis at any 𝜎 ∈ Σ(𝐺), then 𝐺 and 𝐻 are rewrite
bases.

4.3 Syzygies

When a rewrite basis comes from a Gröbner basis in the signature module through a map 𝜙 :
𝑆 → 𝑀 (see Section 3.2), the syzygy signatures have an interpretation in terms of the kernel
of 𝜙. This is an important feature of rewrite bases that can be exploited to compute efficiently
colon ideals and saturations (Gao et al., 2010; Eder et al., 2023).

▶ Proposition 45. Let 𝜙 : 𝑆 → 𝑀 be a linear map commuting with the action of 𝐴, let 𝐻 ⊆ 𝑆 be a
Gröbner basis, let 𝐺 = {(𝜙(ℎ), lmℎ) | ℎ ∈ 𝐻}, and 𝐽 = {ℎ ∈ 𝐻 | 𝜙(ℎ) = 0}. If 𝐺 is a rewrite basis,
then 𝐽 is a Gröbner basis and ⟨𝐴𝐽⟩ = ker𝜙 ∩ ⟨𝐴𝐻⟩.

Proof. It is clear that ⟨𝐴𝐽⟩ ⊆ ker𝜙 ∩ ⟨𝐴𝐻⟩. Let ℎ ∈ ker𝜙 ∩ ⟨𝐴𝐻⟩, let 𝜎 = lmℎ and let us prove
that there is some 𝑘 ∈ 𝐴𝐽 such that lmℎ = lm 𝑘. This will prove at the same time that 𝐽 is a
Gröbner basis, using Criterion B1, and that ⟨𝐴𝐽⟩ = ker𝜙 ∩ ⟨𝐴𝐻⟩.

Because 𝐻 is a Gröbner basis, we can decompose ℎ as 𝜆𝑝 + 𝑞, with 𝑝 ∈ 𝐴𝐻𝜎 , 𝑞 ∈ ⟨𝐴𝐻<𝜎⟩
and 𝜆 ∈ 𝐾× (using the first reduction step of the reduction given by Criterion B2). In partic-
ular 𝜆−1𝜙(ℎ) ∈ 𝐴𝐺𝜎 + ⟨𝐴𝐺<𝜎⟩. Since 𝐺 is a rewrite basis at 𝜎, there is some 𝑎 ∈ 𝐴 and 𝑔 ∈ 𝐺
such that 𝑎𝑔 is →𝐺-reduced and 𝑎 sig 𝑔 = 𝜎. By Corollary 33, we have 𝜙(ℎ) ↓̆𝜎𝐺 𝜇𝑎𝑔♮ for
some 𝜇 ∈ 𝐾× . But 𝜙(ℎ) = 0 and 𝑎𝑔♮ is →𝜎

𝐺-reduced, so 𝑎𝑔♮ = 0 and therefore 𝑔♮ = 0. By
definition of 𝐻 , 𝑔 = (𝜙(𝑘), lm 𝑘) for some 𝑘 ∈ 𝐻 . And since 𝑔♮ = 0, we have 𝑘 ∈ 𝐽 . In particular,
lmℎ = 𝜎 = lm(𝑎𝑘). ◀

5 Algorithm templates

In all this section we assume that 𝑀 and 𝑆 are Noetherian monomial modules, which we define
in Section 5.1. (Note that this is unrelated to the property that the regular reduction→𝐺 is
Noetherian.) This will imply the finiteness of the critical set Σ(𝐺) of finite sigsets 𝐺 as well as
the existence of finite sigsafe extensions that are rewrite bases, for any sigsets.

As it will become clear, there is not a single algorithm for computing rewrite bases. There
are many possible variants, some major, such as F5 selection strategy or F4-style reduction, and
some minor. There are also many possible ways to combine them. More than to prescribe some
algorithms, the goal of this section is to highlight design principles.

Section 5.1 introduces the Noetherian hypotheses. Section 5.2 studies an algorithm where
signatures are processed in order, that is when a signature is always processed after any smaller
signatures. This is a natural setting, yielding simple proofs of termination, but it does not fit all
situations. Section 5.3 studies the idea of minimizing the leading monomial of the reductant, in
the style of Arri and Perry (2011) and Sun and Wang (2011). Again, it leads to rather simple
proofs of termination, but it leaves aside other reductant selection strategy, such as the original
F5 strategy.

To study algorithms where the signatures may be processed out of order and the reductant
selected (almost) freely, Section 5.4 introduces sigtrees. It is a tree whose nodes are the elements
of the rewrite basis being computed, and 𝑔 is a child of 𝑓 if was obtained from a reduction by
a multiple of 𝑓 . Under mild hypotheses, sigtrees are finite (Theorem 60), giving a very useful

P. Lairez 19

termination criterion. This criterion is put into practice in Section 5.5, to study the F5 selec-
tion strategy with out-of-order signature processing, in Section 5.6, to study the most general
selection strategy, according to the sigtree criterion, and in Section 5.7 to study simultaneous
reduction in the F4 style.

5.1 Noetherian monomial modules

A partial order ⊴ on a set 𝑋 is a well partial order (or wpo) if for any sequence (𝑥𝑖)𝑖⩾0 in 𝑋 ,
there are some 𝑖 < 𝑗 such that 𝑥𝑖 ⊴ 𝑥 𝑗 . A subset 𝑇 of a partially ordered set 𝑋 is closed if 𝑎 ⊴ 𝑏
and 𝑎 ∈ 𝑇 imply 𝑏 ∈ 𝑇 . Wpos have several equivalent characterizations.

▶ Lemma 46 (Higman, 1952, Theorem 2.1). Let 𝑋 be a set with a partial order ⊴. The following
assertions are equivalent:

N1 any sequence 𝑇0 ⊆ 𝑇1 ⊆ . . . of closed subsets of 𝑋 stabilizes;
N2 for any sequence (𝑥𝑖)𝑖⩾0 in S, there are some 𝑖 < 𝑗 such that 𝑥𝑖 ⊴ 𝑥 𝑗 (i.e. ⊴ is a wpo);
N3 for any sequence (𝑥𝑖)𝑖⩾0 in S, there is a subsequence (𝑥 𝑗) 𝑗⩾0 such that 𝑥 𝑗 ⊴ 𝑥 𝑗+1 for any 𝑗 ⩾ 0;
N4 for any closed set 𝑇 ⊆ 𝑋 , there is finite set 𝐵 such that 𝑇 = {𝑥 ∈ 𝑋 | ∃𝑏 ∈ 𝐵, 𝑏 ⊴ 𝑥}.

A monomial setM of a monomial module 𝑀 is partially ordered by divisibility, an order
that we will denote ⊴, not to be confused with the total order ⩽. Namely, 𝑚 ⊴ 𝑛 if there is
some 𝑎 ∈ 𝐴 such that 𝑎𝑚 = 𝑛. Nonetheless, if 𝑎 ⊴ 𝑏 then 𝑎 ⩽ 𝑏, by M3.

▶ Definition 47 (Noetherian monomial space). A monomial space 𝑀 is Noetherian if ⊴ is a wpo.

From now on, we assume that the monomial spaces 𝑀 and 𝑆 (the signature module) are
Noetherian. The first interesting consequence is the finiteness of the critical set Σ(𝐺) for a given
finite sigset 𝐺.

▶ Lemma 48. Let 𝐺 be a finite sigset. If 𝑆 is Noetherian, then Σ(𝐺) is finite.

Proof. Let 𝑓 ∈ 𝐺. By definition, Σ(𝑓 , 𝐺) is the set of ⊴-minimal elements of some closed subset
of S. By Criterion N4, it is finite. ◀

The termination arguments will not follow from the Noetherianity of 𝑀 or 𝑆 alone, but in
conjunction. More precisely, inM ×S we define (𝑚, 𝜎) ⊴ (𝑛, 𝜏) if 𝑚 ⊴ 𝑛 and 𝜎 ⊴ 𝜏. In other
words, (𝑚, 𝜎) ⊴ (𝑛, 𝜏) if there are 𝑎, 𝑏 ∈ 𝐴 such that 𝑎𝑚 = 𝑛 and 𝑏𝜎 = 𝜏. Let us insist that 𝑎
and 𝑏 may not be equal.

▶ Lemma 49. If 𝑀 and 𝑆 are Noetherian monomial modules, then ⊴ is a wpo onM ×S.

Proof. Let
(
(𝑚𝑖 , 𝜎𝑖)

)
𝑖⩾0 be an infinite sequence inM × S. By Criterion N3, we may assume,

up to extracting a subsequence, that 𝑚𝑖 ⊴ 𝑚𝑖+1. Similarly, we may assume, up to extracting a
subsubsequence, that 𝜎𝑖 ⊴ 𝜎𝑖+1. So ⊴ onM ×S satisfies Criterion N3. ◀

The following statement relates ⊴ with the domination relation ⊑ (Definition 42).

▶ Lemma 50. For any sigpairs 𝑓 and 𝑔 , if (sig 𝑔, lm 𝑔) ⊴ (sig 𝑓 , lm 𝑓) then 𝑔 ⊑ 𝑓 .

Proof. Let 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 sig 𝑔 = sig 𝑓 and 𝑏 lm 𝑔 = lm 𝑓 . If 𝑏 sig 𝑔 < sig 𝑓 , then D2 holds.
Otherwise, if 𝑎 sig 𝑔 = sig 𝑓 ⩽ 𝑏 sig 𝑔 , then S2 implies that 𝑎 lm 𝑔 ⩽ 𝑏 lm 𝑔 = lm 𝑓 (so D1 holds),
unless sig 𝑔 = 0. In this last case, we have sig 𝑓 = 𝑏 sig 𝑔 = 0 and 𝑏 lm 𝑔 = lm 𝑓 , so D1 also
holds. ◀

20 Axioms for a theory of signature bases

The following statement will underlie all the termination proofs. It is an analogue of
Dickson’s Lemma for sigpairs. However, we will see that this statement may not apply directly.
The relation ⊴ onM ×S, the domination relation ⊑ and Lemma 50 appeared first in the work
of Arri and Perry (2011, 2017) and they have been used several times since then (Eder & Perry,
2011; Roune & Stillman, 2012; Gao et al., 2016).

▶ Proposition 51 (Dickson’s Lemma for sigpairs). For any infinite sequence (𝑓𝑖)𝑖⩾0 of sigpairs,
there are indices 𝑖 < 𝑗 such that 𝑓𝑖 ⊑ 𝑓 𝑗 .

Proof. It is a direct corollary of Lemma 49, Criterion N2 and Lemma 50. ◀

5.2 Processing signatures in order

By Proposition 37, we can compute the smallest signature at which a given prebasis 𝐺 is not a
rewrite basis: it must be an element of the critical set Σ(𝐺), which is finite by Lemma 48. This
signature has many good properties induced by Corollary 33, and in particular we deduce the
following one.

▶ Proposition 52. Let 𝐺 be a prebasis and let 𝜎 such that 𝐺 is a rewrite basis at any 𝜏 < 𝜎.
Let 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎 and let ℎ be any→𝐺-normal form of 𝑓 . Then either 𝐺 is a rewrite basis
at 𝜎, or 𝑔 @ ℎ for any 𝑔 ∈ 𝐺.

Proof. Assume that there is some 𝑔 ∈ 𝐺 such that 𝑔 ⊑ ℎ. Domination condition D2 is ruled
out because ℎ is→𝐺-reduced. Therefore D1 holds: there is some 𝑎 ∈ 𝐴 such that 𝑎 sig 𝑔 = 𝜎

and lm(𝑎𝑔) ⩽ lmℎ. By Corollary 33, 𝑓 ↓̆𝐺 𝜆𝑎𝑔 for some 𝜆 ∈ 𝐾× . By confluence, we also
have ℎ ↓̆𝐺 𝜆𝑎𝑔. Since ℎ is→𝐺-reduced, this implies that lmℎ ⩽ lm(𝑎𝑔). Combining with the
condition D1, we obtain that lm(𝑎𝑔) = lmℎ and therefore that 𝑎𝑔 is also→𝐺-reduced. So 𝐺 is a
rewrite basis at 𝜎. ◀

This leads to Algorithm 2. There is no restriction whatsoever on the choice of the reductant
on line 9, they all reduce to the same sigpair, up to scaling and tail equivalence⌣𝐺 (Corollary 33).

Algorithm 2 Computation of a rewrite basis handling signatures in increasing order

input A finite prebasis 𝐺
output A finite sigsafe extension of 𝐺 which is a rewrite basis

7 while 𝐺 is not a rewrite basis at all 𝜎 ∈ Σ(𝐺) do
8 𝜎 ← min {𝜎 ∈ Σ(𝐺) | 𝐺 is not a rewrite basis at 𝜎}
9 pick any 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎

10 𝑔 ← any→𝐺-normal form of 𝑓
11 𝐺 ← 𝐺 ∪ {𝑔}
12 return 𝐺

▶ Theorem 53. Algorithm 2 is correct and terminates.

Proof. Correction follows from Theorem 38. For contradiction, assume that the algorithm does
not terminate for some input. Let 𝑔1, 𝑔2, . . . be the sigpairs that are inserted to 𝐺 on line 11 on
each iteration. By Proposition 51, there are some indice 𝑖 < 𝑗 such that 𝑔𝑖 ⊑ 𝑔 𝑗 . Proposition 37
implies that when 𝑔 𝑗 is picked, 𝐺 is a rewrite basis at any signature < sig 𝑔 𝑗 . So Proposition 52
implies that 𝑔𝑖 @ 𝑔 𝑗 , which is a contradiction. ◀

P. Lairez 21

This algorithm is close in essence to the original F5 algorithm (Faugère, 2002) and more
generally to the RB algorithm of Eder and Perry (2011). The notion of critical set and the
notation Σ(𝐺) greatly simplify the presentation of the algorithm, but it hides combinatorial
computations. For example, how to update Σ(𝐺) after inserting a new element? How to find the
next signature to handle? How to check the halting condition? These questions are addressed
in Section 5.6.

▶ Example 54 (continued). Let us apply Algorithm 2 to Mora’s system (Examples 26, 29 and 36).
Let 𝐺𝑖+3 denote the value of 𝐺 at the end of the 𝑖th iteration. (So that 𝐺3 is the input, starting the
counter at 3 because the input contains already 3 elements.) At the start of the algorithm, we
have Σ(𝐺3) =

{
𝑥2 𝑦5 ⊗ 𝑒2, 𝑥

5 𝑦2 ⊗ 𝑒3
}

. The minimal element of Σ(𝐺3) is 𝜎4 = 𝑥2 𝑦5 ⊗ 𝑒2 and 𝐺 is
not a rewrite basis at 𝜎4. We pick the reductant 𝑥2𝑔2 (only possible choice) and using 𝑦3𝑔1, we
compute the reduction

𝑥2𝑔2 →𝐺 −𝑥4 𝑦 + 𝑦3, in signature 𝑥2 𝑦5 ⊗ 𝑒2

We have a new basis element 𝑔4 = (−𝑥4 𝑦 + 𝑦3, 𝜎4) to obtain 𝐺4. The set Σ(𝑔4, 𝐺4) gives two new
elements of Σ(𝐺4):

Σ(𝐺4) = Σ(𝐺3) ∪
{
𝑥2 𝑦6 ⊗ 𝑒2, 𝑥

3 𝑦5 ⊗ 𝑒2
}
,

which gives two new elements in Σ(𝐺4). The minimal element of Σ(𝐺4) at which 𝐺4 is not a
rewrite basis is 𝜎5 = 𝑥5 𝑦2 ⊗ 𝑒3. We pick the reductant 𝑦2𝑔3 (only choice) and using 𝑥3𝑔1, we
compute the reduction

𝑦2𝑔3 →𝐺 −𝑥 𝑦4 + 𝑥3, in signature 𝑥5 𝑦2 ⊗ 𝑒3.

We have a new basis element 𝑔5 = (−𝑥 𝑦4 + 𝑥3, 𝜎5) to obtain 𝐺5. We have two new elements in
the critical set Σ(𝐺5):

Σ(𝐺5) = Σ(𝐺4) ∪
{
𝑥6 𝑦2 ⊗ 𝑒2, 𝑥

5 𝑦3 ⊗ 𝑒2
}
.

The next signature is 𝜎6 = 𝑥2 𝑦6 ⊗ 𝑒2. We pick the reductant 𝑦𝑔4, and we have

𝑦𝑔4 →𝐺5 𝑦
4 − 𝑥2, in signature 𝑥2 𝑦6 ⊗ 𝑒2,

leading to a new element 𝑔6. Another possible choice of reductant is 𝑥2 𝑦𝑔2, which would lead
to the same 𝑔6. From the computational point of view, it is clear that 𝑦𝑔4 is a better choice
than 𝑥2 𝑦𝑔2 because 𝑔4 was already obtained by reducing 𝑥2𝑔2, so there will be less work to
reduce 𝑦𝑔4 than to reduce 𝑥2 𝑦𝑔2. When the signatures are not process in order, the choice of
the reductant have a theoretical importance discussed in the following sections.

The process goes on similarly. We can represent the output of Algorihm 2 in the form of
trees (which are instances of the concept of well-formed sigtree introduced in Section 5.4). We
say that ℎ ∈ 𝐺 is the parent of 𝑔 ∈ 𝐺 if 𝑔 is obtained, on line 10, from the reduction of 𝑓 = 𝑎ℎ
for some 𝑎 ∈ 𝐴. To display the tree, we show only the leading monomials of the sigpairs, the
iteration at which they have been inserted, and an edge ℎ→ 𝑔 is labelled by the element 𝑎 ∈ 𝐴
defined above. For the input discussed above, we obtain Figure 1. The data displayed in this
tree (leading monomials and signatures) is enough to certify that the output is a rewrite basis,
using Theorem 38.

▶ Example 55 (Katsura-6). We consider the system Katsura-6 (from the famous benchmark
family Katsura-𝑛, available in Sagemath with the function sage.rings.ideal.Katsura),

22 Axioms for a theory of signature bases

Figure 1 Graphical trace of Algorithm 2 applied to the system in Example 26. Root nodes, on the
left, represent input polynomials. Bold nodes represent elements of the rewrite basis whose leading
monomial is the leading monomial of some element of the reduced Gröbner basis of the input ideal. The
signature of a node 𝑛 can be obtained by multiplying the labels of the edges from 𝑛 to the root node, and
then multiplying by the signature of the corresponding root node. For example, the signature of the input
node 3 is 𝑥5 ⊗ 𝑒3, so the signature of the node 11 is 𝑥7 𝑦2 ⊗ 𝑒3.

given in ℚ[𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓] (with degree reverse lexicographic ordering) by the polynomials

𝑔1 = 𝑎 + 2𝑏 + 2𝑐 + 2𝑑 + 2𝑒 + 2 𝑓 − 1, 𝑔2 = 𝑐2 + 2𝑏𝑑 + 2𝑎𝑒 + 2𝑏 𝑓 − 𝑒,
𝑔3 = 𝑏𝑐 + 𝑎𝑑 + 𝑏𝑒 + 𝑐 𝑓 − 1

2𝑑, 𝑔4 = 𝑏2 + 2𝑎𝑐 + 2𝑏𝑑 + 2𝑐𝑒 + 2𝑑 𝑓 − 𝑐,
𝑔5 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 + 𝑑𝑒 + 𝑒 𝑓 − 1

2𝑏, 𝑔6 = 𝑎2 + 2𝑏2 + 2𝑐2 + 2𝑑2 + 2𝑒2 + 2 𝑓 2 − 𝑎.

Figures 2, 3 and 4 shows the result of running Algorithm 2 on this input, with different signature
orderings. At each iteration, when there are multiple possible choices, we pick the one that
comes from the most recently inserted element of 𝐺, this is the F5 selection strategy, see
Section 5.5. The computations are displayed in the form of sigtrees, as in Example 54.

5.3 Minimizing the leading monomial of the reductant

Processing critical signatures in increasing order seems to be a natural option but it is also
important to understand what happens when signatures are processed in any order. There
may be various reasons to do so: parallel computing, simultaneous reduction in the F4 style
(Faugère, 1999). Recently, Eder et al. (2023) used signature algorithms to compute saturation
ideals, this involves enlarging the input ideal on the fly. It can be interpreted as an algorithm
processing signatures out of order.

In a time where the termination of F5 (Galkin, 2014) was still unsettled, Arri and Perry (2011,
2017) introduced the idea of choosing carefully the sigpair to be reduced, called the reductant,
at a given signature to ensure termination. This is based on the following observation.

▶ Proposition 56. Let 𝐺 be a prebasis and let 𝜎 be a signature at which 𝐺 is not a rewrite basis.
Let 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎 and lm 𝑓 minimal. Let ℎ be a→𝐺-normal form of 𝑓 . Then 𝑔 @ ℎ for
any 𝑔 ∈ 𝐺.

Proof. By contradiction, assume that there is some 𝑔 ∈ 𝐺 such that 𝑔 ⊑ ℎ. Condition D2 is ruled
out because ℎ is→𝐺-reduced. Therefore D1 holds: there is some 𝑎 ∈ 𝐴 such that 𝑎 sig 𝑔 = 𝜎

and lm(𝑎𝑔) ⩽ lmℎ. Besides, 𝐺 is not a rewrite basis at 𝜎, it follows that 𝑓 is not→𝐺-reduced,
and thus lmℎ < lm 𝑓 since 𝑓 →𝐺 ℎ. It follows that lm(𝑎𝑔) < lm 𝑓 , which contradicts the
minimality of 𝑓 . ◀

P. Lairez 23

Figure 2 Trace of the computation of a rewrite basis for Katsura-6 (Example 55) with the TOP order
on the signatures, and the F5 selection strategy of the reductant. The input polynomials are given the
signatures sig 𝑔𝑖 = lm 𝑔𝑖 ⊗ 𝑒𝑖 .

Although Arri and Perry still requires to process signatures by increasing order, Proposi-
tion 56 opens the way for out-of-order signature handling, as Sun and Wang (2013) and Gao
et al. (2016) did. The formulation that proposed here (Algorithm 3) is mostly equivalent to that
of the latter. The choice of signature on line 14 is unconstrained, but the choice of the reductant
is imposed.

▶ Theorem 57. Algorithm 3 is correct and terminates.

Proof. Identical to the proof of Theorem 53, but using Proposition 56 instead of Proposition 52.
◀

24 Axioms for a theory of signature bases

Figure 3 Trace of the computation of a rewrite basis for Katsura-6 (Example 55) with the POT order
on the signatures, and the F5 selection strategy of the reductant. The input polynomials are given the
signatures sig 𝑔𝑖 = 1 ⊗ 𝑒𝑖 .

P. Lairez 25

Figure 4 Trace of the computation of a rewrite basis for Katsura-6 (Example 55) with the TOP order
on the signatures, and the F5 selection strategy of the reductant. The input polynomials are given the
unshifted signatures sig 𝑔𝑖 = 1 ⊗ 𝑒𝑖 . In contrast to Figure 2, note that many elements are not necessary
to form a Gröbner basis, eventhough they are necessary to form a rewrite basis. For example, the 79th
element 𝑔79 with lm 𝑔79 = 𝑒6 and sig 𝑔79 = 𝑎𝑑3 ⊗ 𝑒4 cannot be reduced by the earlier 𝑔46, as suggested by
the relation 𝑒2 lm 𝑔46 = lm 𝑔79, because 𝑒2 sig 𝑔46 = 𝑎𝑒4 ⊗ 𝑒1 is bigger than sig 𝑔79.

26 Axioms for a theory of signature bases

Algorithm 3 Computation of a rewrite basis with out-of-order signature processing, minimizing the
leading monomial of the reductant

input A finite prebasis 𝐺
output A finite sigsafe extension of 𝐺 which is a rewrite basis

13 while 𝐺 is not a rewrite basis at all 𝜎 ∈ Σ(𝐺) do
14 pick any 𝜎 ∈ S such that 𝐺 is not a rewrite basis at 𝜎
15 pick 𝑓 ∈ 𝐴𝐺 with sig 𝑓 = 𝜎 and lm 𝑓 minimal
16 𝑔 ← any→𝐺-normal form of 𝑓
17 𝐺 ← 𝐺 ∪ {𝑔}
18 return 𝐺

5.4 Well-formed sigtrees

A tree is a set T , finite or infinite, of finite sequences of nonnegative integers such that for any
(𝑘1, . . . , 𝑘𝑟) ∈ T (with 𝑟 ⩾ 1), the prefix subsequence (𝑘1, . . . , 𝑘𝑟−1) is also in T . The elements
of T are called nodes. The children of a given node 𝑛 ∈ T are the sequences in T that extend 𝑛
by exactly one integer. The ancestors of a node 𝑛 = (𝑘1, . . . , 𝑘𝑟) are the nodes (𝑘1, . . . , 𝑘 𝑗)
for 0 ⩽ 𝑗 < 𝑟.

▶ Definition 58 (sigtree). A sigtree is a tree T together with a rank function rk : T → ℕ and a
label funtion 𝜆 : T → 𝑀 × S (recall that 𝑀 × S is the set of sigpairs).

Sigtrees are a natural way to represent the process of computing a rewrite basis. Indeed,
Algorithms 3 or 2, as well as Pseudo-algorithm 1, produce sigtrees as follows. The elements of 𝐺,
the rewrite basis begin computed, are the labels of the sigtrees. There is one sigtree for each
element of the input sigset. The root node of each sigtree is labelled with the corresponding
input element. At the beginning of the algorithms, there are only the root nodes. Then, each
time some 𝑓 ∈ 𝐴𝐺 is picked, reduced, and inserted into 𝐺, we can write 𝑓 = 𝑎𝜆 (𝑛), for some
node 𝑛 of the sigtree, and some 𝑎 ∈ 𝐴, and we insert in the sigtree a new child node of 𝑛
containing the new element. The rank function reflects the birthdate of a node. Figures 1, 2, 3
and 4 are examples of sigtrees obtained in this way.

▶ Definition 59 (well-formed sigtree). A well-formed sigtree is a sigtree T such that:

T1 ∀𝑛 ∈ T ,∀𝑚 child of 𝑛, ∃𝑎 ∈ 𝐴, 𝑎 sig 𝜆 (𝑛) = sig 𝜆 (𝑚) and 𝑎 lm 𝜆 (𝑛) > lm 𝜆 (𝑚),
“a child is more reduced than its parent”;

T2 ∀𝑛 ∈ T , 𝜆 (𝑛) is→-reduced with respect to the sigset {𝜆 (𝑝) | 𝑝 is an ancestor of 𝑛},
“a child is reduced modulo its ancestors”;

T3 ∀𝑛 ∈ T ,∀𝑝, 𝑞 children of 𝑛, rk(𝑝) < rk(𝑞) ⇒ sig 𝜆 (𝑝) does not divide sig 𝜆 (𝑞),
“the signature of a node does not divide that of younger sibling nodes”.

T4 ∀𝑘 ∈ ℕ, {𝑛 ∈ T | rk(𝑛) = 𝑘} is finite.

Typically, T1 and T2 are satisfied by design if 𝜆 (𝑚) is obtained by reducing 𝑎𝜆 (𝑛)modulo a sigset
containing at least the labels of the ancestors of 𝑚, and assuming that 𝑎𝜆 (𝑛) is indeed reducible
to account for the strict inequality in T1. T4 will follow from an appropriate bookkeeping. T3 is
the real constraint. In the context above, T3 puts a contraint on the choice of the reductant. It
means that whenever we want to reduce 𝑎𝜆 (𝑛), we must first check that we have not previously
computed a reduction 𝑏𝜆 (𝑛) → 𝜆 (𝑚) for some child 𝑚 of 𝑛 and for some 𝑏 such that ∃𝑐 ∈
𝐴, 𝑐𝑏𝜆 (𝑛) = 𝑎𝜆 (𝑛). In which case we can reduce 𝑐𝜆 (𝑚) instead of 𝑎𝜆 (𝑛).

P. Lairez 27

▶ Theorem 60. A well-formed sigtree is finite.

Proof. Let T be a well-formed sigtree. By König’s lemma, it is enough to prove that T has no
infinite branch and that every node has at most finitely many children.

If there is an infinite branch, then there is a sequence of nodes (𝑛𝑖)𝑖⩾0 such that 𝑛𝑖+1 is a
child of 𝑛𝑖 . By Proposition 51, there are some indices 𝑖 < 𝑗 such that 𝜆 (𝑛𝑖) ⊑ 𝜆 (𝑛 𝑗). Condition D2
would contradict T2 so Condition D1 holds: there is some 𝑏 ∈ 𝐴 such that 𝑏 sig 𝜆 (𝑛𝑖) = sig 𝜆 (𝑛 𝑗)
and 𝑏 lm 𝜆 (𝑛𝑖) ⩽ lm 𝜆 (𝑛 𝑗). By T1 (applied all along the path from 𝑛𝑖 to 𝑛 𝑗), there is some 𝑎 ∈ 𝐴
such that 𝑎 sig 𝜆 (𝑛𝑖) = sig 𝜆 (𝑛 𝑗) and 𝑎 lm 𝜆 (𝑛𝑖) > lm 𝜆 (𝑛 𝑗). Since 𝑎 sig 𝜆 (𝑛𝑖) = 𝑏 sig 𝜆 (𝑛𝑖), S1
implies that 𝑎 lm 𝜆 (𝑛𝑖) = 𝑏 lm 𝜆 (𝑛𝑖), leading to a contradiction.

If a node has infinitely many children, T4 ensures that we can extract an infinite sequence
of children with increasing ranks. By Noetherianity of 𝑆, the signature of one child would divide
the signature of another with higher rank. This contradicts T3. ◀

5.5 The F5 reductant selection strategy

In the original presentation of F5, Faugère (2002) proposes to choose a reductant 𝑎 𝑓 where,
among all possible choices, 𝑓 is the “most recent”. This leads to Algorithm 4. This selection
strategy leads naturally to a well-formed sigtree. So we can prove that the corresponding
algorithm terminates, even if signatures are handled out of order.

Algorithm 4 Computation of a rewrite basis with out-of-order signature processing and F5 selection
strategy of the reductant

input A finite prebasis 𝐺
output A finite sigsafe extension of 𝐺 which is a rewrite basis

19 𝑅← empty dictionary mapping sigpairs to integers
20 𝑟 ← 1
21 for 𝑔 ∈ 𝐺 do 𝑅[𝑔] ← 0
22 while 𝐺 is not a rewrite basis at all 𝜎 ∈ Σ(𝐺) do
23 pick any 𝜎 ∈ S such that 𝐺 is not a rewrite basis at 𝜎
24 pick some 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝐺 such that 𝑎 sig 𝑓 = 𝜎 and 𝑅[𝑓] maximal
25 𝑔 ← any→𝐺-normal form of 𝑎 𝑓
26 𝐺 ← 𝐺 ∪ {𝑔}
27 𝑅[𝑔] ← 𝑟

28 𝑟 ← 𝑟 + 1
29 return 𝐺

▶ Theorem 61. Algorithm 4 is correct and terminates.

Proof. Correctness follows from Theorem 38. For termination, consider the sigtrees (one for
each input element) induced by the algorithm: each sigpair 𝑔 inserted into 𝐺 on line 26 is the
label of a node whose parent is the node labeled with 𝑓 , where 𝑓 is the sigpair picked on line 24.
The rank of a node is given by 𝑅. If the algorithm does not terminate, at least one of the sigtrees
is infinite. Therefore, to prove termination, it is enough to check that the sigtrees are finite.

These sigtrees are well-formed. T1 and T2 follow by construction. To check T3, we observe
that the rank of a node is always greater than the rank of its parent. So, on line 24, if the node
corresponding to 𝑓 has already a child whose signature divides 𝜎, this child has a higher rank
than that of 𝑓 , which contradicts the maximality of 𝑅[𝑓]. The number of nodes of a given rank

28 Axioms for a theory of signature bases

is at most one, this gives T4. Theorem 60 applies and shows that the sigtrees are finite, so the
algorithm terminates. ◀

5.6 Explicit management of the critical set

The presentation of Algorithms 2, 3 and 4 takes advantage of the notation Σ(𝐺) to abstract the
handling of set of signatures to be handled from concrete questions that theory may ignore but
not practical implementations. There is a lot of room to design a proper handling of signatures,
I simply show some possible variants.

5.6.1 Base algorithm In this section, we assume that we know how to operate onM and S
(that is compare, test divisibility, etc.) and we assume that we have a procedure to compute
the critical set Σ(𝑓 , {𝑔}) of a pair of sigpairs 𝑓 and 𝑔 (simply denoted Σ(𝑓 , 𝑔)). Without more
information on 𝐴,M and S we cannot go further down into the details. In the polynomial
setting, the set Σ(𝑓 , 𝑔) may contain zero or one element and its computation amounts to a few
operations on monomials, see Section 6.1,

There are many ways to proceed and Algorithm 5 is one of them. In this algorithm, the set 𝑄
contains signatures, and, at the beginning of each iteration of the “while” loop, we have the
following invariant:

∀𝜎 ∈ Σ(𝐺), 𝜎 ∈ 𝑄 or 𝐺 is a rewrite basis at 𝜎. (1)

Indeed, when an element 𝑔 is inserted in 𝐺, we remove sig 𝑔 from 𝑄 and insert all the elements
in the sets Σ(𝑔, ℎ) ∪ Σ(ℎ, 𝑔), for ℎ ∈ 𝐺. Since 𝑔 is→𝐺 reduced, 𝐺 ∪ {𝑔} is a rewrite basis at 𝜎
and the inclusion

Σ(𝐺 ∪ {𝑔}) ⊆ Σ(𝐺) ∪
⋃
ℎ∈𝐺
(Σ(𝑔, ℎ) ∪ Σ(ℎ, 𝑔))

proves that Invariant (1) is preserved. With Invariant (1) and Theorem 38 in hand, it is clear
that Algorithm 5 returns a rewrite basis when it terminates.

Termination is ensured by design by contructing well-formed sigtrees. The algorithm main-
tains two lists children and 𝐿. The 𝐿 list contains the labels: 𝐿[𝑖] is the label of the 𝑖th node in
the sigtree. The children list encodes the tree structure: children[𝑖] is the set of chidren of the
node 𝑖. The set children[0] contains the root nodes. The rank of the 𝑖th node is defined to be 𝑖.
The selection procedure of the reductant makes it sure that the sigtree is well formed. Each
iteration of the “while” loop either removes an element of 𝑄 or increase the size of the sigtree.
The latter cannot happen infinitely many times, in view of Theorem 60, so𝑄 is eventually empty
and the algorithm terminates.

5.6.2 F5 variant We can specialize the reductant selection strategy to match the one of F5,
exposed in Section 5.5. In this variant, it is not necessary to maintain the sigtree explicitely, we
may ignore the children list. (To really match with F5 algorithm, the reductant is chosen to be
zero if possible, even if it does not correspond to the most recent possible reductant.)

5.6.3 A variant with signature pruning In the set𝑄, we may remove any element that is divided
by a different element of 𝑄. Instead of Invariant (1), we maintain the following one:

∀𝜎 ∈ Σ(𝐺), (∃𝜏 ∈ 𝑄, 𝜏 divides 𝜎) or 𝐺 is a rewrite basis at 𝜎. (2)

P. Lairez 29

Algorithm 5 Computation of a rewrite basis, with explicit construction of a well-formed sigtree and
explicit handling of the critical set

30 « initialize signature queue and sigtree »→ line 43
31 while 𝑄 is not empty do
32 𝜎 ← some element of 𝑄
33 𝑄← 𝑄 \ {𝜎}
34 « select a reductant 𝑓 in signature 𝜎 with corresponding node 𝑘 »→ line 64
35 if 𝑓 is→𝐺-reducible then
36 𝑔 ← a→𝐺-normal form of 𝑓
37 « insert a node with label 𝑔 and parent 𝑘 »→ line 54
38 « update the queue with the new relation 𝑔 »→ line 60
39 𝐺 ← 𝐺 ∪ {𝑔}
40 return G
41

42 Chunks
43 « initialize signature queue and sigtree » ≡
44 𝑄← ∅ —signature queue
45 children← empty list —maps a node to its children
46 𝐿← empty list —maps a node to its label
47 children[0] ← ∅ —the set of root nodes
48 𝑛← 1 —node counter
49 𝑘 ← 0 —index of the root node
50 for 𝑔 ∈ 𝐺 do —create nodes for input elements
51 « insert a node with label 𝑔 and parent 𝑘 »→ line 54
52 « update the queue with the new relation 𝑔 »→ line 60
53

54 « insert a node with label 𝑔 and parent 𝑘 » ≡
55 𝐿[𝑛] ← 𝑔 ;
56 children[𝑘] ← children[𝑘] ∪ {𝑛} ;
57 children[𝑛] ← ∅
58 𝑛← 𝑛 + 1
59

60 « update the queue with the new relation 𝑔 » ≡
61 for ℎ ∈ 𝐺 do
62 𝑄← 𝑄 ∪ Σ(𝑔, ℎ) ∪ Σ(ℎ, 𝑔)
63

64 « select a reductant 𝑓 in signature 𝜎 with corresponding node 𝑘 » ≡
65 𝑘 ← 0 —start the search from the root node
66 for 𝑐 ∈ children[𝑘] do —the order of iteration does not matter
67 if sig 𝐿[𝑐] divides 𝜎 then
68 𝑘 ← 𝑐 —go down the tree
69 goto 66 —continue the search from the new position
70 pick 𝑎 ∈ 𝐴 such that 𝑎 sig 𝐿[𝑘] = 𝜎
71 𝑓 ← 𝑎𝐿[𝑘]

30 Axioms for a theory of signature bases

Algorithm 6 Variant of Algorithm 5 with the F5 strategy for the reductant selection

72 Similar to Algorithm 5, except for the following chunk
73 « select a reductant 𝑓 in signature 𝜎 with corresponding node 𝑘 » ≡
74 𝑘 ← 0
75 for 1 ⩽ 𝑗 < 𝑛 do
76 if sig 𝐿[𝑗] divides 𝜎 then 𝑘 ← 𝑗

77 if lm 𝐿[𝑗] = 0 then break —stop the search if 𝜎 is a syzygy signature
78 pick 𝑎 ∈ 𝐴 such that 𝑎 sig 𝐿[𝑘] = 𝜎
79 𝑓 ← 𝑎𝐿[𝑘]

This leads to Algorithm 7. Checking correctness is an easy exercise.

Algorithm 7 Variant of Algorithm 5 with signature pruning

80 Similar to Algorithm 5, except for the following chunk
81 « update the queue with the new relation 𝑔 » ≡
82 for ℎ ∈ 𝐺 do
83 𝑄← 𝑄 ∪ Σ(𝑔, ℎ) ∪ Σ(ℎ, 𝑔)
84 for 𝜎 ∈ 𝑄 do
85 if ∃𝜏 ∈ 𝑄 \ {𝜎}, 𝜏 divides 𝜎 then
86 𝑄← 𝑄 \ {𝜎}

5.7 Simultaneous reduction

As another variation of Algorithm 5, we may handle several signatures at a time, in the F4
style (Faugère, 1999; Albrecht & Perry, 2010; Eder & Faugère, 2017, §13). Concretely, the sigset 𝐺
that is used to compute the reductions not updated each time a new element is discovered. The
new elements are inserted in a sigset 𝑁 and after a bunch of signatures is handled (how many
is to be determined by the implementation), the elements of 𝑁 are inserted in 𝐺. On line 98, the
reductant 𝑔 is reduced with respect to 𝐺 (and as usual, multiples of elements of 𝐺 can be used
in reduction steps) and also with respect to 𝑁 (but multiples cannot be used in reduction steps).
In other words, the polynomial part 𝑓 ♮ is reduced modulo the set 𝐴𝐺<𝜎 ∪ 𝑁 .

The reason to delay insertion into 𝐺 is the principle of simultenous reduction. If we have
to perform the reductions of sigpairs 𝑓1, . . . , 𝑓𝑟 with respect to the same sigset 𝐺, it is possible
to formulate the problem in terms of a matrix whose rows represent the 𝑓𝑖 and all possibly
useful reducers from 𝐴𝐺 in a reduction chain starting from any of the 𝑓𝑖 . Once this matrix is
computed (this is the symbolic preprocessing step), it can be used to compute the reductions effi-
ciently. This matrix aspect is crucial for high-performance computations but it is a transparent
transformation of the algorithm: it does not change what is computed, compared to the naive
reductions of the 𝑓𝑖 . For a more detailed introduction to the F4 strategy, see Cox et al. (2015,
Chapter 10, §3).

▶ Theorem 62. Algorithm 8 is correct and terminates.

Proof. Termination is clear because the algorithm produces a well-formed sigtree (where the
rank of a node is the number of the iteration at which it was produced), and at each iteration,
either 𝑄 diminishes or the sigtree grows. Correctness follows from Invariant (1) which also
holds for this algorithm, with a slightly different argument than the one in Section 5.6.1. Indeed,

P. Lairez 31

Algorithm 8 Computation of a rewrite basis, with simultaneous reduction. Pseudocode chunks are
defined in Algorithm 5.

87 « initialize signature queue and sigtree »→ line 43
88 while 𝑄 is not empty do
89 𝑆 ← some nonempty subset of 𝑄 —select several signatures at a time
90 𝑄← 𝑄 \ 𝑆
91 𝐹 ← ∅ —set of reductants and corresponding nodes
92 for 𝜎 ∈ 𝑆 do —selection of reductants
93 « select a reductant 𝑓 in signature 𝜎 with corresponding node 𝑘 »→ line 64
94 if 𝑓 is→𝐺-reducible then
95 𝐹 ← 𝐹 ∪ {(𝑓 , 𝑘)} —we keep the information of the parent
96 𝑁 ← ∅ —set of newly computed relations
97 for (𝑓 , 𝑘) ∈ 𝐹 by increasing order of sig 𝑓 do—reduction of reductants
98 𝑔♮ ← a→-normal form of 𝑓 ♮ w.r.t. 𝐴𝐺<𝜎 ∪ {ℎ♮ | ℎ ∈ 𝑁}
99 𝑔 ← (𝑔♮, 𝜎)

100 « insert a node with label 𝑔 and parent 𝑘 »→ line 54
101 « update the queue with the new relation 𝑔 »→ line 60
102 𝑁 ← 𝑁 ∪ {𝑔} —insertion of 𝑔 in 𝐺 is delayed
103 𝐺 ← 𝐺 ∪ 𝑁
104 return G

when an element 𝑔 is inserted into 𝐺, if 𝑔 is→𝐺-reduced, then 𝐺 ∪ {𝑔} is a rewrite basis at 𝜎
so we may remove 𝜎 from 𝑄 without breaking the invariant. However, due to the nature of
simultaneous reduction, it may happen that we insert an element that is not→𝐺-reduced. In
this case, then there is some ℎ ∈ 𝐺 which reduces 𝑔 and we check easily that Σ(𝑔, ℎ) = {sig 𝑔}.
So in this case, sig 𝑔 is not actually removed from 𝑄 and the invariant is preserved. ◀

6 Settings

This section describes different monomial spaces coming from different settings in computer
algebra. Some are noncommutative or non-Noetherian.

6.1 Polynomial ring

Let 𝑀 = 𝐾 [𝑥1, . . . , 𝑥𝑛] be the polynomial ring in 𝑛 variables over 𝐾 , which we endow with a
monomial order, so the function lm is well defined. Let 𝐴 = {𝑥𝑖11 · · · 𝑥

𝑖𝑛
𝑛 | 𝑖1, . . . , 𝑖𝑛 ∈ ℕ}. The

axioms for monomial orders ensure that 𝑀 is a monomial module over 𝐴. It is Noetherian.
Moreover, it satisfies the extra property M4, so construction of prebases is easy, see Remark 25.

For sigpairs 𝑓 and 𝑔, the critical set Σ(𝑓 , 𝑔) has zero or one element. There is the trivial
case where 𝑓 ♮ = 0 or 𝑔♮ = 0. In this case, every multiple of 𝑓 is→{𝑔 } -reduced, so Σ(𝑓 , 𝑔) = ∅.
When 𝑓 ♮ and 𝑔♮ are both nonzero, there are monomials 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 lm 𝑓 = 𝑏 lm 𝑔 =

lcm(lm 𝑓 , lm 𝑔). Then there are two cases, if 𝑎 sig 𝑓 ⩽ 𝑏 sig 𝑔, then Σ(𝑓 , {𝑔}) = ∅; on the
contrary, if 𝑏 sig 𝑔 < 𝑎 sig 𝑓 , then Σ(𝑓 , 𝑔) = {𝑎 sig 𝑓 }.

32 Axioms for a theory of signature bases

6.2 Modules over polynomial rings

Let 𝑟 be a positive integer and let 𝑀 = 𝐾 [𝑥1, . . . , 𝑥𝑛]𝑟 , which we endow with a term ordering
– typically position-over-term, term-over-position, or Schreyer’s order (Kreuzer & Robbiano,
2000, §1.4). The monoid 𝐴 is the same as before. 𝑀 is a Noetherian monomial module and
satisfies the extra condition M4.

The computation of Σ(𝑓 , 𝑔) is slightly different. In the case where 𝑓 ♮ and 𝑔♮ are both
nonzero, it may happen that no multiple of lm 𝑓 and lm 𝑔 coincide. Indeed, nonzero monomials
inM have an index in {1, . . . , 𝑟} which is unchanged under multiplication. Therefore, if 𝑓 ♮ =
0 or 𝑔♮ = 0, or lm 𝑓 and lm 𝑔 have different indices, then Σ(𝑓 , 𝑔) = ∅. Otherwise, there
are monomial 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 lm 𝑓 = 𝑏 lm 𝑔 (and 𝑎 lm 𝑓 minimal). Depending on the
comparison of 𝑎 sig 𝑓 and 𝑏 sig 𝑔 , Σ(𝑓 , 𝑔) is either ∅ or {𝑎 sig 𝑓 }, as in the polynomial case.

6.3 Monoid algebras

Let 𝐴 be a submonoid of {𝑥𝑖11 · · · 𝑥
𝑖𝑛
𝑛 | 𝑖1, . . . , 𝑖𝑛 ∈ ℕ} and let 𝑀 = 𝐾 [𝐴] be the ring of polynomials

whose monomials are contained in 𝐴. It is clear that 𝑀 is a Noetherian monomial module
over 𝐴. This case includes the “semigroup algebras” studied by Bender et al. (2019). It also
includes some algebras that are interesting in singularity theory such that 𝐾 [𝑥2, 𝑥 𝑦, 𝑦2], that
are polynomial ring with finitelty many monomials removed (in this case 𝑥, 𝑦, and 𝑥 𝑦).

The critical set Σ(𝑓 , 𝑔) can contain more than one element. Assume, for example, that 𝑀 =

𝐾 [𝑥2, 𝑥 𝑦, 𝑦2] – that is 𝐴 =
{
𝑥𝑖 𝑦 𝑗

�� 𝑖 + 𝑗 ⩾ 2
}

– and that 𝑓 ♮ = 𝑥2 and 𝑔♮ = 𝑥 𝑦. The set of all 𝑎 ∈ 𝐴
such that lm(𝑎 𝑓 ♮) is divided by lm(𝑔♮) is generated by 𝑥 𝑦 and 𝑦2. It is not generated by 𝑦

because 𝑦 is not in 𝐴. Assuming that 𝑥 𝑦 sig 𝑓 > 𝑥2 sig 𝑔 and 𝑦2 sig 𝑓 > 𝑥 𝑦 sig 𝑔 , we have

Σ(𝑓 , 𝑔) =
{
𝑥 𝑦 sig 𝑓 , 𝑦2 sig 𝑓

}
.

6.4 Weyl algebras

Let 𝑀 = 𝐾 ⟨𝑥1, . . . , 𝑥𝑛, 𝜕1, . . . , 𝜕𝑛⟩ be the Weyl algebra on 𝑛 variables. It is noncommutative. We
may define it as the subalgebra of End𝐾 (𝐾 [𝑋1, . . . , 𝑋𝑛]) where 𝑥𝑖 is the multiplication by 𝑋𝑖
and 𝜕𝑖 is the differentiation with respect to 𝑋𝑖 . Concretely, 𝑥𝑖𝑥 𝑗 = 𝑥 𝑗𝑥𝑖 , 𝜕𝑖𝜕 𝑗 = 𝜕 𝑗𝜕𝑖 , 𝜕𝑖𝑥 𝑗 = 𝑥 𝑗𝜕𝑖
(if 𝑖 ≠ 𝑗) and 𝜕𝑖𝑥𝑖 = 𝑥𝑖𝜕𝑖 + 1. A basis of 𝑀 is given by the monomials 𝑥𝑖11 · · · 𝑥

𝑖𝑛
𝑛 𝜕

𝑗1
1 · · · 𝜕

𝑗𝑛
𝑛 and we

can consider the same monomial orderings as we would do for a commutative polynomial ring
in 2𝑛 variables.

For the monoid 𝐴, we cannot choose the set of monomials because it is not closed under mul-
tiplication. We choose instead 𝐴 to be the submonoid of𝑀 generated by 𝑥1, . . . , 𝑥𝑛 and 𝜕1, . . . , 𝜕𝑛.
We could also choose 𝐴 = 𝑀 . This turns 𝑀 into a Noetherian monomial module with the extra
property M4, so we can construct signature modules with Remark 25. We could also choose 𝐴
to be the monoid of nonzero elements of 𝑅. Things behave similarly to the polynomial case,
due to quasicommutativity: for any 𝑎, 𝑏 ∈ 𝑀 , lm(𝑎𝑏) = lm(𝑏𝑎).

6.5 Differential algebras

Let 𝑀 = 𝐾 [𝑡, 𝑥0, 𝑥1, 𝑥2, . . .] be a polynomial ring in infinitely many variables with a derivation
defined by 𝑡′ = 1 and 𝑥′

𝑖
= 𝑥𝑖+1. Let𝑊 = 𝑀 ⟨𝜕⟩ be the subalgebra of End𝐾 𝑀 where 𝑀 acts by

multiplication and 𝜕 be the derivation, similarly to the Weyl algebra case. This turns 𝑀 into a

REFERENCES 33

left𝑊 -module and differential ideals are defined to be the submodules of 𝑀 . We choose on 𝑀 a
lexicographic ordering with 𝑡 < 𝑥0 < 𝑥1...

We choose 𝐴 to be the monoid generated by 𝜕, 𝑡, 𝑥0, 𝑥1... This turns 𝑀 into a monomial
module. It is quasicommutative (that is lm(𝑎𝑏𝑚) = lm(𝑏𝑎𝑚) for any 𝑎, 𝑏 ∈𝑊 and 𝑚 ∈ 𝑀) but
not Noetherian. However, it satisfies the extra condition M4 and the critical sets Σ(𝑓 , 𝐺) are
finite. This example extends to several independent variables and several function variables.

6.6 Free algebras

Let 𝑀 be the free algebra generated by 𝑛 variables 𝑥1, . . . , 𝑥𝑛. A basis of 𝑀 is given by the
monoid of words in 𝑥1, . . . , 𝑥𝑛. A monomial order may be given, for example, by comparing
the degree first and then the lexicographic order. We choose 𝐴 to be the monoid of words,
which acts naturally on 𝑀 by left multiplication. This turns 𝑀 into a monomial space with
extra condition M4. If 𝑛 > 1, it is not Noetherian, but the critical sets are finite.

To deal with two-sided ideals of 𝑀 , we need to consider not only left multiplications but
also right multiplications. We introduce the monoid 𝐴′ = 𝐴 × 𝐴op of pairs of words with with
the composition (𝑎, 𝑏) (𝑎′, 𝑏′) = (𝑎𝑎′, 𝑏′𝑏) and the action on 𝑀 given by (𝑎, 𝑏)𝑚 = 𝑎𝑚𝑏. This
turns 𝑀 into another mononomial space. When 𝑛 > 1, it is not Noetherian and does not satisfy
extra condition M4. For example, as shown by Green et al. (1998), if 𝑥1 > 𝑥2 then 𝑥1𝑥1 − 𝑥1𝑥2

generates a two-sided ideal without a finite Gröbner basis. Moreoever, the critical sets may
be infinite, eventhough they contain only finitely many nonsyzygy signatures (Hofstadler &
Verron, 2022).

References

Albrecht, M., & Perry, J. (2010). F4/5. arXiv: 1006.4933.

Arri, A., & Perry, J. (2011). The F5 criterion revised. J. Symb. Comput., 46(9), 1017–1029.
https://doi.org/10/cd5td7

Arri, A., & Perry, J. (2017). Corrigendum to “The F5 criterion revised”. J. Symb. Comput., 82,
164–165. https://doi.org/10/gp8639

Bardet, M., Faugère, J.-C., & Salvy, B. (2015). On the complexity of the F5 Gröbner basis
algorithm. J. Symb. Comput., 70, 49–70. https://doi.org/10/gntfcb

Becker, T., & Weispfenning, V. (1993). Gröbner Bases: A Computational Approach to
Commutative Algebra. Springer-Verlag. https://doi.org/10/cfhwn9

Bender, M. R., Faugère, J.-C., & Tsigaridas, E. (2019). Gröbner basis over semigroup algebras:
Algorithms and applications for sparse polynomial systems. Proc. ISSAC 2019, 42–49.
https://doi.org/10/gnt5z9

Berthomieu, J., Eder, C., & Safey El Din, M. (2021). Msolve: A library for solving polynomial
systems. Proc. ISSAC 2021, 51–58. https://doi.org/10/gk8549

Bosma, W., Cannon, J., & Playoust, C. (1997). The Magma algebra system I: The user language. J.
Symb. Comput., 24(3-4), 235–265. https://doi.org/10/ckdngx

Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal.

https://arxiv.org/abs/1006.4933
https://doi.org/10/cd5td7
https://doi.org/10/gp8639
https://doi.org/10/gntfcb
https://doi.org/10/cfhwn9
https://doi.org/10/gnt5z9
https://doi.org/10/gk8549
https://doi.org/10/ckdngx

34 REFERENCES

Buchberger, B. (2006). An algorithm for finding the basis elements of the residue class ring of a
zero dimensional polynomial ideal (M. P. Abramson, Trans.). J. Symb. Comput., 41(3),
475–511. https://doi.org/10/dz9kz6 (Original work published 1965)

Caruso, X., Vaccon, T., & Verron, T. (2020). Signature-based algorithms for Gröbner bases over
Tate algebras. Proc. ISSAC 2020, 70–77. https://doi.org/10/gp99pq

Cox, D. A., Little, J., & O’Shea, D. (2015). Ideals, Varieties, and Algorithms (4th ed.). Springer.
https://doi.org/10/hzv6

Decker, W., Greuel, G.-M., Pfister, G., & Schönemann, H. (2022). Singular 4-3-0 — A computer
algebra system for polynomial computations. http://www.singular.uni-signaturebasiskl.de

Eder, C., & Faugère, J.-C. (2017). A survey on signature-based algorithms for computing Gröbner
bases. J. Symb. Comput., 80(3), 719–784. https://doi.org/10/ggck7f

Eder, C., Lairez, P., Mohr, R., & Safey El Din, M. (2023). A signature-based algorithm for
computing the nondegenerate locus of a polynomial system. J. Symb. Comput., 119, 1–21.
https://doi.org/10/jxn2

Eder, C., & Perry, J. (2011). Signature-based algorithms to compute Gröbner bases. Proc. ISSAC
2011, 99–106. https://doi.org/10/dmwqmp

Eder, C., Pfister, G., & Popescu, A. (2017). On signature-based Gröbner bases over Euclidean
rings. Proc. ISSAC 2017, 141–148. https://doi.org/10/gsbxs2

Eder, C., & Roune, B. H. (2013). Signature rewriting in Gröbner basis computation. Proc. ISSAC
2013, 331–338. https://doi.org/10/ggkppx

Faugère, J.-C. (1999). A new efficient algorithm for computing Gröbner bases (𝐹4). J. Pure Appl.
Algebra, 139(1-3), 61–88. https://doi.org/10/bpq5dx

Faugère, J.-C. (2001). Finding all the solutions of Cyclic 9 using Gröbner basis techniques.
Comput. Math., 1–12. https://doi.org/10/d9297x

Faugère, J.-C. (2002). A new efficient algorithm for computing gröbner bases without reduction
to zero (𝐹5). Proc. ISSAC 2002, 75–83. https://doi.org/10/bd4nnq

Faugère, J.-C., & Joux, A. (2003). Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. CRYPTO 2003, 44–60. https://doi.org/10/fpfzgc

Francis, M., & Verron, T. (2020). A signature-based algorithm for computing Gröbner bases over
principal ideal domains. Math.Comput.Sci., 14(2), 515–530. https://doi.org/10/gsbxs4

Galkin, V. V. (2014). Termination of the F5 algorithm. Program. Comput. Softw., 40(2), 47–57.
https://doi.org/10/ghjx58

Gao, S., Guan, Y., & Volny, F. (2010). A new incremental algorithm for computing Groebner
bases. Proc. ISSAC 2010, 13–19. https://doi.org/10/cwg6rj

Gao, S., Volny, F., & Wang, M. (2016). A new framework for computing Gröbner bases. Math.
Comp., 85(297), 449–465. https://doi.org/10/f7t889

Gebauer, R., & Möller, H. M. (1986). Buchberger’s algorithm and staggered linear bases. Symp.
Symb. Algebr. Comput., 218–221. https://doi.org/10/cb24fn

Gebauer, R., & Möller, H. M. (1988). On an installation of Buchberger’s algorithm. J. Symb.
Comput., 6(2), 275–286. https://doi.org/10/bfjdwc

Green, E. D., Mora, T., & Ufnarovski, V. (1998). The non-commutative Gröbner freaks. In
M. Bronstein, V. Weispfenning, & J. Grabmeier (Eds.), Symb. Rewriting Tech. (pp. 93–104).
Birkhäuser. https://doi.org/10/dfbt7g

https://doi.org/10/dz9kz6
https://doi.org/10/gp99pq
https://doi.org/10/hzv6
http://www.singular.uni-kl.de
https://doi.org/10/ggck7f
https://doi.org/10/jxn2
https://doi.org/10/dmwqmp
https://doi.org/10/gsbxs2
https://doi.org/10/ggkppx
https://doi.org/10/bpq5dx
https://doi.org/10/d9297x
https://doi.org/10/bd4nnq
https://doi.org/10/fpfzgc
https://doi.org/10/gsbxs4
https://doi.org/10/ghjx58
https://doi.org/10/cwg6rj
https://doi.org/10/f7t889
https://doi.org/10/cb24fn
https://doi.org/10/bfjdwc
https://doi.org/10/dfbt7g

REFERENCES 35

Hashemi, A., & Ars, G. (2010). Extended F5 criteria. J. Symb. Comput., 45(12), 1330–1340.
https://doi.org/10/bmfh29

Hashemi, A., & Javanbakht, M. (2021). On the construction of staggered linear bases. J. Algebra
Appl., 20(8), 2150132. https://doi.org/10/gqwrpn

Higman, G. (1952). Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc., 2(1),
326–336. https://doi.org/10/fmt8nh

Hofstadler, C., & Verron, T. (2022). Signature Gröbner bases, bases of syzygies and cofactor
reconstruction in the free algebra. J. Symb. Comput., 113, 211–241. https://doi.org/10/gp85ss

Hofstadler, C., & Verron, T. (2023). Signature Gröbner bases in free algebras over rings. Proc.
ISSAC 2023, 298–306. https://doi.org/10/gskrd2

Huet, G. (1980). Confluent reductions: Abstract properties and applications to term rewriting
systems. J. ACM, 27(4), 797–821. https://doi.org/10/fj7n4g

Kambe, Y. (2023). Analysis of computing Gr\"obner bases and Gr\"obner degenerations via theory
of signatures. arXiv: 2305.13639 [math]. Retrieved 2023, from
http://arxiv.org/abs/2305.13639

Kreuzer, M., & Robbiano, L. (2000). Computational commutative algebra (Vol. 1). Springer.
https://doi.org/10/ffxbqr

Lu, D., Wang, D., Xiao, F., & Zhou, J. (2018). Extending the GVW algorithm to local ring. Proc.
ISSAC 2018, 271–278. https://doi.org/10/gsbxr9

Möller, H. M., Mora, T., & Traverso, C. (1992). Gröbner bases computation using syzygies. Proc.
ISSAC 1992, 320–328. https://doi.org/10/cgb2ts

Monagan, M., & Pearce, R. (2015). A compact parallel implementation of F4. Proc. PASCO 2015,
95–100. https://doi.org/10/ggpbmk

Mora, T. (1994). An introduction to commutative and noncommutative Gröbner bases. Theor.
Comput. Sci., 134(1), 131–173. https://doi.org/10/dvwxsv

Mora, T. (2005). Solving polynomial equation systems (Vol. 2). Cambridge University Press.
https://doi.org/10/jdwm

Roune, B. H., & Stillman, M. (2012). Practical Gröbner basis computation. Proc. ISSAC 2012,
203–210. https://doi.org/10/ggkpqd

Stillman, M. (1990). Methods for computing in algebraic geometry and commutative algebra.
Acta Appl. Math., 21(1), 77–103. https://doi.org/10/dsx7mz

Sun, Y., & Wang, D. (2011). Solving detachability problem for the polynomial ring by
signature-based Gröbner basis algorithms. arXiv: 1108.1301.

Sun, Y., & Wang, D. (2013). A new proof for the correctness of the F5 algorithm. Sci. China Math.,
56(4), 745–756. https://doi.org/10/gp867m

Sun, Y., Wang, D., Ma, X., & Zhang, Y. (2012). A signature-based algorithm for computing
Gröbner bases in solvable polynomial algebras. Proc. ISSAC 2012, 351–358.
https://doi.org/10/ghtkmx

Traverso, C. (1996). Hilbert functions and the Buchberger algorithm. J. Symb. Comput., 22(4),
355–376. https://doi.org/10/b3x2ct

Vaccon, T., Verron, T., & Yokoyama, K. (2018). On affine tropical F5 algorithms. Proc. ISSAC 2018,
383–390. https://doi.org/10/d3mr

https://doi.org/10/bmfh29
https://doi.org/10/gqwrpn
https://doi.org/10/fmt8nh
https://doi.org/10/gp85ss
https://doi.org/10/gskrd2
https://doi.org/10/fj7n4g
https://arxiv.org/abs/2305.13639
http://arxiv.org/abs/2305.13639
https://doi.org/10/ffxbqr
https://doi.org/10/gsbxr9
https://doi.org/10/cgb2ts
https://doi.org/10/ggpbmk
https://doi.org/10/dvwxsv
https://doi.org/10/jdwm
https://doi.org/10/ggkpqd
https://doi.org/10/dsx7mz
https://arxiv.org/abs/1108.1301
https://doi.org/10/gp867m
https://doi.org/10/ghtkmx
https://doi.org/10/b3x2ct
https://doi.org/10/d3mr

36 REFERENCES

Vaccon, T., & Yokoyama, K. (2017). A tropical F5 algorithm. Proc. ISSAC 2017, 429–436.
https://doi.org/10/gsbxs8

Winkler, F. (1996). Polynomial algorithms in computer algebra. Springer-Verlag.
https://doi.org/10/bkh6hq

https://doi.org/10/gsbxs8
https://doi.org/10/bkh6hq

	1 Introduction
	2 Gröbner bases
	2.1 Rewriting systems
	2.2 Top reduction
	2.3 Monomial modules
	2.4 Gröbner bases

	3 Signatures
	3.1 Signature bases
	3.2 Prebases
	3.3 Rewrite bases
	3.4 A criterion for rewrite bases

	4 Additional properties of rewrite bases
	4.1 Relation between signature bases and rewrite bases
	4.2 Minimal elements in rewrite bases
	4.3 Syzygies

	5 Algorithm templates
	5.1 Noetherian monomial modules
	5.2 Processing signatures in order
	5.3 Minimizing the leading monomial of the reductant
	5.4 Well-formed sigtrees
	5.5 The F5 reductant selection strategy
	5.6 Explicit management of the critical set
	5.6.1 Base algorithm
	5.6.2 F5 variant
	5.6.3 A variant with signature pruning

	5.7 Simultaneous reduction

	6 Settings
	6.1 Polynomial ring
	6.2 Modules over polynomial rings
	6.3 Monoid algebras
	6.4 Weyl algebras
	6.5 Differential algebras
	6.6 Free algebras

